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Santrauka
Baigiamajame darbe analizuojami palydoviniai vaizdai ir pokyčių aptikimas taikant skirtingus
giliojo mokymosi metodus. Pirmasis eksperimentas buvo panašus į semantinį segmentavimą,
suporuotas su vektorine autoregresija, skirta erdvinių ir laiko pokyčių analizei, o antrajame
eksperimente naudojama CLIP pagrįsta klasifikavimo be pavyzdžių klasifikacija, kad būtų galima
veiksmingai aptikti pokyčius be duomenų anotavimo. Be to, buvo atlikta aprašų pakitimų klasi-
fikacija, kur aprašai buvo sugeneruoti naudojant Lamos modelį. Darbe toliau tiriamas MiniCPM-V
modelio naudojimas palydovinio vaizdo atpažinimui įvairiuose duomenų rinkiniuose. Galiausiai,
pristatomas novatoriškas algoritmų apjungimas, integruojantis tiksliai suderintą stabilią difuziją ir
apmokytus CycleGAN modelius, siekiant sujungti nevienalyčius duomenų rinkinius, sujungiančius
aprašus, RGB vaizdus ir daugiaspektrinius Sentinel-2 duomenis, taip sukuriant sintetinius dau-
giaspektrinius vaizdus.

Raktiniai žodžiai: palydoviniai vaizdai, gilus mokymasis, didelių kalbų modeliai, generatyvus
modeliai, vaizdų aprašai, vaizdo transformacija
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Abstract
In this master thesis, satellite imagery and change detection analyzed and by using different deep
learning techniques. The first experiment was a UNet-like semantic segmentation paired with vec-
tor autoregression for spatial-temporal change analysis, and the second experiment employs CLIP-
based zero-shot classification to effectively detect changes without the need for extensive labeling.
Additionally, caption based change classification done which these captions generated using Llama
model. The work further investigates the use of the MiniCPM-V model for satellite image recog-
nition across diverse dataset. Finally, an innovative pipeline that integrates fine-tuned Stable Dif-
fusion and our trained CycleGAN models is introduced to unify heterogeneous datasets merging
captions, RGB images, and multispectral Sentinel-2 datathereby generating synthetic multispectral
imagery.

Keywords: Satellite Imagery, Deep learning, Large Language Models, Generative AI, Image
Captioning, Image Transformation
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1. Introduction
The rapid advancement of remote sensing technology has significantly increased our capacity to
monitor changes on the Earth through high-resolution satellite images. These technological ad-
vancements offer a wide range of applications, from monitoring natural disasters to managing agri-
cultural areas, leveraging data obtained from space with advanced remote sensing methods and
algorithms [AA19].

Focusing on a crucial area within remote sensing, this thesis explores the detection of spatial-
temporal changes in satellite imagery—a topic of growing importance. Successful detection of
these changes is of paramount importance to a number of important applications, such as early
warning systems for natural disasters and tracking urbanization processes.

Spatial-temporal detection is the capability of detecting and analyzing the changes in the spatial,
along with the temporal, aspects of satellite images. Spatial changes can be land cover, infrastruc-
ture development, or deforestation, whereas temporal changes are changes over time like seasonal
changes, long-term trends, or frequency of abrupt natural occurrences like earthquakes and floods
[AA19].

The accomplishment of correct and timely detection of these changes is not only a technolog-
ical hurdle but also imperative in solving some of the most pressing societal and environmental
challenges. To illustrate, early detection of land use changes can provide knowledge for sustain-
able urban planning, and the timely detection of natural environment changes can enhance disaster
response and recovery efficiency.

The advent of sophisticated remote sensing technology has significantly enhanced our capacity
to monitor and assess these dynamic landscapes at unprecedented resolutions and scales. This thesis
focuses on the central role of spatial-temporal change detection in remote sensing that comprises
both detecting and deciphering the subtle changes taking place in spatial and temporal dimensions
of the Earth’s surface [AA19].

As environmental issues at the global level intensify and the imperative for sustainable de-
velopment grows, satellite imagery’s aerial perspective becomes ever more important to support
well-informed decision-making and effective policy-making across a variety of critical applications
[JC13].

This research deals with state-of-the-art remote sensing techniques to improve detection and
interpretation of spatial and temporal changes in satellite imagery, thus opening up avenues to more
effective monitoring systems. The research also mentions the application of novel machine learning
algorithms, such as visual language models, cycle gan and stable diffusion.
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2. Aims and Tasks
The main goal of this research is to investigate and propose a new algorithms based on visual
language models to identify spatial-temporal changes

1. Make a scientific literature review and identify state of the art algorithms.
2. Formulate mathematical problem by incorporating visual language models for change de-

tection.
3. Create a dataset for satellite image captioning to support future research and applications in

automated image caption generation.
4. Run empirical experiments to validate proposed algorithms on publicly available new

datasets.
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3. Scientific Literature Review
Constructing a dataset necessitates a comprehensive understanding of the specific domain. Numer-
ous sources of remote sensing data are available, thanks to various missions conducted by govern-
ment agencies that collect extensive satellite imagery and make it freely accessible to the public.
These sources will serve as the foundation for the dataset. Once compiled, the dataset will need to
be benchmarked to evaluate its relevance and effectiveness. This includes the formulation of tasks,
which are critical as they guide machine learning models toward improved performance.

This section aims to provide an overview of the dataset creation process. Section 3.1 identi-
fies key sources of satellite imagery data from which multi-spectral data is harvested. Section 3.2
discusses existing datasets, which are significant in understanding the optimum characteristics of
a new dataset. Progressively, Section 3.3 discusses common issues faced by developers of these
datasets. Section 3.4 examines literature review by methodologies. Section 3.5 discusses several
loss functions, providing a first glimpse of possible tasks that can be done to optimize outcomes of
dataset analysis. Lastly, Section 3.6 presents some examples of visualization.

3.1. Data Resources
Creating a comprehensive dataset entails exploring various sources of satellite images. The next
section is an overview of key satellite missions used for remote sensing and their respective appli-
cations in environmental monitoring and analysis:

• Sentinel-1 is a mission of the Copernicus program including two satellites with C-band Syn-
thetic Aperture Radar (SAR) ensuring imagery regardless of the weather. This is vital for
continuous monitoring with a six-day revisit time 1.

• Sentinel-2 is also under the Copernicus program, the mission delivers high-resolution, multi-
spectral imagery with up to 10-meter resolutions, which is suitable for detailed land cover
and vegetation health monitoring. The twin satellites guarantee a five-day revisit time at the
equator 2.

• Sentinel-3 mission is meant to observe Earth’s ocean, land, water, and atmosphere. It de-
livers high-quality optical, radar, and altimetry data that are essential in tracking sea surface
topography, sea and land surface temperature, and ocean and land color. Its instruments are
essential for environmental and meteorological monitoring 3.

• MODIS (Moderate Resolution Imaging Spectroradiometer) Onboard NASA’s Terra and
Aqua satellites, MODIS provides daily global coverage, facilitating the monitoring of the

1https://www.copernicus.eu/en/about-copernicus/infrastructure/space-component/
sentinel-1

2https://www.copernicus.eu/en/about-copernicus/infrastructure/space-component/
sentinel-2

3https://www.copernicus.eu/en/about-copernicus/infrastructure/space-component/
sentinel-3
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atmosphere, oceans, and land with its broad swath width of 2330 km 4.

• Landsat is a longstanding series of Earth observation satellites since 1972, providing multi-
spectral and thermal imagery crucial for environmental research, with a resolution as fine as
30 meters and a 16-day revisit cycle 5.

• GOES (Geostationary Operational Environmental Satellites) provide real-time data impor-
tant for weather forecasting, severe storm tracking, and meteorological research. They are
geostationary, thus constantly monitoring the same area of the Earth 6.

• WorldView is operated by Maxar Technologies, this constellation offers very high-resolution
optical imagery, up to 30 cm, facilitating applications in urban planning, mapping, and de-
fense and intelligence 7.

• NOAA Satellites is managed by the National Oceanic and Atmospheric Administration, these
satellites monitor the climate and the environment, contributing significantly to weather fore-
casting and environmental monitoring 8.

Each satellite system provides unique capabilities that are instrumental in addressing specific
research needs. Researchers rely on these platforms to build datasets that underpin studies in a wide
array of fields including environmental science, urban development, and disaster response.

3.2. Datasets
Datasets are the primary source of knowledge when training the model. Their unique character-
istics allow scientists to select the best-suiting one. It also forces researchers to carefully weigh
each dataset from a wide variety of properties. The dataset creation process also benefits from the
research of relevant examples. To gather insight on dataset creation progress we need to formulate
criteria. These measures will allow emphasizing datasets that have had similar challenges and in
general are related in terms of geographic information, and data gathering processes. The following
table shows that commonly used datasets and their features 1.

3.3. Challenges Creating Datasets
Creating comprehensive datasets for spatial-temporal change detection in satellite imaging is
fraught with numerous challenges that can impact the accuracy and applicability of research find-
ings. One of the foremost challenges is the availability and accessibility of high-quality satellite
imagery. While numerous satellite missions provide data, access to high-resolution imagery often
involves substantial costs or restrictive licensing, limiting its use in academic research [WCR+19].

4https://modis.gsfc.nasa.gov/
5https://www.usgs.gov/core-science-systems/nli/landsat/landsat-9
6https://www.goes.noaa.gov/
7https://www.maxar.com/products/worldview-legion
8https://www.noaa.gov/satellites
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Dataset Name Images Coverage Use Case Task Reference

LEVIR-CD 637 pairs Urban Areas Building Change Detection Segmentation [CS20]
LEVIR-CC 10077 pairs Urban Areas Image-Text Matching NLP [LZC+22]
DSIFN 3600 pairs Varied Semantic Change Detection Segmentation [ZYT+20]
S2Looking 5000 pairs Global Multi-temporal Change Detection Segmentation [SYC+21]
OSCD 26 Multispectral Pairs Global Multi-temporal Change Detection Segmentation [CLB+19]
HRSCD 291 pairs Urban Areas High-resolution Change Detection Segmentation [DLB+19]
SMARS 24 pairs Multimodal Aerial Remote Sensing Segmentation [RXY+23]
GVLM 17 pairs Global Landslides Landslide Mapping Segmentation [ZYP+23]
SI-BU 1328 pairs Urban Areas Building Usage Analysis Segmentation [LHY+23]
CNAM-CD 2503 pairs Urban Areas Urban Change Detection Segmentation [ZWD+23]
BANDON 2283 pairs Off-nadir Building Change Detection Segmentation [PWD+23]
DynamicEarthNet 552 pairs Global Dynamic Change Detection Segmentation [TKW+22]
CLCD 600 pairs Agricultural Crop Land Change Detection Segmentation [LCD+22b]
SYSU-CD 20000 pairs Urban Areas Urban Change Detection Segmentation [SLL+21]
S2MTCP 1520 pairs Urban Pairs Multi-temporal Urban Analysis Self-Supervised Learning [LMB+21]
Hi-UCD 359 pairs Urban Areas Urban Change Detection Segmentaion [TMZ+20]
Hyperspectral-CD 9986 samples Varied Hyperspectral Imaging Segmentation [LGH+18]
GETNET 3750 samples Traffic Networks Traffic Network Analysis Segmentation [WYD+19]
3DCD Dataset 472 pairs Urban Areas 3D Change Detection Segmentation [CMR22]
URB3DCD Did not mention Urban Simulated 3D Urban Change Detection Segmentation [dLC21]
RSITMD 3603 images Varied Image-Text Matching NLP [YZF+21]
RSICD 10921 Varied Image-Text Matching NLP [LWZ+]
UCMerceed 2100 Varied Image-Text Matching NLP [YN10]

Table 1. Overview of Datasets for Satellite Imagery Change Detection

Furthermore, geopolitical restrictions can impede access to satellite data over certain regions, cre-
ating significant gaps in global datasets [Woo06].

Another major challenge is the heterogeneity of data sources. Satellite datasets from different
missions vary significantly in terms of spatial and temporal resolutions, spectral bands, and data
formats. This variation necessitates extensive preprocessing to standardize the datasets for analysis,
which can be both time-consuming and computationally expensive [GHD+17].

Cloud coverage and adverse atmospheric conditions can also severely affect the quality of op-
tical satellite imagery. Techniques such as Synthetic Aperture Radar (SAR) are used to overcome
these issues; however, integrating SAR data with optical images requires sophisticated fusion tech-
niques that are still under active development [SZS15].

Accurate change detection in satellite imagery is also made more difficult by a number of com-
plicating factors, such as the occurrence of noise in the data and the natural variability of land-
scapes. Such factors introduce false positives and false negatives into change detection algorithms.
Robust techniques for filtering noise and interpreting the data accurately are still a major challenge
[RAA+05].

Synchronization of images over time, which is so important for successful change detection, is
yet another challenge. The revisit rate of the satellite can be too low to observe high speed changes,
especially in dynamic environments such as cities or disaster areas [ZTM+17]. This can result in
missed alerts or stale information that compromises the integrity of change analysis.

Lastly, scalability of processing large satellite datasets is a fundamental challenge. The compu-
tational demand of processing, storing, and analyzing huge volume of satellite data requires strong
infrastructure and effective algorithms. With datasets increasing with more satellites launched at
ever reducing intervals, the demand for scalable solutions becomes even more pressing [LDC16].
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3.4. Literature Review According To Methodologies
This section of the literature review provides a comprehensive overview of diverse methodologies,
each of which is characterized by its own analytical strengths and application contexts. We dis-
cuss Spectral Index Based Methods in Section 3.4.1 which employ specific wavelengths to monitor
changes in vegetation, water bodies, and built-up regions. Statistical Analysis Methods are exam-
ined for their strengths in identifying significant changes based on time-series data in Section 3.4.2.
Section 3.4.3 discusses in detail the development and refinement of Change Detection Algorithms
and their role in automating detection. Furthermore, we investigate the cutting-edge realms of Ma-
chine Learning & Deep Learning Techniques, which have revolutionized predictive accuracy and
efficiency in Section 3.4.4. In Section 3.4.5 we will review Object-Based Image Analysis (OBIA)
is highlighted for its precision in segmenting high-resolution images into meaningful, analyzable
objects. Moreover, Synthetic Aperture Radar (SAR) Techniques are examined for their capability to
penetrate cloud cover and provide all-weather, all-time monitoring capabilities which we will look
at in Section 3.4.6. In Section 3.4.7, we will discuss about Visual Language Models and Zero-Shot
Learning are considered for their potential to transform traditional methodologies by integrating
advanced computational models with minimal human supervision. Together, these methodologies
depict a vibrant spectrum of technological advancements driving the future of satellite change de-
tection.

3.4.1. Spectral Index Based Methods

Spectral index based methods have become a cornerstone in the field of spatial-temporal change
detection in satellite imaging. These methods exploit the distinctive spectral signatures recorded
in multi-temporal satellite imagery for the detection and tracking of temporal changes, establishing
its value in a wide range of applications from environmental monitoring to urban planning.

The combination of multi-spectral scale-invariant feature transform (M-SIFT) and robust sta-
tistical change detection methods has transformed the accuracy of geometric registration of multi-
temporal satellite image analysis significantly. Integration is very important for trustworthy change
detection, as per [AAE+11], to increase the reliability of subsequent analysis by effective alignment
of multi-temporal data sets.

In addition, [BHC15] investigated the application of image fusion methods for change detec-
tion, this time in flood management. Through the utilization of local spectral distortions in guiding
image fusion, their method is a new way of change detection, highly valuable in disaster response
activities wherein prompt and correct assessment is extremely important.

New techniques of unsupervised change detection have also been proposed to improve detection
accuracy. [RMA13] proposed a new technique based on the use of the ERGAS index for multi-
temporal satellite image change detection. By processing all available spectral bands at the local
level, this technique provides an improved detection mechanism that greatly improves the accuracy
of subtle change detection.

Lastly, the integration of spectral and statistical indices, as developed by [SS18], surmounts
the issues of heterogeneous image acquisition times and the mixed pixel problem. Their method
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Figure 1: Satellite images (a) and (b) for ”Alaska”, Bitemporal images for ”Alaska” (c), Satellite
images (d) and (e) for ”Bangladesh”, bitemporal images for ”Bangladesh” (f), Satellite images (g)
and (h) for ”Reno and Lake Tahoe”, bitemporal images for ”Reno and Lake Tahoe” (i)[SS18].

demonstrates a comprehensive manner of change detection with high precision and robust classifi-
cation of changes in heterogeneous landscapes 1.

These advances point to the growing sophistication of spectral index-based satellite image pro-
cessing approaches, with a trend towards more integrated and computationally efficient methods
that utilize both spectral and spatial data attributes to monitor and analyze spatial-temporal change.

3.4.2. Statistical Analysis Methods

Different statistical methods for spatial-temporal change detection in satellite images have been
developed and tested. Beurs and Henebry (2005) designed an extensive statistical system to de-
compose long time series images of coarse spatial resolution satellites. The system provides strong
procedures for multiple-comparison testing, seasonally adjusted Mann–Kendall trend estimation,
and a sequence of orderly chained tests for quadratic land surface phenology models [BH05].

In addition, to detect land cover change from MODIS image time series, Lu et al. (2016)
applied multidimensional arrays and the BFAST change detection algorithm. The algorithm is
very effective in overcoming the spatial and temporal autocorrelation that characterizes satellite
image time series and has strong change detection capability [LPS+16].

Further, Verbesselt et al. (2010) presented the BFAST (Breaks For Additive Season and Trend)
method, where time series is decomposed into trend, season, and residuals. The procedure is highly
effective in detecting and describing change in satellite image time series and thereby serves as a
reliable tool for ongoing monitoring of environmental change through time [VHN+10] 2.

Overall, statistical methods for satellite image spatial-temporal change detection are complex
and suit varying data complexity and uses. Statistical methods for satellite image spatial-temporal
change detection are strong tools of remote sensing research that enhance our ability for monitoring
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Figure 2: An individual MODIS pixel over a pine plantation, planted in 2001 (top), harvested in
2004 (middle), and with tree mortality in 2007 (bottom), showed changes in trend components (red)
in a 16-day NDVI time series (black). The change date (—) and its red-colored confidence intervals
are provided [VHN+10].

and change analysis in space and time.

3.4.3. Change Detection Algorithms

The development of change detection algorithms in satellite imagery is at the forefront of monitor-
ing and understanding temporal changes on the Earth’s surface. Various new methods have been
proposed to improve the accuracy and reliability of the algorithms.

One of them is an unsupervised change detection algorithm that employs the nonsubsam-
pled Contourlet transform and a pulse coupled neural network. The algorithm is very effective
in maintaining stability and accuracy despite noise interferences, such as Gaussian and speckle
noise [LJ22].

Moreover, the use of genetic algorithms for unsupervised change detection demonstrates an im-
pressive accomplishment. By cost function minimization defined to detect changed and unchanged
regions in satellite images, the method is proved to be efficient without any a priori assumptions
about data [Çel10].

Another novel method includes the dual-tree complex wavelet transform (DT-CWT), which
takes advantage of the multiscale and directional properties of satellite images to enhance change
detection. The method has more accurate detection of subtle changes and better robustness under
diversified types of noise conditions [ÇM08].

Further, integration of machine learning algorithms such as relevance feedback and query-
answer models guarantees an interactive process that adapts according to the change detection re-
quirements individual to a user. It thus constitutes a highly automated process with significantly
low manual effort for hand-searching appropriate changes, guaranteeing highly efficient use with
extensive applications [Sah13].
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These innovations underscore the evolving essence of change detection algorithm research,
emphasizing the continued demand for techniques capable of effectively processing and analyzing
the increasing volume of satellite imagery available.

3.4.4. Machine Learning & Deep Learning Techniques

Machine learning and deep learning techniques are increasingly being used in satellite image change
detection with far-reaching sophisticated methodologies for accuracy and efficiency. Some of the
notable contributions in this regard are touched upon in this section.

A movel hybrid machine learning method integrates supervised and unsupervised learning tech-
niques to improve the change detection using satellite images. The proposed technique applies
clustering, soft labeling with fuzzy logic, Support Vector Machine (SVM), and Genetic Algorithm
(GA) to substantially improve the change detection performance [PPT+20].

Deep learning has revolutionized remote sensing change detection and performs far better than
the traditional methods. A comprehensive review of deep learning-based methods, including super-
vised, unsupervised, and semi-supervised approaches, highlights their effectiveness across various
datasets such as SAR, multispectral, hyperspectral, and high-resolution images [SCK+22].

Moreover, convolutional neural networks (CNNs) have been successfully employed to gener-
ate change detection maps directly from bi-temporal satellite imagery. This strategy does away
with hand-engineered features by harnessing deep feature learning to boost change detection per-
formance [ALW16].

End-to-end methodologies, particularly using improved UNet++ architectures, facilitate direct
learning of change maps from co-registered satellite image pairs, eliminating the need for interme-
diate processing steps and reducing error propagation [PZG19] 3.

Another innovative approach utilizes self-supervised learning to overcome the challenges of
semantic supervision in satellite imagery. By transforming images into consistent feature represen-
tations without labeled data, this method enhances the robustness and accuracy of change detection
[DMW+20].

The development of the Irregular-Time-Distanced Recurrent Convolutional Neural Network
(IRCNN) addresses the challenge of non-uniform time intervals in satellite image sequences, a com-
mon issue arising from obstacles like cloud cover. The IRCNN model cleverly integrates a Siamese
CNN with irregular-time-distanced LSTM and fully connected layers, significantly enhancing the
ability to manage the temporal dependencies in satellite time series. This approach outperformed
state-of-the-art methods [YQL+22]. Moreover, the study titled ”Optical Satellite Image Change
Detection Via Transformer-Based Siamese Network” explores the application of Transformer ar-
chitectures to the field of optical satellite image change detection. Transformers are adapted here to
address the limitations of traditional convolutional neural network (CNN)-based methods, particu-
larly their challenges in capturing long-range dependencies across images. This research introduces
a novel approach by utilizing a Siamese network architecture that incorporates Vision Transformers
(ViT). The method processes bitemporal satellite images as inputs through the Transformer-based
network, effectively handling the complexities of change detection. The application of Siamese
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Figure 3: Flowchart of the UNet++: (a) schematic of the primary flowchart; (b) schematic of the
convolutional block[PZG19].

ViT networks has demonstrated promising results in open change detection datasets, showcasing
superior effectiveness and improvements over existing CNN-based models [WWL+22].

In addition, the Self-Supervised Multisensor Change Detection approach solves the problem
of change detection in bi-temporal satellite images captured by various sensors, such as optical
and SAR. Utilizing the deep clustering and contrastive learning in a self-supervised context, the
approach maximizes the change detection efficiency in multi-modal data without requiring labeled
data [SEZ21].

Besides, the Large-Area Land-Cover Change Monitoring with Time-Series Remote Sensing
Imagery based on Transferable Deep Models proposes a new deep transfer learning approach to
adaptive change detection. Dynamic time warping is applied to similar time series clustering and
a time convolutional network to non-linear prediction of time series, and thus greatly enhances the
efficiency and effectiveness of land-cover change monitoring [YWH+22].

These advancements highlight the great promise of machine learning and deep learning to make
the process of change detection more accurate and efficient using satellite images.

3.4.5. Object-Based Image Analysis (OBIA)

Object-Based Image Analysis (OBIA) is an active method of satellite imaging, particularly for very
high resolution (VHR) change detection. The method contrasts the traditional pixel-based methods
as OBIA makes use of objects or groups of objects, and thus accuracy of change detection increases.

A significant advancement in OBIA for change detection is presented in a 2020 study, where a
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Figure 4: The CD network’s structure integrates 3D convolutional layers to capture spatial–spectral
features and convolutional LSTM layers to model temporal dependencies between the two feature
sets. This is followed by two 2D convolutional layers that produce the final score map. As input,
the network receives a pair of temporal images along with the CD object. After training, it outputs
a binary change detection map. Here, w, h, and λ denote the image width, height, and number of
spectral bands; Ωc and Ωu represent the change and no-change categories; and ωc, ωu, and ωn refer
to the change, no-change, and no-data classes in the initial CD map, respectively [SKH20].

deep learning network is employed to address uncertainties associated with objects in VHR satellite
images. This approach defines the uncertainty linked to each object, leveraging three-dimensional
convolutional layers and convolutional long short-term memory layers to improve change detec-
tion without relying on ground truth data. The process involves generating change detection objects
through unsupervised methods, which are then used to train and update the change detection net-
work iteratively, ensuring precise classification of changes within the area [SKH20] 4.

Another noteworthy development in OBIA is the integration of fuzzy knowledge systems to
automate the detection of building changes in suburban areas from high-resolution satellite imagery.
This method involves multi-resolution segmentation and fuzzy classification to distinctly categorize
image objects into buildings and non-buildings, thereby identifying changes effectively between
two temporal states. The OBIA framework employed here allows for a qualitative and quantitative
evaluation of changes, which is crucial for accurate urban planning and monitoring [AMT13].

These studies highlight the utility of OBIA in leveraging structural and contextual information
from satellite images, proving particularly useful in environments where high-resolution data is
available, thus pushing the boundaries of traditional change detection methods.
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3.4.6. Synthetic Aperture Radar (SAR) Techniques

In the area of SAR‐based satellite image change detection, the latest progress has centered on ap-
plying deep learning to boost both accuracy and efficiency. A notable paper entitled “A Deep
Learning Method for Change Detection in Synthetic Aperture Radar Images” proposes a novel
CNN architecture that works directly on raw SAR data without any preprocessing. By sidestep-
ping the generation of differential images, this approach markedly lessens their influence on final
outcomes and proves resilient on both simulated and real‐world datasets [LPC+19]. Another no-
table technique involves using coherence measurements between two SAR images to automatically
detect changes, especially useful in applications like monitoring urban development or environmen-
tal changes [ZV92]. Additionally, a hierarchical approach has been developed to address change
detection in SAR imagery with very high resolution, useful for surveillance applications, by utiliz-
ing multiscale techniques and semantic modeling to enhance the detection of changes in complex
scenarios [BMB13].

Figure 5: RemoteCLIP pipeline. Step 1: RemoteCLIP is first pretrained on a wide array of remote-
sensing collections—10 object detection benchmarks (six from satellites and four from UAVs), four
semantic-segmentation datasets, and three image–text corpora. To exploit the varied label formats,
we introduce Box-to-Caption (B2C) generation and Mask-to-Box (M2B) conversion, and expand
the total image–text training pool to twelve times the size of the original combined datasets. Step 2:
We then carry out continual pretraining of the standard CLIP backbone, adapting it specifically for
remote-sensing imagery. Step 3: Finally, we rigorously evaluate RemoteCLIP across seven distinct
task categories using sixteen downstream datasets—including our newly assembled RemoteCount
benchmark—to validate its strong performance and generalization. [LCG+23].

3.4.7. Visual Language Models and Zero-Shot Learning

Investigating vision–language architectures combined with zero‐shot learning for satellite image
change detection opens up exciting opportunities to advance remote sensing capabilities. Recent
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work taps into the powerful synergy of pre‐trained vision–language models like CLIP [RKH+21]
and zero‐shot techniques to tackle complex change detection challenges without relying on large,
annotated datasets.

Zero‐shot methodologies have been effectively utilized in remote sensing and satellite im-
agery for tasks such as scene categorization in high–spatial–resolution data [CXH+20; LLW+17;
LWH+23] and monitoring urban transformations [FKG+21; FKG+22]. By leveraging semantic em-
bedding vectors together with directed‐graph representations, these approaches can recognize pre-
viously unseen scene classes without labeled examples [LLW+17]. Moreover, vision–language
frameworks have been applied to zero‐shot classification of remote sensing imagery: by exploit-
ing pre‐trained models that learn image–text correspondences, they achieve higher accuracy than
existing techniques [KRR+23; LCG+23; LWH+23; RBE+23] (see Figure 5).

Additional zero-shot learning methods focusing on transferable object proposal mechanisms
and vision-language knowledge distillation present innovative approaches to overcome the chal-
lenges of domain shift in zero-shot detection [GLK+21; SLW19].

3.5. Loss Functions for Satellite Imagery Analysis
In satellite imagery analysis, the choice of loss functions is pivotal in training machine learning
models, as they quantify the discrepancy between model predictions and actual outcomes, thus
guiding the optimization process. Mean Squared Error (MSE), given byMSE = 1

n

∑n
i=1(Yi−Ŷi)

2,
is commonly used for regression tasks such as environmental parameter prediction from satellite
data [Smi20].

For classification tasks, Cross-Entropy Loss is essential; it calculates the loss by L =

−
∑

i yi log(ŷi), ideal for pixel-wise land cover classification or cloud detection [Joh19].
Dice Loss and Jaccard Loss are particularly beneficial for segmentation, addressing class im-

balances prevalent in satellite imagery. Dice Loss, defined as D = 2|X∩Y |
|X|+|Y | , enhances the overlap

between predicted and actual segmentation maps [Tho21]. Similarly, Jaccard Loss or Intersection
over Union (IoU), formulated as J = |X∩Y |

|X∪Y | , is used to segment distinct regions accurately [Fis22].
Focal Loss, introduced to focus more on difficult, misclassified cases within an imbalanced

dataset, modifies Cross-Entropy Loss by adding a focusing parameter γ, as FL(pt) = −αt(1 −
pt)

γ log(pt), proving effective for rare event detection like oil spills or deforestation in vast satellite
datasets [LGG+17]. Lastly, Huber Loss combines the properties of MSE and absolute error through
the formula:

Lδ(a) =
1

n

n∑
i=1


1
2
a2i , |ai| ≤ δ,

δ
(
|ai| − 1

2
δ
)
, otherwise.

(1)

which is less sensitive to outliers and useful for tasks like surface elevation modeling where
outliers are expected due to atmospheric conditions [Hua18].

Each of these loss functions is selected based on specific data characteristics and project objec-
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tives to optimize the performance of machine learning models in handling the unique challenges of
satellite imagery analysis.

3.6. Visualization
The visualization of spatial-temporal changes detected in satellite imaging is crucial for interpret-
ing and communicating the dynamics of various phenomena on Earth. Efficient visualization tech-
niques facilitate the understanding of complex data and support decision-making in domains like
disaster management, urban planning, and environmental monitoring. This section clarifies several
visualization techniques that are extensively used in the context of satellite imagery spatial-temporal
change detection.

Time-series animation is a powerful technique that involves creating a sequence of images or
frames that illustrate change over time. The method is particularly well-suited to illustrating cu-
mulative changes such as urbanization, deforestation, or changes in vegetation with the seasons.
Through processing satellite imagery into video format, it is simple to track and analyze the evolu-
tion of changes within the specified time period [LMB+04].

Change detection maps highlight the areas which have undergone great change between two
time periods. Change detection maps are usually color-coded to reflect the type and extent of
change. For instance, it is a common convention to use red for areas where vegetation cover has
decreased and green for areas where vegetation cover has increased. Such maps are often generated
using techniques like principal component analysis (PCA), post-classification comparison, and im-
age differencing. This visual method enables quick identification of change patterns in large areas
[Sin89].

Figure 6: An example of hotspot progression detected by GLAD alerts in 2020—triggered by slash-
and-burn activities across multiple municipalities in Apayao province. Panels (a) and (b) depict the
hotspot maps for the first and second quarters, respectively, while panels (c) and (d) show the actual
landscape in mid-2019 and mid-2020 (images from Google Earth Pro) [BHH+21].

Heatmaps are used to illustrate the magnitude of change over an area. Used on satellite imagery,
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heatmaps can illustrate areas of high change, such as high urbanization or hotspots of deforestation.
The technique of projecting different colors or shades based on different degrees of change makes
it convenient to identify and target critical areas [BHH+21] 6.

Three-dimensional (3D) visualization adds depth to the analysis by providing a more realistic
picture of landscape changes. Techniques such as digital elevation models (DEMs) and 3D ren-
dering can be used to visualize topography, land cover, and land use changes. The method makes
data more understandable by allowing users to view changes from various angles and perspectives
[Str+21].

Multi-temporal composite images are a composite of satellite images at different times in one
composite image. The method may involve techniques like image stacking or the use of spectral
indices like the Normalized Difference Vegetation Index (NDVI). Composite images help to detect
patterns and trends by visual comparison of different time points in a single frame [PVM+05].

Web interactive maps provide an active way to study spatial-temporal differences. Through
the use of Geographic Information Systems (GIS) and web technology, interactive maps provide
zooming, panning, and data interaction. Features such as layer toggling, time sliders, and query
tools enable users to customize their view and perform detailed analysis [HSP08].

False color composites use combinations of different spectral bands to highlight specific fea-
tures or changes in satellite images. For example, using near-infrared (NIR), red, and green bands
can help in distinguishing vegetation health and land cover changes [LKC15].

Visualization techniques play a important role in spatial-temporal change detection in satellite
imaging by transforming raw data into comprehensible and actionable insights. The selection of
visualization technique depends on the specific application and the nature of the changes being
studied. Whether through animations, heatmaps, 3D models, or interactive maps, effective visu-
alization helps in better understanding and communication of the dynamic processes occurring on
our planet.
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4. Change Detection Experiments

4.1. Experiment 1: Semantic Segmentation for Change Detection in Satellite
Imaging

This study uses advanced semantic segmentation techniques to address challenges in the detection
of spatial-temporal changes in satellite imagery. The methodology integrates deep learning models
for semantic segmentation and statistical approaches for temporal analysis [KP24a].

The primary components of the proposed methodology are the following.

• Semantic Segmentation: The semantic segmentation is of computer vision problem of as-
signing a class label to each pixel in an image from a predefined set of classes. Let us assume
the input of format X ∈ Rc×w×h of image consistent of tensor X with c - number channels, and
width/height w, h, respectively. The semantic segmentation mask X ∈ RL×w×h contains L
number of classes, where each pixel is assigned to one of the classes. Such models could pre-
dict the class of each pixel in the image [DK23]. In our experiments, we used the UNet-like
model9. The pre-trained model had Building, Land, Road, Vegetation, Water and Unlabeled
classes. For generic segmentation models, like Segment Anything Model [KMR+23] provide
object mask prediction confidence score.

• Vector Autoregression (VAR): Vector autoregression (VAR) models the linear relationships
among several time series simultaneously. As a multivariate extension of the univariate au-
toregressive (AR) model [HNR88], VAR is widely employed for forecasting. The VAR model
can be expressed as follows:

yt = β +

p∑
i=1

Ωiyt−i + ϵt

where yt is a k × 1 vector of endogenous variables at time t, β is a k × 1 vector of bias, Ωi

is a k × k matrix of coefficients for i-th lag, p is the order of the VAR process, and ϵt is a
k × 1 vector of error terms at time t. The confidence interval of VAR models could be used
either dynamic, either fixed. In our case use t-distribution confidence interval which is same
for each time step. The critical value for the confidence level α, in our experiments we used
α = 0.05. The VAR model was used using Python package statsmodel.

The investigation of change detections was applied on covering wide range of diverse cases.
We randomly chose 100 coordinates over Baltic region (53,53100 - 59,69747 latitude values and
20,49722 - 28,22760 longitude) using uniform distribution. After that, we used COPERNICUS/S2
satellite in Google Earth Engine API for collect images of random chosen coordinates over 2022
- 2023 time period. In our experiments, we used pixel intensities of B4, B3 and B2 bands which
represent red, green and blue colors. For each coordinates, we made predictions using geospatial

9https://github.com/ayushdabra/dubai-satellite-imagery-segmentation
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Segment Anything Model [WO23] and collect IOU and score values. Class probabilities are col-
lected using UNet-model. Cloud Probabilities collected using Google Earth Engine API. In such
dataset for each coordinate consist of 11 features of Raw Pixel Intensity of B4, Pixel Intensity of
B3, Pixel Intensity of B2, IOU, Scores, Probabilities of 6 classes and Cloud Probabilities.

For each point, we collected sentinel-2 RGB images using scale 10 zoom rate. Then, having
surounding enviroment around the segmentation predictions was made using relevant models for
each images. Such enables to have semantic information for each investigative pixel. After creating
our dataset, we used VAR model for selected index and forecast h = 12 steps. The experiment
we calculating root mean square error (RMSE), akaike information criterion(AIC) and confidence
intervals for each feature using t distribution.

2022-01-03 2022-01-18 2022-06-07 2023-02-27Raw Images

Segmented Images

Figure 7: The illustrative example of confidence interval of prediction of the VAR model, which is
used to detect the changes in the landscape.

The Fig. 7 presents the general pipeline of approach. The segmented image semantic informa-
tion are added to vector time series models, thus while raw image data seems unchanged signifi-
cantly, the semantic information allows to be additional control mechanism for quality assessment.
Cloud probability are often used to remove untruthfull images, the same could be done by tracking
unchanged situations. The illustrative case in Fig. 7 can be seen for index 6 in the Table 2 below.
Also one can be seen in Table 2 that some testing images have high variation in raw data or some
data was not overlaped (black/empty image) over specific flight and 0 observation fell in confidence
interval.
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Table 2. Summary Table

Index Lat Lon RMSE AIC Fall In CI
0 57.9822 27.5759 0.206 -105.333 0
1 54.8303 21.8945 2.98e-15 None 0.9761
2 59.1785 24.5851 0.02 -112.393 0.4444
3 57.2123 24.1739 0.008 -58.051 0.5
4 55.4973 23.1317 5.84e-04 None 0.988
5 59.5876 25.7885 0.029 -114.48 0.3048
6 57.2948 22.5929 3.07e-04 -205.4 0.9761
7 53.6124 27.2380 5e-04 -51.1965 0.4352
8 54.6356 22.8023 0.115 -136.188 0
9 56.6370 20.7791 0.098 None 0
Note: RMSE and Fall In CI columns are values for Class2

4.2. Experiment 2: Zero Shot Classification for Change Detection in Satellite
Imagery

In this study [KP24c], we introduce the primary model we utilized Contrastive Language–Image
Pre-training (CLIP) to analyze satellite imagery [RKH+21]. CLIP, a model developed by re-
searchers of OpenAI, is designed to form expressive features of images in the context of natural
language descriptions, making it particularly suited for tasks such as zero-shot classification where
the objective is to classify classes that the model had not encountered during its training phase
[RKH+21]. Model consist from two encoder models fimage(I|θimage) = Timage : Rdw×dh×dc →
Rde , ftext(T |θtext) = Ttext : RK×dZ → Rde , where ftext, fimage neural networks encoding raw data
to embeddings vectors Ttext and Timage, respectively. The θ represents neural networks unknown
parameters, dw × dh × dc - image dimensions, K × dZ - text input. The model is pretrained on
predicting Ŷ = T T

imageTtext identification of corresponding pairs of images/text.
As input to the text encoder model, we provided an array containing the selected classes names

common in satellite imagery of size K = 32 objects which are landscape, forest, building, road,
vehicle, bridge, river, lake, farmland, airport, runway, ship, railway, parking lot, cloud, wind tur-
bine, stadium, school, hospital, industrial site, park, beach, mountain, glacier, desert, volcano,
crater, island, wetland, quarry, dam and residential area. These objects could potentially be iden-
tified within the satellite images. This array served as the textual descriptions against which the
model evaluates the imagery, predicting the likelihood Ŷ = Ttext of each object’s presence within
the image. By transforming outputted logits via softmax to probabilities for each of these objects,
indicating their presence within each image see Fig 8 9.

This process was systematically applied across all images within our datasets. By doing so, we
were able to assess the model’s ability to identify changes in satellite imagery, many of which were
not included in the training dataset of the model.

Upon completing the analysis with the CLIP model, the next step involved processing the
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Figure 8: The pipeline of zero-shot learning: using pre-trained CLIP model from learned embed-
dings to classity in selected number of classes and using it differences for threshold optimization.

model’s output probabilities for each satellite image. The core of our methodology was to determine
the presence of any significant changes within each image based on a assessment of probabilities
assigned to potential classes identified by the CLIP model, by calculating difference (2), for each
image i in dataset. Where Ŷi,k = (p̂i,k,1,p̂i,k,2,...,p̂i,k,32), and k = 1,2, the reference and query
images, respectively.

To achieve this, we first summed the probabilities difference across all identified objects for
each image to create a composite likelihood score. This score was intended to reflect the overall
presence of change-indicative features within the image, as recognized by the CLIP model.

The critical part of our methodology was to classify images into two categories: ’change’ and
’no change’. This classification was based on a threshold optimization process, which aim to iden-
tify the optimal probability threshold T that distinguishes between the two categories based on
selected F1-score metric. The optimization was formulated as follows:

1. Summation of differences: For each image, sum the probabilities differences of all potential
objects detected by the CLIP model.

∆i =
n∑

j=1

|p̂i,j,1 − p̂i,j,2| (2)

where ∆i is the sum of probabilities difference for the i-th image and n = 32 is the total
classes.

2. Threshold Optimization: Determine the optimal threshold T by evaluating a range of
threshold values to maximize classification metrics. For each candidate threshold value,
classify images as ’change’ if their summed probability exceeds the threshold, or ’no change’
otherwise.

Ci(T ) =

1 if ∆i > T

0 otherwise

where Ci(T ) represents the classification of the i-th image under threshold T , with 1 indi-
cating ’change’ and 0 indicating ’no change’.
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Figure 9: CLIP model inference.

3. Evaluation Metrics: For each threshold T , compute key evaluation metrics such as F1 score,
recall, precision, and accuracy. These metrics evaluate the performance of each threshold in
accurately classifying images into ’change’ and ’no change’ categories.

F1(T ), Recall(T ), P recision(T ), Accuracy(T )

4. Optimal Threshold Selection: Identify the threshold that maximizes the desired metrics.

Topt,F1 =T F1(T )

Topt,R =T Recall(T )

Topt,P =T Precision(T )

Topt,Acc =T Accuracy(T )

This optimized thresholds Topt is subsequently applied to categorize every image in the dataset,
providing a systematic and quantitatively justified method for detecting changes within satellite im-
agery. Through this proposed methodology, we ensure that our classification process remains both
reliable and consistent with the overarching goal of identifying significant changes in the observed
landscapes.

Following the zero-shot classification based on threshold optimization, we compared the results
with those obtained from several tree-based machine learning algorithms which datasets divided
by 70% train 30% test data and total amount of image pairs are 746 for LEVIR-CD dataset, 6601

25



LEVIR-CD
Dataset DSIFN Dataset

S2Looking
Dataset

Figure 10: Examples of Image Pairs for Each Datasets LEVIR-CD, DSIFN, S2Looking.

for DSIFN dataset, 6501 for S2Looking dataset with augmented images. This comparative analysis
aimed to assess the efficacy of our zero-shot learning approach against traditional supervised learn-
ing methods in the context of satellite image classification. The tree-based algorithms selected for
this comparison were:

• Decision Tree: A basic tree-structured algorithm that splits the data into subsets based on
feature values, applying decision rules from the root down to the leaf nodes [Qui86].

• Random Forest: A collection of decision trees whose aggregated predictions boost classi-
fication accuracy and curb overfitting by training each tree on a different subset of the data
[Bre01].

• Gradient Boosting: An additive model that sequentially adds weak decision trees to improve
the model by focusing on instances that were misclassified in previous rounds [Fri01].

• XGBoost: A distributed, optimized gradient boosting library offering an exceptionally effi-
cient implementation of the gradient boosting framework [CG16].

This comparative study was designed to underscore the potential benefits of applying a zero-
shot learning approach to detecting changes in satellite imagery, particularly in scenarios where
labeled data for certain classes might not be available or are scarce.

We utilized three prominent datasets for evaluating our zero-shot classification methodology for
change detection in satellite imagery: LEVIR-CD, DSIFN, and S2Looking. Illiustrative examples
of images can be seen Fig 13. Each dataset offers a unique set of challenges and characteristics,
making them ideal for assessing the robustness and effectiveness of our approach across different
scenarios and environments.

26



4.2.1. LEVIR-CD

The LEVIR-CD dataset, tailored for building change detection, contains 637 pairs of high-
resolution aerial images, each measuring 1024×1024 pixels. CThese images, which were collected
from Google Earth, represent both urban and rural environments, featuring a wide range of build-
ing structures in various stages of development. This dataset works exceptionally well to test the
performance of a model’s capacity to detect changes in human-made structures within intricate
landscapes [CCL+20].

4.2.2. DSIFN

The DSIFN (Deeply Supervised Image Fusion Network) dataset, though primarily intended for
image fusion, presents an ideal platform for the study of change detection. Multi-temporal, multi-
spectral, and multi-resolution images within the dataset represent a rich field for investigating zero-
shot learning models’ performance regarding the identification of subtle changes not necessarily
visible from single-temporal or single-spectral data [FLB20].

4.2.3. S2Looking

The S2Looking dataset is a large-scale remote sensing scene change detection dataset with over
5000 pairs of high-resolution images. They span different geographical sites and environmental
conditions, such as from urban development to natural disasters. Because of the variety of scenes
and changing types, the dataset is an excellent test bed for the generalizability of change detection
algorithms in different domains and change scenarios [SWZ+20].

To combat the issue of imbalanced labels in the LEVIR-CD, DSIFN, and S2Looking datasets,
we employed a data augmentation strategy to balance the number of images with and without
changes. Augmentation was accomplished through a custom Python function that randomly al-
ters each image’s scale and rotation. By resizing the images with a scaling factor of between 0.5
and 1.5 and rotating them by random degrees in the range of -90 to 90, we generated diverse ver-
sions of the original datasets. This approach not only introduced more balance between the classes
but also made the datasets more rich with a higher variety of perspectives and scales, which further
challenged and hence made our model more robust and generalizable to a wide range of change
detection situations. Datasets in the form of pairs of images and their corresponding masks for
segmentation were utilized. Having applied the Contrastive Language–Image Pre-training (CLIP)
model on each of the images, the thus resultant probability arrays were noted and stored in the form
of CSV files. Manual labeling of the images in these CSV files as ’1’ in case of change, and ’0’ in
the absence of any change was done next.

They were selected according to their fit for the goals of the study and potential in providing in-
depth information about the performance of zero-shot classification algorithms in change detection
in satellite images. By using these diverse datasets whose examples are interpretable in image pairs
in Fig 13, it is our hope to demonstrate the flexibility and adaptability of our proposed approach in
a variety of environments and problems in satellite image analysis.

27



Table 3. Algorithm Comparison For Training Data

LEVIR-CD DSIFN S2Looking Average
Acc F1 Rec Prec Acc F1 Rec Prec Acc F1 Rec Prec Acc F1 Rec Prec

Threshold Optimization 0.9369 0.9439 1.0 0.9496 0.9648 0.9669 1.0 0.9664 0.9507 0.9535 1.0 0.9985 0.9508 0.9547 1.0 0.9715
Decision Tree 0.875 0.8703 0.8468 0.8952 0.9606 0.9609 0.9570 0.9647 0.9374 0.9419 0.9428 0.9410 0.9244 0.9243 0.9155 0.9336
Random Forest 0.9464 0.9473 0.9729 0.9230 0.9757 0.9764 0.9950 0.9586 0.9697 0.9718 0.9695 0.9741 0.9639 0.9651 0.9791 0.9519
Gradient Boosting 0.9508 0.9502 0.9459 0.9545 0.9732 0.9739 0.9870 0.9611 0.9723 0.9741 0.9676 0.9806 0.9654 0.9660 0.9668 0.9654
XGBoost 0.9553 0.9553 0.9639 0.9469 0.9782 0.9788 0.9930 0.9650 0.9743 0.9760 0.9714 0.9807 0.9692 0.97 0.9761 0.9642

Table 4. Algorithm Comparison For Testing Data

LEVIR-CD DSIFN S2Looking Average
Acc F1 Rec Prec Acc F1 Rec Prec Acc F1 Rec Prec Acc F1 Rec Prec

Threshold Optimization 0.9375 0.9669 1.0 0.9767 0.9352 0.9665 1.0 0.9642 0.94 0.9690 1.0 0.9960 0.9375 0.9674 1.0 0.9789
Decision Tree 0.8593 0.9203 0.8888 0.9541 0.9294 0.9623 0.9504 0.9746 0.947 0.9727 0.9488 0.9978 0.9119 0.9517 0.9293 0.9755
Random Forest 0.9296 0.9620 0.9743 0.95 0.9617 0.9802 0.9969 0.9640 0.971 0.9852 0.9729 0.9979 0.9541 0.9758 0.9813 0.9706
Gradient Boosting 0.8984 0.9432 0.9230 0.9642 0.9588 0.9785 0.9907 0.9667 0.974 0.9868 0.9759 0.9979 0.9437 0.9695 0.9632 0.9762
XGBoost 0.9296 0.9613 0.9572 0.9655 0.9764 0.9877 0.9969 0.9787 0.978 0.9888 0.9799 0.9979 0.9613 0.9792 0.978 0.9807

Our research systematically analyzes the performance of the zero-shot classification method
for change detection from satellite imagery. Applying the Contrastive Language–Image Pre-
training (CLIP) model, we tested its effectiveness on three varying datasets: LEVIR-CD[CCL+20],
DSIFN[FLB20], and S2Looking[SWZ+20]. Additionally, we provide a comparative analysis with
traditional supervised learning algorithms to underscore the zero-shot approach’s relative perfor-
mance.

For a comprehensive perspective, we compared the zero-shot classification’s results with those
obtained from several tree-based supervised learning algorithms with different metrics as train data
in Table 3 as test data in Table 4.

Figure 11: Histogram of Classes for Each Datasets in Log Scale

The histograms in Figure 11 illustrate the frequency distribution of the summed differences for
classes 0 and 1 across the LEVIR-CD, DSIFN, and S2Looking datasets, with the optimal thresh-
old for accuracy delineated, showcasing the effectiveness of the zero-shot classification method in
differentiating between the change classes.

In Figure 12, we present an illustrative example of change detection using the CLIP model
on satellite imagery. The left side shows the original paired images, while the graph on the right
quantifies the changes detected with increased probability of industrial site.

In our analysis of the performance metrics, it is evident that the zero-shot classification using
the CLIP model yields competitive accuracy when benchmarked against traditional algorithms.
Particularly, the XGBoost algorithm demonstrates high efficacy, as reflected by its F1 score and
precision across all datasets for both training and testing data. However, the zero-shot approach
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Figure 12: A Change Detection Example for an Image Pair

stands out in its ability to maintain consistent performance without the need for extensive training
data, a notable advantage in scenarios where labeled data is scarce or expensive to procure. The
histograms further reveal the zero-shot method’s robustness, indicating a significant frequency of
accurate classifications at the optimal threshold. This threshold optimization appears to be a critical
factor in enhancing the model’s performance, suggesting that the zero-shot methodology could be
finely tuned to achieve greater efficacy in change detection tasks. These findings suggest that while
supervised methods continue to be reliable, the zero-shot learning provides a training-free method
for remote sensing applications where adaptability and quick deployment are crucial.

4.3. Experiment 3: Change Detection in Satellite Imagery Using Trans-
former Models and Machine Learning Techniques: A Comprehensive
Captioning Dataset

In this work [KP24b], we used the Llama model [TLI+23] to generate captions for each pair of
images [YYZ+24b] using CLCD, LEVIR-CD, DSIFN, and S2Looking datasets.

4.3.1. Datasets

This study makes use of four main datasets, as illustrated in Figure 13. The CLCD (Cross‐Sensor
Land Cover Change Detection) dataset is designed to assess land‐cover dynamics captured by multi-
ple sensors, enabling comprehensive multi‐temporal and multi‐sensor analyses by providing diverse
sensor inputs [LCD+22a]. The LEVIR‐CD (LEveraging VIdeo for Remote sensing Change Detec-
tion) dataset focuses on building change detection with high‐resolution aerial image pairs optimized
for urban monitoring, effectively identifying structural modifications such as new constructions
and demolitions to support detailed urban planning [CS20]. The DSIFN (Dual‐Stream Interac-
tive Feature Network) dataset, created for high‐resolution change detection, utilizes a dual‐stream
architecture to enhance feature extraction and interaction between pre‐ and post‐event images,
thereby improving sensitivity to subtle changes and boosting detection accuracy [ZYT+20]. Finally,
the S2Looking dataset comprises Sentinel‐2 satellite imagery and offers a large‐scale repository
for extensive change detection research, facilitating broad environmental monitoring and analysis
[Liu+21]. Each of these datasets contributes uniquely to the development of robust methodologies
for automated change detection and caption generation in remote sensing.
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Figure 13: Image pair examples for a) CLCD, b) LEVIR-CD, c) DSIFN, d) S2Looking datasets

4.3.2. Data Augmentation

The datasets exhibited imbalances in terms of the number of image pairs and the types of changes
represented. This imbalance could potentially lead to biased model training, where the model be-
comes proficient at detecting more frequent changes but performs poorly on less represented change
types. To mitigate this issue, we performed data augmentation using several techniques aimed at
increasing the diversity and quantity of training samples.

First, we applied random rotations to each image pair, rotating them randomly between -90
and 90 degrees. This technique helps the model become invariant to the orientation of the images,
thereby improving its ability to generalize across different viewing angles.

Additionally, we used random scaling, where each image pair was randomly scaled between
0.5 and 1.5 times its original size. This approach simulates varying distances from the satellite to
the Earth’s surface, which can occur due to different orbital positions or satellite types. By training
the model on images of varying scales, we improve its resilience to variations in image resolution
and size.

These augmentation techniques helped in enhancing an imbalanced dataset via greater variabil-
ity and volume of training instances, thereby the model strength 14. Using this balanced dataset, the
model is able to learn a broader perception of the kind of changes occurring in the satellite images
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Figure 14: Data augmentation examples of a) CLCD, b) LEVIR-CD, c) DSIFN, d) S2Looking
datasets

Figure 15: Our methodology for change classification

to identify changes with increased accuracy and reliability along with caption generation.
After applying data augmentation, the total number of images for each dataset is as follows:

• CLCD: 710 training image pairs and 220 validation image pairs

• LEVIR-CD: 745 training image pairs and 228 validation image pairs

• DSIFN: 6600 training image pairs and 550 validation image pairs

• S2Looking: 6500 training image pairs and 1800 validation image pairs

4.3.3. Caption Generation Using MiniCPM-V Llama Model

For captioning, we utilized the MiniCPM-Llama3-V-2_5 model [TLI+23][YYZ+24b], which is ide-
ally suited for translating detailed natural language from visual information. With an extremely
powerful Transformer-based architecture, the model works best for reading complex visual details
and translating them into understandable, contextually accurate text. As such, it is particularly
suited to read satellite images, which are likely to have complex details and varied contexts.
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The process was to generate captions for each pair of images according to a unique prompt
that was appropriate for satellite images. All pairs of satellite images were inputted directly into
the Llama model with the prompt ”Describe the satellite image!” The prompt asked the model to
generate captions that describe the contents of the images in great detail.

Following the initial round of caption generation, the outputs were refined for coherence and
clarity. This was necessary to ensure that the descriptions were mapped accurately onto the contents
of the images and to eliminate any ambiguities. Refining the captions generated involved ensuring
the correctness of the language used, ensuring that key features and changes in the satellite images
were accurately captured and described 15.

The model relies on the transformer architecture [VSP+17], the self-attention mechanism of
which changed NLP by enabling the network to assign different weights to tokens of the input
sequence. This enables the model to produce more fluent, context-dependent text. Formally, this
operation is described as:

Given an image I , the model generates a sequence of words {w1, w2, . . . , wn}. The probability
of each word in the sequence is given by:

P (wt|I, w1, w2, . . . , wt−1)

where P (wt|I, w1, w2, . . . , wt−1) is the conditional probability of the word wt given the image
I and the previous words in the sequence.

The model is optimized to maximize the probability of the ground-truth word sequence, which
can be expressed as:

L =
n∑

t=1

logP (wt|I, w1, w2, . . . , wt−1)

This training objective compels the model to generate the most probable word sequence based
on a given input image and all past tokens in the caption. Additionally, the self-attention mechanism
of the Transformer [AP18] allows it to capture long-range dependencies and intricate interrelations
within the data that is especially useful for comprehending complex satellite images.

Using this method, the Llama model produces captions with rich, detailed descriptions of satel-
lite images. It aims to create detailed, contextually informed accounts, thereby enhancing the ap-
plied usefulness of these images across many domains. Automatically generating precise and in-
formative captions can greatly support efforts in environmental monitoring, disaster response, and
urban planning. This automated process not only saves time but also lessens dependence on spe-
cialized expertise, making satellite image analysis more accessible and efficient.

To assess how well our model-generated captions are an indicator of real image changes, we
applied four traditional machine learning algorithms—Logistic Regression [Cox58], Naive Bayes
[Min61], Support Vector Machine (SVM) [HDO+98], and K-Nearest Neighbors (KNN) [CD04]—
after transforming the text into a TF–IDF vectorizer [Spa72]. Additionally, we fine-tuned four
transformer models—BERT [DCL+19], DistilBERT [SDC+19], RoBERTa [LOG+19], and XLNet
[YDY+19]—to forecast whether a change had occurred between the pre-event and post-event images
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based only on their generated captions.

Table 5. Accuracy Results for Train Data

Datasets CLCD LEVIR-CD DSIFN S2Looking
Machine Learning Models
Logistic Regression 0.8521 0.8644 0.8087 0.8263
Naive Bayes 0.8183 0.7704 0.7348 0.7406
Support Vector Machine 0.976 0.9838 0.943 0.9443
K-Nearest Neighbors 0.7169 0.804 0.791 0.7769
Transformer Models
BERT 0.7394 0.6846 0.7970 0.7485
DistilBERT 0.7113 0.6779 0.7848 0.7438
RoBERTa 0.7183 0.6443 0.7856 0.7438
XLNET 0.7042 0.6644 0.7939 0.74

Table 6. Accuracy Results for Validation Data

Datasets CLCD LEVIR-CD DSIFN S2Looking
Machine Learning Models
Logistic Regression 0.7727 0.7105 0.7762 0.7859
Naive Bayes 0.7545 0.6754 0.7254 0.7181
Support Vector Machine 0.7681 0.7192 0.8084 0.7893
K-Nearest Neighbors 0.609 0.6447 0.705 0.6592
Transformer Models
BERT 0.6773 0.693 0.8169 0.7522
DistilBERT 0.6727 0.7018 0.8102 0.7383
RoBERTa 0.6455 0.636 0.8288 0.7628
XLNET 0.6455 0.6711 0.8 0.7357

The performance of the machine learning models is also varied. The Support Vector Machine
(SVM) consistently outperforms the other traditional machine learning models, with the highest ac-
curacy on all of the datasets for the training and validation phases. This suggests that SVM’s capa-
bility to handle high-dimensional spaces and its effectiveness with small to medium-sized datasets
make it a robust choice for change detection tasks. Logistic Regression and Naive Bayes perform
reasonably well, but their simpler assumptions about data distribution limit their accuracy com-
pared to more complex models. K-Nearest Neighbors (KNN), as easy to use and interpret, shows
lower accuracy, perhaps due to its vulnerability to the choice of ’k’ and the method of distance
calculation, which might not capture the complexity of the datasets.

Performance variations of transformer-based models arise due to differences in model architec-
tures and pre-training tasks of the models. BERT, since it is pre-trained bidirectionally on masked
language modeling, is effective at capturing context information, and that translates into superior
performance across other datasets when it is being trained. On the other hand, RoBERTa, which is
the optimized version of BERT with increased training and larger batch sizes, appears to generalize
better on validation sets, particularly those such as DSIFN and S2Looking which would benefit
from such optimization.

33



DistilBERT, while being smaller and faster, performs competitively but is behind BERT and
RoBERTa, suggesting the model size vs. accuracy trade-off. XLNET, using its autoregressive
approach, performs well but not consistently better than the other models, suggesting that the bidi-
rectional context of BERT and RoBERTa is more beneficial to change detection tasks.

All in all, machine learning model performance test for the task of change detection illustrates
Support Vector Machines’ (SVM) superiority amongst the classic models Transformer-based mod-
els, particularly BERT and RoBERTa, perform incredibly with their bidirectionally trained and op-
timized, having RoBERTa show great generalization ability. DistilBERT has a comparative, though
speedier, option, though being slightly less precise, while autoregressive nature of XLNET provides
good outcomes without continuously topping the bidirectionally trained ones. These insights un-
derscore the need to balance model complexity, speed, and precision according to particular dataset
demands.
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5. Experiment 4: MiniCPM-V LLaMA Model for Image
Recognition: A Case Study on Satellite Datasets

This study compares the performance of the MiniCPM-V approach in satellite image identification,
in terms of pattern classification capability using satellite datasets [KP25]. We selected MiniCPM-
Llama3-V version 2.5 and tested its capacity to generalize using various satellite imaging types and
how it performs when compared to typical deep learning frameworks such as convolutional neural
networks. By probing the strengths of MiniCPM-Llama3-V 2.5 here, we aim to advance the edge
of large language models for satellite image analysis and to highlight their value in enhancing the
accuracy and efficiency of the recognition processes.

The main contributions of this paper are:
a) This research investigates the application of the MiniCPM-V model, which can process vi-

sual and textual data, as a new method of satellite image analysis and compares it with current
techniques.

b) The MiniCPM-V model is tested using various satellite image datasets (MAI, RSICD,
RSSCN7) and an aggregated dataset to examine its ability to generalize and how data variability
affects model performance.

c) The work analyzes how well the model can perform with multiple labels within multi-label
classification problems, identifying the issues with overlap and class imbalance and solutions that
can improve model accuracy.

5.1. Model
The MiniCPM-V model [YYZ+24a] is a smaller, optimized variant of the CPM (Chinese Pre-
trained Language Model) family, specifically designed for multi-modal tasks that require the in-
tegration of both visual and textual data. Built on transformer-based architecture, MiniCPM-V
uses both Vision Transformers (ViTs) [Ale20] and text transformers [VSP+17], allowing it to han-
dle tasks like image captioning, image classification, and visual question answering with natural
language prompts.

Table 7. Performance metrics on standard multimodal benchmarks. “RW QA” denotes Real-
WorldQA, “Obj HalBench (Res./Men.)” refers to the Object Hallucination Benchmark with sep-
arate response- and mention-level hallucination rates, and “*” indicates results we obtained using
the official checkpoints. The best open-source results are highlighted in bold [YYZ+24a].

Model Size Open-Compass [Con23] MME [FCS+23] MMB test (en) [LDZ+24] MMB test (cn) [LDZ+24] MMMU val [YNZ+24] Math-Vista [LBX+24] LLaVA Bench [LLW+23] RW QA [LLL+23; MKJ21; SNS+19] Obj HalBench (Res./Men.) [RHB+18; YYZ+24c]
Proprietary Models

GPT-4V (2023.11.06) - 63.5 1711.5 77.0 74.4 53.8 47.8 93.1 63.0 13.6/7.3*
Gemini Pro - 62.9 2148.9 73.6 74.3 48.9 45.8 79.9 60.4 -
Claude 3 Opus - 57.7 1586.8 63.3 59.2 54.9 45.8 73.9 48.4 -

Open-source Models
DeepSeek-VL-1.3B [LLZ+24] 1.7B 46.2 1531.6 66.4 62.9 33.8 29.4 51.1 49.7 16.7/9.6*
Mini-Gemini [LZW+24] 2.2B - 1653.0 - - 31.7 - - - -
Yi-VL-6B [AY+24] 6.7B 48.9 1915.1 68.4 66.6 40.3 28.8 51.9 53.5 19.4/11.7*
Qwen-VL-Chat [BBY+23] 9.6B 51.6 1860.0 61.8 56.3 37.0 33.8 67.7 49.3 43.8/20.0*
Yi-VL-34B [AY+24] 34B 52.2 2050.2 72.4 70.7 45.1 30.7 62.3 54.8 20.7/14.0*
Phi-3-vision-128k-instruct [AAA+24] 4.2B - - - - 40.4 44.5 64.2* 58.8* -
XTuner-Llama-3-8B-vl.1 [XTu23] 8.4B 53.3 1818.0 71.7 63.2 39.2 40.0 69.2 - -
CogVLM-Chat [WLY+24] 17B 54.2 1736.6 65.8 55.9 37.3 34.7 73.9 60.3 26.4/12.6*
Bunny-Llama-3-8B [HLW+24] 8.4B 54.3 1920.3 77.0 73.9 41.3 31.5 61.2 58.8 -
DeepSeek-VL-7B [LLZ+24] 7.3B 54.6 1765.4 73.8 71.4 38.3 36.8 77.8 54.2 11.4/6.5*
LLaVA-NeXT-Llama3-8B [LZZ+24] 8.4B - 1971.5 - - 41.7 - 80.1 60.0 -
Idefics2 [LTC+24] 8.0B 57.2 1847.6 75.7 68.6 45.2 52.2 49.1 60.7 -
Cambrian-8B [TBW+24] 8.3B 58.8 1802.9 74.6 67.9 41.8 47.0 71.0 60.0 -
CogVLM2-19B-Chat [WLY+24] 19B 62.3 1869.5 73.9 69.8 42.6 38.6 83.0 62.9 -
LLaVA-NeXT-Yi-34B [LLL+24] 34B 62.7 2006.5 81.1 79.0 48.8 40.4 81.8 66.0 -
Cambrian-34B [TBW+24] 34B 64.9 2049.9 80.4 79.2 50.4 50.3 82.0 67.1 -
MiniCPM-V 1.0 [YYZ+24a] 2.8B 47.5 1650.2 64.1 62.6 38.3 28.9 51.3 51.2 21.6/11.5
MiniCPM-V 2.0 [YYZ+24a] 2.8B 54.5 1808.6 69.1 66.5 38.2 38.7 69.2 55.8 14.5/7.8
MiniCPM-Llama3-V 2.5 [YYZ+24a] 8.5B 65.1 2024.6 77.2 74.2 45.8 54.3 86.7 63.5 10.3/5.0
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Figure 16: Example images for MAI Dataset (a) ”apron, parking lot, residential, runway”, (b)
”apron, residential, runway”, (c) ”baseball field, parking lot, river, park”, (d) ”residential, runway”,
(e) ”residential, roundabout”, (f) ”residential, lake, park”, (g) ”residential, bridge, roundabout”, (h)
”commercial, farmland, residential”, (i) ”commercial, parking lot, residential, lake”

Vision Transformers [Ale20] are used for process visual data by splitting images into patches,
embedding each patch into a vector space, and feeding them through transformer layers. This
approach enables the model to grasp spatial dependencies and feature representations within im-
ages, similar to how transformers handle textual data. Unlike traditional CNNs, ViTs [Ale20] in
MiniCPM-V [YYZ+24a] can model long-range dependencies across the image, enhancing its abil-
ity to recognize complex patterns.

MiniCPM-V [YYZ+24a] is designed to be more computationally efficient than larger models
in the CPM family, with fewer parameters but similar performance. This makes it suitable for use
where computational resources are limited, such as real-time image classification or edge device
deployment. The model’s parameter-sharing techniques help ensure that model size and accuracy
can be balanced well so that the model can suitably be deployed in real-life applications. MiniCPM-
V [YYZ+24a] was utilized in satellite image classification in this study. The training data included
satellite imagery in conjunction with structured prompts to guide the model in identifying specific
patterns or objects in the images. The model could combine visual and textual knowledge, enhanc-
ing its precision in classifying diverse landscapes and objects in satellite imagery.

We selected MiniCPM-V due to its performance on handling vision-language tasks at the cost
of a good trade-off between performance and computational cost. Unlike larger models, MiniCPM-
V is optimized for multi-modal learning that makes it efficient in satellite image recognition without
requiring large computational resources [YYZ+24a]. From the various variants of the MiniCPM
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model listed in Table 7, MiniCPM-Llama3-V 2.5 is the most appropriate model for our study.
This model possesses the highest Open-Compass score (65.1) and performs better on a number of
benchmarks, including MME (2024.6), MMB test (en) (77.2), and LLaVA Bench (86.7). It also
possesses the lowest hallucination rate in the Object HalBench (10.3/5.0), which indicates high reli-
ability in object recognition tasks. Compared to MiniCPM-V 1.0 and 2.0, the Llama3-V 2.5 variant
possesses significantly higher accuracy with relatively small size (8.5B parameters). Thanks to its
enhanced multimodal understanding, balanced computational efficacy, and top-notch classification
capability, MiniCPM-Llama3-V 2.5 was selected as the top performer among our satellite image
recognition experiment. The test metrics in Table 7 were reported from [YYZ+24a], an extensive
evaluation of the MiniCPM family and its performance over various multimodal benchmarks.

5.2. Datasets
We employ three prominent datasets for remote sensing image recognition and classification:
MAI10, RSICD11, and RSSCN712. These collections span a wide variety of aerial scenarios and
are extensively utilized in remote sensing and image processing studies.

Table 8. Number of images for each class in the MAI dataset [HML+21].

Class Number Class Number Class Number
Residential 2387 Parking Lot 2007 Woodland 1610
Commercial 1610 Farmland 1222 Bridge 878
River 764 Lake 756 Park 638
Sparse Shrub 336 Soccer Field 302 Roundabout 281
Baseball Field 271 Runway 230 Storage Tanks 219
Apron 211 Works 186 Beach 165
Stadium 136 Tennis Court 114 Sea 80
Golf Course 75 Port 10 Train Station 9

Table 9. Number of images for each class in the RSICD dataset [LWZ+17].

Class Number Class Number Class Number
Airport 420 Farmland 370 Playground 1031
Bare Land 310 Forest 250 Pond 420
Baseball Field 276 Industrial 390 Viaduct 420
Beach 400 Meadow 280 Port 389
Bridge 459 Medium Residential 290 Railway Station 260
Center 260 Mountain 340 Resort 290
Church 240 Park 350 River 410
Commercial 350 School 300 Sparse Residential 300
Dense Residential 410 Square 330 Storage Tanks 396
Desert 300 Parking 390 Stadium 290

The MAI (Multi-Scene Aerial Image Dataset) is a dataset [HML+21] designed for understand-
ing aerial scenes, particularly focusing on recognizing various scene types. The dataset contains a
wide variety of images aimed at multi-scene recognition tasks. It was introduced in the context of

10https://github.com/Hua-YS/Prototype-based-Memory-Network
11https://github.com/201528014227051/RSICD_optimal
12https://github.com/palewithout/RSSCN7

37

https://github.com/Hua-YS/Prototype-based-Memory-Network
https://github.com/201528014227051/RSICD_optimal
https://github.com/palewithout/RSSCN7


Figure 17: Example images for RSICD Dataset (a) airport, (b) bare land, (c) baseball field, (d)
beach, (e) bridge, (f) center, (g) church, (h) commercial, (i) dense residential

prototype-based memory networks for scene classification, demonstrating the effectiveness of this
method in identifying different scene types in aerial images. To accelerate advancements in aerial
scene interpretation under real-world conditions, we introduce the MAI dataset, comprising 3923
large-scale images sourced from Google Earth covering regions in the United States, Germany, and
France. Each image measures 512×512 pixels, with spatial resolutions ranging from 0.3 m/pixel
to 0.6 m/pixel. The dataset encompasses 24 categories—apron, baseball field, beach, commercial
area, farmland, woodland, parking lot, port, residential zone, river, storage tanks, sea, bridge, lake,
park, roundabout, soccer field, stadium, train station, industrial site, golf course, runway, sparse
shrubland, and tennis court (see Fig.16 and Table8).

The RSICD (Remote Sensing Image Captioning Dataset) [LWZ+17] was specifically assem-
bled to train models that generate natural‐language descriptions of remote sensing imagery. It
comprises a diverse collection of images used to teach captioning systems how to produce accurate
annotations. In total, RSICD contains 24333 sentences with a combined vocabulary of 3323 words,
making it a key resource for advancing image‐captioning methods in the remote sensing field. The
dataset is organized into 30 categories—airport, bare land, baseball field, beach, bridge, central re-
gion, church, commercial district, dense residential area, desert, farmland, forest, industrial zone,
meadow, medium‐density residential area, mountain, park, school, square, parking lot, playground,
pond, viaduct, port, railway station, resort, river, sparse residential area, storage tanks, and stadium
(see Fig.17 and Table9).

The RSSCN7 dataset [ZNZ+15] is a widely adopted benchmark for deep‐learning–driven scene
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classification in remote sensing. It comprises 2 800 high‐resolution images distributed across seven
representative land‐cover categories—grassland, forest, farmland, parking lot, residential area, in-
dustrial zone, and river/lake. For each category, 400 images were harvested from Google Earth and
organized into four distinct scale levels, with 100 images per scale. All images measure 400×400
pixels. See Fig. 18.

Figure 18: Example images for RSSCN7 Dataset (a) grass, (b) field, (c) industry, (d) river/lake, (e)
forest, (f) resident, (g) parking

To ensure consistency and fairness across the merged dataset, labels from the MAI, RSICD,
and RSSCN7 datasets were systematically standardized by grouping synonymous or overlapping
categories under unified labels. For example, ”dense residential,” ”medium residential,” ”sparse
residential,” and ”resident” were consolidated into a single category named ”Residential.” Similarly,
”soccer field” and ”playground” were unified under the label ”Football field,” while ”woodland”
from MAI and ”forest” from RSICD and RSSCN7 were combined as ”Forest.” ”Parking lot” and
”parking” were merged into ”Parking,” and ”train station” was standardized as ”Railway station”
to align with other datasets. Additionally, ambiguous or inconsistently represented labels such as
”grass,” ”meadow,” and ”river/lake” were excluded due to their variability across datasets, which
could introduce noise and affect the reliability of the results. This careful standardization ensured
the merged dataset retained its diversity while providing a clear and consistent framework for model
evaluation.
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5.3. Methodology
Each meta-data of the datasets was first converted into CSV file format. For each dataset, we created
a CSV file containing the image names and their corresponding labels. This format made it easy to
process and manage the image data during the classification processes. This preprocessing allowed
the datasets to be in a common format, making it easy to integrate into the classification pipeline.

For our classification model, we utilized the MiniCPM-V model [YYZ+24a]. We ran the model
on the Google Colab environment with an L4 GPU. For input to the model, we used both the im-
ages and particular prompts that were intended to guide the classification action. These prompts
provided context and additional guidance to enable the model to more accurately classify each im-
age. By using a prompt-based, ordered approach, we ensured the model was provided with explicit
instructions for object recognition to reduce classification vagueness. Data and reporduceable code
can be found in kaggle.com/datasets/kursatkomurcu/minicpm-v-satellite-object-recognition/data.

Using this approach, we leveraged the MiniCPM-V model to classify each image in the datasets
and subsequently collected the classification results. After this process, we merged three datasets
and converted synonymous labels into unified category names to maintain consistency. Specifi-
cally, the label residential was used in place of dense residential, medium residential, sparse resi-
dential, and resident; football field replaced soccer field and playground; forest was substituted for
woodland; parking replaced parking lot; industrial replaced works; railway station replaced train
station; and lake was used instead of pond. Moreover, we did not include grass and river/lake labels
in the MAI dataset [HML+21] in our merged dataset due to the unclear nature of their images (see
Fig. 19).
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Figure 19: Distribution of the classes in the merged dataset

The MiniCPM-V classification process follows a structured workflow, outlined in Algorithm
1. The methodology is designed to preprocess data, apply classification, and collect results system-
atically.

To ensure the MiniCPM-V model effectively classifies images, we used a set of structured
prompts tailored to each dataset:

1. Identify the following categories in the satellite image and list them in a comma-separated
format enclosed in double quotation marks: ”apron, baseball field, beach, commercial, farm-
land, woodland, parking lot, port, residential, river, storage tanks, sea, golf course, runway,
sparse shrub, tennis court, bridge, lake, park, roundabout, soccer field, stadium, train station,
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Algorithm 1 MiniCPM-V Image Classification Pipeline
1: Input: Satellite image dataset D, MiniCPM-V model M , Prompts P
2: Output: Classified image labels L
3: Convert dataset D metadata into CSV format
4: for each image I in D do
5: Generate classification prompt PI for I
6: Feed image I and prompt PI into model M
7: Collect classification result LI

8: end for
9: Merge dataset results and standardize labels

10: Return classified labels L =0

works”. Return the identified categories in double quotation marks without any explanations
or additional text.

2. Identify the object in this satellite image. Respond with only one word from the following list:
airport, bareland, baseball field, beach, bridge, center, church, commercial, dense residential,
desert, farmland, forest, meadow, medium residential, mountain, park, playground, pond,
port, railway station, resort, river, school, sparse residential, square, stadium, storage tanks,
viaduct. Do not use any other words or phrases.

3. What do you see in this satellite image? Do not answer more than one word. Reply with only
one word from these options: green areas, field, industry, river/lake, forest, resident, parking.

4. Identify the satellite image from the following list: field, industrial, river, lake, forest, resi-
dential, parking, airport, bareland, baseball field, beach, bridge, center, church, commercial,
desert, farmland, meadow, mountain, park, playfields, port, railway station, resort, school,
square, stadium, storage tanks, viaduct, apron, sea, golf course, runway, sparse shrub, tennis
court, roundabout, football field. Note: Do not include any other words than the list and do
not include any other additional information in your response. The image may contain one
or multiple objects. Decide whether the image contains one or more objects and please list
only the names of the detected object(s), if there are more than one objects and separate them
by commas.

The MiniCPM-V model’s performance was optimized by adjusting its hyperparameters to bet-
ter align with the characteristics of the datasets. Two key hyperparameters, temperature and sam-
pling, were carefully selected to control the model’s output behavior, ensuring a balance between
prediction diversity and determinism.

For the MAI, RSICD, and RSSCN7 datasets, the temperature was set to 0.7. This parameter
allowed the model to explore other possibilities of predictions while retaining the most probable
labels, a key feature for multi-label classification problems. On the combined dataset, however, a
lower temperature of 0.1 was applied. This stricter setup ensured deterministic and stable predic-
tions across the diverse and intricate class distributions in the combined dataset.

The parameter of sampling was made to influence the variability of the model’s prediction. For
the MAI, RSICD, and RSSCN7 datasets, sampling was enabled to encourage a broader search for
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potential labels, particularly useful for cases that involve multi-label. Conversely, for the combined
dataset, sampling was disabled to prioritize the most probable outputs, thereby constraining noise
and enhancing reliability in prediction.

These adjustments were guided by empirical data to ensure the optimal possible match between
the model’s prediction and the unique needs of each dataset, without fine-tuning the internal weights
of the model. By prioritizing hyperparameter choice and normalization of datasets, the MiniCPM-
V model was effectively adjusted for satellite image recognition tasks with varying data and label
complexities.. The inclusion of multi-label datasets enabled the proper testing of the capacity of
the model to address complex object recognition tasks, as well as demonstrating the superiority of
large language models in satellite image classification.

5.4. Results
Our study systematically evaluates the performance of the MiniCPM-V [YYZ+24a] model for satel-
lite image recognition based purely on language information from vision-language model (see Table
10). We explored its efficacy across three distinct datasets: MAI [HML+21], RSICD [LWZ+17],
RSSCN7 [ZNZ+15] and the merged dataset.

0 500 1000 1500 2000 2500
Class Frequency

0

20

40

60

80

F1
-s

co
re

 (%
)

apron

baseball field

beach

bridge

commercial

farmland

golf course

lake
park

parking lot

port

residential

river

roundabout

runway

sea

soccer field

sparse shrub

stadium

storage tanks
tennis court

train station

woodland

works

Pearson r: 0.80

Per-class F1-score vs. Class Frequency
Data Points
Regression Line

Figure 20: MAI Dataset F1 Scores-Class Frequency Graphics

For the MAI dataset, the model achieved a notably low Top-1 accuracy of 0.0701, despite
moderate precision 0.485 and recall 0.6116, culminating in an F1 score of 0.541. This indicates
that while the model identified a significant portion of relevant instances (high recall), it struggled
to correctly predict the majority class labels, as evidenced by the low accuracy. The Top-5 accuracy,
however, was significantly higher at 0.9783, showing that the true labels were often present within
the top five predictions. Despite this, the Top-5 precision and recall dropped to 0.618 and 0.5,
respectively, resulting in an F1 score of 0.11. This suggests that while the model could identify
relevant predictions, ranking these predictions accurately remains a challenge.

In contrast, on the RSICD dataset the model achieved a Top-1 accuracy of 0.6219, with preci-
sion at 0.6784, recall at 0.5836, and an F1 score of 0.5575. Although the Top-5 accuracy remained
0.6219, precision fell to 0.311 and recall to 0.500, producing an F1 of 0.3834. These findings
suggest that, while the model ranks its single best predictions quite well, it is less effective at capi-
talizing on the extra candidates in a Top-5 evaluation.

The RSSCN7 dataset demonstrated the best performance across the board, with a Top-1 accu-
racy of 0.7057 and corresponding precision 0.4257, recall 0.4117, and F1 score 0.4084.
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When evaluating the model on the merged dataset, which combines the challenges of all indi-
vidual datasets, the Top-1 accuracy was moderate at 0.4349, with precision 0.6026, recall 0.4551,
and an F1 score 0.5186. In the Top-5 setting, the accuracy improved to 0.7023, although preci-
sion 0.1547, recall 0.5, and the F1 score 0.2363 showed declines. These results suggest that while
the model is capable of identifying relevant predictions in a broader set of data, achieving high
precision across multiple labels remains challenging.

For the MAI and merged datasets, the lower Top-1 accuracy scores are due to their multi-labeled
nature—the MAI dataset is entirely multi-labeled, while the merged dataset is partially so. In multi-
label classification, accuracy reflects the model’s ability to correctly predict each individual label,
which inherently complicates the task. However, the significantly higher Top-5 accuracy values
demonstrate that the model performs considerably better when evaluated with leniency in ranking
predictions (see Tables 11 and 14).

Table 10. Top-1/Top-5 Overall Metrics of the Datasets.

Dataset Accuracy Precision Recall F1
MAI 0.0701/0.9783 0.4850/0.6180 0.6116/0.5000 0.5410/0.1100
RSICD 0.6219 0.6784 0.5836 0.5575
RSSCN7 0.7057 0.4257 0.4117 0.4084
Merged 0.4349 0.6026 0.4551/ 0.5186

5.4.1. Results for MAI Dataset

In the study by [HML+21], the authors employed various machine learning and deep learning mod-
els on the entire MAI dataset, which comprises 100,000 images. They achieved maximum overall
precision, recall, and F1 scores of 0.801, 0.665, and 0.713, respectively. Additionally, they reported
only average precision results for each class. In contrast, our study utilized a subset of 3,923 images
from the MAI dataset. Although our results are lower than those reported in [HML+21] (see Tables
10 11). Furthermore, we observed a positive correlation with 0.8 p-value between class frequencies
and F1 scores (see Fig. 20).

As shown in Table 11, the accuracy, precision, recall, and F1 scores for each class vary sig-
nificantly. For example, the ”Parking Lot” and ”Residential” classes exhibit relatively high F1
scores, indicating that the model performs well in these categories. On the other hand, classes
such as ”Port,” ”Train Station,” and ”Works” have very low F1 scores. This could be due to the
under representation of these classes in the dataset, potential confusion with other similar classes,
or the model’s difficulty in distinguishing specific features of these classes. Additionally, while the
model demonstrates acceptable performance for certain classes like ”Commercial,” ”Woodland,”
and ”Farmland,” lower recall and precision rates were observed for some classes. These findings
highlight the impact of data imbalance and overlap between classes on the overall model perfor-
mance. Therefore, creating a more balanced dataset or employing techniques such as data augmen-
tation could potentially improve the model’s performance. Furthermore, the prediction outcomes
for sample images from the MAI dataset can be found in Fig. 29, which demonstrates the model’s
performance visually, highlighting both false positives and false negatives.
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Table 11. Top-1 results for MAI dataset.

Class Accuracy Precision Recall F1
Apron 0.7204 0.1517 0.9147 0.2603
Baseball Field 0.9177 0.4502 0.8672 0.5927
Beach 0.9342 0.3542 0.6848 0.4669
Bridge 0.7798 0.5150 0.2745 0.3581
Commercial 0.6834 0.6769 0.3959 0.4996
Farmland 0.8218 0.6574 0.8936 0.7575
Golf Course 0.9207 0.1590 0.7333 0.2613
Lake 0.8022 0.4769 0.2725 0.3468
Park 0.8101 0.3803 0.2665 0.3134
Parking Lot 0.7693 0.7471 0.8301 0.7864
Port 0.9115 0.0172 0.6000 0.0334
Residential 0.7859 0.8480 0.7897 0.8178
River 0.7930 0.4579 0.3416 0.3913
Roundabout 0.6821 0.1683 0.8719 0.2821
Runway 0.9026 0.3128 0.5522 0.3994
Sea 0.9217 0.1397 0.5500 0.2228
Soccer Field 0.9014 0.3990 0.5563 0.4647
Sparse Shrub 0.8399 0.1933 0.2738 0.2266
Stadium 0.9118 0.1983 0.5074 0.2851
Storage Tanks 0.8792 0.2643 0.6530 0.3763
Tennis Court 0.9212 0.2269 0.7105 0.3439
Train Station 0.9286 0.0037 0.1111 0.0071
Woodland 0.7507 0.7008 0.6851 0.6928
Works 0.8871 0.0759 0.1237 0.0741

5.4.2. Results for RSICD Dataset

Table 12 presents the recall performance of various models on the RSICD dataset. Among the evalu-
ated models, RemoteCLIP [LCG+24] achieved a recall of 0.3635, while GeoRSCLIP-FT [ZZG+24]
slightly improved this metric to 0.3887. The AMFMN model [YZF+22], however, demonstrated
a significantly lower recall of 0.1553. In contrast, our proposed LLaMA MiniCPM-V model at-
tained a substantially higher recall of 0.5836, outperforming all compared models by a considerable
margin.

Table 12. Comparison for RSICD dataset.

Model Recall Reference
RemoteCLIP 0.3635 [LCG+24]
GeoRSCLIP-FT 0.3887 [ZZG+24]
AMFMN 0.1553 [YZF+22]
HarMA 0.3895 [Hua24]
MiniCPM-Llama3-V 2.5 0.5836 [YYZ+24a] (Our Experiment)

Moreover, our model achieved high metric values for each class (see Fig. 21 and Table 16).
This indicates that the MiniCPM-V model not only excels in overall recall but also maintains strong
performance across individual classes. The superior recall of the LLaMA MiniCPM-V model high-
lights its enhanced capability to identify relevant instances within the RSICD dataset, which may
be attributed to its advanced feature extraction and classification mechanisms. These results sug-
gest that MiniCPM-V is highly effective in capturing the diverse and complex patterns present in
satellite imagery, leading to improved identification and classification of relevant classes. The con-
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sistent high performance across classes underscores the potential of the MiniCPM-V model for
applications requiring robust and reliable satellite image recognition.
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Figure 21: Confusion Matrix of RSICD Dataset Classification

5.4.3. Results for RSSCN7 Dataset

Table 14 demonstrates that our experimental model achieves a lower accuracy compared to other
approaches. Notably, the LLaMA MINICPM-V model [YYZ+24a] incorrectly classified many in-
stances of the green areas class, while exhibiting high accuracy for the remaining classes (see Table
15 and Fig. 22).

Despite the overall lower accuracy of the MiniCPM-V model on the RSSCN7 dataset compared
to other approaches, the performance across most classes remains relatively strong. The exception-
ally low performance on the green areas class suggests that the model struggles with distinguishing
this class from others, potentially due to high visual similarity with classes like field and forest.
This confusion may arise from overlapping features and textures that make it challenging for the
model to accurately differentiate between these categories. Overall, while the MiniCPM-V model
shows promise in handling several classes within the RSSCN7 dataset, targeted improvements are
necessary to enhance its performance on more ambiguous or visually similar categories.

5.5. Results for the Merged Dataset
The evaluation of the MiniCPM-V model on the merged dataset, which integrates the MAI, RSICD,
and RSSCN7 datasets, provides a comprehensive assessment of the model’s ability to generalize
across diverse satellite image distributions and class heterogeneities (see Table 16 and Fig. 19).
The merged dataset presents a more complex classification task due to the varied characteristics
and label distributions inherited from the individual datasets.
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Table 13. Results for RSICD Dataset

Class Accuracy Precision Recall F1
Airport 0.9961 0.9107 0.9952 0.9511
Bare Land 0.9760 0.5500 0.8516 0.6684
Baseball Field 0.9886 0.6959 0.9783 0.8133
Beach 0.9940 0.8678 0.9850 0.9227
Bridge 0.9885 0.8101 0.9477 0.8735
Center 0.9385 0.1284 0.2731 0.1747
Church 0.9875 0.8239 0.5458 0.6566
Commercial 0.9562 0.0077 0.0029 0.0042
Dense Residential 0.9242 0.3306 0.9951 0.4964
Desert 0.9860 0.8848 0.5633 0.6884
Farmland 0.9892 0.7800 0.9486 0.8561
Forest 0.9902 0.7871 0.7840 0.7856
Industrial 0.9648 1.0000 0.0129 0.0254
Meadow 0.9763 1.0000 0.0750 0.1395
Medium Residential 0.9311 0.1603 0.3759 0.2247
Mountain 0.9938 0.9928 0.8059 0.8896
Park 0.9740 0.6618 0.3857 0.4874
Parking 0.9810 0.9946 0.4718 0.6400
Playfields 0.9246 0.4112 0.5673 0.4768
Playground 0.9658 0.0000 0.0000 0.0000
Pond 0.9826 0.7146 0.9119 0.8013
Port 0.9959 0.9279 0.9589 0.9431
Railway Station 0.9950 0.9952 0.7923 0.8822
Resort 0.9821 0.7363 0.5103 0.6029
River 0.9920 0.9401 0.8415 0.8880
School 0.9757 0.9048 0.1271 0.2229
Sparse Residential 0.9728 0.5714 0.0268 0.0511
Square 0.9750 0.9385 0.1848 0.3089
Stadium 0.9609 0.3957 0.8966 0.5491
Storage Tanks 0.9934 0.8491 0.9949 0.9163
Viaduct 0.9926 0.9380 0.8643 0.8996

field forest green areas industry parking resident river/lake
Predicted

fie
ld

fo
re

st
gr

ee
n 

ar
ea

s
in

du
st

ry
pa

rk
in

g
re

sid
en

t
riv

er
/la

ke
Ac

tu
al

373 1 22 3 1 0 0

30 354 15 1 0 0 0

322 5 52 6 10 0 3

6 0 32 250 84 20 8

3 0 0 34 358 4 1

3 0 101 2 9 256 3

16 7 7 25 2 0 333

Confusion Matrix

0

50

100

150

200

250

300

350

Figure 22: Confusion Matrix of RSSCN7 Dataset Classification

Across the combined dataset, the model attained a modest accuracy of 0.4349 noticeably below
its performance on the separate datasets. This drop likely stems from the greater heterogeneity
and complexity introduced by merging the data, which strains the model’s generalization ability.
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Table 14. Comparison for RSSCN7 dataset.

Model Accuracy Reference
DBN 0.7700 [ZNZ+15]
GLNet 0.9507 [SLZ+21]
CPM 0.5000 [WRK+16]
MiniCPM-Llama3-V 2.5 0.7057 [YYZ+24a] (Our Experiment)

Table 15. Results for RSSCN7 dataset.

Class Accuracy Precision Recall F1
Green Areas 0.1300 0.1250 0.0162 0.0288
Field 0.9325 0.2000 0.1865 0.1930
Industry 0.6250 0.1667 0.1042 0.1282
River/Lake 0.8325 0.1250 0.1041 0.1136
Forest 0.8850 0.2500 0.2212 0.2347
Resident 0.6400 0.1250 0.0800 0.0976
Parking 0.8950 0.2000 0.1790 0.1889

Despite this, certain classes within the merged dataset exhibit high accuracy scores, indicating that
the model can effectively recognize specific types of satellite imagery when sufficient distinguishing
features are present.

For instance, classes such as Airport (Accuracy: 0.9899), Bridge (0.9463), Mountain
(0.9953), and Port (0.996) demonstrate exceptionally high accuracy, precision, and recall values.
These results suggest that the model performs well on classes with distinct and consistent visual pat-
terns. Conversely, classes like Apron (Accuracy: 0.9873), Bare Land (0.9832), and Commercial
(0.8913) show lower performance metrics, highlighting areas where the model struggles, possibly
due to overlapping features with other classes or insufficient training samples.

The F1 scores across classes reveal a similar trend, with higher scores for well-defined classes
and lower scores for more ambiguous or less represented classes. For example, the Residential
class achieved an F1 score of 0.7417, while the Sparse Shrub class only reached 0.0435. These
disparities indicate that while the model is capable of handling certain categories effectively, it faces
challenges with classes that have subtle distinctions or limited representation in the merged dataset.

Figure 23 illustrates the relationship between class frequency and accuracy scores, demonstrat-
ing a positive correlation where classes with higher frequency tend to achieve better accuracy.

The combined dataset results also reflect the inherent difficulty of multi-label classification,
where the model must predict more than one class for each image simultaneously. The task dif-
ficulty increases with the diversity of the combined dataset because the model must contend with
a broader range of visual patterns and class overlaps. Regardless of these issues, the MiniCPM-V
model shows strong performance on a range of primary classes, highlighting the potential for tasks
involving holistic satellite image recognition from diverse environments.

Overall, the findings based on the combined dataset emphasize both the strengths and weak-
nesses of the MiniCPM-V model. While it excels at correctly predicting some well-defined and
adequately represented classes, performance is compromised in more heterogeneous and less rep-
resented classes. These observations emphasize the need for model optimization and potentially
larger training datasets to generalize well across representative and heterogeneous satellite image
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datasets (see Fig. 30).
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Figure 23: The merged dataset Accuracy Scores-Class Frequency Graphics

5.6. Conclusion
This paper offers a comprehensive evaluation of the performance of the MiniCPM-V model on
satellite image recognition for a range of datasets. The results show that MiniCPM-V performs
remarkably well in the situation of clear and well-separated classes for the RSSCN7 and RSICD
datasets with high accuracy and well-balanced precision and recall. However, the model’s per-
formance deteriorates for the more complex and heterogeneous datasets, such as the MAI and the
merged dataset, where multi-label classification and class variation are severe challenges.

The results highlight the necessity for further improving MiniCPM-V so that it can be more
capable in terms of generalization in different and multi-labeled settings. Future work must focus
on applying sophisticated techniques such as data augmentation, transfer learning, and utilizing
balancing class imbalance techniques. Additionally, model architecture fine-tuning for it to perform
better on multi-label classification and with greater training data could make it more robust and
accurate across various satellite image databases.

In conclusion, while MiniCPM-V is good for some scenarios, persistent and high performance
across all datasets tested will need to be tackled through targeted improvement. Addressing the
identified limitations will pave the way for MiniCPM-V to be a more versatile and reliable tool in
the field of remote sensing and satellite image analysis.
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Table 16. Results for the Merged Dataset

Class Accuracy Precision Recall F1
Airport 0.9899 0.7366 0.9234 0.8195
Apron 0.9873 0.4805 0.1754 0.2569
Bare Land 0.9832 0.7077 0.1484 0.2453
Baseball Field 0.9918 0.6790 0.8355 0.7492
Beach 0.9903 0.9052 0.7947 0.8464
Bridge 0.9463 0.8859 0.3717 0.5237
Center 0.9753 0.2130 0.2305 0.2214
Church 0.9918 0.7429 0.6500 0.6933
Commercial 0.8913 0.6239 0.1143 0.1932
Desert 0.9892 0.7489 0.5886 0.6592
Farmland 0.9279 0.8689 0.2791 0.4225
Field 0.8921 0.1694 0.9075 0.2855
Football Field 0.9631 0.5314 0.6429 0.5818
Forest 0.9109 0.8287 0.4239 0.5609
Golf Course 0.9957 0.5114 0.6000 0.5521
Industrial 0.9299 0.4258 0.5994 0.4979
Lake 0.9454 0.6904 0.3963 0.5035
Meadow 0.9785 0.0000 0.0000 0.0000
Mountain 0.9953 0.9888 0.7765 0.8699
Park 0.9411 0.4941 0.1700 0.2530
Parking 0.8815 0.7970 0.3847 0.5189
Playfields 0.9598 0.3396 0.0273 0.0506
Port 0.9960 0.9299 0.8972 0.9133
Railway Station 0.9942 0.8981 0.7212 0.8000
Residential 0.8750 0.6929 0.7979 0.7417
Resort 0.9859 0.7766 0.2517 0.3802
River 0.9491 0.7300 0.4284 0.5400
Roundabout 0.9437 0.1267 0.4021 0.1927
Runway 0.9858 0.4702 0.3087 0.3727
School 0.9816 0.4583 0.1833 0.2619
Sea 0.9951 0.3846 0.0625 0.1075
Sparse Shrub 0.9979 0.2500 0.0238 0.0435
Square 0.9811 0.7727 0.0515 0.0966
Stadium 0.9701 0.4275 0.5329 0.4744
Storage Tanks 0.9849 0.8399 0.7252 0.7784
Tennis Court 0.9827 0.1993 0.5175 0.2878
Viaduct 0.9745 0.2000 0.7100 0.0138
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6. Experiment 5: Multispectral Caption Data Unification Us-
ing Diffusion and Cycle GAN Models

The great breakthroughs in geo-spacial field in recent years have been driven by computer vision
application on RGB images [SRF+24; VNS23; YLL+23; ZYZ+24], while share amount of labeled
datasets on multispectral data like Sentinel-2 is very limited. The geo-spatial field have unrelated
dataset like object detection or segmentation on RGB images, or captions of RGB images, and
largest open-source satellite multispectral data sources like Sentinel-2 [DDC+12] is remain unan-
notated for the most cases.

Generative models, particularly diffusion-based approaches and generative adversarial net-
works (GANs), have demonstrated remarkable capabilities in image synthesis and transformation
tasks [LGZ+24]. However, generating high-quality multispectral satellite imagery from textual de-
scriptions remains a significant challenge due to the complex spectral characteristics inherent in
remote sensing data [ZZ22].

Existing research has explored the use of CycleGAN for image-to-image translation tasks in re-
mote sensing and geospatial applications [RLC+24]. Additionally, diffusion models have recently
gained prominence in hyperspectral image synthesis, demonstrating their potential to generate high-
fidelity data with improved spatial and spectral consistency [LCC+23]. However, the integration
of diffusion models with CycleGAN for multispectral caption-based image generation remains un-
derexplored.

We addressing the problem of unifying existing existing datasets of captions, RGB images and
Sentinel-2 like multispectral data (later we will call it triplet). In this study, we propose a novel
methodology, which aims to integrate caption-based synthetic image generation with multispectral
image translation techniques. By combining Stable Diffusion models with CycleGAN-based mod-
els, we create an pipeline that enables the generation of realistic synthetic of missing data of the
triple. This approach allows to generate missing data of the triple and propose unified process to
combine datasets which till now was uncombinable.

This experiment contributes to the field by:

• Proposing a pipeline for unifying datasets of captions, RGB images and multispectral
Sentinel-2 images.

• Delivering the Stable Diffusion 2-1 Base model to improve text-to-image generation, as well
as creating CycleGAN [ZPI+17] to convert RGB images into multispectral Sentinel-2 images,
and vice versa.

• Creating new an artifical multispectral satellite image-caption dataset.

By unifying these techniques, our study aims to enhance the quality and applicability of gen-
erated remote sensing imagery. This approach has allowing to expand accessible data and success-
fully improve remote sensing applications like land cover classification, disaster monitoring, and
environmental change detection [LJG+24].
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6.1. Related Work
Generative models have significantly contributed to computer vision [GPM+14; HJA20] and remote
sensing[LZX+20; XYJ+23], particularly in image synthesis and transformation. Among these, Cy-
cleGAN has demonstrated effectiveness in unpaired image-to-image translation tasks [ZPI+17]. It
has been widely used in geospatial analysis and remote sensing, where it has been leveraged for
domain adaptation and multispectral image synthesis [RLC+24]. Recent studies have improved
CycleGAN’s ability to preserve spectral details and enhance image translation accuracy by incor-
porating additional geospatial derivatives such as NDVI and digital surface models [RZD+19].

CycleGAN also used to generate seasonal changes [RZT+20]. Similarly, style transfer between
cartographic maps and satellite images has been attempted to translate a city’s street map into a
pseudo-satellite image of that city, and vice versa [AHT+22]. The result is a synthetic image that
looks like a Sentinel or Google Earth view of a city given only the map. Extensions of CycleGAN,
such as AttentionGAN [TLX+21] also been tried to addressing focusing on important regions or
preserving edges. While diffusion models and CycleGAN have been widely explored individually,
their combined potential for multispectral image synthesis remains underexplored. Studies such as
[BHF+19] have applied GAN-based approaches to synthesize missing or corrupted multispectral
images, while [ZWC+24] proposed TransCycleGAN, a novel CycleGAN-based architecture inte-
grated with transformers for super-resolving remote sensing images.

Recently, large vision language models have been explored for captioning. One approach is to
use a pre-trained vision encoder like CLIP [RKH+21] visual backbone or a ViT [DBK+20] trained
on ImageNet and connect it to a pre-trained language model. Recently, Geochat model was pro-
posed [KDN+24] as vision language model for remote sensing. However, our experiments shows
that Qwen2-VL-2B-Instruct model [WBT+24b] generated more detailed captions for satellite im-
ages.

6.2. Dataset
In this study, we utilize multiple datasets to facilitate the training and evaluation of our proposed
methodology. We used two datasets and we created our dataset: the SkyScript dataset [ZPI+17],
the Eurosat dataset [HBD+19] [HBD+18], and our synthetic dataset. Each dataset serves a distinct
purpose in training the Stable Diffusion and CycleGAN models.

6.2.1. SkyScript Dataset

The SkyScript dataset [ZPI+17] comprises 5.2M satellite images accompanied by textual captions.
We use this dataset to generate captions using the Qwen2-VL-2B-Instruct model [WBT+24b] and
compare them with the original captions using approximately 675,000 images. These original
image-caption pairs serve as the primary training data for fine-tuning our Stable Diffusion 2-1 base
model. By leveraging this dataset, we aim to enhance the ability of our model to generate realistic
satellite imagery from textual descriptions while maintaining semantic consistency and we used
our generated captions to generate images after the Stable Diffusion 2-1 base model training.
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Figure 24: Proposed workflow pipeline of our methodology.

6.2.2. Eurosat Dataset

To train our CycleGAN model, we used 27,000 multispectral images from the Eurosat dataset
[HBD+19] [HBD+18]. This dataset contains RGB images and their corresponding 13-band
Sentinel-2 multispectral representations, which are essential for training the CycleGAN model to
perform accurate image-to-image translation. We used only multispectral images in the Eurosat
dataset, because we had unlimited amount of RGB images from our generated images. The Eu-
rosat dataset is widely used in remote sensing applications and provides high-quality multispectral
data for various geospatial tasks [HBD+19] [HBD+18]. By utilizing this dataset, we ensure that our
model learns to transform RGB images into realistic multispectral representations while preserving
spectral integrity and we used our generated RGB images to create multispectral images after the
CycleGAN training.

6.2.3. Synthetic Dataset

A novel dataset called SkyScript created in our experiments. This dataset contain 120,000 generated
RGB and Sentinel-2 multispectral images, along with their corresponding textual captions. The
novel synthetic dataset serves multiple purposes: first it allowed to have extended dataset of all
three modalities; secondly, by creating this dataset, we establishing a new benchmark for generated
multispectral imagery and provide a new valuable resource in the remote sensing field.

6.3. Methodology
6.3.1. General Overview

The proposed methodology aims to unify caption, RGB and multispectral data with ability to trans-
late all three types of data. Our workflow consists of two main stages: text-to-image generation
by fine-tuning Stable Diffusion model and image-to-multispectral conversion using a CycleGAN
model see Fig. 24. This proposed pipeline allows for the creation of realistic synthetic satellite
imagery that can be transformed into multispectral Sentinel-2 representations. Experiments were
implemented using Google Colab Pro+ account and A100 GPU were used during this study.
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6.3.2. Caption Generation

The Qwen2-VL-2B-Instruct model [WBT+24a] was used in our experiments. Its performance
on large-scale datasets made it particularly well-suited for generating captions for our SkyScript
dataset. These generated captions were then compared against the original captions provided with
the dataset. Comparison was performed using both automated text similarity metrics like widely
used evaluation metrics, including BLEU [PRW+02], METEOR [LA07], ROUGE-L [Lin04],
CIDEr-D [VLP15], BERT-F1 [ZKW+19], and CLIPScore [HHF+21], were employed to assess the
quality and semantic accuracy of the generated captions. We also apply manual inspection to ensure
semantic consistency and overall quality.

6.3.3. Fine-tuning the Stable Diffusion Model

The Stable Diffusion 2-1 Base model [RBL+22] was used in our experiments. Chosen due to its
high image generation quality for text-to-image synthesis [LXH+24; SKD+24]. It’s pre-trained
weights made as an ideal candidate for fine-tuning on our the domain-specific SkyScript dataset.
The fine-tuning process involved using image-caption pairs derived from the SkyScript dataset.
During training, key hyperparameters were carefully optimized. For instance, a batch size of 4 and
a learning rate of 1× 10−5 were selected. The number of training epochs was determined through
experimental evaluation to ensure optimal performance while avoiding overfitting. Post fine-tuning,
the model’s performance was assessed by generating approximately 120,000 synthetic images.

6.3.4. CycleGAN Model Training

CycleGAN when compared to alternative models like Pix2Pix [IZZ+17] or StarGAN [CCK+18],
CycleGAN’s advantage lies in its capability to handle transformations without the need for strictly
paired training data, which is critical for converting RGB images to multispectral formats [Tad22],
[BG23], [ZXS+22]. The CycleGAN model was trained using approximately 27,000 multispectral
images from the Eurosat dataset. In this setup, syntetic RGB images served as inputs, and Eurosat
13-band Sentinel-2 multispectral images acted as target outputs. The training process converts
input RGB images (3-channel) into output multispectral images consisting of 13 spectral bands.
This transformation is designed to accurately map the RGB domain into the multispectral domain,
preserving the critical spectral characteristics necessary for remote sensing applications.

The CycleGAN model employed in this study consists of a generator and a discriminator net-
work, designed to translate RGB images into multispectral representations while preserving critical
spectral information (Figure. 25). The generator network G takes input RGB images (3 channels,
domain A) and maps them into a target multispectral space (13 channels, domain B) through a
deep convolutional architecture enhanced with residual learning and channel attention mechanisms.
Generator F have the opposite task.

Traditional CycleGAN models typically enforce cycle consistency using pixel-based losses
such as L1 or L2 norms. However, in the context of converting RGB images to multispectral rep-
resentations, preserving the inherent spectral relationships between bands is crucial. To address
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this, we integrated the Spectral Angle Mapper (SAM) [YBG92] loss into our model. SAM loss
measures the angular difference between spectral vectors, providing a robust metric for spectral
similarity that is less sensitive to variations in illumination intensity. This approach ensures that
the generated multispectral images maintain the critical spectral characteristics necessary for accu-
rate remote sensing analysis. The equation for SAM Loss:

LSAM (x, y) = arccos
(

⟨x, y⟩
∥x∥2 ∥y∥2

)
= arccos

( ∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

)
The final loss function of generator:

LG = LGAN (G,DB) + LGAN (F,DA) + λcycle

(
LSAM

cycle (A) + LSAM
cycle (B)

)
= Ea∼pA

[
(DB(G
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[
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with λcycle = 10, mean square loss and SAM loss.
To assess the realism of the generated multispectral images, a PatchGAN-based [IZZ+17] dis-

criminator is utilized. This discriminator employs four convolutional layers with progressively
increasing feature map depth and decreasing spatial resolution. To stabilize training, LeakyReLU
activations and instance normalization are applied. The final layer outputs a scalar value indicating
whether the input image is real or synthetic.
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Moreover, since the images in the Eurosat dataset are 64x64, we trained the model by randomly
cropping a 64x64 region from each generated image. During inference, we tested our model on
512x512 images using a 64x64 sliding window.

Additionally, a specialized preprocessing pipeline was implemented for Sentinel-2 multispec-
tral images. The SentinelToTensor transformation converts raw multispectral arrays into PyTorch
tensors with a channel-first ordering. The SentinelResize transformation ensures uniform image di-
mensions using bilinear interpolation, facilitating consistent model training. These preprocessing
steps, combined with the CycleGAN architecture, optimize the model’s ability to generate realistic
multispectral images from unpaired RGB inputs.

6.4. Experiments
6.4.1. Comparison of Original and Generated Captions

We evaluated the effectiveness of our proposed methodology by conducting multiple experiments.
We first assess the performance of the Qwen2-VL-2B-Instruct model in generating 675,000 textual
captions for satellite images by comparing the generated captions with the original captions from
the SkyScript dataset. The captions are measured as presented in Table 17.

Table 17. Qwen2-VL-2B-Instruct Caption Similarities

Metric Value References
BLEU-1 0.1567 [PRW+02]
BLEU-2 0.0526 [PRW+02]
BLEU-3 0.0298 [PRW+02]
BLEU-4 0.0183 [PRW+02]
METEOR 0.1353 [LA07]
ROUGE-L 0.1812 [Lin04]
CIDEr-D 0.0132 [VLP15]
BERT-F1 0.4636 [ZKW+19]
CLIPScore 0.6822 [HHF+21]

• BLEU: The BLEU-1 score of 0.1567 indicates some word-level overlap between the gener-
ated and reference captions. However, the sharp drop to a BLEU-4 score of 0.0183 reveals
that the model has difficulty generating longer, coherent n-gram phrases that match the hu-
man references.

• METEOR: With a score of 0.1353, METEOR which factors in stemming and synonym
matching suggests that there is only limited semantic overlap between the generated captions
and the references.

• ROUGE-L: A ROUGE-L score of 0.1812 reflects a low overlap in the longest common sub-
sequences between the generated and reference captions, indicating differences in sentence
structure and phrasing.
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• CIDEr-D: The extremely low CIDEr-D score of 0.0132 implies that the generated captions
diverge significantly from the human references in terms of content emphasis and term fre-
quency weighting.

• BERT-F1: Achieving a score of 0.4636, the BERT-F1 metric shows a moderate level of se-
mantic similarity between the generated and reference captions by leveraging contextualized
word embeddings.

• CLIPScore: The highest value, 0.6822, obtained via CLIPScore, indicates a strong alignment
between the generated captions and the visual content of the satellite images. This suggests
that despite low overlap in traditional text metrics, the captions capture the key visual ele-
ments effectively.

Overall, these results demonstrate that while the Qwen2-VL-2B-Instruct model successfully
captures key visual elements as evidenced by its high CLIPScore it faces challenges in generating
longer, coherent phrases that fully align with human-authored captions. Traditional metrics like
BLEU, METEOR, ROUGE-L, and CIDEr-D indicate that the lexical and structural similarities re-
main modest, even though the moderate BERT-F1 score confirms some preserved semantic content.
This balance strong visual-text alignment but limited contextual and phrase-level detail highlights
the model’s potential for our text-to-image generation tasks using the fine-tuned Stable Diffusion
model, while also pointing to clear avenues for further improvement.

6.4.2. Comparison of Original and Generated Images

Table 18. Similarities of Original and Generated Images

Metric Value References
Inception Score 6.4737± 0.1200 [BS18]
FID 34.2663 [HRU+17]
KID 0.0180± 0.0010 [BSA+18]

To evaluate the fidelity of images produced by our fine-tuned Stable Diffusion 2-1 model, we
benchmark them against authentic satellite imagery from the SkyScript collection. We employ
three standard metrics for generative image quality assessment—Inception Score (IS), Fréchet In-
ception Distance (FID), and Kernel Inception Distance (KID)—and also calculate CLIPScore to
quantify how well each generated image aligns with its corresponding caption. The outcomes of
these comparisons are summarized in Table 18.

Higher Inception Score (IS) values suggest more diverse and realistic images, while lower val-
ues indicate mode collapse or repetitive patterns in the generated dataset [BS18]. The for our
generated images IS is 6.47, indicating good image diversity.

Fréchet Inception Distance (FID) calculates the Wasserstein-2 distance between the feature dis-
tributions of generated and real images using a pre-trained Inception network [HRU+17]. Lower
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values correspond to higher similarity, with real-world images distribution, typically achieving val-
ues close to zero. The FID score in experiment is 34.26, which justify the good similarity between
the generated images and real-world satellite images. The FID metric.

The Kernel Inception Distance (KID) is an unbiased metric and provides a more stable estimate
of similarity, particularly for smaller datasets [BSA+18]. A lower KID score indicates better simi-
larity between generated and real image distributions. KID score is 0.018, reflecting the statistical
difference between the generated and real images.

To further evaluate the semantic consistency of the generated images, we compute CLIPScore,
which measures vision-language alignment. The CLIPScore between generated captions and gen-
erated images is 0.31, indicating a relatively weak correlation. This suggests that while the model
generates images that are visually coherent, they do not always precisely align with the intended
textual descriptions.

A satellite image of barrier of wall with landuse of cemetery and
cemetery of war cemetery, surrounded by road of residential; road
of service; road of footway

Original Image

Generated Image

Original Caption

Generated Caption

A satellite view of a serene park with lush green trees and a quiet
street in the background

A satellite image of police of naval base, surrounded by man made
mast; road of footway; light with leisure land of pitch and sport of
soccer and surface of artificial turf; building of office; building of
boathouse; amenity of parking with parking of surface; road of
service

Original Image

Generated Image

Original Caption

Generated Caption

Aerial view of a residential area with a lake, green lawns, and a small
building with a distinctive roof

A satellite image of natural water with water of pond

Original Image

Generated Image

Original Caption

Generated Caption

A serene, natural pond surrounded by a lush, green landscape,
capturing the tranquility of nature

A satellite image of landuse of forest with leaf type is mixed and
leaf cycle of mixed, surrounded by road of path; road of footway

Original Image

Generated Image

Original Caption

Generated Caption

A satellite view of a serene lake surrounded by lush green trees and
a winding path, capturing the tranquility of nature

A satellite image of natural coastline

Original Image

Generated Image

Original Caption

Generated Caption

A satellite view of a lush green landscape, possibly a forest or a park,
with a clear blue sky above

A satellite image of surface of asphalt with highway of primary and
junction of roundabout and cycleway of lane and trolley wire,
surrounded by barrier of bollard; highway of primary; road of
footway

Original Image

Generated Image

Original Caption

Generated Caption

A satellite view of a city street with a car parked on the side and a
pedestrian crossing the road

Figure 26: Images and Caption Examples

In contrast, the CLIPScore between original captions and generated captions is 0.68 (Table 17).
This relatively high score suggests that the Qwen2-VL-2B-Instruct model successfully generates
textual descriptions that are semantically similar to the original captions. However, the much lower
0.31 CLIPScore between generated images and generated captions highlights a disconnect between
the text-to-image generation step, suggesting that further fine-tuning is required to ensure the model
accurately captures the spatial and contextual details described in the captions. Some image and
caption examples are presented in Fig. 26.

6.5. Results
The proposed methodology demonstrates a versatile pipeline capable of generating and transform-
ing different modalities of satellite imagery and text descriptions. Specifically, the pipeline enables
three distinct applications:

1. Caption-to-RGB and Multispectral Image Generation

2. RGB Image-to-Caption and Multispectral Image Translation
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3. Multispectral Image-to-RGB and Caption Generation

Each of these transformations is facilitated by the integration of fine-tuned Stable Diffusion
and CycleGAN models, enabling a bidirectional relationship between textual descriptions, RGB
imagery, and multispectral data.

Caption: A satellite view of a suburban
neighborhood with houses, trees, and

a driveway.

Fine Tuned Stable
Diffusion 2.1-Base

a)

Our Cycle GAN Model

Caption: Green and black satellite
image of a natural landscape, possibly

a river or a lake with a mix of green
algae and dark water

Fine Tuned Stable
Diffusion 2.1-Base

c)

Our Cycle GAN Model

d)

Caption: A bird's-eye view of a rural
landscape, featuring a road, a field,

and some agricultural structures.

Fine Tuned Stable
Diffusion 2.1-Base

e)

Our Cycle GAN Model

b)

f)

Figure 27: Examples of generated spectra: (a) Thermal Spectrum, (b) NDVI Spectrum, (c) Short
Wave Infrared (SWIR) Spectrum, (d) Bathymetric Spectrum, (e) Agriculture Spectrum, (f) NDVI
Spectrum.

When only a textual description (caption) is available, the fine-tuned Stable Diffusion 2-1 Base
model is capable of generating a realistic synthetic RGB satellite image based on the input caption.
The generated image maintains key structural elements described in the text, including features such
as water bodies, vegetation, roads, and urban areas. However, due to the limitations of diffusion
models, some fine-grained details and spectral characteristics may not be perfectly aligned with
real-world satellite images.

Once the synthetic RGB image is generated, it is passed through the CycleGAN model, which
translates it into a 13-band Sentinel-2 multispectral image. The CycleGAN model has been trained
to map RGB textures to corresponding spectral responses, ensuring that the resulting multispectral
image retains realistic spectral information. This approach provides a way to generate plausible
multispectral satellite data from captions, which can be useful in scenarios where real multispectral
observations are unavailable or incomplete (see Figure 27).

When an RGB satellite image is available without any associated metadata, the proposed
pipeline can generate a corresponding textual caption and a multispectral version of the image.

Figure 28 presents the generator loss curve during training. The steady decrease in loss, with
the SAM loss dropping to around 4.3 ◦, indicates the network’s improving ability to synthesize
multispectral images that preserve critical spectral characteristics.
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Figure 28: Generator Loss (SAM loss) during training. Notably, the SAM loss decreased steadily,
reaching values as low as approximately 4.3.

During inference, the multispectral conversion performance was evaluated using several quan-
titative metrics. Testing was conducted on 512x512 images by randomly cropping a 64x64 patch
from each image. The following table (Table 19) summarizes the results along with the correspond-
ing references for each metric:

Table 19. CycleGAN Inference Metrics

Metric Value References
SAM (◦) 10.203992 [YBG92]
SID 0.0726578 [Cha99]
ERGAS 22.931707 [DYK+07]
MAE 3.826507 N/A
MSE 18.279225 N/A

CycleGAN performance is gauged by a series of significant measures that assess different as-
pects of the quality of the generated images. Spectral Angle Mapper (SAM) gauges the angular
difference between the spectral vectors of the generated and reference images. A value of approxi-
mately 10.20 ◦ indicates that the spectral fidelity is highly preserved, which suggests that the spectral
information is well maintained across images.

Similarly, the Spectral Information Divergence (SID) value measures the divergence of gener-
ated multispectral images from the true ones. With an SID value of 0.07266, the lowest divergence
reported ensures high spectral consistency between both sets of images.

The ERGAS measure, which is the average relative error between the reconstruction image and
the reference image, is 22.93. This measure is an indicator of the total error, and lower values are
generally better since they represent good overall reconstruction quality.

Mean Absolute Error (MAE) and Mean Squared Error (MSE) are utilized to numerically score
pixel-wise intensity differences, thereby highlighting reconstruction errors. The MAE value of 3.83
and MSE value of 18.28 illustrate the magnitude of such differences. It must be noted that because
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the dataset is unpaired—i.e., generated and reference images belong to fundamentally different
samples—the values of MAE and MSE are bound to be greater than they would otherwise be for
paired cases.

Overall, the results demonstrate that the proposed pipeline can effectively generate and translate
satellite imagery across modalities. While the quantitative metrics indicate promising performance,
relatively high FID and LPIPS values suggest that further refinements—such as enhanced training
strategies or additional data augmentation—could further improve the realism and spectral consis-
tency of the generated multispectral images.
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7. Results
• Achieved up to 97.61% confidence‐interval prediction accuracy in targeted test cases, but ac-

curacy dropped to 0% under noise and cloud cover in our semantic segmentation experiment.

• On the S2Looking dataset, threshold optimization yielded an F1 score of 0.969 and accuracy
of 0.94 exceeding 0.90 across all datasets and closely matching traditional ML models in out
zero shot classification experiment using CLIP Model.

• Generated captions improved interpretability; RoBERTa reached 82.88% validation accuracy
on DSIFN, and SVM showed strong overall performance.

• On the RSSCN7 dataset, MiniCPM-V achieved 70.57%; on RSICD 62.19%; on MAI 7.01%
(Top-5 Accuracy: 97.83%); and on the merged dataset 43.49%

• Qwen2‐VL‐2B‐Instruct achieved a CLIPScore of 68.22%; constructed 120,000 synthetic
RGB–Sentinel-2 pairs; Stable Diffusion (IS 6.47, FID 34.26, KID 0.0180) generated realis-
tic images and CycleGAN generated sentinel-2 images using RGB images with 4.3◦ training
SAM Loss, 10.2◦ testing SAM Loss.
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8. Conclusion
This research investigated advanced methods for spatial-temporal change detection in satellite im-
agery, focusing on semantic segmentation, zero-shot classification, and caption-based analysis. In
addition object recognition, image generation and RGB to Sentinel-2 transformation topics inves-
tigated. The key findings are as follows Table 20:

Table 20. Comparison of Methodologies for Change Detection

Methodology Strengths Limitations Best Dataset Performance
Semantic Segmentation High pixel-level accuracy; robust

for spatial change detection
Sensitive to cloud cover and noisy
data; computationally intensive

The data which we collected in baltic region

Zero-Shot Classification No need for labeled data; scalable to
unseen classes

Slightly lower precision compared
to supervised methods

S2Looking (F1: 0.9690, Accuracy: 0.94)

Caption-Based Analysis Provides interpretable and descrip-
tive outputs; strong generalization

Dependent on the quality of gener-
ated captions

DSIFN (Accuracy: 82.88%)

• CLIP Model achieved high accuracy across diverse datasets for binary change classification
task.

• MiniCPM-V Model achieved high accuracy across both single object labeled datasets and
multi object labeled dataset for object recognition task. However, it showed worse perfor-
mance on the merged dataset.

• Caption based change classification results achieved high accuracy using both traditional
machine learning and transformer based algorithms.

• Synthetic RGB generation and RGB-to-multispectral translation produce realistic outputs,
with ongoing improvements needed for semantic alignment.

• A satellite image captioning dataset created using publicly available datasets (LEVIR-CD,
DSIFN, S2Looking, CLCD).

• An artificial multispectral satellite image and caption dataset created

• A Stable Diffusion 2.1 Base model fine tuned and a Cycle GAN model modified and trained
for RGB to Sentinel-2 transformation
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9. Results Approbation
KP24a K. Kömürcü and L. Petkevicius. Semantic segmentation for change detection in satellite

imaging. open-series:57–64, 2024-05. DOI: 10.15388/LMITT.2024.8.

KP24b Kürşat Kömürcü and Linas Petkevičius. Change detection in satellite imagery using trans-
former models and machine learning techniques: a comprehensive captioning dataset. In
DAMSS: 15th conference on data analysis methods for software systems, Druskininkai,
Lithuania, November 28-30, 2024. Pp. 56–57. Vilniaus universiteto leidykla, 2024.

KP24c Kürşat Kömürcü and Linas Petkevičius. Zero shot classification for change detection in satel-
lite imagery. In 2024 IEEE 11th Workshop on Advances in Information, Electronic and Elec-
trical Engineering (AIEEE), pp. 1–6, 2024. DOI: 10.1109/AIEEE62837.2024.10586705.
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tions and Remote Sensing, 18:7892–7903, 2025. DOI: 10.1109/JSTARS.2025.3547144.

Undergoing Review Kürşat Kömürcü and Linas Petkevičius. Multispectral Caption Data Unification Using Dif-
fusion and Cycle GAN Models. European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases - ECML PKDD
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Figure 29: Predictions for MAI Dataset. Red: Refers to wrong predictions. Blue: Refers to correct
predictions which are in the image but not in the ground truth labels
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Figure 30: Predictions for the Merged Dataset. Red: Refers to wrong predictions. Blue: Refers to
correct predictions which are in the image but not in the ground truth labels
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