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1 Introduction

The study of functions, their continuity, differentiability has always be of great interest formath­

ematicians.

Baire functions were introduced by the French mathematician René­Louis Baire in his doctoral the­

sis in 1899. Baire’s idea was to classify functions that could be constructed as limit of some other

functions iteratively and starting from continuous functions.

Before his work, mathematicians focused on continuous functions but many important functions

such as discontinuous solutions of differential equations could not be described in a good way only

with continuity.

For this purpose, Baire introduced a hierarchy of functions to get a more general frame and extend

the notions of “well behaved” functions

The first level is Baire class 0, consisting on continuous functions. Baire class 1 consists of functions

that are pointwise limit of continuous functions. By taking pointwise limit of Baire class 1 functions

we have Baire class 2 functions. This iterative process allows to define Baire class n functions for

arbitrary n.

In this thesis we explore elementary aspects of Baire functions. Afterwe defining them, we give some

basic properties of those functions and characterization theorems and deal with some concrete func­

tions

The original component of this work consists in the study of several functions to determine their re­

spective Baire classes. To achieve this, depending on the case, we analyzed their set on continuity,

employed characterization theorems, or directly constructed these functions as limit of others.
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2 Definition and basic properties

LetX be an interval from R.

2.0.1 Definition. Let fn : X → R a real valued sequence of functions defined onX and let f : X →
R. We say that {fn} converges pointwise to f if for every x ∈ X , fn(x) converges to f(x):

lim
n→+∞

fn(x) = f(x)

for every x fromX .

2.0.2 Example. We define the sequence of functions fn on the interval [0,1] to be the n­th root of x.

We see that fn converges pointwise to the function f :

f(x) =

1 if 0 < x ≤ 1

0 if x = 0
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2.0.3 Definition. Letf : X → R a real valued function defined onX .

f is said Baire one if there exist a sequence of continuous function {fn} from X that converges

pointwise to f .

2.0.4 Remark. Baire 0 functions are continuous functions.

Now we can define Baire n functions for every natural number n.
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2.0.5 Definition. Let f : X → R a real valued function defined onX

f is said Bairen if there exist a sequence of Bairen−1 function {fn} fromX that converges pointwise

to f .

2.0.6 Remark. 1. A continuous function f is a Baire 1 function. Indeed, by taking fn = f for

every n we have of course lim
n→+∞

fn(x) = f(x)

2. By denoting sets of Baire n functionsBn, we have thatBn ⊂ Bn+1 for every natural number n

3. More generally, we have: C ⊂ B1 ⊂ B2 ⊂ ... ⊂ Bn ⊂ ...

2.0.7 Proposition. Let f be a function that is discontinuous at a finite number of points and continuous

everywhere else. Then f is Baire one function.

Proof. Let x1 < x2 < ... < xn be points of discontinuity of the function f . f is continuous on

(−∞,x1 − 1/n].Then we set fn to be f on (−∞,x1 − 1/n]. Then fn will be the line between f(x1 −
1/n) and f(x1). More formally:

f(x) =

f(x) if x ∈ (−∞,x1 − 1/n],

n ∗ (x− x1 + 1/n) ∗ (f(x1)− f(x1 − 1/n)) + +f(x− 1/n) if x ∈ [x1 − 1/n,x1]

Same thing from the right side of x1 and same thing for the other points of discontinuity.

2.0.8 Example. Let’s define the function f as follow:

f(x) =


√
x if 0 ≤ x ≤ 1and x 6= 0.5

2 if x = 0.5

2.0.9 Remark. The previous example shows that there are Baire 1 functions that are not continuous

functions. That is to say set of continuous functionsB0 is a proper subset of set of Baire 1 functions.

2.0.10 Proposition. Letf and g be Baire 1 functions. Then f + g and fg are also Baire 1 functions.

Proof. Let f and g be Baire 1 functions, then there exists sequence of continuous functions fn (re­

spectively gn) that converges to f (respectively to g). Then fn + gn is a sequence of continuous

function that converges to f + g.

Same way, fn ∗ gn is a sequence of continuous functions that converges to f ∗ g

2.0.11 Proposition. Letf and g be Baire n functions. Then f + g and fg are also Baire n functions.

Proof. This is true for Baire 1 functions according to previous proposition.

Suppose it is true for some n ∈ N and let f and g be Baire n+ 1 functions.

Then there exist fn (respectively gn) sequences of Baire n functions that converges to f and g then

(fn + gn) is Baire n function and converges to f + g.

Therefore f + g is Baire n+ 1 function.

The same reasoning allows us to prove the second point.
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2.0.12 Definition. Let {fn} be a sequence of functions defined onX and let f be a function defined

onX .

We say that {fn} converges uniformly to f if for every ε > 0, there exists N ∈ N such that for all

n ≥ N , |fn(x)− f(x)| ≤ ε for all x ∈ X . We note it:

fn
C.V.U.−−−−→

n→+∞
f

2.0.13 Example. Let’s consider the function

fn(x) =
sin(nx)

n

.

fn is pointwise convergent since for every fixed x,

|sin(nx)
n

| ≤ 1

n

and 1
n
is converging to zero.

Therefore, fn(x) converges pointwise to the zero function

We have that

‖fn − f‖∞ = sup
x∈R

∣∣∣∣sin(nx)n
− 0

∣∣∣∣ = sup
x∈R

| sin(nx)|
n

≤ 1

n
−−−−→
n→+∞

0

Therefore fn converges uniformly.

2.0.14 Proposition. Let fn a sequence of functions converging uniformly tof then fn converges point­

wise to f

2.0.15 Remark. The converse is not true.

To see this, let’s consider the sequence of functions fn = xn defined on the interval [0,1].

We see earlier that fn converges pointwise to the function:

f(x) =

1 if 0 < x ≤ 1

0 if x = 0

‖fn − f‖∞ = sup
x∈)0,1[

|xn − 1| =−−−−→
n→+∞

1

This proves that the sequence of functions fn does not converge uniformly.

2.0.16 Proposition. The uniform limit of a Baire class 1 functions is a Baire class 1 function.

Proof. [2] Let fn
C.V.U.−−−−→

n→+∞
f , where each fn function is a Baire class 1 function.

We can find a subsequence gk = fnk
such that |gk − f | ≤ 1

2k
.

We can rewrite f(x) = g1(x) +
∑∞

n=2(gn − gn−1)(x)

We have that |gn − gn−1| = |gn − f + f − gn−1| ≤ |gn − f |+ |gn−1 − f | = 1
2n

+ 1
2n−1
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Finally, |gn − gn−1| ≤ 3
2n

for every k

We will prove that
∑∞

n=2(gn − gn−1) is Baire class 1 function, this will prove that f is Baire class 1

function.

Let φnk
a continuous function converging to (gn − gn−1) when k → ∞.

We can assume that |φnk
| ≤ 3

2n
. Otherwise we consider

φ̃nk
= φnk

χ{x:|φnk
(x)|≤ 3

2n
} +

3

2n
φnk

χ{x:φnk
(x)> 3

2n
} −

3

2n
φnk

χ{x:φnk
(x)< 3

2n
}

Then we define hk =
∑∞

n=2 φnk
which is uniformly convergent by the Weierstrass M­test.

Let’s fix x and let’s ε arbitrary.

We can findN1 such that
∑∞

N1
|gn − gn−1| ≤ ε ( a convergent sequence is a Cauchy sequence)

We can findN2 such that
∑∞

N2
|φnk

| ≤ ε

Taking the maximum ofN1 andN2, let’s note itN , both conditions are satisfied.Then,

|hk(x)−
∞∑
2

(gn − gn−1)(x)|

≤
∞∑

n=N

(gn − gn−1)(x) +
∞∑

n=N

|φnk
|

+|
∞∑

n=N

φnk
−

N−1∑
n=2

(gn − gn−1)(x)|

≤ 2ε when k → ∞

Finally, we obtain when ε → 0 that
∑∞

n=2(gn − gn−1) is Baire class 1 function, from where the

result.

2.0.17 Definition. A subsetX ⊆ R is called Fσ set if is a countable union of closed sets:

A =
∞⋃
n=1

Cn

, where Cn are closed sets.

2.0.18 Proposition. Open sets are Fσ sets

Proof. Let (a,b) an open set. We can write it:

∞⋃
n=n0

[a+
1

n
,b− 1

n
]

for n0 sufficiently large.

Since every open sets is union of intervals, then every open set is Fσ set.
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2.0.19 Definition. A subsetX ⊆ R is calledGσ set if is a countable intersection of open sets:

A =
∞⋂
n=1

On

, where On are open sets.

2.0.20 Proposition. Suppose that [a, b] =
⋃n

k=1Bk with Bk Fσ sets and pairwise disjoint. Then:

f(x) =
n∑

k=1

ck ∗ χBk
(x)

for x ∈ [a,b] is a Baire 1 function.

2.0.21 Example. The Cantor setC is the subset of the interval [0,1] obtained by iteratively removing

the open middle third from each remaining interval.

Formally, it can be defined as:

C =
∞⋂
n=1

Cn,

where:

• C0 = [0,1],

• Cn = Cn−1

3
∪
(

2
3
+ Cn−1

3

)
for n ≥ 1.

Equivalently, C consists of all real numbers in [0,1] that can be written in base 3 without the digit 1:

C =

{
x ∈ [0,1]

∣∣∣ x =
∞∑
k=1

ak
3k

, ak ∈ {0,2}

}
.

The characteristic function of the Cantor set C, denoted χC : [0,1] → {0,1}, is defined by:

χC(x) =

1 if x ∈ C,

0 if x /∈ C.

We can write χCn =
⋃p

k=1 ckχBk
where p = (n ∗ 2) + 1, ck = 1 for every k and

χBk
=

1 if k is odd ,

0 otherwise.

Using the last proposition we see that χCn is Baire 1 function for every n. And we have that

lim
n→+∞

χCn = χC

Therefore χC , the characteristic function of the Cantor set, is Baire 2 function.

We will see later that it is indeed Baire 1 function.
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2.0.22 Theorem (Characterization of Baire One Functions via Fσ Sets). A function f : [a,b] → R is

Baire one if and only if for every real number r, the following sets are Fσ:

{x ∈ [a,b] : f(x) < r} and {x ∈ [a,b] : f(x) > r}.

Proof. [1] We divide the proof into two parts.

Part 1: Necessity (f is Baire one =⇒ the sets are Fσ).

Let {fn} be a sequence of continuous functions converging pointwise to f on [a,b]. Fix r ∈ R.
We show that {x ∈ [a,b] : f(x) < r} is Fσ. Observe that:

{x ∈ [a,b] : f(x) < r} =
∞⋃
k=1

∞⋃
m=1

∞⋂
n=m

{
x ∈ [a,b] : fn(x) ≤ r − 1

k

}
.

Since each fn is continuous, the set {x : fn(x) ≤ r − 1
k
} is closed. Thus, the countable union of

intersections of closed sets is Fσ.

The proof for {x : f(x) > r} is analogous by considering−f , which is also Baire one.

Part 2: Sufficiency (The sets are Fσ =⇒ f is Baire one).

Assume f is bounded (the unbounded case reduces to the bounded case via a continuous trans­

formation).

For each n, we partition [a,b] into subintervals using points yk = −M + 2Mk
n

for k = 0, . . . , n, where

M bounds |f |.
Then we define:

Ak = {x ∈ [a,b] : yk−1 < f(x) < yk+1} .

By hypothesis, Ak is Fσ. We express [a,b] =
⋃n−1

k=1 Bk, where Bk ⊆ Ak are pairwise disjoint Fσ sets.
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Then we construct a sequence of Baire one functions:

fn(x) =
n−1∑
k=1

yk · χBk
(x).

Then |fn(x)− f(x)| < 2M
n

for all x, so {fn} converges uniformly to f .

By Theorem 2.0.16 (uniform limits of Baire one functions are Baire one), f is Baire one.

For the unbounded case, we compose f with a homeomorphism h : R → (0,1).

Then h ◦ f is bounded and satisfies the Fσ condition, so it is Baire one.

Since f = h−1 ◦ (h ◦ f) and h−1 is continuous, f is Baire one.

2.0.23 Theorem. The set of Baire class n functions has the cardinality of the continuum for every

n ∈ N

Proof. We know that the set of continuous functions has the cardinality of continuum.

Every Baire class 1 function is pointwise limit of continuous functions. Thus every Baire class 1 func­

tion is determined by {f1, f2, f3,....} where fi are continuous functions.
Cardinality of {f1, f2, f3,....} is at mostN ∗Rwhich is theR (continuum). This shows that Baire class

1 function has the cardinality of continuum.

By processing the same, we prove that Baire class n function has the cardinality of continuum for

every n ∈ N

2.0.24 Definition. A set A ⊂ R is a meager set if it can be written as a countable union of nowhere

dense sets ofX:

A =
∞⋃
n=1

An

, where each An is nowhere dense set.

2.0.25 Example. • The set of rational numbers Q is a meager set. Indeed we can write it as a

countable union of singletons:

Q =
⋃
q∈Q

{q}

Each singleton {q} is nowhere dense set in R ( it’s closure {q} has empty interior).

Therefore,Q is a countable union of nowhere dense sets, then it is a meager set.

• The Cantor set is a meager set. During construction, at each step n, the lenght of intervals that

belongs to the Cantor set is devided by 3. At the end we will have that int(C) = ∅, meaning it

contains no non­empty open intervals.

One can write:

C =
∞⋃
n=1

An

where A1 = C and An = ∅ for n ≥ 2. Therefore Cantor set is a meager set.

2.0.26 Theorem. Let f : X → R a real valued function defined onX . Then f is Baire class 1 function

if and only in the sets of discontinuity of f is a meager set.
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3 Case studies

In this section, we will study three functions and determine to which class they belongs. We

will do this, depending on cases, by using characterization theorems or directly constructs those

functions as limits of some other functions.

3.0.1 Example. Let’s consider the indicator function of the rational numbers χQ:

χQ =

1 if x ∈ Q,

0 if x /∈ Q.

We will prove that it is a Baire 2 function.

Wewill construct this function as a double limit. Let’s consider the sequence of functions fm,n defined

as follow:

fm,n(x) = (cos(m!πx))2n

Let’s define for everym ∈ N:
gm(x) = lim

n→∞
(cos(m!πx))2n

This limit exist because:

• If x is rational (x = p
q
with p and q coprime) then form > q

p
, cos(m!πx) = ±1.

Therefore (cos(m!πx))2n = 1 for every n ∈ N. This gives us gm(x) = 1

• If x is irrational thenm!x is not an integer then |cos(m!πx)| < 1. Therefore, (cos(m!πx))2n =

0. This gives us gm(x) = 0

Functions fm,n are continuous functions and gm are pointwise limit of those functions. This shows

that gm are Baire class 1 functions.

Let’s consider the function

h(x) = lim
m→∞

gm(x)

• If x is rational and for sufficiently largem, h(x) = 1

• If x is irrational h(x) = 1

h(x) =

1 if x ∈ Q

0 if x /∈ Q

We expressed the Dirichlet function as a pointwise limit of Baire class 1 functions, so it is a

Baire class 2 function. In order to prove that it is not Baire class 1 we will show that gm(x) =

limn→∞(cos(m!πx))2n is not continuous.

We have that gm(x) = 1 if x is a multiple of 1
m!

and gm(x) = 0 otherwise.

Let’s take x0 =
1
m!

then gm(x0) = 1. In any neighborhood of x0 there exist points not in ( 1
m!
Z). For

example, x = x0 + σ for sufficiently small σ not making x a multiple of 1
m!
.

In this case gm(x) = 0, so limx→x0 gm(x) is not equal gm(x0).
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Thus gm is discontinuous at every point in ( 1
m!
Z).

If x0 is not in ( 1
m!
Z), gm(x) = 0. Since ( 1

m!
Z) is discrete, there is a neighborhood (x0 − σ, x0 + σ)

where gm(y) = 0 for all y in this interval. Thus gm is continuous.

Of course, to be continuous, gm must be continuous at every points. Thus gm is not continuous

This proves that Dirichlet function can not be Baire class 1 function.

3.0.2 Example. Let’s consider the function g defined as follow:

g(x) =

1
q
, x = p

q
, (p,q) = 1

0 , x /∈ Q.

We will first show that this function is discontinuous at all rationals.

Let take x0 ∈ Q, x0 = p
q
with p and q coprime. In this case according to the definition, we have:

g(x0) =
1
q
.

Let’s take ε > 1
q
. For every σ > 0, the interval (x0 − σ, x0 + σ) contains some irrational number y

because irrationals are dense in R. Therefore, g(y) = 0. So we obtain:

|g(x0)− g(y)| = |1
q
| = 1

q
> ε.

This proves that the function g is discontinuous at x0.

Now, we will prove that the function g is continuous on irrationals.

Let’s take x0 irrational and let’s take ε > 0. We takeN strictly positive integer such thatN > 1
ε

The set of rationals
p
q
such that q ≤ N in the interval [x0 − 1,x0 + 1] is finite. Let’s denote it F ,

F = {r1, r2, ..., rm}
Now we have to choose σ such that:

• σ ≤ 1 in order to have (x0 − σ, x0 + σ) ⊂ [x0 − 1,x0 + 1] .

• (x0 − σ, x0 + σ) ∩ F = ∅.

Now for every x ∈ (x0 − σ, x0 + σ):

• If x is irrational then : |g(x)− g(x0)| = 0 < ε

• If x is rational, x = p
q
, so q > N because x /∈ F . Finally, we get |g(x) − g(x0)| = |1

q
| = 1

q
<

1
N

< ε

The set of continuity of this function isQ which is a countable set.

We can writeQ =
⋂

n=1 ∞{qn}. Singleton is of course nowhere dense set.

The set of discontinuity is a meager set (countable union of nowhere dense sets), thus the function

g is Baire class 1 function.

Another way to prove this is to construct a sequence of continuous functions gn converging to g.

Let’s define function h(x) = max(|p|,q) for every rational x = p
q
and let define Sn sets as follow:

Sn = {x ∈ Q, h(x) ≤ n}

14



According definition |p| ≤ n and q ≤ n for every rational. We have also that couples (p,q) with p

and q coprime are finite for every fixed n. Thus Sn is finite for every n ∈ N.
We have to choose σn such that :

• σn < 1
n2

• σn < 1
2
min{(x− x′)x,x′ ∈ Sn, x 6= x′}

Thus intervals x− σn, x+ σn are disjoints. We define functions fn : R → R:

• If x /∈
⋃

x∈Sn
[x− σn, x+ σn] then gn(x) = 0

• If x ∈ [x− σn, x+ σn] for some x ∈ Sn, then:

– gn(x) = g(x) = 1
q
.

– gn(x− σn) = gn(x+ σn) = 0

– gn is linear on interval [x− σn, x] from 0 to g(x).

– gn is linear on interval [x,x+ σn] from g(x) to 0.

As defined, gn is continuous on intervals [x − σn, x + σn] and constant elsewhere. Intervals are

disjoints. Thus gn is continuous on R. Now we will show that gn → g for every x ∈ R.

• x = p
q
in irreducible form. Then g(x) = 1

q
. For every n ≥ h(x) , x ∈ Sn.

Then by construction gn(x) = g(x). Thus for every n ≥ h(x), |gn(x) − g(x)| = 0. Thus

limn→∞gn(x) = g(x).

• When x is irrational or x = 0:

For x = 0, g(0) = 1, then h(0) = 1. For n ≥ 1, 0 ∈ Sn so gn(0) = g(0) = 1. Thus

limn → ∞gn(0) = g(0) = 1.

Now for x irrational g(x) = 0. Let ε > 0. We must find some N ∈ N such that for every

n ≥ N , |gn(x)| < ε.

LetK = [x− 1, x+ 1] and letAε be the set of rationals x such that g(x) ≥ ε, otherwise, such

that q ≤ 1
ε
. For every q ≤ 1

ε
there is finite number of p such that x ∈ Q. ThusAε

⋂
K is finite.

LetBε = Aε

⋂
K. Bε is finite and x is irrational, then x /∈ Bε. Thus distance σε = minx∈Sn|y−

x| is strictly positive.
LetM = max{h(x), x ∈ Bε}. We chooseN such that for every n ≥ N :

– σn < σε

2

– n ≥ M

For n ≥ N , if gn(x) 6= 0 then x ∈ [x′ − σn, x
′ + σn], x

′ ∈ Sn. Thus |x− x′| < σn < σε

2
.

As |x− x′| < σn < 1, we have that x′ ∈ K. Furthermore n ≥ M so x′ ∈ Bε, thus |x− x′| <
σn < σε

2
but σε ≤ |x− x′|. This is the contradiction.

So, x′ /∈ Bε. Because x′ ∈ K we have that x′ /∈ Aε, thus g(x
′) < ε. Then, by construction,

|gn(x)| ≤ g(x′) < ε

15



If gn(x) = 0, |gn(x)| < ε also.

We proved that, for n ≥ N , |gn(x)| < ε. Thus limn→∞ gn(x) = g(x).

The figure below illustrates the function g approximation by gn continuous functions.
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2 figure. Approximation of function g by continuous functions
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3.0.3 Example. Let’s consider the characteristic function of Cantor set.

We have already proved that it is a Baire 2 function.

We will prove that it is also a Baire 1 function, first by using the the previous theorem of characteri­

zation then by constructing a sequence of continuous function that converges to it.

Let’s consider the sequence of functions:

fn = max(1− n ∗ d(x,C), 0)

where d(x,C) = infy∈C |x− y|
Functions fn are continuous for every n ∈ N ( the distance is a continuous function and max(f,g)

where f and g are continuous is continuous)

We will prove that fn converges to the characteristic function of the Cantor set.

Let’s consider two cases:

• x ∈ C: d(x,C) = 0 then fn(x) = 1.

• x /∈ C: We have that d(x,C) > 0 because C is closed.

We have also that n ∗ d(x,C) ≥ 1 for n ≥ 1
d(x,C)

.

This gives us limy→x fn(y) = 0.

Therefore the sequence of functions fn converges pointwise to χC .

This shows that the characteristic function of Cantor set χC is Baire 1 function.

The figure 3 below illustrates this convergence.
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3 figure. Characteristic Function of Cantor Set and its Approximation by Baire Class One Functions

Let’s prove the same fact using the previous theorem. We need to prove that sets

{x ∈ [a,b] : χC(x) < r} and {x ∈ [a,b] : χC(x) > r}.
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are Fσ sets.

Let’s distinguish three cases:

1. r ≤ 0 :

• {x ∈ [a,b] : χC(x) < r} = ∅
The empty set is closed. Therefore it is a Fσ set.

• {x ∈ [a,b] : χC(x) > r} = [0, 1]. This set is closed. Therefore it is a Fσ

2. 0 < r ≤ 1 :

• {x ∈ [a,b] : χC(x) < r} = C.

The Cantor set is closed. Then it’s complement is open and open sets are Fσ set.

• {x ∈ [a,b] : χC(x) > r} = C if r < 1.

{x ∈ [a,b] : χC(x) > r} = ∅ if r = 1.

The empty set and the Cantor set are Fσ sets.

3. r > 1 :

• {x ∈ [a,b] : χC(x) < r} = [0,1] (Fσ set).

• {x ∈ [a,b] : χC(x) > r} = ∅ (Fσ set)

Therefore using the previous theorem the characteristic function of the Cantor set is a Baire

class 1 function.

3.0.4 Example. Let’s consider another example of Baire 2 class function f : R → R:

f(x) =

1 if x = k
2m

for some integer k ∈ Z,m ∈ N,

0 else

The dyadic rationals are the setD =
{

k
2m

: k,m ∈ Z
}

(where f = 1) . So, this function is the characteristic function of the dyadic rationals set. We will

construct the function f via double limit in order to show that it is a Baire class 2 function.

Let’s define form ∈ N ,Dm =
{

k
2m

: k ∈ Z
}

Dm is discrete and periodic of period 1
2m

Now, let’s define the continuous function hm,n : R → R for eachm,n ∈ N as follow:

hm,n(x) = max
d∈Dm

{1− n · |x− d|, 0}

For fixedm ∈ N, the minimum distance between two points inDm is 1
2m

, so this function is continu­

ous.

When n > 2m the supports {x : |x − d| < 1/n} for d ∈ Dm are disjoints. Thus hm,n is piecewise

linear.

Now, we fixm and consider limn→∞ hm,n(x):
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• If x ∈ Dm, then hm,n(x) = 1 for every n ∈ N. Thus limn→∞ hm,n(x) = 1

• If x /∈ Dm, then by taking n > 1
d(x,Dm)

, we get hm,n(x) = 0. Thus limn→∞ hm,n(x) = 0

We proved that limn→∞ hm,n(x) = 1Dm(x).

Now let’s consider limm→∞ 1Dm(x).

• If x ∈ D, x = k
2m0

for some m0 ∈ N, then for every m > m0, x ∈ Dm because k
2m0

=
k·2m−m0

2m
∈ Dm. Thus 1Dm(x) = 1.

• If x /∈ D, then x /∈ Dm for everym ∈ N. Thus 1Dm(x) = 0

We proved that:

lim
m→∞

(
lim
n→∞

hm,n(x)
)
= lim

m→∞
1Dm(x) = 1D(x) = f(x).

So, we expressed f as pointwise limit of the function 1Dm and 1Dm is pointwise limit of functions

hm,n, which are continuous functions. Thus function f is a Baire class 2 function.

Now, we have to prove that it is not a Baire class 1 function. We will study the continuity of f to

determine the set of it’s discontinuity .

• If x ∈ D, then f(x) = 1. However every neighborhood of x contains:

– Irrational, so where f = 0.

– Rationals that are not inD , then f = 0. We proved that f is discontinuous at every point

x ∈ D

• If x /∈ D, then f(x) = 0. However every neighborhood of x contains elements fromD (since

D is dense in R), where f = 1.

Thus lim supy→x f(y) = 1. We have here f(x) = 0. Thus lim supy→x f(y) 6= f(x).

We proved that f is discontinuous at every point x /∈ D.

Thus, the functions f is discontinuous everywhere in R.
The set is discontinuity of the function f is the empty set, which is not,of course, a meager set.

According to theorem 2.0.26 the function f is not a Baire class 1 function.
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