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Summary

In this thesis, an inverse heat conduction problem is studied, where functions E and
u0 are prescribed and the goal is to find a pair (u, f), satisfying the differential equation
ut(x, t) − ∆u(x, t) = f(x, t), initial condition u(x, 0) = u0(x), the Dirichlet boundary condition
u|∂Ω×[0,T ] = 0 as well as an additional nonlinear nonlocal condition

∫
Ω |u(x, t)|2dx = E(t) for

all t ∈ [0, T ]. When E ∈ W 1,2(0, T ), we formulate the definition of a weak solution for this
problem and prove that there exists at least one such solution. In the case when E is only from
the space L2(0, T ), we formulate the definition of a very weak solution and prove that there
exists at least one such solution.

Keywords: Sobolev spaces, Weak solution, Very weak solution, Heat problem, Nonlinear
condition.

Santrauka

Šiame darbe nagrinėjamas atvirkštinis šilumos laidumo uždavinys, kuriame yra duo-
tos funkcijos E ir u0, o tikslas yra surasti porą (u, f), tenkinančią diferencialinę lygtį
ut(x, t) − ∆u(x, t) = f(x, t), pradinę sąlygą u(x, 0) = u0(x), Dirichlė kraštinę sąlygą
u|∂Ω×[0,T ] = 0 bei papildomą netiesinę nelokalią sąlygą

∫
Ω |u(x, t)|2dx = E(t) visiems t ∈ [0, T ].

Kai E ∈ W 1,2(0, T ), yra suformuluojamas minėto uždavinio silpno sprendinio apibrėžimas bei
įrodomas šio sprendinio egzistavimas. Atveju, kai E yra tik iš erdvės L2(0, T ), yra suformu-
luojamas minėto uždavinio labai silpno sprendinio apibrėžimas bei įrodomas šio sprendinio
egzistavimas.

Raktiniai žodžiai: Sobolevo erdvės, silpnas sprendinys, labai silpnas sprendinys, šilumos
lygtis, netiesinė sąlyga.
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Introduction

The heat equation is an important and well-known partial differential equation that arises
in problems involving diffusion. For instance, it can be used to model the heat problem which
describes how temperature changes over time within a specified region Ω. There are many
formulations of the heat problem depending on the choice of initial and boundary conditions.
However, we will be focusing only on the following formulation. Suppose we are prescribed a
source function f(x, t), an initial condition u(x, 0) = u0(x) as well as a homogeneous Dirichlet
boundary condition u|∂Ω×[0,T ] = 0. The goal of the classical heat problem is to determine the
temperature distribution u(x, t), that satisfies the initial and boundary conditions as well as the
differential equation ut − ∆u = f on the cylinder Ω × (0, T ). The existence and uniqueness of
solutions for this problem are well-established (see, e.g., [1, 10]). However, we will be interested
in a modified problem where the source function f is also unknown and has to be found as part
of the solution. This type of problem is sometimes called the inverse heat conduction problem
and it requires an additional condition to ensure that it is well-posed. We will focus on the
following inverse problem. Suppose that Ω ⊂ Rd, d = 2, 3, is a bounded domain with Lipschitz
boundary ∂Ω. The goal is to find a pair of functions (u, f), such that


ut(x, t) − ∆u(x, t) = f(x, t), (x, t) ∈ Ω × (0, T ),

u
∣∣∣
∂Ω×[0,T ]

= 0,

u(x, 0) = u0(x), x ∈ Ω,

(1)

and such that u satisfies the side condition
∫

Ω
|u(x, t)|2dx = E2(t) ∀t ∈ [0, T ], with E(0) = ‖u0‖L2(Ω), (2)

where E and u0 are given functions. Usually, instead of the nonlinear condition (2), inverse
problems are studied with the linear integral condition

∫
Ω
u(x, t)dx = F (t) ∀t ∈ [0, T ], with F (0) =

∫
Ω
u0(x)dx, (3)

where the function F is given. It is important to note that these inverse problems are usually
studied with weak solutions in mind rather than classical ones. Problem (1) together with
condition (3) has been studied in different forms by several authors (see [4, 5, 9, 11, 12]). This
specific problem has been analyzed in two cases: when F is from the Sobolev space W 1,2(0, T )
in [11] and when F is only from the space L2(0, T ) in [12]. In these cases both uniqueness
and existence were established. However, there have also been a few papers where condition
(2) was used instead, such as [2] or in a slightly different context in [3]. Our goal will be to
prove the existence of weak solutions to problem (1) with the nonlinear side condition (2) when
u0 ∈ W 2,2(Ω) ∩ W̊ 1,2(Ω) in two cases just like it was done with condition (3): when E is from
the Sobolev space W 1,2(0, T ) and when E is only from the space L2(0, T ). While this exact
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problem was studied in [2] in the case when E ∈ W 1,2(0, T ), the function u that was found
lacks the weak differentiability in terms of x. As such, one of the goals of this thesis will be to
improve this result.

1 Notations and important results

1.1 Function spaces and useful results

In this section we will mention some of the definitions and notation used in the further
sections. For any open set U ⊂ Rn we will denote the set of all infinitely differentiable functions
(also called smooth functions) on U as C∞(U) and the set of all compactly supported smooth
functions as C∞

c (U). Throughout this thesis we will use two different notations to represent
the classical and the weak derivatives. Thus, ut and ∂u

∂t
will both refer to the (weak) partial

derivative of the function u by the variable t. If u is a one variable function, the (weak)
derivative will be denoted as u′. Also, given a normed space X, the norm of an element u ∈ X

will be denoted as ‖u‖
X

and, in the case when u = (u1, u2, . . . , uk) ∈ Xk for some k ∈ N, we

will also define ‖u‖
X

:=
(∑k

i=1 ‖ui‖2
X

) 1
2 . This will be useful when talking about the norm of

the weak gradient of a function. Let L2(U) denote the space of all square integrable functions
which form a Hilbert space with the following inner product

〈u, v〉L2(U) =
∫

U
u(x)v(x)dx

and let W 1,2(U) denote the Sobolev space which is also a Hilbert space with the following inner
product

〈u, v〉W 1,2(U) =
∫

U
(u(x)v(x) + ∇u(x) · ∇v(x)) dx,

where ∇u denotes the weak gradient (ux1 , ux2 , . . . , uxn). Additionally, W̊ 1,2(U) will refer to the
closure of the space C∞

c (U) under the W 1,2(U) norm. We will also need the space W 2,2(U)
which is the Sobolev space of functions that are twice weakly differentiable together with the
inner product

〈u, v〉W 2,2(U) =
∫

U

u(x)v(x) + ∇u(x) · ∇v(x) +
n∑

i=1

n∑
j=1

uxixj
(x)vxixj

(x)
 dx.

Suppose that Ω ⊂ Rd, d ∈ N, and that the boundary ∂Ω is a Lipschitz boundary (see [7]).
Also, suppose that 0 < T < ∞ is a fixed number and define the cylinder QT := Ω × (0, T ). We
will require the following spaces of functions that are defined on QT :

• L2(0, T ;L2(Ω)) is just different notation for the space L2(QT ). A different definition of
this space can be found in [6].

• L2(0, T ;W 1,2(Ω)) = {u ∈ L2(0, T ;L2(Ω)) : uxi
∈ L2(0, T ;L2(Ω)), i = 1, 2, . . . , d} is a
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Hilbert space with the inner product

〈u, v〉L2(0,T ;W 1,2(Ω)) =
∫ T

0

∫
Ω

(u(x, t)v(x, t) + ∇u(x, t) · ∇v(x, t)) dx.

We will also use the subspace

L2(0, T ; W̊ 1,2(Ω)) = {u ∈ L2(0, T ;W 1,2(Ω)) : u|∂Ω×[0,T ] = 0},

where u|∂Ω×[0,T ] = 0 is understood in the trace sense. As the boundary of Ω is Lipschitz,
the trace is well defined. This space will be equipped with the subspace topology.

• Ŵ 1,2(QT ) = {u ∈ W 1,2(QT ) : u|∂Ω×[0,T ] = 0} is a Hilbert subspace where u|∂Ω×[0,T ] = 0 is
understood in terms of traces.

• W 1,2(0, T ;L2(Ω)) = {u ∈ L2(0, T ;L2(Ω)) : ut ∈ L2(0, T ;L2(Ω))} is the Hilbert space with
the inner product defined as

〈u, v〉W 1,2(0,T ;L2(Ω)) =
∫ T

0

∫
Ω

(u(x, t)v(x, t) + ut(x, t)vt(x, t)) dxdt.

There is a very important embedding theorem that we will use, the proof of which can be found
in [1], [6] and [10].

Theorem 1.1. Suppose that a function u ∈ L2(0, T ;L2(Ω)) has a weak derivative ut ∈
L2(0, T ;L2(Ω)). Then for almost all 0 < t1 < t2 < T and almost all x ∈ Ω the Newton–Leibniz
formula is true

u(x, t2) − u(x, t1) =
∫ t2

t1
ut(x, t)dt. (4)

However, it is possible to redefine the function u on a set of measure 0 such that equation (4)
is true for all 0 6 t1 < t2 6 T and for almost all x ∈ Ω. Thus, u is absolutely continuous with
respect to t and we have the embedding W 1,2(0, T ;L2(Ω)) ⊂ C([0, T ];L2(Ω)).

Moreover, we have the inclusion W 1,2(0, T ) ⊂ C[0, T ]. In the case when a function u is
only from the space L2(0, T ;L2(Ω)), we cannot define its value at any point t. For that reason,
we will generalize this definition based on the definition of a Lebesgue point of a function.

Definition 1.2. Suppose g : R → R is a locally integrable function. The point x ∈ R is then
called a Lebesgue point of g if

lim
r→0+

1
2r

∫ x+r

x−r
|g(y) − g(x)|dy = 0.

The more general version of this definition can be found in [8]. Based on this definition,
if E ∈ L2(0, T ), then we will say that E(0) = L if

lim
t→0+

1
t

∫ t

0
|E(τ) − L|dτ = 0.
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Similarly, if u ∈ L2(0, T ;L2(Ω)), then we will define u(·, 0) = g in terms of Lebesgue points to
mean that

lim
t→0+

1
t

∫ t

0
‖u(·, τ) − g‖L2(Ω)dτ = 0.

Now suppose that H is an arbitrary Hilbert space. We have the following important facts
which can be found in most analysis books (see ,e.g., [8]).

Theorem 1.3 (Riesz representation theorem). For every bounded functional F from the dual
space H∗, there exists an element y ∈ H such that F (x) = 〈x, y〉 for all x ∈ H. In fact,
this mapping between H∗ and H itself is an isomorphism which shows that H and H∗ are
isomorphic.

Theorem 1.4. If a sequence {uk}∞
k=1 ⊂ H is bounded, then there exists a weakly convergent

subsequence {ukl
}∞

l=1.

Theorem 1.5 (Pythagorean theorem). If x1, x2, . . . xN ∈ H and 〈xi, xj〉 = 0 if i 6= j, then

∥∥∥∥∥
N∑

k=1
xi

∥∥∥∥∥
2

H

=
N∑

k=1
‖xi‖2

H
.

Theorem 1.6 (Parseval’s Identity). Suppose that {vk}∞
k=1 is a complete orthonormal system,

also called an orthonormal basis. Then for any element x ∈ H we have that

‖x‖2
H

=
∞∑

k=1
|〈x, vk〉

H
|2.

In order to prove inequalities, we will mainly be using the Cauchy-Schwarz inequality,
though only on Hilbert spaces like L2.

Theorem 1.7 (Cauchy-Schwarz inequality). For all x, y ∈ H the following inequality holds

|〈x, y〉
H

| 6 ‖x‖
H

‖y‖
H
.

Additionally, we will require the following theorem from functional analysis. The proof
can be found in [8].

Theorem 1.8. If X and Y are Banach spaces and T is a bounded linear operator between them,
then T (U) is open for all open sets U ⊂ X.

Specifically, we will need the following corollary of this theorem.

Corollary 1.9. If X and Y are Banach spaces and T is a bijective bounded linear operator
between them, then T is an isomorphism, thus T−1 is also a bounded linear operator.

Finally, these integration by parts formulas will be helpful when defining the weak and
very weak solutions to problem (1), (2). The proofs can be found in [10] and [8].
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Proposition 1.10. Suppose that the functions u and v are absolutely continuous on the interval
[a, b], where −∞ < a < b < ∞. Then

∫ b

a
u′(t)v(t)dt = u(b)v(b) − u(a)v(a) −

∫ b

a
u(t)v′(t)dt.

Proposition 1.11. Suppose that u ∈ W 1,2(Ω) and that v ∈ W̊ 1,2(Ω). Then
∫

Ω
uxi

(x)v(x)dx = −
∫

Ω
u(x)vxi

(x)dx,

for all i = 1, 2, . . . d.

1.2 Laplace operator eigenvalues and eigenfunctions

Let vk ∈ W̊ 1,2(Ω) and λk ∈ R, k ∈ N, be the eigenfunctions and eigenvalues of the Laplace
operator −∆vk(x) = λkvk(x), x ∈ Ω,

vk

∣∣∣
∂Ω

= 0,

which satisfies the following integral identity for the weak solutions

∀η ∈ W̊ 1,2(Ω) :
∫

Ω
∇vk(x) · ∇η(x)dx = λk

∫
Ω
vk(x)η(x)dx. (5)

According to [6], the eigenvalues λk are real, positive and λk → ∞, when k → ∞. Also, we
can choose the eigenvalues in such a way that they are orthogonal and form a basis of not only
W̊ 1,2(Ω) but L2(Ω) as well. We can also assume that the eigenfunctions are normalized so that
‖vk‖L2(Ω) = 1. Notice that if we take the integral identity (5) and substitute η = vk, we get

∫
Ω

|∇vk(x)|2dx = λk,

whereas if we substitute η = vl where k 6= l, then
∫

Ω
∇vk(x) · ∇vl(x)dx = λk

∫
Ω
vk(x)vl(x)dx = 0.

From this it follows that if k 6= l, then vk and vl are orthogonal in W̊ 1,2(Ω). Thus, we have the
following identities

∫
Ω
vk(x)vl(x)dx =

1, if k = l,

0, if k 6= l,

∫
Ω

∇vk(x) · ∇vl(x)dx =

λk, if k = l,

0, if k 6= l.
(6)
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2 Weak solution

2.1 Definition of a weak solution

Assume that (u, f) is a classical solution of problem (1). In the case when E ∈ W 1,2(0, T ),
we will derive the definition of a weak solution in the following way. Multiply equation (1)1

by a test function η ∈ L2(0, T ;L2(Ω)), integrate by x over Ω and then integrate by t over the
interval (0, T ) to get

∫ T

0

∫
Ω
ut(x, t)η(x, t)dxdt−

∫ T

0

∫
Ω

∆u(x, t)η(x, t)dxdt =
∫ T

0

∫
Ω
f(x, t)η(x, t)dxdt. (7)

For the next step, we will additionally assume that η ∈ L2(0, T ; W̊ 1,2(Ω)). Applying
integration by parts on the second integral in (7) with respect to x and using the fact that
η(·, t) ∈ W̊ 1,2(Ω) for almost all t ∈ (0, T ) together with Proposition 1.11, we get

∫ T

0

∫
Ω

∆u(x, t)η(x, t)dxdt =
d∑

i=1

∫ T

0

∫
Ω

∂2u(x, t)
∂x2

i

η(x, t)dxdt

=
d∑

i=1

∫ T

0

(
−
∫

Ω

∂u(x, t)
∂xi

∂η(x, t)
∂xi

dx

)
dt

= −
∫ T

0

∫
Ω

∇u(x,t) · ∇η(x,t)dxdt. (8)

Substituting (8) into (7) we get the integral identity

∫ T

0

∫
Ω
ut(x, t)η(x, t)dxdt+

∫ T

0

∫
Ω

∇u(x, t) · ∇η(x, t)dxdt =
∫ T

0

∫
Ω
f(x, t)η(x, t)dxdt (9)

for every η ∈ L2(0, T ; W̊ 1,2(Ω)). We will use the following definition of a weak solution to
problem (1) subject to an additional condition (2).

Definition 2.1. Suppose that E ∈ W 1,2(0, T ) and u0 ∈ W 2,2(Ω) ∩ W̊ 1,2(Ω). Also, suppose that
E satisfies the compatibility condition E(0) = ‖u0‖L2(Ω). A pair of functions (u, f) such that
u ∈ Ŵ 1,2(QT ) and f ∈ L2(0, T ;L2(Ω)) is called a weak solution of problem (1), (2) if the
integral identity (9) is true for all test functions η ∈ L2(0, T ; W̊ 1,2(Ω)) and if the initial and
side conditions are satisfied

u(x, 0) = u0(x) for a.e. x ∈ Ω, (10)∫
Ω

|u(x, t)|2dx = E2(t), for all t ∈ [0, T ]. (11)

Our first goal will be to prove the following theorem.

Theorem 2.2. Suppose that u0 ∈ W 2,2(Ω) ∩ W̊ 1,2(Ω) and E ∈ W 1,2(0, T ) are given functions
and that E satisfies the compatibility condition E(0) = ‖u0‖L2(Ω). Then there exists at least one
weak solution (u, f) to problem (1), (2).

9



For the rest of the next section we will assume that u0 is not identically equal to 0, so
that ‖u0‖L2(Ω) > 0. The case when u0 ≡ 0 is treated very similarly so it will only be mentioned
at the end.

2.2 Approximate solution

For every N ∈ N we will find approximate solutions (u(N), f (N)) that are represented in
the following forms

u(N)(x, t) =
N∑

k=1
wk(t)vk(x),

f (N)(x, t) =
N∑

k=1
qk(t)vk(x),

(12)

where vk are eigenfunctions defined in Section 1.2. We will also require them to satisfy the
following system of equations for every t ∈ [0, T ] and k 6 N



∫
Ω
(u(N))t(x, t)vk(x)dx+

∫
Ω

∇u(N)(x, t) · ∇vk(x)dx =
∫

Ω
f (N)(x, t)vk(x)dx,

u(N)(x, 0) =
N∑

k=1
βkvk(x), x ∈ Ω,

∫
Ω

∣∣∣u(N)(x, t)
∣∣∣2 dx = 1

‖u0‖2
L2(Ω)

N∑
k=1

β2
kE

2(t),

(13)

where βk, k ∈ N, are the Fourier coefficients of the function u0 in terms of the orthonormal
basis {vk}∞

k=1 in L2(Ω). Substituting the expressions (12) into (13)1 and using the fact that
different eigenfunctions are orthogonal we get an ordinary differential equation

w′
k(t) + λkwk(t) = qk(t). (14)

If we substitute (12)1 into (13)3 and use Theorem 1.5, we get

∫
Ω

|u(N)(x, t)|2dx =
∥∥∥∥∥

N∑
k=1

wk(t)vk(x)
∥∥∥∥∥

2

L2(Ω)
=

N∑
k=1

‖wk(t)vk(x)‖2
L2(Ω)

=
N∑

k=1
(wk(t))2 = 1

‖u0‖2
L2(Ω)

N∑
k=1

β2
kE

2(t),
(15)

where the last equality follows from (13)3. Since we require equation (15) to hold for all N ∈ N,
we get that for all t ∈ [0, T ]

wk(t) = βk

‖u0‖L2(Ω)
E(t). (16)

In order to satisfy equation (14) we will set

qk := w′
k + λkwk ∈ L2(0, T ). (17)
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Since the function E is from the space W 1,2(0, T ), it is also continuous. Therefore, u(N) is from
the space C([0, T ];L2(Ω)) and u(N)(·, 0) is well-defined. With this in mind as well as the fact
that we have assumed E(0) = ‖u0‖L2(Ω), we also have that

u(N)(x, 0) =
N∑

k=1
wk(0)vk(x) = 1

‖u0‖L2(Ω)

N∑
k=1

βkE(0)vk(x) =
N∑

k=1
βkvk(x).

With this, the pair of functions (u(N), f (N)) satisfies the system (13). Next, we will get some
estimates for u(N) and f (N). Recall that βk are Fourier coefficients of u0, so ∑∞

k=1 β
2
k = ‖u0‖2

L2(Ω).
Thus

‖u(N)‖2
L2(0,T ;L2(Ω)) =

∫ T

0

∫
Ω

|u(N)(x, t)|2dxdt (16)= 1
‖u0‖2

L2(Ω)

N∑
k=1

β2
k

∫ T

0
E2(t)dt 6 ‖E‖2

L2(0,T ). (18)

Similarly, by using identities (6) we obtain

‖∇u(N)‖2
L2(0,T ;L2(Ω)) =

∫ T

0

∫
Ω

|∇u(N)(x, t)|2dxdt =
∫ T

0

∫
Ω

∣∣∣∣∣
N∑

k=1
wk(t)∇vk(x)

∣∣∣∣∣
2

dxdt

=
∫ T

0

∥∥∥∥∥
N∑

k=1
wk(t)∇vk

∥∥∥∥∥
2

L2(Ω)
dt =

∫ T

0

N∑
k=1

|wk(t)|2λkdt

=
‖E‖2

L2(0,T )

‖u0‖2
L2(Ω)

N∑
k=1

β2
kλk. (19)

For the time derivative u(N)
t we have that

‖u(N)
t ‖2

L2(0,T ;L2(Ω)) =
∫ T

0

∥∥∥∥∥
N∑

k=1
(w(N)

k )′(t)vk

∥∥∥∥∥
2

L2(Ω)
dt =

∫ T

0

N∑
k=1

((w(N)
k )′(t))2dt =

∫ T

0

N∑
k=1

β2
k|E ′(t)|2

‖u0‖2
L2(Ω)

dt

=
N∑

k=1

β2
k

‖u0‖2
L2(Ω)

∫ T

0
|E ′(t)|2dt 6 ‖E‖2

W 1,2(0,T ). (20)

Lastly, we will get an estimate for f (N) in the space L2(0, T ;L2(Ω)) using equation (17). Notice
that for any k ∈ N we have

∫ T

0
|q(N)

k (t)|2dt =
∫ T

0

∣∣∣(w(N)
k )′(t) + λkw

(N)
k (t)

∣∣∣2 dt 6 2
∫ T

0

(∣∣∣(w(N)
k )′(t)

∣∣∣2 +
∣∣∣λkw

(N)
k (t)

∣∣∣2) dt
= 2

∫ T

0

∣∣∣∣∣ βkE
′(t)

‖u0‖L2(Ω)

∣∣∣∣∣
2

dt+ 2
∫ T

0

∣∣∣∣∣λkβkE(t)
‖u0‖L2(Ω)

∣∣∣∣∣
2

dt

= 2β2
k

‖u0‖2
L2(Ω)

(
‖E ′‖2

L2(0,T ) + λ2
k‖E‖2

L2(0,T )

)

6
2β2

k

‖u0‖2
L2(Ω)

(1 + λ2
k)‖E‖2

W 1,2(0,T ). (21)
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From this inequality it follows that

‖f (N)‖2
L2(0,T ;L2(Ω)) =

∫ T

0

∫
Ω

∣∣∣∣∣
N∑

k=1
q

(N)
k (t)vk(x)

∣∣∣∣∣
2

dxdt =
∫ T

0

∥∥∥∥∥
N∑

k=1
q

(N)
k (t)vk

∥∥∥∥∥
2

L2(Ω)
dt

=
N∑

k=1

∫ T

0
|q(N)

k (t)|2dt
(21)
6

N∑
k=1

2β2
k

‖u0‖2
L2(Ω)

(1 + λ2
k)‖E‖2

W 1,2(0,T )

6 2‖E‖2
W 1,2(0,T ) +

2‖E‖2
W 1,2(0,T )

‖u0‖2
L2(Ω)

N∑
k=1

β2
kλ

2
k. (22)

Let us now show that bounds (19) and (22) are independent of N . To do this, we will
bound the series ∑∞

k=1 β
2
kλ

2
k using the fact that u0 is from the space W 2,2(Ω) ∩ W̊ 1,2(Ω). First

notice that since u0 ∈ W 2,2(Ω), the weak Laplacian of u0 is from the space L2(Ω). Since {vk}∞
k=1

is an orthonormal basis of L2(Ω), we know that there exist coefficients γk such that

∆u0 =
∞∑

k=1
γkvk =

∞∑
k=1

〈∆u0, vk〉
L2(Ω)vk in L2(Ω). (23)

However, using the fact that vk and u0 are from the space W̊ 1,2(Ω) and by applying integration
by parts, we obtain

∫
Ω

∆u0(x) · vk(x)dx = −
∫

Ω
∇u0(x) · ∇vk(x)dx (5)= −λk

∫
Ω
u0(x)vk(x)dx = −λkβk. (24)

The last equality holds because the Fourier coefficients βk of u0 can be written as 〈u0, vk〉
L2(Ω).

So, we see that γk = −λkβk for all k ∈ N. Then, Parseval’s identity (Theorem 1.6) gives us
that

‖∆u0‖2
L2(Ω) =

∞∑
k=1

|γk|2 =⇒
∞∑

k=1
λ2

kβ
2
k = ‖∆u0‖2

L2(Ω) 6 ‖u0‖2
W 2,2(Ω). (25)

From (22) and the inequality (25) we get that f is bounded in the space L2(0, T ;L2(Ω))

‖f‖2
L2(0,T ;L2(Ω)) 6 2‖E‖2

W 1,2(0,T )

1 +
‖u0‖2

W 2,2(Ω)

‖u0‖2
L2(Ω)

 = C1‖E‖2
W 1,2(0,T ), (26)

where C1 = 2 + 2 ·
‖u0‖2

W 2,2(Ω)
‖u0‖2

L2(Ω)
> 0 is a constant that depends on u0.

From (25) it follows that we can bound the series ∑∞
k=1 λkβ

2
k because λk > 1

C2
for some

positive constant C2 > 0 and for all k ∈ N. This is because λk → ∞ as k → ∞ and λk > 0 for
all k ∈ N. Thus ∞∑

k=1
λkβ

2
k 6

∞∑
k=1

C2λ
2
kβ

2
k 6 C2‖u0‖2

W 2,2(Ω). (27)
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Using (18), (19) and (20) together with (27) we can bound u in the space Ŵ 1,2(QT ) like this

‖u‖2
Ŵ 1,2(QT ) = ‖u‖2

L2(0,T ;L2(Ω)) + ‖∇u‖2
L2(0,T ;L2(Ω)) + ‖ut‖2

L2(0,T ;L2(Ω))

6 ‖E‖2
W 1,2(0,T ) + C2

‖E‖2
W 1,2(0,T )

‖u0‖2
L2(Ω)

‖u0‖2
W 2,2(Ω) + ‖E‖2

W 1,2(0,T )

6 C3‖E‖2
W 1,2(0,T ), (28)

for some large enough constant C3 that depends on the function u0. By using these estimates,
we have that the sequence {u(N)}∞

N=1 is bounded in the space Ŵ 1,2(QT ) while the sequence
{f (N)}∞

N=1 is bounded in the space L2(0, T ;L2(Ω)).

2.3 Convergence

From the last section we know that the sequence {u(N)}∞
N=1 is bounded in the space

Ŵ 1,2(QT ) while the sequence {f (N)}∞
N=1 is bounded in the space L2(0, T ;L2(Ω)). Therefore,

there exists a subsequence {Nl}∞
l=1 such that u(Nl) weakly converges to a function u ∈ Ŵ 1,2(QT )

and f (Nl) weakly converges to some f ∈ L2(0, T ;L2(Ω)). We will require the following lemma.

Lemma 2.3. Suppose a sequence gN converges weakly to g in the space Ŵ 1,2(QT ). Then gN ⇀ g,
∇gN ⇀ ∇g and ∂gN

∂t
⇀ ∂g

∂t
in L2(0, T ;L2(Ω)).

Proof. Take an arbitrary functional ϕ ∈
(
L2(0, T ;L2(Ω))

)∗
. We need to show that ϕ(gN) →

ϕ(g). By the Riesz representation theorem (Theorem 1.3) this functional can be written in the
following way

ϕ(v) =
∫ T

0

∫
Ω
v(x, t)η(x, t)dxdt

for some function η ∈ L2(0, T ;L2(Ω)). Notice that it is also a bounded linear functional when
restricted to Ŵ 1,2(QT ) because by the Cauchy-Schwarz inequality

|ϕ(v)| =
∣∣∣∣∣
∫ T

0

∫
Ω
v(x, t)η(x, t)dxdt

∣∣∣∣∣ 6 ‖η‖L2(0,T ;L2(Ω))‖v‖L2(0,T ;L2(Ω))

6 ‖η‖L2(0,T ;L2(Ω))‖v‖Ŵ 1,2(QT ).

Thus, since ϕ is from the dual space of Ŵ 1,2(QT ) and gN converges weakly to g in Ŵ 1,2(QT ),
we get that ϕ(gN) → ϕ(g), N → ∞. This implies that gN ⇀ g in L2(0, T ;L2(Ω)).

For the gradient, we need to show that for each i = 1, 2, . . . , d the sequence ∂gN

∂xi
converges

weakly to ∂g
∂xi

in L2(0, T ;L2(Ω)). Just like before, if ϕ ∈ (L2(0, T ;L2(Ω)))∗, then there exists
an η ∈ L2(0, T ;L2(Ω)) such that

ϕ(v) =
∫ T

0

∫
Ω
v(x, t)η(x, t)dxdt

13



This time, consider a functional from Ŵ 1,2(QT ) to R defined by

v 7→
∫ T

0

∫
Ω

∂v(x, t)
∂xi

η(x, t)dxdt.

This functional is bounded because by the Cauchy-Schwarz inequality∣∣∣∣∣
∫ T

0

∫
Ω

∂v(x, t)
∂xi

η(x, t)dxdt
∣∣∣∣∣ 6 ‖η‖L2(0,T ;L2(Ω))

∥∥∥∥∥ ∂v∂xi

∥∥∥∥∥
L2(0,T ;L2(Ω))

6 ‖η‖L2(0,T ;L2(Ω))‖v‖Ŵ 1,2(QT ).

Thus, since gN ⇀ g in Ŵ 1,2(QT ), we see that

ϕ

(
∂gN

∂xi

)
=
∫ T

0

∫
Ω

∂gN(x, t)
∂xi

η(x, t)dxdt →
∫ T

0

∫
Ω

∂g(x, t)
∂xi

η(x, t)dxdt = ϕ

(
∂g

∂xi

)
.

As this is true for all i = 1, 2, . . . , d, we have that ∇gN ⇀ ∇g in L2(0, T ;L2(Ω)). The same
reasoning also shows that ∂gN

∂t
⇀ ∂g

∂t
in L2(0, T ;L2(Ω)).

From Lemma 2.3 we get that u(Nl) ⇀ u, u(Nl)
t ⇀ ut and ∇u(Nl) ⇀ ∇u in L2(0, T ;L2(Ω)).

Next, consider arbitrary functions dk ∈ C∞[0, T ], k ∈ N. Multiply equations (13)1 by dk and
then sum over all k ∈ {1, 2, . . . ,M}, where M 6 N . If we also denote η(x, t) = ∑M

k=1 dk(t)vk(x)
and replace N by Nl in the result, we get the following identity

∫
Ω
u

(Nl)
t (x, t)η(x, t)dx+

∫
Ω

∇u(Nl)(x, t) · ∇η(x, t)dx =
∫

Ω
f (Nl)(x, t)η(x, t)dx.

By integrating this equation by t from 0 to T , we get

∫ T

0

∫
Ω
u

(Nl)
t (x, t)η(x, t)dxdt+

∫ T

0

∫
Ω

∇u(Nl)(x, t) · ∇η(x, t)dxdt =
∫ T

0

∫
Ω
f (Nl)(x, t)η(x, t)dxdt. (29)

For the first integral in (29), notice that it can be written as an inner product in the space
L2(0, T ;L2(Ω)). Then, by using the fact that u(Nl)

t ⇀ ut in this space, we get

∫ T

0

∫
Ω
u

(Nl)
t (x, t)η(x, t)dxdt = 〈u(Nl)

t , η〉L2(0,T ;L2(Ω))
l→∞−−−→ 〈ut, η〉L2(0,T ;L2(Ω)) =

∫ T

0

∫
Ω
ut(x, t)η(x, t)dxdt.

For the other integrals, we can similarly write them as inner products in the space
L2(0, T ;L2(Ω)) and use weak convergence to get that

∫ T

0

∫
Ω

∇u(Nl)(x, t) · ∇η(x, t)dxdt l→∞−−−→
∫ T

0

∫
Ω

∇u(x, t) · ∇η(x, t)dxdt,∫ T

0

∫
Ω
f (Nl)(x, t)η(x, t)dxdt l→∞−−−→

∫ T

0

∫
Ω
f(x, t)η(x, t)dxdt.

Thus, after passing to the limit as l → ∞ in (29), we get integral identity (9) for the pair
of functions (u, f), however only for those η that are finite linear combinations of func-
tions vk. However, it is well known (see [1]) that these linear combinations are dense in
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the space L2(0, T ; W̊ 1,2(Ω)). Also, since Nl → ∞ when l → ∞, the number M in the sum
η(x, t) = ∑M

k=1 dk(t)vk(x) can be arbitrarily large. Therefore, by approximation we have that
our constructed solution, which is the pair (u, f), satisfies the integral identity (9) for all
η ∈ L2(0, T ; W̊ 1,2(Ω)).
Side condition
Next, we need to show that the function u satisfies the side condition

∫
Ω

|u(x, t)|2dx = E2(t)

for all t ∈ [0, T ]. Recalling the definition of u(N) (see (12)) and eigenfunction identities (6),
notice that if N,M ∈ N, N 6M , then

∫
Ω
u(N)(x, t)u(M)(x, t)dx =

∫
Ω

(
N∑

k=1
wk(t)vk(x)

)(
M∑

k=1
wk(t)vk(x)

)
dx

=
N∑

k=1
w2

k(t) (16)= 1
‖u0‖2

L2(Ω)

N∑
k=1

β2
kE

2(t).

Integrate this equality from 0 to an arbitrary t ∈ [0, T ] to get

∫ t

0

∫
Ω
u(N)(x, τ)u(M)(x, τ)dxdτ = 1

‖u0‖2
L2(Ω)

N∑
k=1

β2
k

∫ t

0
E2(τ)dτ.

If we also introduce an indicator function, the left side of this equation can be written as an
inner product in L2(0, T ;L2(Ω))

∫ T

0

∫
Ω
u(N)(x, τ)u(M)(x, τ)1{τ6t}dxdτ = 1

‖u0‖2
L2(Ω)

N∑
k=1

β2
k

∫ t

0
E2(τ)dτ.

Now, we can replace M by the subsequence Nl we got earlier and take the limit as l → ∞. For
any N ∈ N, the inequality N 6 Nl holds for large enough l. Also, u(Nl) ⇀ u in L2(0, T ;L2(Ω)).
Thus, after passing to the limit, we obtain

∫ T

0

∫
Ω
u(N)(x, τ)u(x, τ)1{τ6t}dxdτ = 1

‖u0‖2
L2(Ω)

N∑
k=1

β2
k

∫ t

0
E2(τ)dτ.

This equation is true for all N ∈ N so we can replace N by Nl and take the limit as l → ∞.
Recalling that ∑∞

k=1 β
2
k = ‖u0‖L2(Ω), we get that

∫ T

0

∫
Ω
u(x, τ)u(x, τ)1{τ6t}dxdτ =

∫ t

0
E2(τ)dτ,

which can be rewritten as
∫ t

0
‖u(·, τ)‖2

L2(Ω)dxdτ =
∫ t

0
E2(τ)dτ. (30)
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The function u is from the space C([0, T ];L2(Ω)) by Theorem 1.1, therefore ‖u(·, τ)‖L2(Ω) is a
continuous function. The same can be said about the function E, because it is fromW 1,2(0, T ) ⊂
C[0, T ]. Hence, we can differentiate both sides of equation (30) by t and obtain

‖u(·, t)‖2
L2(Ω) = E2(t) (31)

for all t ∈ [0, T ], which is equivalent to (11), i.e.
∫

Ω |u(x, t)|2dx = E2(t) for all t ∈ [0, T ].
Initial condition
Denote u(N)

0 = ∑N
k=1 βkvk to be the partial sums of the Fourier series for u0 in L2(Ω). Then it

is clear that u(N)
0 → u0 in L2(Ω) and since T is finite we have that u(N)

0 → u0 in L2(0, T ;L2(Ω))
as well, where we interpret both functions to be constant in time. Suppose that N,M ∈ N and
that N 6M . Then from (12) and from the fact that vk are orthonormal, we obtain

∫
Ω

(
u(N)(x, t) − u

(N)
0 (x)

) (
u(M)(x, t) − u

(M)
0 (x)

)
dx

=
∫

Ω

(
N∑

k=1
wk(t)vk(x) −

N∑
k=1

βkvk(x)
)(

M∑
k=1

wk(t)vk(x) −
M∑

k=1
βkvk(x)

)
dx

(16)=
∫

Ω

(
N∑

k=1

βkvk(x)
‖u0‖L2(Ω)

(
E(t) − ‖u0‖L2(Ω)

))( M∑
k=1

βkvk(x)
‖u0‖L2(Ω)

(
E(t) − ‖u0‖L2(Ω)

))
dx

=
N∑

k=1

β2
k

‖u0‖2
L2(Ω)

(E(t) − ‖u0‖L2(Ω))2
.

Integrating the left and right sides of this equality from 0 to an arbitrary t ∈ [0, T ] and writing
one of the integrals with an indicator function gives us

∫ T

0

∫
Ω

(
u(N)(x, τ) − u

(N)
0 (x)

) (
u(M)(x, τ) − u

(M)
0 (x)

)
1{τ6t}dxdτ

=
N∑

k=1

β2
k

‖u0‖2
L2(Ω)

∫ t

0
(E(τ) − ‖u0‖L2(Ω))2dτ. (32)

Now, we have that u(Nl) ⇀ u in L2(0, T ;L2(Ω)), therefore u(Nl) − u
(Nl)
0 ⇀ u − u0 in the space

L2(0, T ;L2(Ω)). So, if we replace M by Nl in (32) and pass to the limit as l → ∞, we get that

∫ T

0

∫
Ω

(
u(N)(x, τ) − u

(N)
0 (x)

)
(u(x, τ) − u0(x))1{τ6t}dxdτ

=
N∑

k=1

β2
k

‖u0‖2
L2(Ω)

∫ t

0
(E(τ) − ‖u0‖L2(Ω))2dτ.

Similarly, if we replace N by Nl and pass to the limit again as l → ∞, we get

∫ T

0

∫
Ω

(u(x, τ) − u0(x)) (u(x, τ) − u0(x))1{τ6t}dxdτ =
∫ t

0
(E(τ) − ‖u0‖L2(Ω))2dτ,
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where we have used the fact that ∑∞
k=1 β

2
k = ‖u0‖2

L2(Ω). Rewriting the final expression we obtain

∫ t

0
‖u(·, τ) − u0‖2

L2(Ω)dτ =
∫ t

0
(E(τ) − ‖u0‖L2(Ω))2dτ. (33)

Just as before, because the integrands are continuous functions, we can differentiate this equa-
tion by t. This shows that for all t ∈ [0, T ]:

‖u(·, t) − u0‖2
L2(Ω) = (E(t) − ‖u0‖L2(Ω))2. (34)

Specifically, if we set t = 0 in (34), then noting the fact that we have originally assumed that
E(0) = ‖u0‖L2(Ω), we finally obtain

‖u(·, 0) − u0‖2
L2(Ω) = 0 (35)

which is equivalent to (10), i.e. u(x, 0) = u0(x) for almost all x ∈ Ω.

Remark 2.4. In the case when u0 ≡ 0, we need to modify (13) slightly. Instead of coefficients
βk, which are Fourier coefficients of u0, we can replace them by some rapidly decreasing to zero
sequence γk, such that ∑∞

k=1 γ
2
k = 1 and ∑∞

k=1 λ
2
kγ

2
k < ∞. Also, instead of condition (13)3 we

will require ∫
Ω

|u(N)(x, t)|2dx =
N∑

k=1
γ2

kE
2(t).

From there, most of the steps are the same. The only difference is that we get the side condition
directly from the initial condition. This also shows that in this case there exist infinitely many
weak solutions, provided that E is not identically 0.

3 Very weak solution

3.1 Definition of a very weak solution

Now we will derive the definition of a very weak solution of problem (1), (2) in the case
when the function E does not possess a weak derivative and is only from the space L2(0, T ).
In order to do so, we have to first generalize the compatibility condition E(0) = ‖u0‖L2(Ω) from
(2). This is because in general, evaluating an L2 function at a point is ill-defined. The condition
E(0) = ‖u0‖L2(Ω) will be understood to mean that the value ‖u0‖L2(Ω) is a Lebesgue point of E
at t = 0 and thus lim

t→0+
1
t

∫ t
0 |E(τ) − ‖u0‖L2(Ω)|dτ = 0.

For the derivation of the very weak solution we will also need a generalized version of a
primitive function. For any function g ∈ L2(0, T ), define its primitive Sg(t) by Sg(t) =

∫ t
0 g(τ)dτ .

It is well known that Sg is differentiable almost everywhere with both its regular and weak
derivatives equal to g almost everywhere, and it is clear that Sg(0) = 0.

We will extend this notion to a larger class of functions in the same way it is done in [12].
Define W 1,2

T (0, T ;L2(Ω)) to be the subspace {ϕ ∈ W 1,2(0, T ;L2(Ω)) : ϕ(·, T ) = 0}, where we
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interpret a function from W 1,2(0, T ;L2(Ω)) ⊂ C([0, T ];L2(Ω)) as the continuous representative
so that ϕ(·, T ) is well-defined. Also, denote the dual of W 1,2

T (0, T ;L2(Ω)) as W−1,2
T (0, T ;L2(Ω)).

We have the following representation of this space.

Lemma 3.1 ([12]). If h is from the space W−1,2
T (0, T ;L2(Ω)), then there exists a unique H ∈

L2(0, T ;L2(Ω)), such that

〈h, η〉 =
∫ T

0

∫
Ω
H(x, t)ηt(x, t)dxdt ∀η ∈ W 1,2

T (0, T ;L2(Ω)). (36)

Proof. The functional given in (36) is bounded, because if H ∈ L2(0, T ;L2(Ω)), then

|〈h, η〉| 6 ‖H‖L2(0,T ;L2(Ω))‖ηt‖L2(0,T ;L2(Ω)) 6 ‖H‖L2(0,T ;L2(Ω))‖η‖W 1,2
T (0,T ;L2(Ω)).

Next, consider the derivative operator D : W 1,2
T (0, T ;L2(Ω)) → L2(0, T ;L2(Ω)), defined by

Dη = ηt. This operator is surjective, because if ϕ ∈ L2(0, T ;L2(Ω)), then after defining

ψ(x, t) := −
∫ T

t
ϕ(x, τ)dτ,

we have that ψ ∈ W 1,2
T (0, T ;L2(Ω)) and since ψ is absolutely continuous with respect to t:

ψt(x, t) =
(∫ t

0
ϕ(x,τ)dτ −

∫ T

0
ϕ(x,τ)dτ

)
t

= ϕ(x, t).

This operator is injective, because if η1, η2 ∈ W 1,2
T (0, T ;L2(Ω)) and (η1)t = (η2)t, then we have

that (η1 − η2)t = 0. Applying Theorem 1.1, specifically the Newton–Leibniz formula, shows
that η1(x, t)−η2(x, t) is constant in time. However, by definition of the space W 1,2

T (0, T ;L2(Ω))
we know that η1(x, T ) = η2(x, T ) = 0 for almost all x ∈ Ω. This implies that η1(x, t) = η2(x, t)
for almost all x ∈ Ω and all t ∈ [0, T ] and thus η1 = η2. Operator D is clearly bounded, hence
by Corollary 1.9 it is an isomorphism between W 1,2

T (0, T ;L2(Ω)) and L2(0, T ;L2(Ω))
Now, suppose that h is from W−1,2

T (0, T ;L2(Ω)). Define a functional F on L2(0, T ;L2(Ω))
by the formula F (ϕ) = 〈h,D−1ϕ〉 = (h ◦ D−1)(ϕ). Since D−1 is bounded, F is a bounded
functional. Therefore, by the Riesz representation theorem on L2(0, T ;L2(Ω)), there exists a
unique H ∈ L2(0, T ;L2(Ω)) such that

F (ϕ) = 〈h,D−1ϕ〉 =
∫ T

0

∫
Ω
H(x, t)ϕ(x, t)dxdt. (37)

For any η ∈ W 1,2
T (0, T ;L2(Ω)), η = D−1ηt, which implies that

F (ηt) = 〈h, η〉 =
∫ T

0

∫
Ω
H(x, t)ηt(x, t)dxdt. (38)

If h ∈ W−1,2
T (0, T ;L2(Ω)), we will define Sh := −H, where H is the L2(0, T ;L2(Ω))
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function which represents the functional h ∈ W−1,2
T (0, T ;L2(Ω)) according to Lemma 3.1. This

definition is an extension of the operator S, because if h̃ is the functional, associated by the Riesz
representation theorem with a function h ∈ L2(0, T ;L2(Ω)) as 〈h̃, η〉 =

∫ T
0
∫

Ω h(x, t)η(x, t)dxdt,
then after applying Proposition 1.10 on Sh and η, we get

〈h̃, η〉 =
∫

Ω

(
Sh(x, t)η(x, t)

∣∣∣t=T

t=0
−
∫ T

0
Sh(x, t)ηt(x, t)dt

)
dx.

By definition Sh(x, 0) = 0 and η(x, T ) = 0, hence we have that

〈h̃, η〉 = −
∫ T

0

∫
Ω
Sh(x, t)ηt(x, t)dxdt,

which implies that H = −Sh in this case.
Let us now derive the integral identity for the very weak solution. Suppose that the pair

(u, f) is a classical solution of problem (1). Multiply equation (1)1 by an arbitrary function
η ∈ L2(0, T ; W̊ 1,2(Ω)) and integrate with respect to x over Ω and then integrate with respect
to t over the interval (0, T ) to get

∫ T

0

∫
Ω
ut(x, t)η(x, t)dxdt−

∫ T

0

∫
Ω

∆u(x, t)η(x, t)dxdt =
∫ T

0

∫
Ω
f(x, t)η(x, t)dxdt.

Integrating by parts with respect to x on the second integral yields

∫ T

0

∫
Ω
ut(x, t)η(x, t)dxdt+

∫ T

0

∫
Ω

∇u(x, t) · ∇η(x, t)dxdt =
∫ T

0

∫
Ω
f(x, t)η(x, t)dxdt, (39)

which is the same as (9). Next, similarly to how it is done in [12], we will use integration
by parts with respect to t on the first and third integrals in (39). In order to do this, we
will additionally assume that ηt ∈ L2(0, T ;L2(Ω)) and η( · , T ) ≡ 0. This guarantees that the
integrals exist, gets rid of one of the boundary terms and also allows us to define η(·, 0) using
Theorem 1.1. Integrating the first integral in (39) by parts (applying Proposition 1.10) gives
us

∫ T

0

∫
Ω
ut(x, t)η(x, t)dxdt =

∫
Ω

∫ T

0
ut(x, t)η(x, t)dtdx

=
∫

Ω

(
u(x, t)η(x, t)

∣∣∣∣t=T

t=0
−
∫ T

0
u(x, t)ηt(x, t)dt

)
dx

(1)3=
∫

Ω

(
−u0(x)η(x, 0) −

∫ T

0
u(x, t)ηt(x, t)dt

)
dx

= −
∫

Ω
u0(x)η(x, 0)dx−

∫ T

0

∫
Ω
u(x, t)ηt(x, t)dxdt. (40)

For the third integral in (39), again using integration by parts with respect to t and the facts
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that ∂Sf (x,t)
∂t

= f(x, t), Sf ( · , 0) ≡ 0, η( · , T ) ≡ 0, we obtain

∫ T

0

∫
Ω
f(x, t)η(x, t)dxdt =

∫
Ω

∫ T

0

∂Sf (x,t)
∂t

η(x, t)dtdx

=
∫

Ω

(
Sf (x, t)η(x, t)

∣∣∣∣t=T

t=0
−
∫ T

0
Sf (x, t)ηt(x, t)dt

)
dx

= −
∫ T

0

∫
Ω
Sf (x, t)ηt(x, t)dxdt. (41)

Substituting (40) and (41) into (39) we get the following integral identity

∫
Ω
u0(x)η(x, 0)dx+

∫ T

0

∫
Ω
u(x, t)ηt(x, t)dxdt

−
∫ T

0

∫
Ω

∇u(x, t) · ∇η(x, t)dxdt =
∫ T

0

∫
Ω
Sf (x, t)ηt(x, t)dxdt,

(42)

where η(x, t) is any function such that η ∈ L2(0, T ; W̊ 1,2(Ω)), ηt ∈ L2(0, T ;L2(Ω)) and η( · , T ) ≡
0. Hence, we get the following definition.

Definition 3.2. Suppose that E ∈ L2(0, T ) and u0 ∈ W 2,2(Ω) ∩ W̊ 1,2(Ω). Also suppose
that E(0) = ‖u0‖L2(Ω) in terms of Lebesgue points. A pair of functions (u, f) such that
u ∈ L2(0, T ; W̊ 1,2(Ω)) and f ∈ W−1,2

T (0, T ;L2(Ω)), is called a very weak solution of prob-
lem (1), (2) if the integral identity (42) is true for all test functions η ∈ L2(0, T ; W̊ 1,2(Ω)),
ηt ∈ L2(0, T ;L2(Ω)), η( · , T ) ≡ 0 and if the initial and side conditions are satisfied

u(·, 0) = u0 in terms of Lebesgue points, (43)∫
Ω

|u(x, t)|2dx = E2(t), for a.e. t ∈ [0, T ]. (44)

Our second goal will be to prove the following theorem.

Theorem 3.3. Suppose that u0 ∈ W 2,2(Ω) ∩ W̊ 1,2(Ω) and E ∈ L2(0, T ) are given functions and
that E satisfies the compatibility condition E(0) = ‖u0‖L2(Ω) in terms of Lebesgue points. Then
there exists at least one very weak solution (u, f) to problem (1), (2).

For the rest of the next section we will assume that u0 is not identically equal to 0, so
that ‖u0‖L2(Ω) > 0. The case when u0 ≡ 0 is treated very similarly so it will only be mentioned
at the end.

3.2 Approximate solution

Choose any sequence of functions En ∈ W 1,2(0, T ) which converges to E in the space
L2(0, T ) such that En(0) = ‖u0‖L2(Ω). This should be understood in the usual sense because
of the embedding W 1,2(0, T ) ⊂ C[0, T ]. Since we know that C∞

c (0, T ) is dense in L2(0, T ) (see
[6]) and C∞

c (0, T ) ⊂ W 1,2(0, T ), we can choose a sequence of smooth and compactly supported
functions. For every N ∈ N and n ∈ N we will find approximate solutions (u(N)

n , f (N)
n ) that are
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represented in the following forms

u(N)
n (x, t) =

N∑
k=1

wk,n(t)vk(x),

f (N)
n (x, t) =

N∑
k=1

qk,n(t)vk(x).
(45)

We will also require them to satisfy the following system of equations for every t ∈ [0, T ] and
k 6 N , which is almost identical to (13)



∫
Ω
(u(N)

n )t(x, t)vk(x)dx+
∫

Ω
∇u(N)

n (x, t) · ∇vk(x)dx =
∫

Ω
f (N)

n (x, t)vk(x)dx,

u(N)
n (x, 0) =

N∑
k=1

βkvk(x), x ∈ Ω,

∫
Ω

∣∣∣u(N)
n (x, t)

∣∣∣2 dx = 1
‖u0‖2

L2(Ω)

N∑
k=1

β2
kE

2
n(t),

(46)

where βk, k ∈ N, are the Fourier coefficients of the function u0 in terms of the orthonormal
basis {vk}∞

k=1 in L2(Ω). In the same way as in Section 2.2, we get the following expressions for
wk,n and qk,n, namely

wk,n(t) = βk

‖u0‖L2(Ω)
En(t), (47)

qk,n = (wk,n)′ + λkwk,n ∈ L2(0, T ). (48)

Since the function En is from the space W 1,2(0, T ), it is also continuous. Therefore, u(N)
n is

from the space C([0, T ];L2(Ω)) and u(N)
n (x, 0) is well-defined. With this in mind as well as the

fact that we have assumed En(0) = ‖u0‖L2(Ω), we have that

u(N)
n (x, 0) =

N∑
k=1

wk,n(0)vk(x) = 1
‖u0‖L2(Ω)

N∑
k=1

βkEn(0)vk(x) =
N∑

k=1
βkvk(x).

With this, the pair of functions (u(N)
n , f (N)

n ) satisfies the system of equations (46). Next, we
will get suitable estimates for u(N)

n and f (N)
n . The bounds for u(N)

n and ∇u(N)
n we get almost

identically to the ones in the previous section, (see (18) and (19)):

‖u(N)
n ‖2

L2(0,T ;L2(Ω)) 6 ‖En‖2
L2(0,T ), (49)

‖∇u(N)
n ‖2

L2(0,T ;L2(Ω)) 6
‖En‖2

L2(0,T )

‖u0‖2
L2(Ω)

N∑
k=1

β2
kλk. (50)

For the sequence {f (N)
n }∞

N=1, we will not be able to bound it in the space L2(0, T ;L2(Ω))
because estimate (22) involves the derivative of E. Instead, we will get an estimate for S

f
(N)
n
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in the space L2(0, T ;L2(Ω)). First, integrate equation (48) from 0 to t to get

Sq
k,n

(t) =
∫ t

0
(wk,n)′(τ)dτ + λk

∫ t

0
wk,n(τ)dτ = wk,n(t) −

βk︷ ︸︸ ︷
wk,n(0) +λk

∫ t

0
wk,n(τ)dτ

(47)= βk

‖u0‖L2(Ω)
En(t) − βk + λkβk

‖u0‖L2(Ω)

∫ t

0
En(τ)dτ. (51)

We will also use the following inequality that follows from Cauchy-Schwarz inequality

∫ T

0
|En(t)|dt 6

(∫ T

0
E2

n(t)dt
) 1

2
(∫ T

0
dt

) 1
2

= ‖En‖L2(0,T )
√
T

=⇒
∫ T

0

∣∣∣∣∫ t

0
En(τ)dτ

∣∣∣∣2 dt 6 ∫ T

0

(∫ T

0
|En(τ)|dτ

)2

dt 6 T 2‖En‖2
L2(0,T ).

Thus, together with the inequality (a + b + c)2 6 3(a2 + b2 + c2), a, b, c ∈ R, which is true by
Jensen’s inequality1, we have

‖Sq
k,n

‖2
L2(0,T ) =

∫ T

0
|Sq

k,n
(t)|2dt =

∫ T

0

(
βk

‖u0‖L2(Ω)
En(t) − βk + λkβk

‖u0‖L2(Ω)

∫ t

0
En(τ)dτ

)2

dt

6 3
 β2

k

‖u0‖2
L2(Ω)

∫ T

0
E2

n(t)dt+ β2
kT + λ2

kβ
2
k

‖u0‖2
L2(Ω)

∫ T

0

∣∣∣∣∫ t

0
En(τ)dτ

∣∣∣∣2 dt


6
3β2

k

‖u0‖2
L2(Ω)

‖En‖2
L2(0,T ) + 3β2

kT + 3λ2
kβ

2
k

‖u0‖2
L2(Ω)

T 2‖En‖2
L2(0,T )

6 C4(β2
k‖En‖2

L2(0,T ) + β2
kλ

2
k‖En‖2

L2(0,T ) + β2
k),

for some constant C4 > 0 that depends on T and u0. Therefore, by the last inequality

‖S
f

(N)
n

‖2
L2(0,T ;L2(Ω)) =

∫ T

0

∥∥∥∥∥
N∑

k=1
Sq

k,n
(τ)vk

∥∥∥∥∥
2

L2(Ω)
dτ =

N∑
k=1

∫ T

0
|Sq

k,n
(τ)|2dτ

6
∞∑

k=1
C4(β2

k‖En‖2
L2(0,T ) + β2

kλ
2
k‖En‖2

L2(0,T ) + β2
k)

= C4‖u0‖2
L2(Ω)‖En‖2

L2(0,T ) + C4‖u0‖2
L2(Ω) + C4‖En‖2

L2(0,T )

∞∑
k=1

β2
kλ

2
k.

Inequality (25) gives the following bound

‖S
f

(N)
n

‖2
L2(0,T ;L2(Ω)) 6 C4‖u0‖2

L2(Ω)‖En‖2
L2(0,T ) + C4‖u0‖2

L2(Ω) + C4‖En‖2
L2(0,T )‖u0‖2

W 2,2(Ω)

6 C5(‖En‖2
L2(0,T ) + 1) (52)

for a large enough constant C5 > 0 that depends on the function u0. Combining equations
1If g : R → R is a convex function, x1, x2, . . . , xk ∈ R and λ1, λ2, . . . , λk > 0 are coefficients such that

λ1 + λ2 + . . . + λk = 1, then g
(∑k

i=1 λixi

)
6
∑k

i=1 λig(xi). In this particular case, we set k = 3, λi = 1/3 and
g(x) = x2.
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(49), (50) and (27) we have

‖u(N)
n ‖2

L2(0,T ;W̊ 1,2(Ω)) = ‖u(N)
n ‖2

L2(0,T ;L2(Ω)) + ‖∇u(N)
n ‖2

L2(0,T ;L2(Ω))

6 ‖En‖2
L2(0,T ) +

‖En‖2
L2(0,T )

‖u0‖2
L2(Ω)

‖u0‖2
W 2,2(Ω)

6 C6‖En‖2
L2(0,T ) (53)

for some large enough constant C6 > 0. By using these estimates, we have that the sequence
{u(N)

n }∞
N=1 is bounded in the space L2(0, T ; W̊ 1,2(Ω)) while the sequence {S

f
(N)
n

}∞
N=1 is bounded

in the space L2(0, T ;L2(Ω)).

3.3 Convergence

From the last section we know that the sequence {u(N)
n }∞

N=1 is bounded in the space
L2(0, T ; W̊ 1,2(Ω)) while the sequence {S

f
(N)
n

}∞
N=1 is bounded in the space L2(0, T ;L2(Ω)) which

also means that {f (N)}∞
N=1 is bounded in the space W−1,2

T (0, T ;L2(Ω)) by Lemma 3.1. There-
fore, for each fixed n ∈ N there exists a subsequence {Nl}∞

l=1, such that u(Nl)
n weakly converges to

a function un ∈ L2(0, T ; W̊ 1,2(Ω)) and that f (Nl)
n weakly converges to fn ∈ W−1,2

T (0, T ;L2(Ω)).
We will require the following lemma.

Lemma 3.4. Suppose a sequence gN ⇀ g in the space L2(0, T ;W 1,2(Ω)). Then gN ⇀ g and
∇gN ⇀ ∇g in L2(0, T ;L2(Ω)).

Proof. The proof is omitted as it is very similar to the proof of Lemma 2.3.

From Lemma 3.4 we get that u(Nl)
n ⇀ un and ∇u(Nl)

n ⇀ ∇un in L2(0, T ;L2(Ω)). As for
the functions f (Nl)

n , according to Lemma 3.1 and using the extended notion of the primitive
function we have

〈f (Nl)
n , η〉 = −

∫ T

0

∫
Ω
S

f
(Nl)
n

(x, t)ηt(x, t)dxdt,

〈fn, η〉 = −
∫ T

0

∫
Ω
Sfn(x, t)ηt(x, t)dxdt.

Given that f (Nl)
n ⇀ fn in W−1,2

T (0, T ;L2(Ω)) and by using the inclusion of the space
W 1,2

T (0, T ;L2(Ω)) to its double dual, we have that for all η ∈ W 1,2
T (0, T ;L2(Ω))

−
∫ T

0

∫
Ω
S

f
(Nl)
n

(x, t)ηt(x, t)dxdt → −
∫ T

0

∫
Ω
Sfn(x, t)ηt(x, t)dxdt. (54)

But this also implies that S
f

(Nl)
n

⇀ Sfn in L2(0, T ;L2(Ω)), since the derivative operator D,
defined in Lemma 3.1, is surjective.

Next, consider arbitrary functions dk ∈ C∞[0, T ] with dk(T ) = 0, k ∈ N. Multiply
equations (46)1 by dk and then sum over all k ∈ {1, 2, . . . ,M}, where M 6 N . If we also
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denote η(x, t) = ∑M
k=1 dk(t)vk(x) and integrate by t from 0 to T , we get the following identity

∫ T

0

∫
Ω
(u(N)

n )t(x, t)η(x, t)dxdt+
∫ T

0

∫
Ω

∇u(N)
n (x, t)·∇η(x, t)dxdt =

∫ T

0

∫
Ω
f (N)

n (x, t)η(x, t)dxdt. (55)

Then, similarly to how we derived the weak formulation, we can use integration by parts on the
first and third integrals in equation (55). Recalling that u(N)

n (x, 0) = ∑N
k=1 βkvk(x) and that

η(·, T ) ≡ 0, we get the following identity

∫
Ω

(
N∑

k=1
βkvk(x)

)
η(x, 0)dx+

∫ T

0

∫
Ω
u(N)

n (x, t)ηt(x, t)dxdt

−
∫ T

0

∫
Ω

∇u(N)
n (x, t) · ∇η(x, t)dxdt =

∫ T

0

∫
Ω
S

f
(N)
n

(x, t)ηt(x, t)dxdt.
(56)

We can write the last three integrals in (56) as inner products in the space L2(0, T ;L2(Ω)) and
use weak convergence to get that

∫ T

0

∫
Ω
u(Nl)

n (x, t)ηt(x, t)dxdt l→∞−−−→
∫ T

0

∫
Ω
un(x, t)ηt(x, t)dxdt,∫ T

0

∫
Ω

∇u(Nl)
n (x, t) · ∇η(x, t)dxdt l→∞−−−→

∫ T

0

∫
Ω

∇un(x, t) · ∇η(x, t)dxdt,∫ T

0

∫
Ω
S

f
(Nl)
n

(x, t)ηt(x, t)dxdt l→∞−−−→
∫ T

0

∫
Ω
Sfn(x, t)ηt(x, t)dxdt.

As for the first integral in (56), it is an inner product in L2(Ω) and it is easy to see that∑N
k=1 βkvk → u0, N → ∞, in the same space. Thus, after substituting Nl for N in equation

(13) and passing to the limit as l → ∞, we get equation (42) for the pair of functions (un, fn)
for all n ∈ N:

∫
Ω
u0(x)η(x, 0)dx+

∫ T

0

∫
Ω
un(x, t)ηt(x, t)dxdt

+
∫ T

0

∫
Ω

∇Sun(x, t) · ∇ηt(x, t)dxdt =
∫ T

0

∫
Ω
Sfn(x, t)ηt(x, t)dxdt

(57)

for the case when η is a linear combination ∑M
k=1 dk(t)vk(x). The number M in the sum can be

arbitrarily large, because Nl → ∞ when l → ∞. It is well known (see [1]) that the set of all
these linear combinations is dense in the space

V = {η : η ∈ L2(0, T ; W̊ 1,2(Ω)), ηt ∈ L2(0, T ;L2(Ω)), η(·, T ) ≡ 0}.

Thus, by approximation we get that the identity (57) is true for all η ∈ L2(0, T ; W̊ 1,2(Ω)),
ηt ∈ L2(0, T ;L2(Ω)) and η( · , T ) ≡ 0.

To pass to the next limit, notice that for each n ∈ N, since u(Nl)
n ⇀ un in L2(0, T ;L2(Ω)),

we have the following inequality ‖un‖L2(0,T ;W̊ 1,2(Ω)) 6 lim inf
l→∞

‖u(Nl)
n ‖L2(0,T ;W̊ 1,2(Ω)). Also, En → E

in L2(0, T ), so there exists a positive constant C such that ‖En‖2
L2(0,T ) 6 C for all n ∈ N.
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Therefore, we can pass to the limit as l goes to infinity on the bound (53):

‖un‖2
L2(0,T ;W̊ 1,2(Ω)) 6 lim inf

l→∞
‖u(Nl)

n ‖2
L2(0,T ;W̊ 1,2(Ω)) 6 C6‖En‖2

L2(0,T ) 6 C6C. (58)

Similarly with the bound (52) involving functions f (Nl)
n :

‖Sfn‖2
L2(0,T ;L2(Ω)) 6 lim inf

l→∞
‖S

f
(Nl)
n

‖2
L2(0,T ;L2(Ω)) 6 C5(‖En‖2

L2(0,T ) + 1) 6 C5(C + 1). (59)

Just like before, since {un}∞
n=1 is bounded in L2(0, T ; W̊ 1,2(Ω)) and {Sfn}∞

n=1 is bounded in
L2(0, T ;L2(Ω)), there exists a subsequence {nl}∞

l=1, such that unl
⇀ u and fnl

⇀ f for some
u ∈ L2(0, T ; W̊ 1,2(Ω)) and f ∈ W−1,2

T (0, T ;L2(Ω)). Thus, after passing to the limit in (57) as
l → ∞, we get

∫
Ω
u0(x)η(x, 0)dx+

∫ T

0

∫
Ω
u(x, t)ηt(x, t)dxdt

−
∫ T

0

∫
Ω

∇u(x, t) · ∇η(x, t)dxdt =
∫ T

0

∫
Ω
Sf (x, t)ηt(x, t)dxdt

for all η ∈ L2(0, T ; W̊ 1,2(Ω)), ηt ∈ L2(0, T ;L2(Ω)) and η( · , T ) ≡ 0 which is the integral identity
we wanted to prove, namely (42).
Side condition
Going back to the definition of u(N)

n (see (45)1), notice that if N,M ∈ N, N 6 M , then since
eigenfunctions vk are orthonormal, we have the following identity for all t ∈ [0, T ]

∫
Ω
u(N)

n (x, t)u(M)
m (x, t)dx =

∫
Ω

(
N∑

k=1
wk,n(t)vk(x)

)(
M∑

k=1
wk,m(t)vk(x)

)
dx

=
N∑

k=1
wk,n(t)wk,m(t) = 1

‖u0‖2
L2(Ω)

N∑
k=1

β2
kEn(t)Em(t).

Integrate this last equality from 0 to an arbitrary t ∈ [0, T ] to get

∫ t

0

∫
Ω
u(N)

n (x, τ)u(M)
m (x, τ)dxdτ = 1

‖u0‖2
L2(Ω)

N∑
k=1

β2
k

∫ t

0
En(τ)Em(τ)dτ.

If we also introduce indicator functions, this can be written in terms of inner products as such

∫ T

0

∫
Ω
u(N)

n (x, τ)u(M)
m (x, τ)1{τ6t}dxdτ = 1

‖u0‖2
L2(Ω)

N∑
k=1

β2
k

∫ T

0
En(τ)Em(τ)1{τ6t}dτ. (60)

Now, because there is a subsequence Ml such that u(Ml)
m ⇀ um in L2(0, T ;L2(Ω)), if we replace

M by Ml in (60) and pass to the limit as l → ∞ (as N 6Ml for large enough l, this is valid):

∫ T

0

∫
Ω
u(N)

n (x, τ)um(x, τ)1{τ6t}dxdτ = 1
‖u0‖2

L2(Ω)

N∑
k=1

β2
k

∫ T

0
En(τ)Em(τ)1{τ6t}dτ (61)
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for all N ∈ N. Similarly, there is a subsequence Nl such that u(Nl)
n ⇀ un in L2(0, T ;L2(Ω)), so

if we replace N by Nl in (61) and pass to the limit as l → ∞:

∫ T

0

∫
Ω
un(x, τ)um(x, τ)1{τ6t}dxdτ = 1

‖u0‖2
L2(Ω)

∞∑
k=1

β2
k

∫ T

0
En(τ)Em(τ)1{τ6t}dτ

=
∫ T

0
En(τ)Em(τ)1{τ6t}dτ, (62)

because ∑∞
k=1 β

2
k = ‖u0‖2

L2(Ω). Next, we will take the limit as n,m → ∞ in a similar way. It
does not matter in which order we take the limit as the result will be the same. First, we
already have that there is a subsequence nl such that unl

⇀ u in L2(0, T ;L2(Ω)). Also, because
strong convergence implies weak convergence, we have that Enl

⇀ E in L2(0, T ). Thus, if we
replace n by nl in (62) and pass to the limit as l → ∞:

∫ T

0

∫
Ω
u(x, τ)um(x, τ)1{τ6t}dxdτ =

∫ T

0
E(τ)Em(τ)1{τ6t}dτ. (63)

Lastly, if we replace m by nl in (63) and pass to the limit as l → ∞:

∫ T

0

∫
Ω
u(x, τ)u(x, τ)1{τ6t}dxdτ =

∫ T

0
E(τ)E(τ)1{τ6t}dτ

Thus ∫ t

0

∫
Ω

|u(x, τ)|2dxdτ =
∫ t

0
E2(τ)dτ.

Differentiating this equality by t, we see that for almost all t ∈ [0, T ] the side condition (44) is
satisfied: ∫

Ω
|u(x, t)|2dx = E2(t).

Initial condition
Denote u(N)

0 = ∑N
k=1 βkvk to be the partial sums of the Fourier series for u0 in L2(Ω). Then it

is clear that u(N)
0 → u0 in L2(Ω) and since T is finite we have that u(N)

0 → u0 in L2(0, T ;L2(Ω))
as well, where we interpret both functions to be constant in time. Suppose that N,M ∈ N,
n,m ∈ N and that N 6 M . Then from (45) and from the fact that vk are orthonormal, we
obtain

∫
Ω

(
u(N)

n (x, t) − u
(N)
0 (x)

) (
u(M)

m (x, t) − u
(M)
0 (x)

)
dx

=
∫

Ω

(
N∑

k=1
wk,n(t)vk(x) −

N∑
k=1

βkvk(x)
)(

M∑
k=1

wk,m(t)vk(x) −
M∑

k=1
βkvk(x)

)
dx

=
∫

Ω

(
N∑

k=1

βkvk(x)
‖u0‖L2(Ω)

(
En(t) − ‖u0‖L2(Ω)

))( M∑
k=1

βkvk(x)
‖u0‖L2(Ω)

(
Em(t) − ‖u0‖L2(Ω)

))
dx

=
N∑

k=1

β2
k

‖u0‖2
L2(Ω)

(En(t) − ‖u0‖L2(Ω))(Em(t) − ‖u0‖L2(Ω)).
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Integrating the last identity from 0 to an arbitrary t and writing the integrals with indicator
functions gives us

∫ T

0

∫
Ω

(
u(N)

n (x, τ) − u
(N)
0 (x)

) (
u(M)

m (x, τ) − u
(M)
0 (x)

)
1{τ6t}dxdτ

=
N∑

k=1

β2
k

‖u0‖2
L2(Ω)

∫ T

0
(En(τ) − ‖u0‖L2(Ω))(Em(τ) − ‖u0‖L2(Ω))dτ. (64)

Now, pick a subsequence Ml, l ∈ N, such that u(Ml)
m ⇀ um in L2(0, T ;L2(Ω)). We also know

that u(Ml)
0 strongly converges to u0 in L2(0, T ;L2(Ω)), thus it also weakly converges. Using this,

we can replace M with Ml in equation (64) and pass to the limit as l → ∞ to get

∫ T

0

∫
Ω
(u(N)

n (x, τ) − u
(N)
0 (x))(um(x, τ) − u0(x))1{τ6t}dxdτ

=
N∑

k=1

β2
k

‖u0‖2
L2(Ω)

∫ T

0
(En(τ) − ‖u0‖L2(Ω))(Em(τ) − ‖u0‖L2(Ω))dτ. (65)

Similarly, we can find a subsequence Nl, l ∈ N, such that u(Nl)
n ⇀ un in L2(0, T ;L2(Ω)). Then

u(Nl)
n − u

(Nl)
0 ⇀ un − u0 in L2(0, T ;L2(Ω)). Replace N with Nl in (65) and pass to the limit as

l → ∞ to get

∫ T

0

∫
Ω
(un(x, τ) − u0(x))(um(x, τ) − u0(x))1{τ6t}dxdτ (66)

=
∫ T

0
(En(τ) − ‖u0‖L2(Ω))(Em(t) − ‖u0‖L2(Ω))1{τ6t}dτ. (67)

Finally, choose a subsequence nl, l ∈ N, such that unl
⇀ u in L2(0, T ;L2(Ω)). Then since we

also have that Enl
⇀ E in L2(0, T ), we can replace n with nl and pass to the limit:

∫ T

0

∫
Ω
(u(x, τ) − u0(x))(um(x, τ) − u0(x))1{τ6t}dxdτ

=
∫ T

0
(E(τ) − ‖u0‖L2(Ω))(Em(t) − ‖u0‖L2(Ω))1{τ6t}dτ.

Similarly replacing m by nl and passing to the limit we get

∫ T

0

∫
Ω
(u(x, τ) − u0(x))(u(x, τ) − u0(x))1{τ6t}dxdτ

=
∫ T

0
(E(τ) − ‖u0‖L2(Ω))(E(t) − ‖u0‖L2(Ω))1{τ6t}dτ,

which can be rewritten as
∫ t

0

∫
Ω

|u(x, τ) − u0(x)|2dxdτ =
∫ t

0
|E(τ) − ‖u0‖L2(Ω)|2dτ. (68)

Differentiating this equality by t and taking the square root of both sides shows that

‖u(·, t) − u0‖L2(Ω) = |E(t) − ‖u0‖L2(Ω)| (69)
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for almost all t ∈ [0, T ]. Recall that we have assumed that E(0) = ‖u0‖L2(Ω) in terms of
Lebesgue points, thus

lim
t→0+

1
t

∫ t

0
|E(τ) − ‖u0‖L2(Ω)|dτ = 0. (70)

Hence, if we integrate equation (69) from 0 to an arbitrary but positive t, divide both sides by
t and take the limit as t → 0+

lim
t→0+

1
t

∫ t

0
‖u(·, τ) − u0‖L2(Ω)dτ = lim

t→0+

1
t

∫ t

0
|E(τ) − ‖u0‖L2(Ω)|dτ = 0. (71)

This shows that the initial condition (43) is satisfied in terms of Lebesgue points.

Remark 3.5. In the case when u0 ≡ 0, we need to modify (46) slightly, just like in Remark 2.4.
Just like before, all of the steps are mostly the same and we get the side condition directly from
the initial condition. This also shows that in this case there exist infinitely many very weak
solutions, provided that E is not identically 0.

Results and conclusions

In this thesis we have defined the weak and very weak solutions for the inverse heat
problem with an unknown source function f = f(x, t), subject to a nonlinear nonlocal condition∫

Ω |u(x, t)|2dx = E2(t) for all t ∈ [0, T ]. We then proved that in the case, when E is from the
space W 1,2(0, T ), there exists at least one weak solution while in the case when E is only from
L2(0, T ), we proved the existence of at least one very weak solution.
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