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Santrauka

�iame darbe nagrin
ejamas vienmat
es dinamin
es sistemos ([0, 1),B,m,S) matu� teorinis

elgesys, kur sistema apibr
eºiama ºem
elapiu S(ξ) = {ρξ}, kai ρ > 1 yra iracionalusis

skai£ius, o {·} ºymi trupmenin¦ dali�. Tyrime nagrin
ejami trys konkret	us atvejai: S1(ξ) =
{Gξ}, kur G = 1+

√
5

2
(auksinis pj	uvis); S2(ξ) = {ρ2ξ}, kai ρ2 = 1+

√
3

2
; ir S3(ξ) = {ρ3ξ}, kai

ρ3 =
1+

√
7

2
. Kiekvienai transformacijai ai²kiai i²vedamas atitinkamas Perrono operatorius,

kuris d
el netolydumo ta²ke ξ = 1
ρ
turi dalinai apibr
eºt¡ strukt	ur¡. Analiti²kai parodyta,

kad n
e viena i² ²iu� transformaciju� nei²laiko Lebego mato. Auksinio pj	uvio atveju ºinoma

dalimis pastovi invariantin
e tankio funkcija yra pakartotinai pateikiama ir patvirtinama.

Tuo tarpu ρ2 ir ρ3 atvejais analitin
e invariantiniu� tankiu� i²vestis pasirod
e esanti neprak-

ti²ka, tod
el buvo taikyti skaitiniai vertinimo metodai. Naudojant ilgu� orbitu� simuliacijas

(20000 iteraciju�) sugeneruotos empirin
es daºnio histogramu� aproksimacijos parod
e ²iu�

ºem
elapiu� invariantinius tankius ir atskleid
e ju� netolygu� statistini� pasiskirstym¡. Rezul-

tatai rodo, kad net ir paprastos linijin
es transformacijos su iracionaliu masteliu gali tur
eti

sud
eting¡ invariantini� elgesi�, o mato i²saugojimas n
era garantuotas vien tik d
el liniji²kumo

ar iracionalumo. Perrono operatoriaus teorija veiksmingai apra²o mas
es perskirstym¡ laike

ir pabr
eºia transformacijos netolydumo ta²ko i�tak¡ invariantin
ems priemon
ems.

Raktaºodºiai: Dinamin
es sistemos, Perrono operatorius, Lebego matas, Invariantinis

tankis
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Abstract

This thesis investigates the measure-theoretic behavior of a one-dimensional dynamical

system ([0, 1),B,m,S), de�ned by the map S(ξ) = {ρξ}, where ρ > 1 is an irrational

number and {·} denotes the fractional part. The study focuses on three speci�c cases:

S1(ξ) = {Gξ}, with G = 1+
√
5

2
(the golden ratio); S2(ξ) = {ρ2ξ}, with ρ2 = 1+

√
3

2
;

and S3(ξ) = {ρ3ξ}, with ρ3 = 1+
√
7

2
. For each transformation, the associated Perron

operator is derived explicitly, revealing a piecewise structure due to a discontinuity at

ξ = 1
ρ
. It is shown analytically that the Lebesgue measure is not invariant under any

of these maps. For the golden ratio map, a known piecewise constant invariant density

is revisited and veri�ed. In the cases of ρ2 and ρ3, analytical derivation of invariant

densities proved intractable, and instead, numerical estimation was employed. Empirical

frequency histograms generated from long orbit simulations (20000 iterations) provided

approximate invariant densities for these maps, capturing their non-uniform statistical

structure. The results demonstrate that even simple linear transformations with irrational

scaling can exhibit complex invariant behavior, and that measure preservation is not

implied by linearity or irrationality alone. The Perron framework e�ectively captures

the redistribution of mass over time and highlights the structural in�uence of the map's

discontinuity on invariant measures.

Keywords: Dynamical Systems, Perron Operator, Lebesgue Measure, Invariant Density
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Introduction

The theory of dynamical systems provides a rigorous mathematical framework for describ-

ing how systems evolve over time. From Newton's deterministic laws of motion to modern

theories of complexity and chaos, this �eld has undergone signi�cant evolution [3, 6]. A

dynamical system can be broadly de�ned as a tuple (X ,B, µ, T ), where X is a measurable

space, B is a sigma-algebra on X , µ is a measure (typically the Lebesgue measure), and

T : X → X is a measurable transformation that determines the evolution of points in the

space [4, 10].

This thesis focuses on a speci�c class of dynamical systems known as irrational

rotations, given by

S(ξ) = {ρξ}, ξ ∈ [0, 1),

where {·} denotes the fractional part and ρ is an irrational constant such as the golden

ratio G = 1+
√
5

2
, or other quadratic surds like 1+

√
3

2
and 1+

√
7

2
. These transformations are

linear and deterministic but exhibit rich behavior that is subtle and nontrivial [9, 1].

The main object of investigation in this thesis is the Perron operator associated

with these maps. The Perron operator P : L1([0, 1), µ) → L1([0, 1), µ) is a fundamental

tool in the study of measure-preserving and statistical properties of dynamical systems.

For a measurable transformation T : X → X , the operator is de�ned via∫
A

Pψ dµ =

∫
T−1(A)

ψ dµ, for all A ∈ B,

and describes the evolution of probability densities under the action of T [1, 9, 14]. This

operator is linear, positive, and preserves the integral of densities, making it a special case

of a Markov operator [12, 15]. While frequently applied in stochastic settings [5, 13, 18, 19],

the Perron operator is equally essential for analyzing deterministic dynamics.

The primary aim of this thesis is to compute the Perron operator for maps of the

form S(ξ) = {ρξ}, where ρ is irrational, and to examine their invariant densities. In

the case of the golden ratio, a known piecewise constant invariant density is recalled and

veri�ed. For the other values of ρ, namely 1+
√
3

2
and 1+

√
7

2
, the invariant densities are

estimated numerically via long orbit simulations and histogram-based frequency analysis.

The work builds on foundational insights from Lasota and Mackey [9], who empha-

sized that even simple deterministic systems can lead to complex statistical structures.

Unlike the logistic map S(ξ) = 4ξ(1−ξ), which is nonlinear but Lebesgue measure preserv-

9



CHAPTER 1. INTRODUCTION

ing [4], the irrational rotation maps studied here are linear yet fail to preserve measure.

Our results are supported by explicit operator derivations and graphical representations

of numerically estimated densities (see Figures 4.2�4.10).

It is important to distinguish between equidistribution and measure preservation in

this context. While irrational rotations S(ξ) = {ρξ} are known to produce equidistributed

sequences in [0, 1), as guaranteed by Weyl's criterion [10, 11], this property does not

imply that the transformation preserves the Lebesgue measure. Our analysis makes this

distinction precise by comparing theoretical equidistribution with practical deviations

quanti�ed through the Perron operator.

To summarize, the contributions of these thesis are:

� A derivation of the Perron operator for irrational rotations de�ned by speci�c

quadratic surds;

� A presentation and veri�cation of the known invariant density for the golden ratio

map;

� Numerical estimation of invariant densities for transformations with ρ = 1+
√
3

2
and

ρ = 1+
√
7

2
;

� A clari�cation of the relationship between equidistribution, irrationality, and the

non-invariance of the Lebesgue measure.

This investigation contributes to the broader understanding of how simple deter-

ministic rules, when involving irrational constants, can lead to subtle and non-uniform

statistical behaviors. These �ndings add to the growing literature on operator-theoretic

approaches to dynamical systems [14, 15, 16, 13] and provide insights relevant to both pure

and applied contexts, from number theory [17] to uncertainty quanti�cation in complex

systems [19].

10



Literature Review

The study of one-dimensional dynamical systems on the unit interval has evolved signi�-

cantly, particularly through the development of operator-theoretic approaches for under-

standing the statistical behavior of iterated maps. A central tool in this context is the

Perron operator, which describes how probability densities evolve under measurable trans-

formations. Lasota and Yorke [1] and later Lasota and Mackey [9] laid the foundational

theory for these operators in deterministic settings, showing how they encode global dis-

tributional dynamics that cannot be inferred from pointwise orbits alone. In particular,

their work demonstrated how the operator framework enables the analysis of invariant

densities and long-term statistical regularities across a wide range of transformations,

including both chaotic and quasiperiodic systems.

Subsequent research has explored the behavior of the Perron operator under non-

linear transformations, such as the logistic map S(ξ) = 4ξ(1 − ξ), where the invariant

density is explicitly given by ψ(ξ) = 1

π
√
ξ(1−ξ)

, and the Lebesgue measure is preserved [4].

This case stands in contrast to transformations of the form S(ξ) = {ρξ}, where ρ ∈ R \Q
is irrational. Such transformations, though linear and deterministic, often fail to pre-

serve the Lebesgue measure, and the resulting invariant densities must be analyzed either

analytically or numerically [13, 19].

The connection between number theory and dynamics is further emphasized in

Weyl's theorem on equidistribution [11], which states that the sequence {nρ} for irrational
ρ becomes uniformly distributed modulo 1. However, equidistribution of orbit sequences

does not guarantee that the underlying transformation preserves measure. This subtle

distinction motivates recent work that applies Perron operator theory to investigate the

invariant structure of maps de�ned by irrational rotations.

Recent contributions have extended the application of these operators to stochastic

systems and nonlinear optimization, underscoring their analytical versatility. For exam-

ple, Hmissi [12] and Liu and Jiang [19] applied Perron�Frobenius techniques to random

and uncertain dynamical systems, while Sahai [2] emphasized their utility in analyzing

NP-hard problems. Other advancements include the approximation of Perron operator

using spectral techniques and kernel methods, enabling more re�ned analysis in both

deterministic and noisy contexts [13, 18].

This thesis draws upon the above developments by focusing on a class of irrational

transformations de�ned as Si(ξ) = {ρiξ}, where ρi ∈
{

1+
√
5

2
, 1+

√
3

2
, 1+

√
7

2

}
. For the case

11



CHAPTER 2. LITERATURE REVIEW

ρ = 1+
√
5

2
, the invariant density is already known and is revisited here for veri�cation

and comparison. For the other two cases, where no closed-form expressions are available,

invariant densities are estimated numerically. Numerical simulations of orbit trajectories

and frequency histograms are used to approximate the statistical structure and support

the theoretical conclusions, o�ering a detailed comparison between analytical reference

and computational results.

2.1 Problem Statement

This study investigates a class of one-dimensional measurable dynamical systems de�ned

on the unit interval [0, 1), each generated by irrational rotations of the form

S(ξ) = {ρξ}, ρ > 1, ρ ∈ R \Q,

where {·} denotes the fractional part function. Although governed by simple determinis-

tic rules, these transformations exhibit intricate dynamical behavior, particularly in the

context of their long-term statistical and measure-theoretic properties.

The primary focus is on the system ([0, 1),B,m,S1), where [0, 1) is the state space,
B is the Borel σ-algebra, m denotes the Lebesgue measure, and S1(ξ) = {Gξ}, with
G = 1+

√
5

2
representing the golden ratio. The central question addressed is whether this

system preserves the Lebesgue measure and, if not, what type of invariant density it

admits. In this case, a piecewise constant invariant density is derived analytically.

To extend the scope of analysis, two additional systems of the same form are

examined: S2(ξ) = {ρξ} with ρ = 1+
√
3

2
, and S3(ξ) = {ρξ} with ρ = 1+

√
7

2
. All three

transformations are piecewise linear and exhibit a discontinuity at ξ = 1
ρ
, a structural

feature that induces nontrivial behavior in the evolution of densities.

Although linear and fully deterministic, these systems generate quasiperiodic, non-

repeating trajectories under iteration. This research investigates both the qualitative

and quantitative aspects of such dynamics, with particular emphasis on the existence

and structure of invariant densities, the preservation (or failure) of Lebesgue measure,

and the comparison between theoretical predictions and empirical distributions. For S2
and S3, where no closed-form invariant densities were constructed, numerical estimation

techniques based on long orbit simulations are employed to approximate the underlying

invariant measures.

2.2 Research Objectives

The primary objective of this thesis is to explore the measure-theoretic and statistical

properties of a class of one-dimensional dynamical systems de�ned by irrational rotations

on the unit interval. These systems are modeled as ([0, 1),B,m,S), where S(ξ) = {ρξ},

12



CHAPTER 2. LITERATURE REVIEW

and ρ is an irrational number. The values of ρ considered in this study are 1+
√
5

2
(the

golden ratio), 1+
√
3

2
, and 1+

√
7

2
.

The �rst goal is to examine whether these transformations preserve the Lebesgue

measure. To achieve this, the corresponding Perron operators are derived explicitly for

each case, taking into account the piecewise de�nition of the transformation due to the

discontinuity at ξ = 1
ρ
. By analyzing the operator's e�ect on the constant function

ψ(ξ) = 1, the study establishes that none of the systems preserve the uniform measure.

The second objective is to determine the invariant densities associated with each

transformation. For the golden ratio, the invariant density is already known and is

included here for reference and comparison. In contrast, for the cases ρ = 1+
√
3

2
and

ρ = 1+
√
7

2
, the invariant densities for these systems are approximated numerically through

orbit simulations and frequency histograms.

The �nal objective is to compare the analytical and numerical �ndings across the

three systems, emphasizing how the arithmetic properties of ρ in�uence the form of the

invariant measure. This comparative approach demonstrates that even simple fractional

transformations with irrational multipliers can give rise to rich and varied statistical

behavior. Ultimately, the study showcases the complementary power of analytical and

numerical methods in the investigation of invariant measures in dynamical systems.

2.3 Thesis Outline

This thesis investigates the statistical and measure-theoretic properties of dynamical sys-

tems on the unit interval governed by irrational rotations of the form S(ξ) = {ρξ}, where ρ
is an irrational constant. Chapter 1 introduces the central research question and presents

the motivation for analyzing such systems, beginning with historical developments in dy-

namics and progressing to modern density-based approaches using the Perron operator.

It de�nes the problem of understanding how irrational linear transformations redistribute

mass and potentially alter the Lebesgue measure. Chapter 2 provides a comprehensive lit-

erature review, covering foundational concepts from ergodic theory, operator theory, and

number theory, and highlights key results on invariant measures, equidistribution, and the

behavior of Perron operator in both linear and nonlinear systems. This chapter identi�es

the gap in existing research regarding the explicit construction of invariant densities for

piecewise linear maps driven by irrational multipliers. Chapter 3 establishes the math-

ematical foundations necessary for the analysis, including formal de�nitions of measure

spaces, measurable transformations, the Perron operator, and the properties of invariant

measures. Chapter 4 presents the main analytical results of the thesis. It formally de�nes

the dynamical systems S1(ξ) = {Gξ}, S2(ξ) = {ρξ}, and ρ(ξ) = {ηξ}, derives their associ-
ated Perron operator, examines whether they preserve the Lebesgue measure, and where

estimate the invariant densities. These theoretical results are supported by numerical

simulations of orbit trajectories and empirical histograms that validate the constructed
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CHAPTER 2. LITERATURE REVIEW

invariant measures. Chapter 5 concludes the thesis by summarizing the main contri-

butions, discussing the in�uence of arithmetic properties of ρ on density evolution, and

suggesting avenues for future research, including generalizations to higher-dimensional

dynamics and stochastic perturbations.
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Preliminary Notion

3.1 Measures and Measure Spaces

The formalization of measure theory provides the mathematical foundation for integrating

functions, de�ning probability, and analyzing dynamical systems. Central to this theory

is the notion of a measure�a set function that assigns a non-negative extended real

number to subsets of a given space in a countably additive way. This section introduces

the fundamental concepts of measures and measure spaces, which serve as the structural

backbone for studying transformations, invariance, and ergodic behavior in measurable

dynamics. We also review the properties of Borel sets, �nite and probabilistic measure

spaces, and the concepts of measurable and nonsingular transformations.

De�nition 3.1.1 [See [9], De�nition 2.1.2, page 18]

A real-valued function µ de�ned on a σ-algebra A is a measure if:

(a) µ(∅) = 0;

(b) µ(A) ≥ 0 for all A ∈ A; and

(c) µ (
⋃
k Ak) =

∑
k µ(Ak) if {Ak} is a �nite or in�nite sequence of pairwise disjoint

sets from A, that is, Ai ∩ Aj = ∅ for i ̸= j.

De�nition 3.1.2 [See [9], De�nition 2.1.3, page 18]

The triple (X ,A, µ) is referred to as a measure space if A is a σ-algebra of subsets

of X and µ is a measure on A. Since the measure is de�ned for the sets that belong to

A, they are referred to as measurable sets.

Remark 3.1.1 [See [9], Remark 2.1.3, page 18]

The sigma-algebra B of Borel sets (the Borel sigma-algebra) is the most natural

sigma-algebra if X = [0, 1] or R. This is because it is the smallest sigma-algebra that

contains intervals by de�nition. (The word "smallest" means that any other σ-algebra

that contains intervals also contains any set in B.) It can be showed that there is a unique

measure µ on the Borel σ-algebra, known as the Borel measure, such that µ([a, b]) = b−a.

De�nition 3.1.3 [See [9], De�nition 2.1.5, page 19]

If µ(X ) <∞, then a measure space (X ,A, µ) is �nite. More precisely, the measure

space is normalized or probabilistic if µ(X ) = 1.
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De�nition 3.1.4 [See [9], De�nition No. 3.2.1, page 41]

Consider (X ,A, µ) be a measure space. A transformation S : X → X is said to be

measurable if

S−1(A) ∈ A ∀ A ∈ A.

De�nition 3.1.5 [See [9], De�nition 3.2.2, page 41] Consider a measure space (X ,A, µ),
A measurable transformation S : X → X is nonsingular if

µ(S−1(A)) = 0 ∀ A ∈ A such that µ(A) = 0.

3.1.1 Perron Operator

The Perron operator is essential for characterising the development of densities under a

speci�c transformation in the study of dynamical systems. Given a nonsingular transfor-

mation on a measure space, the Perron operator provides a mechanism for transferring

information about the distribution of mass across measurable sets. This section introduces

the de�nition and key properties of the Perron operator, both in abstract formulation and

in speci�c computable cases. Emphasis is placed on its linearity, positivity-preserving na-

ture, and its role in preserving integrals. We also present an explicit example involving a

transformation on the unit interval to illustrate the operator's behavior and implications

in ergodic and probabilistic contexts.

De�nition 3.1.6 (See [4], De�nition 3.2.3, page 15) A dynamical system is a quadru-

ple (X ,A, µ,S), where (X ,A, µ) is a measurable space and S : X → X is a nonsingular

transformation of this space.

De�nition 3.1.7 (See [4], De�nition 3.2.3, page 15) Let (X ,A, µ,S) be a dynami-

cal system. An operator P : L1(X ,A, µ) → L1(X ,A, µ) is called the Perron operator

corresponding to the transformation S if the subsequent criteria are ful�lled.:

(a) for any ψ ∈ L1, ψ ⩾ 0 the equality∫
A

Pψ(ξ)µ(dx) =

∫
S−1(A)

ψ(ξ)µ(dx)

holds for all A ∈ A;

(b) for any ψ ∈ L1

Pψ = Pψ+ − Pψ−.

De�nition 3.1.8 [See [4], De�nition B 3.2.4, page 16]

Let A dynamical system (X ,A, µ,S) be considered. An operator P : L1(X ,A, µ)→
L1(X ,A, µ) is called the Perron operator corresponding to the transformation S if for all

functions ψ ∈ L1(X ,A, µ) and all A ∈ A

16



CHAPTER 3. PRELIMINARY NOTION

∫
A

Pψ(ξ)µ(dx) =

∫
S−1(A)

ψ(ξ)µ(dx).

It is elementary to demonstrate that P possesses the following characteristics:

(FP1) P (λ1ψ1 + λ2ψ2) = λ1Pψ1 + λ2Pψ2 for all ψ1, ψ2 ∈ L1, λ1, λ2 ∈ R, so P is a linear

operator;

(FP2) Pψ ≥ 0 if and only if ψ ≥ 0; and

(FP3)

∫
X
Pψ(ξ)µ(dx) =

∫
X
ψ(ξ)µ(dx);

(FP4) If Sn = S0 ◦ · · · ◦ S and Pn is the Perron operator corresponding to Sn, then Pn =

P0 · · ·P , where P is the Perron operator corresponding to S.

In some special cases, If X = (a, b] is an interval on the real line R, and A =

{[a, ξ] : ξ ∈ (a, b]}, then ∫ ξ

a

Pψ(s) ds =

∫
S−1((a,ξ])

ψ(s) ds, (3.1)

and by di�erentiating,

Pψ(ξ) =
d

dx

∫
S−1((a,ξ])

ψ(s) ds. (3.2)

It should be noted that an explicit form for Pψ exists in cases where the trans-

formation S is di�erentiable and invertible.It follows that S must be monotone if it is

both di�erentiable and invertible. Assume that S is an increasing function and that the

derivative of S−1 is continuous. Then

S−1([a, ξ]) = (S−1(a),S−1(ξ)], (3.3)

from (3.2)

Pψ(ξ) =
d

dx

∫ S−1(ξ)

S−1(a)

ψ(s) ds = ψ(S−1(ξ)) · d
dx
S−1(ξ). (3.4)

Example 3.1.1 [See [4], Example 3.2.1, page 19]

The transformation S : [0, 1]→ [0, 1] is de�ned by S(ξ) = 2ξ mod 1 = {2ξ}. Take
the measure space (X ,A, µ) = ([0, 1],B,m). The objective is to determine the Perron

operator's explicit form in relation to this transformation.

We �nd that the preimage of the interval [0, ξ] under S is S(t) = {2t} is given by

S−1([0, ξ]) =

[
0,
ξ

2

]
∪
[
1

2
,
1

2
+
ξ

2

]
.

Applying the general formula for the Perron operator, we obtain

Pψ(ξ) =

(∫ ξ
2

0

ψ(y) dy +

∫ ξ
2
+ 1

2

1
2

ψ(y) dy

)′

ξ

=
1

2

(
ψ

(
ξ

2

)
+ ψ

(
ξ

2
+

1

2

))
,

17
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for any integrable function ψ ∈ L1([0, 1],B,m).

Let us now take ψ0(ξ) = ξ. Applying the operator P , we obtain

Pψ0(ξ) =
ξ

2
+

1

4
= ψ1(ξ).

Proceeding to the second iterate

P 2ψ0(ξ) = P (ψ1(ξ)) =
1

2

(
ξ

4
+

1

4

)
+

1

2

(
ξ
2
+ 1

2

2
+

1

4

)
=
ξ

4
+

3

8
.

Continuing this process inductively, we �nd that

P nψ0(ξ) =
ξ

2n
+

2n − 1

2n+1
,

for any natural number n.

Now, consider the function

ψ1(ξ) =

1, if 0 ≤ ξ ≤ 1
2
,

−1, if 1
2
≤ ξ ≤ 1.

For this function, we observe that

Pψ1(ξ) = 0 for all ξ ∈ [0, 1].

This example illustrates that, in general, it is possible for the Perron operator to

yield zero on a set A, even when the original function ψ is non-zero on the full preimage

S−1(A). Speci�cally, in this case

Pψ(ξ) = 0 for all ξ ∈ A yet ψ(ξ) ̸= 0 for all ξ ∈ S−1(A),

as demonstrated by the fact that Pψ1(ξ) = 0 for all ξ ∈ [0, 1], despite ψ1(ξ) ̸= 0 on all of

[0, 1] = S−1([0, 1]).

3.2 Invariant Measures and Measure-Preserving Trans-

formations

Invariant measures provide a framework for analyzing how transformations a�ect the

distribution of mass within a measurable space. A transformation is said to be measure-

preserving if it leaves the measure unchanged under preimages of measurable sets, ensuring

that the total measure remains constant through the dynamics. This section introduces

the formal de�nition of measure-preserving transformations and discusses the conditions

under which a measure remains invariant. Speci�cally, we look at how the Perron operator

18
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helps �nd invariant densities and provide examples, such as the r-adic and quadratic

transformations, to illustrate these concepts in both simple and nontrivial cases. The

exposition follows the foundational treatments in [4, 9].

De�nition 3.2.1 [See [4], De�nition 4.1.1, page 25] Let (X ,A, µ,S) be a dynamical

system. It is said that the transformation S is measure-preserving if

µ(S−1(A)) = µ(A)

∀ A ∈ A

This condition implies that the measure µ remains unchanged under the action

of S. In other words, S is said to be measure-preserving with respect to the measure µ,

and conversely, µ is said to be invariant under S. Furthermore, any measure-preserving

transformation is necessarily nonsingular, since for any measurable set A with µ(A) = 0,

the invariance condition ensures that µ(S−1(A)) = 0 as well.

The following theorem establishes a criterion for determining whether a transfor-

mation preserves a given measure, using the Perron�Frobenius operator.

Theorem 3.2.1 [See [4], Theorem 4.1.1, page 25] Let (X ,A, µ,S) be a dynamical system,

and let P denote the Perron�Frobenius operator associated with the transformation S.
Suppose that ψ ∈ L1(X ,A, µ) with ψ > 0. De�ne a new measure µψ on (X ,A) by

µψ(A) =

∫
A

ψ(ξ)µ(dx).

Then, the measure µψ is invariant under S if and only if, ψ is a �xed point of the operator

P , i.e., Pψ = ψ.

Theorem 3.2.2 [See [4], Theorem 4.1.1, page 52] Let (X ,A, µ) be a measure space,

S : X → X a nonsingular transformation, and P the Frobenius-Perron operator associated

with S. Consider a nonnegative ψ ∈ L1. Then a measure µψ given by

µψ(A) =

∫
A

ψ(ξ)µ(dx) (3.5)

is invariant if and only if ψ is a �xed point of P .

Remark 3.2.1 [See [4], Remark 4.1.1, page 52] Note that the original measure µ is

invariant if and only if P1 = 1.

Example 3.2.1 [See [1], Example 1.2.1, page 8]

Consider the transformation S : [0, 1]→ [0, 1] given by

S(ξ) = rx (mod 1), (3.6)
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where r is an integer. The notation rx (mod 1) means rx−n, where n is the largest integer

such that rx− n ≥ 0. This expression is customarily called the r-adic transformation.

Example 3.2.2 [See [9], Example 4.1.1, page 52] Consider the r-adic transformation

originally introduced in Example 3.2.1,

S(ξ) = rξ (mod 1),

where r > 1 is an integer, on the measure space ([0, 1],B, µ) where B is the Borel σ-algebra

and µ is the Borel measure. For any interval [0, ξ] ⊆ [0, 1],

S−1([0, ξ]) =
r−1⋃
i=0

[
i

r
,
ξ + i

r

]
,

and the Frobenius-Perron operator P corresponding to S is given by

Pψ(ξ) =
1

r

r−1∑
i=0

ψ

(
ξ + i

r

)
. (3.7)

Thus,

P1 =
1

r

r−1∑
i=0

1 = 1,

and by our previous remark the Borel measure is invariant under the r-adic transforma-

tion.

Remark 3.2.2 [See [9], Remark 4.1.2, page 53] It should be noted that, as de�ned, the

r-adic transformation is not continuous at 1. However, if instead of de�ning the r-adic

transformation on the interval [0, 1] we de�ne it on the unit circle (circle with circumfer-

ence 1) obtained by identifying 0 with 1 on the interval [0, 1], then it is continuous and

di�erentiable throughout.

Example 3.2.3 [See [9], Example 4.1.2, page 53] Again consider the measure space

([0, 1],B, µ) where µ is the Borel measure. Let S : [0, 1] → [0, 1] be the quadratic map

S(ξ) = 4ξ(1− ξ). For [0, ξ] ⊆ [0, 1],

S−1([0, ξ]) = [0,
1−
√
1− ξ
2

] ∪
[
1 +
√
1− ξ
2

, 1

]
,

and the Frobenius-Perron operator is given by

Pψ(ξ) =
1

4
√
1− ξ

(
ψ

(
1−
√
1− ξ
2

)
+ ψ

(
1 +
√
1− ξ
2

))
.

Clearly,

P1 =
1

2
√
1− ξ

̸= 1,
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So the Borel measure µ is not invariant under S by Remark 3.2.1. To �nd an invariant

measure, we must �nd a solution to Pψ = ψ, that is,

ψ∗(ξ) =
1

π
√
ξ(1− ξ)

, (3.8)

which was �rst solved by Ulam and von Neumann (1947). It is straightforward to verify

that ψ∗ given by (3.8) indeed satis�es Pψ = ψ. Hence, the measure

µψ∗(A) =

∫
A

1

π
√
ξ(1− ξ)

dx

is invariant under the quadratic transformation S(ξ) = 4ξ(1− ξ).

Remark 3.2.3 [See [9], Remark 4.1.3, page 53] The factor of π in equation (3.8) ensures

that ψ∗ is a valid probability density function, and thus that the measure µψ∗ is normalized.
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Study of a single dynamical system

This chapter examines a family of dynamical systems de�ned on the unit interval [0, 1),

generated by transformations of the form

S(ξ) = {ρξ}, ρ > 1,

where {·} denotes the fractional part and ρ is an irrational number. These systems

are analyzed using the Perron operator, which describes how probability densities evolve

under the transformation and provides the key to identifying invariant measures. The

map S is piecewise linear with a single discontinuity at ξ = 1
ρ
, dividing the interval into

two regions governed by distinct linear expressions.

Three speci�c irrational parameters are investigated: the golden ratio ρ = 1+
√
5

2
,

ρ = 1+
√
3

2
, and ρ = 1+

√
7

2
. For each case, the Perron operator is derived explicitly, and

it is demonstrated that the Lebesgue measure is not invariant under the corresponding

transformation.

In the case of the golden ratio, a known piecewise constant invariant density is

presented and veri�ed. For the other two values, numerical methods were used to es-

timate their statistical behavior. Speci�cally, frequency histograms of orbit iterates are

constructed over long time spans to approximate the invariant measure. These histograms

revealed smoothly varying density pro�les, in contrast to the piecewise constant structure

seen in the golden ratio case.

Graphical illustrations of each transformation and its associated density are in-

cluded to highlight the dynamical behavior and structural distinctions among the three

systems. The comparison underscores how di�erent irrational multipliers lead to markedly

di�erent invariant measures, despite the shared form of the underlying transformation.

4.1 Analysis of S1(ξ) = {Gξ}

4.1.1 Trajectory under S1(ξ) = {Gξ}

Analyze the population trajectory for the map S1(ξ) = {Gξ}, where G = 1+
√
5

2
(the golden

ratio), and the initial state ξ0 = 0.2. The fractional part {Gξ} is equivalent to Gξ mod 1.

The trajectory for ξn from n = 0 to n = 20 is computed as follows

Figure 4.1 illustrates the trajectory of the point ξ0 = 0.2 under the transformation
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Table 4.1: Trajectory of ξn = {1.618× ξn−1} for n = 0 to 20
n Computation ξn value
0 � 0.2000
1 {1.618× 0.2000} = {0.3236} 0.3236
2 {1.618× 0.3236} ≈ {0.5236} 0.5236
3 {1.618× 0.5236} ≈ {0.8472} 0.8472
4 {1.618× 0.8472} ≈ {1.3712} 0.3712
5 {1.618× 0.3712} ≈ {0.6007} 0.6007
6 {1.618× 0.6007} ≈ {0.9719} 0.9719
7 {1.618× 0.9719} ≈ {1.5726} 0.5726
8 {1.618× 0.5726} ≈ {0.9265} 0.9265
9 {1.618× 0.9265} ≈ {1.4991} 0.4991
10 {1.618× 0.4991} ≈ {0.8076} 0.8076
11 {1.618× 0.8076} ≈ {1.3067} 0.3067
12 {1.618× 0.3067} ≈ {0.4963} 0.4963
13 {1.618× 0.4963} ≈ {0.8030} 0.8030
14 {1.618× 0.8030} ≈ {1.2993} 0.2993
15 {1.618× 0.2993} ≈ {0.4843} 0.4843
16 {1.618× 0.4843} ≈ {0.7836} 0.7836
17 {1.618× 0.7836} ≈ {1.2679} 0.2679
18 {1.618× 0.2679} ≈ {0.4335} 0.4335
19 {1.618× 0.4335} ≈ {0.7014} 0.7014
20 {1.618× 0.7014} ≈ {1.1349} 0.1349

Figure 4.1: Trajectory under S1(ξ) = {Gξ} starting from ξ0 = 0.2, where G = 1+
√
5

2
.

S1(ξ) = {Gξ}, where G = 1+
√
5

2
. The plot shows the evolution of the orbit ξn over 20

iterations. As expected for irrational rotations, the sequence does not settle into a �xed

point or periodic cycle, but rather exhibits quasiperiodic behavior, spreading over the

interval [0, 1). This visual con�rms that the orbit remains bounded within the unit interval

and re�ects the non-repeating nature of the map induced by the irrational multiplier.
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4.1.2 Perron Operator for S1(ξ) = {Gξ}

Consider the dynamical system ([0, 1),B,m,S1) , where

S1(ξ) = {Gξ}, G =
1 +
√
5

2
.

The map S1(ξ) = {Gξ} is the fractional part of Gξ, de�ned by:

S1(ξ) =


Gξ, if 0 ≤ ξ < 1

G
,

Gξ − 1, if 1
G
≤ ξ < 1.

Figure 4.2: Graph of the transformation S1(ξ) = {Gξ} with G = 1+
√
5

2
. The vertical

dashed line marks the discontinuity at ξ = 1
G
.

Compute the Perron operator Pψ associated with S1, using the de�nition

Pψ(ξ) =
d

dx

∫
S−1
1 ([0,ξ])

ψ(u) du.

Analyze the set of preimages of [0, ξ] under the transformation S1,

S−1
1 ([0, ξ]) = {u ∈ [0, 1) : S1(u) ∈ [0, ξ]}.

now consider the map piecewise

Branch 1: S1(u) = Gu

This is valid when u ∈
[
0, 1

G

)
. To satisfy S1(u) = Gu ∈ [0, ξ], it is required that

0 ≤ Gu ≤ ξ ⇒ u ∈
[
0,
ξ

G

]
.
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However, u must also satisfy u < 1
G
, so

u ∈
[
0,min

(
ξ

G
,
1

G

)]
.

Branch 2: S1(u) = Gu− 1

This is valid when u ∈
[
1
G
, 1
)
. We require

0 ≤ Gu− 1 ≤ ξ ⇒ 1 ≤ Gu ≤ 1 + ξ ⇒ u ∈
[
1

G
,
1 + ξ

G

]
.

Again, since u < 1, the valid preimage from this branch is

u ∈
[
1

G
,min

(
1 + ξ

G
, 1

)]
.

Combining both branches, the total preimage is

S−1
1 ([0, ξ]) =

[
0,min

(
ξ

G
,
1

G

)]
∪
[
1

G
,min

(
1 + ξ

G
, 1

)]
.

compute

Pψ(ξ) =
d

dx

∫
S−1
1 ([0,ξ])

ψ(u) du.

by analyzing two cases.

Case 1: ξ ∈ [0, 1
G)

Here
ξ

G
<

1

G
,

1 + ξ

G
< 1,

so

S−1
1 ([0, ξ]) =

[
0,
ξ

G

]
∪
[
1

G
,
1 + ξ

G

]
.

Then ∫
S−1
1 ([0,ξ])

ψ(u) du =

∫ ξ/G

0

ψ(u) du+

∫ (1+ξ)/G

1/G

ψ(u) du.

Using Leibniz's rule

d

dx

∫ ξ/G

0

ψ(u) du =
1

G
ψ

(
ξ

G

)
,

d

dx

∫ (1+ξ)/G

1/G

ψ(u) du =
1

G
ψ

(
1 + ξ

G

)
.

Therefore

Pψ(ξ) =
1

G
ψ

(
ξ

G

)
+

1

G
ψ

(
1 + ξ

G

)
, for ξ ∈

[
0,

1

G

)
.
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Case 2: ξ ∈ [ 1G , 1)

In this case
ξ

G
<

1

G
,

1 + ξ

G
> 1.

Hence, second branch preimage
[
1
G
, 1+ξ
G

]
overshoots 1 and is truncated at 1, so:

min

(
1 + ξ

G
, 1

)
= 1 ⇒ upper limit exceeds domain.

But since 1+ξ
G
≥ 1, the second integral vanishes (or contributes zero to derivative),

and we only retain

S−1
1 ([0, ξ]) =

[
0,
ξ

G

]
.

Therefore

Pψ(ξ) =
d

dx

∫ ξ/G

0

ψ(u) du =
1

G
ψ

(
ξ

G

)
, for ξ ∈

[
1

G
, 1

)
.

Combining both cases, we obtain

Pψ(ξ) =


1

G

[
ψ

(
ξ

G

)
+ ψ

(
1 + ξ

G

)]
, if ξ ∈

[
0, 1

G

)
,

1

G
ψ

(
ξ

G

)
, if ξ ∈

[
1
G
, 1
)
.

This is the Perron operator for the transformation S1(ξ) = {Gξ} on [0, 1).

Let G =
1 +
√
5

2
be the golden ratio. De�ne the transformation

S1(ξ) = {Gξ} =

Gξ, if ξ ∈ [0, 1
G
),

Gξ − 1, if ξ ∈ [ 1
G
, 1).

The associated Perron operator is:

Pψ(ξ) =


1

G

[
ψ

(
ξ

G

)
+ ψ

(
1 + ξ

G

)]
, ξ ∈

[
0, 1

G

)
1

G
ψ

(
ξ

G

)
, ξ ∈

[
1
G
, 1
)

4.1.3 Is the Lebesgue Measure Invariant?

To check whether the Lebesgue measure is invariant by checking whether the constant

function ψ(ξ) = 1 satis�es Pψ(ξ) = 1.
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Case 1: ξ ∈
[
0, 1

G

)
Pψ(ξ) =

1

G
[1 + 1] =

2

G
≈ 1.236

Case 2: ξ ∈
[
1
G , 1
)

Pψ(ξ) =
1

G
· 1 =

1

G
≈ 0.618

Since

Pψ(ξ) =

> 1, ξ ∈
[
0, 1

G

)
< 1, ξ ∈

[
1
G
, 1
)

the constant function is not invariant. Hence, the Lebesgue measure is not preserved by

S1(ξ).

4.1.4 Invariant Density of S1(ξ)

We now seek a piecewise constant density function:

ψ(ξ) =

a, ξ ∈
[
0, 1

G

)
b, ξ ∈

[
1
G
, 1
)

such that Pψ(ξ) = ψ(ξ).

Case 1: ξ ∈
[
0, 1

G

)
Using the operator

Pψ(ξ) =
1

G

[
ψ

(
ξ

G

)
+ ψ

(
1 + ξ

G

)]
Now analyze where these values lie

�
ξ
G
∈
[
0, 1

G2

)
⊂
[
0, 1

G

)
⇒ ψ

(
ξ
G

)
= a

�
1+ξ
G
∈
[
1
G
, 1
)
⇒ ψ

(
1+ξ
G

)
= b

So

Pψ(ξ) =
1

G
(a+ b)

But since ψ(ξ) = a in this region, we require

a =
a+ b

G
(4.1)

Case 2: ξ ∈
[
1
G , 1
)

Using the operator

Pψ(ξ) =
1

G
ψ

(
ξ

G

)
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Now, ξ
G
∈
[

1
G2 ,

1
G

)
⊂
[
0, 1

G

)
⇒ ψ

(
ξ
G

)
= a

So

Pψ(ξ) =
1

G
a

But since ψ(ξ) = b here, we require

b =
a

G
(4.2)

Solving the System

From (4.2): a = bG

Substitute into (4.1):

bG =
bG+ b

G
= b · G+ 1

G
⇒ G =

G+ 1

G
⇒ G2 = G+ 1

This identity holds since G = 1+
√
5

2
. So the structure is consistent.

by imposing the condition∫ 1

0

ψ(ξ) dx = 1⇒ a · 1
G

+ b ·
(
1− 1

G

)
= 1

Using a = bG and 1− 1
G
= 1

G2

bG · 1
G

+ b · 1

G2
= b

(
1 +

1

G2

)
Now

1 +
1

G2
=
G2 + 1

G2
⇒ b =

G2

G2 + 1

Then

a = bG =
G3

G2 + 1

Recall G2 = G+ 1,

G2 + 1 = G+ 2, G3 = G(G2) = G(G+ 1) = G2 +G = 2G+ 1

hence

a =
2G+ 1

G+ 2
, b =

G+ 1

G+ 2

Thus, the invariant density is

ψ(ξ) =


2G+ 1

G+ 2
, ξ ∈

[
0, 1

G

)
G+ 1

G+ 2
, ξ ∈

[
1
G
, 1
)
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This density satis�es:

Pψ(ξ) = ψ(ξ),

∫ 1

0

ψ(ξ) dx = 1

and is therefore the unique invariant density for S1(ξ) = {Gξ}.

4.1.5 Frequency Analysis of S1(ξ) = {Gξ}

For the irrational rotation S1(ξ) = {Gξ} where G = 1+
√
5

2
,

Divide [0, 1) into m = 50 equal subintervals

[0, 1) =
20⋃
i=1

[
i− 1

20
,
i

20

)

Take initial condition ξ0 = π
10
≈ 0.314

Compute trajectory for n = 20000 iterations

ξ0,S1(ξ0),S2
1 (ξ0), . . . ,S20000

1 (ξ0)

Calculate visit frequencies

ψi =
1

20000
×#

{
1 ≤ j ≤ 20000

∣∣∣∣ Sj1(ξ0) ∈ [i− 1

20
,
i

20

)}

Figure 4.3: Frequency distribution for S1(ξ) = {Gξ} with ξ0 = π
10
, based on 20000

iterations and 50 equal bins.

Figure 4.3 presents the frequency distribution of the orbit of ξ0 = π
10
≈ 0.314 under

the transformation S1(ξ) = {Gξ}, where G = 1+
√
5

2
. The unit interval [0, 1) is partitioned

into 50 equal subintervals, and the number of visits to each bin over 20000 iterations is

recorded. The resulting histogram re�ects how the orbit is distributed across the interval.
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While the distribution is not perfectly uniform, the frequencies are generally consistent

with the structure of the invariant measure, highlighting a mild asymmetry introduced

by the discontinuity at ξ = 1
G
. This empirical result supports the analytic form of the

invariant density derived earlier.
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4.2 Analysis of S2(ξ) = {ρξ}

4.2.1 Trajectory under S2(ξ) = {ρξ}

Analyze the population trajectory for the map S2(ξ) = {ρξ}, where ρ = 1
2
(
√
3 + 1), and

the initial state ξ0 = 0.2. The fractional part {ρξ} is equivalent to ρξ mod 1.

The trajectory for ξn from n = 0 to n = 20 is computed as follows:

Table 4.2: Trajectory of ξn = {1.366× ξn−1} for n = 0 to 20
n Computation ξn value
0 � 0.2000
1 {1.366× 0.2000} = {0.2732} 0.2732
2 {1.366× 0.2732} ≈ {0.3734} 0.3734
3 {1.366× 0.3734} ≈ {0.5103} 0.5103
4 {1.366× 0.5103} ≈ {0.6971} 0.6971
5 {1.366× 0.6971} ≈ {0.9523} 0.9523
6 {1.366× 0.9523} ≈ {1.3009} 0.3009
7 {1.366× 0.3009} ≈ {0.4110} 0.4110
8 {1.366× 0.4110} ≈ {0.5614} 0.5614
9 {1.366× 0.5614} ≈ {0.7669} 0.7669
10 {1.366× 0.7669} ≈ {1.0476} 0.0476
11 {1.366× 0.0476} ≈ {0.0650} 0.0650
12 {1.366× 0.0650} ≈ {0.0888} 0.0888
13 {1.366× 0.0888} ≈ {0.1213} 0.1213
14 {1.366× 0.1213} ≈ {0.1657} 0.1657
15 {1.366× 0.1657} ≈ {0.2263} 0.2263
16 {1.366× 0.2263} ≈ {0.3091} 0.3091
17 {1.366× 0.3091} ≈ {0.4222} 0.4222
18 {1.366× 0.4222} ≈ {0.5767} 0.5767
19 {1.366× 0.5767} ≈ {0.7878} 0.7878
20 {1.366× 0.7878} ≈ {1.0761} 0.0761

Figure 4.4: Trajectory under S2(ξ) = {ρξ} for ρ = 1
2
(
√
3 + 1) and ξ0 = 0.2.
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Figure 4.4 displays the orbit of the point ξ0 = 0.2 under the map S2(ξ) = {ρξ},
where ρ = 1

2
(
√
3 + 1) ≈ 1.366. The graph traces the values of ξn for n = 0 to 20,

illustrating the dynamical behavior of the system. As the map is driven by an irrational

multiplier, the orbit does not repeat or settle into a �xed cycle. Instead, it exhibits a

quasi-periodic pattern with rises and sharp resets due to the modulo operation. These

reset points correspond to crossings of the unit interval threshold, which is a key structural

feature of irrational rotations.

4.2.2 Perron Operator for S2(ξ) = {ρξ}

Consider the dynamical system de�ned by

S2(ξ) = {ρξ}, where ρ =
1 +
√
3

2
.

This transformation corresponds to the fractional part of ρξ, and can be expressed piece-

wise as:

S2(ξ) =


ρξ, ξ ∈

[
0, 1

ρ

)
,

ρξ − 1, ξ ∈
[
1
ρ
, 1
)
.

Figure 4.5: Graph of the transformation S2(ξ) = {ρξ} with ρ = 1+
√
3

2
. The dashed line

marks the discontinuity at ξ = 1
ρ
.

Now compute the associated Perron operator using the de�nition

Pψ(ξ) =
d

dx

∫
S−1
2 ([0,ξ])

ψ(u) du.
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Case 1: ξ ∈
[
0, 1

ρ

)
For small values of ξ, the preimage of the interval [0, ξ] includes contributions from both

branches of the map

S−1
2 ([0, ξ]) =

[
0,
ξ

ρ

]
∪
[
1

ρ
,
1 + ξ

ρ

]
.

Di�erentiating the integrals over these intervals yields

Pψ(ξ) =
1

ρ

[
ψ

(
ξ

ρ

)
+ ψ

(
1 + ξ

ρ

)]
.

Case 2: ξ ∈
[
1
ρ
, 1
)

For larger values of ξ, the upper bound of the second preimage segment exceeds the

domain, and thus contributes nothing to the derivative

S−1
2 ([0, ξ]) =

[
0,
ξ

ρ

]
,

and hence

Pψ(ξ) =
1

ρ
ψ

(
ξ

ρ

)
.

Combining both cases, the Perron operator for S2 is given by,

Pψ(ξ) =


1

ρ

[
ψ

(
ξ

ρ

)
+ ψ

(
1 + ξ

ρ

)]
, ξ ∈

[
0, 1

ρ

)
,

1

ρ
ψ

(
ξ

ρ

)
, ξ ∈

[
1
ρ
, 1
)
.

4.2.3 Is the Lebesgue Measure Invariant?

To test whether the Lebesgue measure is invariant under S2 by checking whether the

constant function ψ(ξ) = 1 satis�es Pψ(ξ) = 1

Case 1: ξ < 1
ρ

Pψ(ξ) =
1

ρ
(1 + 1) =

2

ρ
> 1

Case 2: ξ ≥ 1
ρ

Pψ(ξ) =
1

ρ
· 1 =

1

ρ
< 1

Since

Pψ(ξ) ̸= 1 ⇒ the constant density is not invariant,

It is conclude that the Lebesgue measure is not preserved by the transformation S2.
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4.2.4 Frequency Analysis of S2(ξ) = {ρξ}

For the irrational rotation S2(ξ) = {ρξ} where ρ = 1
2
(
√
3 + 1),

Divide [0, 1) into m = 20 equal subintervals

[0, 1) =
20⋃
i=1

[
i− 1

20
,
i

20

)

Take initial condition ξ0 = π
10
≈ 0.314

Compute trajectory for n = 20000 iterations

ξ0,S2(ξ0),S2
2 (ξ0), . . . ,S5000

2 (ξ0)

Calculate visit frequencies

ψi =
1

20000
×#

{
1 ≤ j ≤ 20000

∣∣∣∣ Sj2(ξ0) ∈ [i− 1

20
,
i

20

)}

Figure 4.6: Frequency distribution for S2(ξ) = {ρξ}, ρ = 1
2
(
√
3 + 1), with ξ0 = π

10
and

20000 iterations.

Figure 4.6 shows the empirical frequency distribution of the iterates of the initial

point ξ0 = π
10
≈ 0.314 under the map S2(ξ) = {ρξ}, where ρ = 1+

√
3

2
. The unit interval

[0, 1) is divided into 50 equal-width bins, and the number of visits to each bin is recorded

over 20,000 iterations. The resulting histogram reveals a clearly non-uniform distribution,

with elevated frequencies in the lower portion of the interval and noticeably diminished

frequencies in the upper range.

This observed distribution supports the conclusion that the invariant density for

S2 is not uniform. However, unlike the case of the golden ratio map where the invariant

density is piecewise constant, the numerical evidence here suggests a smoothly varying

density. The histogram provides a visual approximation of this structure, indicating that

the invariant measure is concentrated more heavily in the subinterval [0, 1
ρ
), but without

34



CHAPTER 4. STUDY OF A SINGLE DYNAMICAL SYSTEM

a sharp discontinuity in density across the domain. This aligns with the numerically

estimated invariant density obtained via long-orbit interpolation.

4.2.5 Estimate Invariant Density for S2(ξ)

To investigate the statistical behavior of the dynamical system S2(ξ) = {ρξ}, where

ρ = 1+
√
3

2
, we estimate the invariant density numerically by constructing the frequency

histogram shown in Figure 4.6. This is achieved by iterating the map S2 over 105 steps,

starting from an irrational seed ξ0 ∈ [0, 1), and recording the frequency of visits to each

subinterval of a uniform partition of the unit interval. The resulting empirical distribution

provides a numerical approximation to the invariant measure of the system.

The estimated density, depicted in Figure 4.7, is smooth and continuously varying

across the interval. This contrasts sharply with the behavior observed in some special

irrational systems, where piecewise constant densities arise from underlying algebraic

identities. In particular, there is no indication that the density for S2 has discontinuous

segments; instead, it appears to change gradually throughout the interval, re�ecting the

subtler arithmetic properties of ρ.

Figure 4.7: Estimated invariant density for the map S2(ξ) = {ρξ}, with ρ = 1+
√
3

2
.

4.2.6 Comparison with the Golden Ratio

Figure 4.8 illustrates a direct comparison between the invariant densities of S2(ξ) = {ρξ},
where ρ = 1+

√
3

2
, and the golden ratio map S1(ξ) = {Gξ}, where G = 1+

√
5

2
. The golden

ratio system is known to admit a piecewise constant invariant density due to the algebraic

identityG2 = G+1, which simpli�es the Perron equation and allows for an exact analytical

solution.

In contrast, the map S2 yields a numerically estimated density that varies smoothly,

suggesting the absence of a closed-form solution in simple piecewise terms. This behav-
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ior is typical of irrational rotations where the multiplier does not satisfy a convenient

quadratic equation, resulting in a more complex and gradually shifting invariant measure.

Figure 4.8: Estimated invariant densities for the maps S2(ξ) = {ρξ} with ρ = 1+
√
3

2
and

S1(ξ) = {Gξ} with the golden ratio G = 1+
√
5

2

Thus, while both transformations are examples of irrational dynamical systems

of the form {ρξ}, their invariant densities di�er markedly depending on the arithmetic

nature of the multiplier ρ. The golden ratio stands out as an exceptional case where

algebraic properties yield a tractable, piecewise constant invariant density. In contrast,

more general irrational constants, such as ρ = 1+
√
3

2
, lead to invariant densities that must

be approximated numerically and reveal a richer, more nuanced structure.
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4.3 Analysis of S3(ξ) = {ρξ}

4.3.1 Trajectory under S3(ξ) = {ρξ}

Analyzing the population trajectory for the map S3(ξ) = {ρξ}, where ρ = 1
2
(
√
7 + 1) ≈

1.8229, and the initial state ξ0 = 0.2. The fractional part {ρξ} is equivalent to ρξ mod 1.

The trajectory for ξn from n = 0 to n = 20 is computed as follows

Table 4.3: Trajectory of ξn = {1.8229× ξn−1} for n = 0 to 20
n Computation ξn value
0 � 0.2000
1 {1.8229× 0.2000} = {0.3646} 0.3646
2 {1.8229× 0.3646} ≈ {0.6646} 0.6646
3 {1.8229× 0.6646} ≈ {1.2116} 0.2116
4 {1.8229× 0.2116} ≈ {0.3858} 0.3858
5 {1.8229× 0.3858} ≈ {0.7033} 0.7033
6 {1.8229× 0.7033} ≈ {1.2821} 0.2821
7 {1.8229× 0.2821} ≈ {0.5143} 0.5143
8 {1.8229× 0.5143} ≈ {0.9375} 0.9375
9 {1.8229× 0.9375} ≈ {1.7090} 0.7090
10 {1.8229× 0.7090} ≈ {1.2926} 0.2926
11 {1.8229× 0.2926} ≈ {0.5334} 0.5334
12 {1.8229× 0.5334} ≈ {0.9724} 0.9724
13 {1.8229× 0.9724} ≈ {1.7729} 0.7729
14 {1.8229× 0.7729} ≈ {1.4090} 0.4090
15 {1.8229× 0.4090} ≈ {0.7456} 0.7456
16 {1.8229× 0.7456} ≈ {1.3594} 0.3594
17 {1.8229× 0.3594} ≈ {0.6551} 0.6551
18 {1.8229× 0.6551} ≈ {1.1942} 0.1942
19 {1.8229× 0.1942} ≈ {0.3540} 0.3540
20 {1.8229× 0.3540} ≈ {0.6453} 0.6453

Figure 4.9: Trajectory under S3(ξ) = {ρξ}, with ρ = 1+
√
7

2
and ξ0 = 0.2.
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Figure 4.9 illustrates the trajectory of the orbit starting at ξ0 = 0.2 under the

transformation S3(ξ) = {ρξ}, where ρ = 1+
√
7

2
. The plotted sequence ξn for n = 0

to 20 displays a complex and seemingly irregular pattern typical of irrational rotations.

Although the values remain con�ned to the unit interval, the orbit exhibits no signs of

convergence or periodicity. Instead, it moves through the space with moderate oscillations,

re�ecting the quasiperiodic behavior and sensitive dependence on the irrational parameter

ρ.

4.3.2 Perron Operator for S3(ξ) = {ρξ}

Consider the transformation

S3(ξ) = {ρξ}, where ρ =
1 +
√
7

2
.

This map corresponds to the fractional part of ρξ and is de�ned piecewise as

S3(ξ) =


ρξ, if ξ ∈

[
0, 1

ρ

)
,

ρξ − 1, if ξ ∈
[
1
ρ
, 1
)
.

Figure 4.10: Graph of the transformation S3(ξ) = {ρξ} with ρ = 1+
√
7

2
. The dashed line

marks the discontinuity at ξ = 1
ρ
.

The associated Perron operator is de�ned by

Pψ(ξ) =
d

dx

∫
S−1
3 ([0,ξ])

ψ(u) du.

38



CHAPTER 4. STUDY OF A SINGLE DYNAMICAL SYSTEM

Case 1: ξ ∈
[
0, 1

ρ

)
Analyze the preimages from both branches of S3

� From the �rst branch: ρu ∈ [0, ξ]⇒ u ∈
[
0, ξ

ρ

]
� From the second branch: ρu− 1 ∈ [0, ξ]⇒ u ∈

[
1
ρ
, 1+ξ

ρ

]
Thus, the preimage is

S−1
3 ([0, ξ]) =

[
0,
ξ

ρ

]
∪
[
1

ρ
,
1 + ξ

ρ

]
.

Di�erentiating the total integral gives

Pψ(ξ) =
1

ρ
ψ

(
ξ

ρ

)
+

1

ρ
ψ

(
1 + ξ

ρ

)
, for ξ ∈

[
0,

1

ρ

)
.

Case 2: ξ ∈
[
1
ρ
, 1
)

In this case, the second branch overshoots the domain

1 + ξ

ρ
> 1⇒ second branch contributes nothing.

Hence

S−1
3 ([0, ξ]) =

[
0,
ξ

ρ

]
, ⇒ Pψ(ξ) =

1

ρ
ψ

(
ξ

ρ

)
.

The Perron operator is

Pψ(ξ) =


1

ρ

[
ψ

(
ξ

ρ

)
+ ψ

(
1 + ξ

ρ

)]
, ξ ∈

[
0, 1

ρ

)
,

1

ρ
ψ

(
ξ

ρ

)
, ξ ∈

[
1
ρ
, 1
)
.

4.3.3 Is the Lebesgue Measure Invariant?

To test invariance using the constant function ψ(ξ) = 1.

� For ξ < 1
ρ
: Pψ(ξ) = 1

ρ
(1 + 1) = 2

ρ
> 1

� For ξ ≥ 1
ρ
: Pψ(ξ) = 1

ρ
< 1

Therefore, the constant function is not invariant, and the Lebesgue measure is not

preserved by S3(ξ).
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4.3.4 Frequency Analysis of S3(ξ) = {ρξ}

For the irrational rotation S3(ξ) = {ρξ} where ρ = 1
2
(
√
7 + 1),

Divide [0, 1) into m = 50 equal subintervals

[0, 1) =
20⋃
i=1

[
i− 1

20
,
i

20

)

Take initial condition ξ0 = π
10
≈ 0.314

Compute trajectory for n = 20000 iterations

ξ0,S3(ξ0),S2
3 (ξ0), . . . ,S20000

3 (ξ0)

Calculate visit frequencies

ψi =
1

20000
×#

{
1 ≤ j ≤ 20000

∣∣∣∣ Sj3(ξ0) ∈ [i− 1

20
,
i

20

)}

Figure 4.11: Frequency distribution for S3(ξ) = {ρξ}, ρ = 1+
√
7

2
, with ξ0 = π

10
and 20000

iterations.

Figure 4.11 displays the empirical frequency histogram generated by iterating the

transformation S3(ξ) = {ρξ}, where ρ = 1+
√
7

2
≈ 1.823, from the initial value ξ0 = π

10
.

The unit interval [0, 1) is divided into 50 equal-width subintervals, and the number of

visits to each bin is recorded over 20,000 iterations.

The histogram reveals a clearly non-uniform distribution of orbit points, with

moderate �uctuations and localized peaks throughout the interval. Unlike the uniform

distribution expected under Lebesgue measure invariance, the density is skewed, with

some regions visited signi�cantly more often than others. This asymmetry suggests that

the transformation stretches and folds the interval in a non-uniform way, concentrating

the measure in certain subintervals over time.
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Notably, the data exhibits no evidence of abrupt jumps or plateaus in the dis-

tribution, which supports the conclusion that the invariant density associated with S3
is smooth rather than piecewise constant. This observation aligns with the theoretical

expectation that irrational multipliers like ρ = 1+
√
7

2
, generate more intricate and analyt-

ically intractable invariant measures.

4.3.5 Estimate Invariant Density for S3(ξ)

We now turn our attention to the dynamical system S3(ξ) = {ρξ}, where ρ = 1+
√
7

2
≈

1.823. To examine the long-term statistical behavior of this map, we iterate S3 over 105

steps, starting from an irrational initial condition, and record the frequencies of orbit

visits across uniformly spaced subintervals of the unit interval.

The numerically estimated invariant density is shown in Figure 4.12. The resulting

function is smooth and continuous, displaying a nontrivial variation across the domain.

This behavior con�rms that the invariant density is not piecewise constant and re�ects

a more intricate underlying dynamic. Notably, the density exhibits minor �uctuations

rather than sharp transitions, suggesting a gradual redistribution of mass under the action

of S3.

Figure 4.12: Estimated invariant density for the map S3(ξ) = {ρξ}, with ρ = 1+
√
7

2
.

4.3.6 Comparison with the Golden Ratio

To highlight the role of the arithmetic nature of ρ, we compare the invariant density

for S3 with that of S1(ξ) = {Gξ}, where G = 1+
√
5

2
is the golden ratio. As shown in

Figure 4.13, the golden ratio system exhibits a piecewise constant invariant density with

a discontinuity at ξ = 1
G
. This sharp structure is a direct consequence of the identity

G2 = G+1, which permits an exact, algebraic solution to the associated Perron equation.
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By contrast, the density for ρ = 1+
√
7

2
appears much smoother and lacks any �at

segments or abrupt changes. This re�ects the fact that the underlying rotation does not

admit any simple polynomial relation that would reduce the complexity of the system.

The continuous variation of the density is consistent with the behavior observed in more

general irrational rotations, where invariant measures must be approximated through

numerical simulations rather than constructed analytically.

Figure 4.13: Estimated invariant densities for the maps S3(ξ) = {ρξ} with ρ = 1+
√
7

2
and

S1(ξ) = {Gξ} with the golden ratio G = 1+
√
5

2
.

This comparison illustrates a fundamental principle in ergodic theory: while the

qualitative structure of the map {ρξ} is preserved for any irrational ρ, the quantitative

properties of the invariant measure depend sensitively on the number-theoretic nature of

ρ. The golden ratio stands out as a rare example where symmetry and algebraic identity

simplify the dynamics. In contrast, values like 1+
√
7

2
generate invariant densities that

re�ect a more complex, yet deeply regular, form of dynamical behavior.
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Results and Conclusions

This study examined a class of one-dimensional dynamical systems ([0, 1] , B,m,S) de�ned
by the transformation S(ξ) = {ρξ} on the interval [0, 1), where ρ > 1 is irrational. Three

speci�c maps were considered: S1(ξ) = {Gξ}, with G = 1+
√
5

2
; S2(ξ) = {ρ2ξ}, with

ρ2 =
1+

√
3

2
; and S3(ξ) = {ρ3ξ}, with ρ3 = 1+

√
7

2
. For each system, the Perron operator was

computed analytically based on the inverse images under the map. Due to the piecewise

linear nature of the transformation and a discontinuity at ξ = 1
ρ
, each operator was

expressed in two distinct cases corresponding to the subintervals [0, 1
ρ
) and [1

ρ
, 1).

A central result was then demonstrated, that the Lebesgue measure is not invariant

under any of the three transformations. This was con�rmed by evaluating the Perron

operator on the constant function ψ(ξ) = 1, where the output di�ered from 1 across the

domain. For instance, in the case of S1, the operator yielded Pψ(ξ) = 2
G
on [0, 1

G
) and

Pψ(ξ) = 1
G

on [ 1
G
, 1), violating the condition for measure invariance. Similar behavior

was found in the systems de�ned by ρ2 and ρ3.

To determine the invariant distributions, a known piecewise constant density for

S1 was recalled and presented. This density satis�es Pψ = ψ and integrates to one over

[0, 1), and is given by:

ψ(ξ) =


2G+ 1

G+ 2
, ξ ∈

[
0, 1

G

)
,

G+ 1

G+ 2
, ξ ∈

[
1
G
, 1
)

However, for both S2 and S3, no consistent piecewise constant densities could be

derived analytically. Attempts to solve the Perron equations with constant values on each

branch did not yield a valid solution. As a result, the invariant densities for these maps

could not be obtained in closed form and were instead estimated numerically.

These numerical estimates were obtained by iterating the orbit of the initial point

ξ0 = π
10

over 100,000 steps. The unit interval was divided into 100 subintervals, and

visit frequencies were used to construct empirical histograms. In the case of S2, the
resulting invariant density was smooth and exhibited a subtle peak near the discontinuity

point ξ = 1
ρ2
. For S3, the estimated density was similarly continuous but exhibited more

variation across the domain, indicating a more complex redistribution of mass. In both

systems, the empirical behavior provided strong evidence that the invariant densities are

not piecewise constant but instead vary gradually across [0, 1).

These �ndings demonstrate that irrational linear maps of the form S(ξ) = {ρξ}

43



CHAPTER 4. STUDY OF A SINGLE DYNAMICAL SYSTEM

may redistribute mass in a non-uniform way, despite their deterministic and equidis-

tributed trajectories. The Perron operator provides an e�ective tool to describe this

redistribution analytically. More broadly, the work shows that linearity and irrational-

ity do not guarantee measure preservation, and that even simple dynamical systems can

exhibit rich invariant structures.
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5.1 Numerical Algorithm for Trajectory Generation

To visualize the evolution of orbits under the irrational rotation maps Si(ξ) = {ρiξ},
we employ a numerical procedure that iteratively computes and plots trajectories on the
unit interval. The following general algorithm outlines the computational steps used to
generate the graphs for S1,S2, and S3.

Algorithm 1 Trajectory Computation under S(ξ) = {ρξ}
1: Input: Irrational multiplier ρ > 1, initial point ξ0 ∈ [0, 1), number of iterations N
2: Initialize: Set ξ0 = 0.2, de�ne empty list trajectory and append ξ0
3: for each n = 1 to N do
4: Compute ξn = ρ · ξn−1 mod 1
5: Append ξn to trajectory

6: end for
7: Generate a plot of ξn versus n
8: Add horizontal reference lines at y = 0 and y = 1
9: Label axes and format plot appearance (title, grid, legend)

10: Save the plot as a high-resolution image

This procedure was implemented in Python using NumPy and Matplotlib. For each
transformation, the multiplier ρ takes the values:

� ρ1 =
1+

√
5

2
(Golden Ratio),

� ρ2 =
1+

√
3

2
,

� ρ3 =
1+

√
7

2
.

Each corresponding graph visualizes how the orbit of an initial point evolves over time un-
der the irrational rotation, allowing for qualitative comparisons of quasiperiodic behavior
across di�erent irrational parameters.
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CHAPTER 5. PRESENTATION OF SOFTWARE CODE

5.2 Algorithm for Plotting the Transformation S(ξ) =
{ρξ}

This algorithm computes and plots the piecewise linear maps Si(ξ) = {ρiξ} for irrational
values ρi = 1+

√
d

2
where d = 5, 3, 7. Each map is de�ned piecewise as:

S(ξ) =

ρξ, ξ ∈ [0, 1
ρ
)

ρξ − 1, ξ ∈ [1
ρ
, 1)

Algorithm 2 Plotting the Graphs of Piecewise Maps S(ξ) = {ρξ}
1: Input: Irrational values ρ1 = 1+

√
5

2
, ρ2 = 1+

√
3

2
, ρ3 = 1+

√
7

2

2: De�ne the function:

Sρ(ξ) =

{
ρ · ξ, if ξ < 1

ρ

ρ · ξ − 1, otherwise

3: Discretize the domain: generate a �ne partition ξ ∈ [0, 1)
4: for each ρi in {ρ1, ρ2, ρ3} do
5: Compute Si(ξ) = Sρi(ξ) over the domain
6: Plot the function Si(ξ) along with a dashed line at ξ = 1/ρi to show the disconti-

nuity
7: end for
8: Display each graph with labeled axes, title, legend, and grid lines

These plots provide insight into the structure and discontinuities of the transfor-

mations. The dashed vertical lines at ξ = 1
ρ
highlight the change in de�nition of each

map, revealing the partition over which the Perron operator must be evaluated.
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5.3 Algorithm for Frequency Histogram Computation

To investigate the statistical behavior of irrational rotation maps Si(ξ) = {ρiξ}, this algo-
rithm computes the empirical frequency distribution of orbit points over a �xed number

of iterations. The unit interval [0, 1) is divided into equal-length subintervals (bins), and

the frequency of trajectory visits in each bin is recorded and visualized as a histogram.

Algorithm 3 Empirical Frequency Histogram for S(ξ) = {ρξ}
1: Input: Irrational multiplier ρ > 1, initial point ξ0 ∈ [0, 1), number of iterations n,

number of bins m
2: Initialize: Set empty list trajectory; assign ξ ← ξ0
3: for each iteration i = 1 to n do
4: Update ξ ← {ρξ} = (ρ · ξ) mod 1
5: Append ξ to trajectory

6: end for
7: Divide the interval [0, 1) into m equal subintervals (bins)
8: Count how many trajectory points fall into each bin to get histogram frequencies
9: Normalize frequencies by dividing by total number of iterations n

10: Plot the histogram as a bar chart with appropriate axis labels and bin indicators

This procedure was executed in Python using NumPy and Matplotlib, and applied

separately for the following irrational multipliers:

� ρ1 =
1+

√
5

2
(Golden Ratio),

� ρ2 =
1+

√
3

2
,

� ρ3 =
1+

√
7

2
.

For each map, the resulting histogram captures how the orbit populates subintervals of

[0, 1), revealing deviations from uniformity and helping visualize the shape of invariant

densities.
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5.4 Algorithm for Invariant Density Estimation

This algorithm re�nes the empirical histogram of a dynamical system S(ξ) = {ρξ} to

produce a smooth approximation of the invariant density. The process combines orbit

simulation, histogram construction, and function interpolation.

Algorithm 4 Smooth Invariant Density Estimation for S(ξ) = {ρξ}
1: Input: Irrational parameter ρ > 1, initial value ξ0 ∈ [0, 1), number of iterations N ,

number of bins m
2: De�ne: Transformation S(ξ) = (ρ · ξ) mod 1
3: Initialize: Set ξ0 and create array orbit of length N
4: for each i = 1 to N − 1 do
5: ξi ← S(ξi−1)
6: end for
7: Construct a histogram from {ξi} with m bins over interval [0, 1)
8: Compute bin centers xi and normalized histogram values ψi
9: Interpolate: Fit a cubic spline ψsmooth(ξ) through (xi, ψi)

10: Evaluate ψsmooth on a dense grid over [0, 1)
11: Output: Smoothed approximation ψsmooth(ξ) of the invariant density

This algorithm was applied to the following two transformations:

� S2(ξ) = {ρ2ξ}, with ρ2 = 1+
√
3

2
,

� S3(ξ) = {ρ3ξ}, with ρ3 = 1+
√
7

2
.

The smoothed densities reveal subtle structural patterns not immediately visible in

the raw histogram, enabling visual comparison with the known piecewise constant density

in the golden ratio case.

5.5 Algorithm for Comparative Density Estimation of

Irrational Maps

This algorithm computes and compares the numerically estimated invariant densities of

two irrational rotation maps. One uses the golden ratio G = 1+
√
5

2
as the multiplier,

and the other uses a chosen irrational constant ρ ∈
{

1+
√
3

2
, 1+

√
7

2

}
. A common initial

condition and number of iterations are used to generate orbits, construct histograms, and

then apply cubic spline interpolation for smoothing.
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Algorithm 5 Comparison of Estimated Invariant Densities for Two Irrational Maps

1: Input: Irrational constants ρ > 1, golden ratio G = 1+
√
5

2
, initial value ξ0 ∈ [0, 1),

number of iterations N , number of bins m
2: De�ne: Map S(x, γ) = (γ · x) mod 1, where γ ∈ {ρ,G}
3: Generate Orbits:
4: for each i = 1 to N − 1 do
5: ξ

(ρ)
i ← S(ξ

(ρ)
i−1, ρ)

6: ξ
(G)
i ← S(ξ(G)

i−1, G)
7: end for
8: Construct Histograms:

� Use m equal-width bins on [0, 1) to compute normalized histograms for both
orbits

� Compute bin centers xi, and histogram heights ψ(ρ)
i , ψ(G)

i

9: Smooth Histograms: Fit cubic splines through histogram data to obtain smooth
functions

ψ
(ρ)
smooth

(ξ), ψ
(G)
smooth

(ξ)

10: Output: Smooth density curves ψ(ρ)(ξ) and ψ(G)(ξ) for comparison

The output consists of two curves plotted over the interval [0, 1). The comparison

illustrates how the invariant measure associated with the irrational constant ρ di�ers from

that of the golden ratio, both in shape and smoothness. The algorithm was executed for:

� ρ = 1+
√
3

2
vs. G = 1+

√
5

2

� ρ = 1+
√
7

2
vs. G = 1+

√
5

2

with results con�rming nontrivial deviations in invariant densities.
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