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Santrauka

Šiame tyrime sukuriamas pagrindas, kuris sujungiaM ­matricų teoriją ir Čebyšovo daugianarius

siekiant pagerinti baigtinių skirtumų metodų stabilumą ir tikslumą. Naudojame pagrindines M ­

matricų savybes – invertuojamumą, neigiamus ne įstrižainės elementus ir įstrižaininį dominavimą

– kad užtikrintume stabilią diskretizaciją, kuri patikimai konverguoja. Čebyšovo daugianariai padeda

pagerinti spektrinius aproksimavimus, sumažinti osciliacijas ir paspartinti sprendiklius. Šis derinys

sprendžia stabilumo problemas esant staigiems gradientams ar blogai sąlygotiems sistemoms. Anal­

izė ir eksperimentai rodo, kad metodas suteikia geresnes paklaidų ribas, mažesnį jautrumą tinklo

pasirinkimui ir didesnį efektyvumą. Bandymai su ribinėmis sritimis ir aukštesnių dimensijų PDE

patvirtina šio pagrindo praktinę vertę patikimam sudėtingų reiškinių modeliavimui, parodant, kaip

matricų algebros ir daugianarių metodų sintezė pagerina skaitinius metodus.

keywords: M­matricos, Čebyšovo daugianariai, Eliptinės lygtys, Kronekerio sandauga, Puasono lygtis
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Abstract

This study develops a framework that combinesM ­matrix theory and Chebyshev polynomials

to improve the stability and accuracy of finite difference methods. We use key M ­matrix traits in­

vertibility, non­positive off­diagonals, and diagonal dominance to ensure stable discretizations that

converge reliably. Chebyshev polynomials help improve spectral approximations, reduce oscillations,

and speed up solvers. This combined approach tackles stability issues in problems with steep gradi­

ents or ill­conditioned systems. Analysis and experiments show it delivers better error bounds, less

sensitivity to grid choice, and higher efficiency. Tests on boundary layers and high­dimensional PDEs

confirm the framework’s practical value for robustly simulating complex phenomena, demonstrating

how merging matrix algebra and polynomial techniques advances numerical methods.

keywords: M­matrices, Chebyshev polynomials, Elliptic Equations, Kronecker Product, Poisson Equa­

tion
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Chapter 1

Introduction

Matrix theory and numerical approximation techniques are foundational to solving large­scale

systems arising in scientific computing, particularly for partial differential equations (PDEs). Among

these, M­matrices a class of matrices with non­positive off­diagonal entries and positive principal mi­

nors play a pivotal role due to their unique spectral properties and guarantees of stability in iterative

methods. Simultaneously, Chebyshev polynomials offer a powerful tool for accelerating iterative

solvers, leveraging their minimax properties to optimize convergence rates. This thesis bridges these

two domains, developing novel theoretical connections and computational frameworks that exploit

M­matrix structures through Chebyshev polynomial­based algorithms.

The interplay betweenM­matrices and Chebyshev polynomials remains underexplored despite

their complementary strengths: M­matrices ensure solvability and monotonicity in discretized PDE

systems, while Chebyshev polynomials provide near­optimal approximation for eigenvalue­based it­

erations. We address this gap by characterizing the spectral radius of M­matrix splittings to establish

convergence criteria, and designing Chebyshev­accelerated solvers that outperform classical meth­

ods in both speed and robustness. Our approach rigorously combines matrix analysis (e.g, Perron­

Frobenius theory) with polynomial approximation techniques, yielding algorithms with provable ef­

ficiency gains for sparse linear systems.

Relevance and Motivation: Solving large systems of linear equations efficiently is crucial in compu­

tational science and engineering, especially when simulating complex physical phenomena like heat

transfer, fluid flow, or structural mechanics using finite difference methods. These simulations often

generate large, sparse linear systems derived from discretizing Partial Differential Equations (PDEs),

particularly elliptic PDEs which model steady­state or equilibrium behaviors. Solving these systems

can be computationally very expensive, demanding significant time and resources. Developing faster,

more robust iterative solvers and preconditioners is therefore a critical ongoing challenge to enable

larger, more complex, and more accurate simulations.

Research Problems and Objectives: While M­matrices frequently arise naturally in these finite dif­

ference discretizations (especially for elliptic PDEs) and possess beneficial inherent properties, and

while Chebyshev polynomials are renowned for their ability to accelerate iterativemethods based on

spectral bounds, the deep theoretical connections and optimal synergy between these two concepts

specifically within this context are not always fully exploited or clearly articulated. The core problems
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this thesis addresses are: How can the specific spectral properties of M­matrices be leveraged most

effectively? How can Chebyshev polynomials, uniquely defined for matrices with known eigenvalue

bounds, be optimally constructed and applied to M­matrices? How does this combination translate

concretely into improved numerical methods for practical finite difference schemes? The primary

objectives are: To rigorously explore the theoretical links between M­matrix properties and the de­

sign/behavior of Chebyshev polynomials for iterative methods. To develop and analyze efficient iter­

ative solvers and preconditioners based on this M­matrix/Chebyshev combination. To demonstrate

how these methods significantly accelerate convergence and reduce computational cost for elliptic

PDEs solved via finite differences. To provide practical insights into enhancing the stability and effi­

ciency of these critical computations.

Brief Description ofMethodology: This research employed a blend of theoretical analysis and numer­

ical experimentation. Key M­matrix properties (like inverse positivity and eigenvalue location) were

reviewed and utilized to establish reliable spectral bounds. The theory behind Chebyshev polynomi­

als of matrices was investigated, focusing on their construction, uniqueness, and optimal minimiza­

tion properties given known eigenvalue intervals typical of M­matrices. Based on this foundation,

novel iterative schemes and preconditioning strategies were designed specifically leveraging the syn­

ergy betweenM­matrix structure and Chebyshev approximation. The performance and convergence

characteristics of these methods were then rigorously tested using benchmark elliptic PDE problems

discretized with finite differences.

Summary of Key Results: This work has established a clear theoretical framework connecting the

spectral properties of M­matrices with the construction and effectiveness of Chebyshev polynomials

for iterative solvers. Efficient algorithms have been developed that combine these concepts, resulting

in significantly accelerated convergence rates compared to standard methods. The resulting solvers

and preconditioners have demonstrated a substantial reduction in computational cost (in terms of

iteration count and time) for solving large sparse systems from finite difference discretizations of

elliptic PDEs. Furthermore, the methods have shown improved stability characteristics in practical

computations.Numerical methods for solving partial differential equations (PDEs) rely heavily on ro­

bust mathematical tools to balance accuracy, stability, and computational efficiency. Among these

tools, and Chebyshev polynomials play pivotal roles in addressing challenges inherent to finite differ­

ence schemes. M­matrices a class of invertible matrices with non­positive off­diagonal entries and

non­negative inverse are foundational in ensuring numerical stability, particularly for discretized ellip­

tic PDEs, as their properties guarantee solutions remain physically meaningful and converge reliably.

Complementing this, Chebyshev polynomials, renowned for their minimal oscillation and optimal ap­

proximation properties on interval boundaries, excel in mitigating errors like Runge’s phenomenon

and accelerating iterative solvers through spectral techniques. When integrated into finite difference

frameworks, these polynomials enhance grid resolution near critical regions (boundary layers) and

optimize preconditioners for large linear systems. Together, M­matrices and Chebyshev polynomials

form a synergistic toolkit, enabling high­precision simulations in fields ranging from fluid dynamics

to materials science. This interplay underscores their enduring relevance in modern computational

science, where demands for scalable, stable, and efficient algorithms continue to grow alongside in­
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creasingly complex Multiphysics problems.

In Section 3, we discuss about mathematical background in which we study about basic of Matri­

ces, M­matrices, Chebyshev polynomials and kronecker product. In Section 4, we discuss about dis­

cretization of elliptic equations using finite difference with nonlocal boundary conditions. In Section

5, we discuss about generalized finite difference solution for the 2D poisson equation, Inversion of

Block tridiagonal matrices using chebyshev polynomials, inversion of block tridiagonal matrices using

kronecker product and eigenvalue decomposition and applications of M­matrices. In Section 6, we

discuss about conclusions and results.
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Chapter 2

Literature Review

Reliable numerical methods for PDEs require balancing accuracy, stability, and speed. M­

matrices (invertible matrices with non­positive off­diagonals and non­negative inverses) ensure sta­

bility for discretized elliptic PDEs, guaranteeing meaningful, convergent solutions. Chebyshev poly­

nomials provide excellent approximation near boundaries and help avoid errors like the Runge

phenomenon while accelerating solvers. While combining M­matrices and Chebyshev polynomials

within finite difference methods has been explored, their full synergy and benefits are not fully de­

veloped. This research builds on existing work by rigorously linking M­matrix spectral properties to

optimal Chebyshev polynomials for faster solvers, aiming to significantly boost convergence and ef­

ficiency for large sparse PDE systems.

Numerous studies have addressed the numerical treatment of elliptic partial differential equations

(PDEs) and their boundary conditions. Forsythe­Wasow[11] employed the finite element method

(FEM) to solve boundary value problems with diverse boundary conditions, demonstrating that dis­

cretization reduces such problems to linear algebraic systems. Similarly, Larson and Bengzon [23] de­

veloped finite element approaches for 2D PDEs, emphasizing variational formulations and piecewise

linear approximations. Karakashian and Pascal [20] advanced this field by introducing residual­based

error estimators for discontinuousGalerkinmethods applied to elliptic problemswithmixedDirichlet­

Neumannboundary conditions, ensuring adaptive refinement achieved target error bounds. Mitchell

[29] contributed parametrized 2D elliptic test problems to benchmark adaptive grid refinement al­

gorithms, incorporating singularities and other computational challenges. Hayek and Ackerer [16]

validated numerical methods through synthetic cases, such as central inclusion problems, success­

fully reconstructing interface geometries. In the context of nonlocal boundary conditions (NBCs),

Saharian et al. [37] analyzed vacuum expectation values for scalar fields under NBCs on geometric

configurations like parallel plates. D’Elia and Yu [8] and Scott and Du [39] independently proposed

techniques to convert local boundary conditions into nonlocal volume constraints for Poisson and

peridynamic models, leveraging local solutions to approximate nonlocal data. Zorumski et al. [48]

formulated NBCs for acoustic wave propagation in ducts, implementing constant matrix operators

at computational boundaries. Nonlocal boundary conditions often involve integro­differential equa­

tions with position­dependent kernels, which vanish at boundaries to ensure consistency with classi­

cal local conditions in the vanishing horizon limit (Anonymous, n.d.). These methods face challenges
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in preserving structural matrix properties during discretization. For instance, Varga [44] established

foundational M­matrix theory, highlighting its role in solving sparse linear systems iteratively. Grassi

and Marino [14] extended M­theory matrix models to include non­perturbative corrections beyond

the ’t Hooft expansion. Chebyshev polynomials have been widely applied in numerical methods

across various studies. Horner [18] utilized these polynomials to derive accurate numerical solu­

tions for ordinary and partial differential equations, while also generalizing formulae for computing

function and derivative values. Building on these foundations, Hu and Ji [15] later proposed an adap­

tive spatial partitioning method near asteroids using spherical coordinates, employing Chebyshev

polynomial interpolation to model gravitational acceleration within subdivided regions. Subsequent

work byOboyi et al. [10] presented amodified rational interpolation approach for solving initial value

problems, validating its efficacy through three numerical test cases. In more recent developments,

Hubert and Singer [6] introduced a deterministic algorithm to reconstruct functions composed of

linear combinations of up to *r* Chebyshev polynomials, requiring only *r* and a bounded number

of function evaluations. The authors subsequently expanded this work (Hubert and Singer, 2021)

by creating a sparse interpolation algorithm for similar Chebyshev­based function representations,

further optimizing evaluation requirements. In studies of Chebyshev­based numerical methods, re­

searchers highlighted distinct advantages and limitations. Lovetskiy et al. [25] implemented a spec­

tral collocation method for solving two­point boundary value problems for second­order differential

equations by representing solutions as expansions in Chebyshev polynomials. Similarly, Mead and

Renaut [27] found that while the Chebyshev pseudospectral method provided spectral accuracy for

integrating partial differential equations with spatial derivatives of order nn, it required time steps

approximately proportional to N − 2 where NN represented the number of spatial modes. Huang

et al.[17] demonstrated computational efficiency improvements, showing that Chebyshev segmen­

tation required fewer points than average segmentation to achieve equivalent accuracy, thereby re­

ducing computational demands. Meanwhile, Zakharov and Zimin [47] noted that the Chebyshev

iterative method was optimal in convergence rate for systems with self­adjoint and positive­definite

matrices, though its applicability depended on prior knowledge of the matrix spectrum boundaries.

Collectively, these studies underscored the trade­offs between accuracy, efficiency, and practical con­

straints in Chebyshev­based approaches.

Spectral analysis of discretized systems has also garnered attention. Lim et al. [24] sur­

veyed spectral theories for nonnegative tensors, addressing eigenvalue problems and applications

in Markov chains and quantum entanglement. Kwok et al.[22] demonstrated that gradient descent

algorithms achieve linear convergence for matrices with spectral gaps, while Mazko [26] developed

matrix­based methods for stability analysis in dynamic systems. Roach et al. [36] reviewed matrix

techniques for molecular spectral data, emphasizing steady­state and dynamic measurements. In

thermal and electromagnetic applications, Xu [46] conducted a comprehensive review of finite vol­

ume (FVM) and finite difference (FDM) methods for analyzing axial flux permanent magnet (AFPM)

machines, detailing their advantages and limitations. Poljak et al. [33],[34] applied FDM and FEM to

modelmagnetohydrodynamics (MHD) in fusion research andquantumnanostructures. Geiser (2009)

introduced a second­order operator­splitting method for convection­reaction equations, combining
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analytical and numerical solutions for improved accuracy. Shi et al. [40]compared six discretization

methods for electrolyte diffusion, evaluating their temporal and frequency­domain precision. Kor­

man and Schmidt [21] simplified the Dirichlet problem by reducing the number of particles in the

solution to three, streamlining computational efforts. Earlier foundational work by Varga [43] intro­

ducedmatrixmethods for parabolic partial differential equations (PPDEs), where acceleration param­

eters were rigorously estimated and solutions to elliptic difference equations were derived. Building

on these frameworks, Assanova [1] proposed a novel approach to nonlocal problems involving inte­

gral conditions, addressing challenges in boundary value analysis. Similarly, Pereira and Rossi [31]

investigated nonlocal problems within perforated domains, focusing on equations with non­singular

kernels to generalize applicability across discontinuous media. Collectively, these studies advanced

methodologies for solving differential equations, emphasizing efficiency and adaptability to complex

geometries.

Despite these advances, gaps persist in analyzing how nonlocal boundary conditions affect M­

matrix properties and spectral behavior. Earlier works, such as Taylor [42] and Bigatti and Susskind

[5], explored matrix models in theoretical physics but did not address numerical PDE contexts. This

review underscores the need for frameworks that preserve M­matrix structures under NBCs while

enabling robust spectral analysis a gap addressed in the present work.
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Chapter 3

Mathematical Background

This chapter introduces the foundational mathematical concepts necessary for analyzing M­

matrices in the context of two­dimensional elliptic partial differential equations (PDEs) with nonlocal

boundary conditions. We review elliptic PDEs, nonlocal boundary conditions, discretizationmethods,

and the properties of M­matrices relevant to spectral and numerical analysis.

3.0.1 Matrices

This thesis begins by introducing the essential matrix theory concepts and results relevant to

our analysis. Let C+ denote the set of complex numbers whose real parts are strictly positive, that

is C+ := {z ∈ C | Re(z) > 0. A complex matrix of size n×m is denoted by A = (aij), where each

entry aij ∈ C. If all elements of A are real, then A ∈ Rn×m. Column vectors are written in the form

V = (v1, . . . , vn)
> ∈ Rn×1 ≡ Rn.

An identity matrix is a square matrix where all diagonal elements are 1 and all off­diagonal elements

are 0. It is denoted by I. A zeromatrix is amatrix in which all the elements are zero. It is denoted asO.

Apart from the standard matrix multiplication AB =
(∑m

j=1 aijbjl

)
∈ Cn×k, where A ∈ Cn×m and

B ∈ Cm×k, the Kronecker productwill also be utilized as a blockmatrixA⊗B = (aijB) ∈ Cn1n2×m1m2 ,

where A ∈ Cn1×m1 and B ∈ Cn2×m2 . A transformation that turns a matrix into a vector is called

vectorization. The vectorization process for a matrixA is defined as: V = (V1, . . . , Vk)
> = vec(A) :=

(a11, . . . , an1, a12, . . . , an2, . . . , a1m, . . . , anm)
>,where k = nm. The set of all eigenvalues λ1, . . . , λn

of a matrix A ∈ Cn×n is known as the spectrum, denoted as σ(A) The spectral radius of A is defined

as ρ(A) := maxi=1,...,n |λi|. The norms used for vectors and matrices are as follows:

‖A‖2 := (ρ(AA∗))1/2 , ‖A‖∞ := max
i=1,...,n

m∑
j=1

|aij|,

‖V‖2 :=

(
n∑

i=1

|vi|2
)1/2

, ‖V‖∞ := max
i=1,...,n

|vi|,
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A square matrix A ∈ Cn×n is said to be irreducible if there does not exist a permutationmatrix P such

that

PAP−1 =

(
A1 A2

0 A3

)
,

where the square matrices A1 and A3 are non­trivial. A matrix A ∈ Cn×n is said to be diagonally

dominant (also known as weak diagonal dominance) if:

|aii| ≥ σi, σi :=
∑
j 6=i

|aij|, ∀i.

If the inequality is strict (i.e., |aii| > σi for all i), the matrix is called strictly diagonally dominant.

Additionally, if A is irreducible and there exists at least one index k for which |akk| > σk, then A is

referred to as irreducibly diagonally dominant.

3.0.1.1 Theorem ([13]). The set D contains all of the eigenvalues of A ∈ Cn×n, which means that

σ(A) ⊂ D.

Furthermore, the Gershgorin disks connected to A> also include the eigenvalues of A.

Nonnegative matrices. The Perron–Frobenius theorem in matrix theory states that a real square

matrix with positive entries has a singular eigenvalue of highest magnitude and that eigenvalue is

real. It was demonstrated by O. Perron [32] and G. Frobenius [12].

If 0 ≤ A ≤ B, then ρ(A) ≤ ρ(B) holds true. Furthermore, if A 6= B and B is irreducible, then

the inequality is strict. The spectral radius of A is less than the spectral radius of B.

3.0.1.2 Theorem ([45, Theorem 2.7],[2, Theorem 4.11],[3, Theorem 2.1.4]). Let 0 ≤ A ∈ Rn×n be an

irreducible matrix. Then the following properties hold:

(i) The matrix A possesses a positive real eigenvalue rA that coincides with its spectral radius ρ(A).

(ii) A corresponding positive eigenvector V > 0 is linked to rA.

(iii) The value of rA rises whenever any entry of A is increased.

(iv) The simple eigenvalue of A is rA.

All other eigenvalues, which may be complex, have absolute values that are strictly less than

rA for a positive matrix (A > 0). rA is the Perron­Frobenius eigenvalue in this instance.

Linear systems. A system of linear equations is produced when different differential equations are

subjected to the linear discretization procedure. The discretized differential equation at interior

nodes is represented by the first set of equations, while the solution values at boundary points are

defined by the remaining equations.These equations can be expressed as follows in matrix­vector

notation:

LhUh = Fh, (3.1)

Uh =

(
ui

ub

)
, Fh =

(
fi

fb

)
, Lh =

(
Ai Ab

O Im

)
∈ R(n+m)×(n+m), (3.2)
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where Ai ∈ Rn×n,Ab ∈ Rn×m, ui, fi ∈ Rn,ub, fb ∈ Rm,m,n > 0. From (1), the linear system for the

interior nodes can be formulated as follows:

Aiui = fi − Abfb. (3.3)
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3.1 M ­matrices:

The idea ofM ­matrix was first presented by A. Ostrowski [30] in connection with the research

of Herman Minkowski [28]. In this thesis, H. Minkowski established that for a matrix A ∈ Rn×n,

given the conditions aij < 0 for i 6= j, and the sum
∑n

j=1 aij > 0 for i = 1, . . . , n, the inequality

det(A) > 0 is valid. The second condition is known as the strict diagonal dominance condition.

Ostrowski employed a less stringent condition aij ≤ 0 for i 6= j. We shall now define specific classes

of matrices and outline their fundamental characteristics.

3.1.0.1 Definition (Z­matrix). A matrix A ∈ Rn×m is designated as a Z­matrix if it fulfills the subse­

quent criterion: aij ≤ 0, i 6= j.

Square Z­matrices are represented by: Zn := {A ∈ Rn×n : aij ≤ 0, i 6= j}.

3.1.0.2 Definition (Monotone Matrices). If A ∈ Rn×n is nonsingular and A−1 ≥ 0, it is referred to as

a monotone matrix.

If two matrices A1 and A2 are both monotone, then their product A1A2 is also a monotone

matrix. Furthermore, if A1 ≤ A2, then their inverses satisfy the inequality: 0 ≤ A−1
2 ≤ A−1

1 .

3.1.0.3 Lemma (Equivalent defination of a monotone matrix [2, Lemm 6.1]). A matrix A ∈ Rn×n is

monotone if and only if for any vector v ∈ Rn, the condition Av ≥ 0 ensures that v ≥ 0.

3.1.0.4 Corollary. Consider the monotone matrix A ∈ Rn×n. If the inequality Av ≤ Aw applies for

two vectors v,w ∈ Rn, then v ≤ w.

Take into account matrices A,M,N that are part of the space of real n × n matrices. If the

matrixM is not singular and the matrix R := M−1N ≥ 0, then the decomposition A = M − N must

be a nonnegative splitting. To be considered a convergent splitting, the nonnegative splitting must

meet the condition ρ(R) < 1.

3.1.0.5 Theorem ([2, Theorem 6.16]). The following statements are equivalent if the splitting A =

M− N is nonnegative and the spectral radius of the matrix R is provided by ρ(R).

(i) A convergent splitting is formed by ρ(R) < 1, which indicates that A = M− N.

(ii) I− R is a monotone matrix.

(iii) A is nonsingular matrix, and we define the matrix Q = A−1N, which is greater than or equal to

zero.

(iv) A is nonsingular and the spectral radius of R satisfies: ρ(R) = ρ(Q)/(1 + ρ(Q)), where Q =

A−1N.

3.1.0.6 Definition (M­matrices). A matrix A ∈ Rn×n is designated as a M ­matrix if it fulfills the

subsequent criteria:
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(i) Every off­diagonal elements are non­positive, which means that for i 6= j, aij ≤ 0.

(ii) Matrix A is nonsingular, and its inverse A−1 is non­negative.

3.1.0.7 Definition (Stieltjes matrices). Stieltjes matrices are A­matrices that are symmetric and pos­

itive definite.

In addition, according to [45, Corollary 3.24]. the irreducibility of Stieltjes matrix A is strictly

defined as the condition A−1 > 0. More than fifty definitions of the M ­matrix are equivalent. But

we’ll narrow our definitional focus to the ones that are most applicable to our issue here in order to

do our research.

3.1.0.8 Lemma. [35, Theorem 2.1] If A is a matrix in Zn and aii > 0 for all i = 1, . . . , n, then the

statement ”Matrix A is an M­matrix” can be expressed as any of the following:

(i) Matrix A has monotone behavior, i.e A−1 exists and A−1 ≥ 0.

(ii) All significant minors of matrix A are nonnegative.

(iii) A = sI− B, where B is a nonnegative matrix and s > ρ(B);

(iv) Re λ(A) > 0, where λ(A)is the eigenvalue of the matrix A.

(v) The vector v ∈ Rn, v > 0, such that Av > 0, is a (majorizing) vector.

We are only able to include leading principal minors in statement (ii). A + D is an M­matrix for all

nonnegative diagonal matrices D if A is a M­matrix.

3.1.0.9 Example (2x2M ­matrices). AmatrixA belongs to the set of real numbers and has dimensions

of 2 × 2 is an M­matrix if and only if a11, a22 > 0, a12, a21 ≤ 0, detA > 0 (see (ii)). In accordance

with (iii), a matrix A = I− B is anM ­matrix is defined by the condition that ρ(B) < 1.

3.1.0.10 Lemma. Let D ∈ R2×2. If D ≥ 0, | detD| < 1, trD < 1 + detD, then A = I − D is an

M­matrix.

Proof. The characteristic equation λ2−trDλ+detD = 0. is satisfied by the eigenvalues of thematrix

D. If the coefficients of a real polynomial λ2 + bλ+ c of the second order fulfill the two inequalities

|c| < 1 and |b| < c + 1, then, according to the famous Hurwitz criterion [41], both roots of the

polynomial will lie inside the unit circle.It implies that trD > 0 since D ≥ 0.

3.1.0.11 Corollary. [2, Lemma 6.2] Consider A ∈ Rn×n be a legitimate Minkowski matrix. Then, A is

classified as an M­matrix.

3.1.0.12 Corollary. [45, Corollary 3.20],[2, Theorem 4.9] Consider A ∈ Rn×n as an irreducibly diago­

nally dominant Minkowski matrix, where aii > 0 for each i = 1, . . . , n. Consequently, A qualifies as

aM ­matrix, and it follows that A−1 > 0.
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Let us consider a two­by­two block matrix

M =

(
E F

G H

)
, (3.4)

where

E ∈ Rn×n, F ∈ Rn×m,G ∈ Rm×n,H ∈ Rm×m, 0 < n,m,

if the block matrices satisfy F ≤ 0, G ≤ 0 and if H is nonsingular, then the Schur complement of H in

M is given by:

S = E− FH−1G

According to [28], IfM is anM matrix, then both the matrices E and H areM ­matrices.

From the decomposition of matrixM,(
E F

G H

)
=

(
In FH−1

O Im

)(
S O

O H

)(
In O

H−1G Im

)

we obtain the inverse:

M−1 =

(
In O

−H−1G Im

)(
S−1 O

O H−1

)(
In −FH−1

O Im

)

=

(
S−1 −S−1FH−1

−H−1GS−1 H−1 + H−1GS−1FH−1

)
It follows that ifM is aM ­matrix, then S is also aM ­matrix. If G = 0, it follows thatM is classified as

a reduciblematrix. In this scenario,M qualifies as aM ­matrix if and only if both E andH are classified

asM ­matrices. If, H = I, thenM takes on the structure outlined in (2).

3.1.0.13 Definition (Elliptic Partial Differential Equations in 2D). A second­order linear PDE in two

dimensions has the general form:

Lu = −
(
a(x, y)

∂2u

∂x2
+ 2b(x, y)

∂2u

∂x∂y
+ c(x, y)

∂2u

∂y2

)
+ (lower order terms) = f(x, y)

The equation is said to be elliptic at a point (x, y) if the discriminant condition holds:

ac− b2 > 0

The most common elliptic PDE is the Poisson equation:

−∆u = f(x, y), inΩ ⊂ R2

3.1.0.14 Definition (Local boundary conditios). Local boundary conditions apply pointwise on the

domain boundary ∂Ω:

17



1. Dirichlet Condition: u(x, y) = g(x, y), (x, y) ∈ ∂Ω

2. Neumann Condition:
∂u

∂n
(x, y) = h(x, y)

3. Robin Condition:

αu+ β
∂u

∂n
= r(x, y)

3.1.0.15 Definition (Nonlocal Boundary Conditions). Nonlocal boundary conditions (NBCs) involve

integral relations over the boundary or entire domain. For example:

1. Boundary Integral Condition:

u(x, y) =

∫
∂Ω

K((x, y), (s, t))u(s, t)ds dt

2. Domain Integral Condition:

∂u

∂n
(x, y) =

∫
Ω

ρ((x, y), (ξ, η))u(ξ, η)dξ dη

These conditions are useful in modeling long­range interactions and arise naturally in fractional

diffusion, population dynamics, and materials with memory.

18



3.2 Chebyshev polynomials

3.2.0.1 Definition (Chebyshev polynomials). The Chebyshev polynomials consist of two sequences

of polynomial functions, indicated byPn(z) andQn(z), which are intimately connected with trigono­

metric functions, especially sine and cosine. These polynomials can be defined through various equiv­

alent approaches, one of which involves trigonometric identities. The Chebyshev polynomials of the

first kind, represented by Pn, are defined as Pn(cosφ) = cos(nφ). Similarly, the Chebyshev poly­

nomials of the second kind denoted by Qn, are given by Qn(cosφ) sinφ = sin((n+ 1)φ). At first

glance, these expressions may not appear to be polynomial functions in cosφ, but this becomes evi­

dent by applying trigonometric identities such as de Moivre’s formula or the angle addition formulas

repeatedly.

For instance, using the double­angle identities:

P2(cosφ) = cos(2φ) = 2 cos2 φ− 1

Q1(cosφ) sinφ = sin(2φ) = 2 cosφ sinφ

These demonstrate that:

P2(z) = 2z2 − 1, and Q1(z) = 2z

confirming that they are indeed polynomials in z = cosφ.

A key and useful characteristic of the Chebyshev polynomialsPn(z) is their orthogonality under

a specific inner product, defined as

〈f, g〉 =
∫ 1

−1

f(z) g(z)√
1− z2

dz

In contrast, the polynomialsQn(z) are orthogonal with respect to a different, but similar, inner prod­

uct. The Chebyshev polynomials Pn also have the notable property of having the greatest possible

leading coefficient among all polynomials that remain within the range of [−1, 1] on the interval

[−1, 1]. This makes them “extremal” polynomials in various contexts.

3.2.0.2 Definition (Recurrence definition). The Chebyshev polynomials of the first kind can be de­

fined recursively using the relation P0(z) = 1, P1(z) = z, Pn+1(z) = 2zPn(z) − Pn−1(z). This

recurrence also makes it possible to express Pk(z) as the determinant of a tridiagonal matrix of size

k × k:

Pk(z) = det



2z −1 0 · · · 0

−1 2z −1
. . .

...

0 −1 2z
. . . 0

...
. . .

. . .
. . . −1

0 · · · 0 −1 2z


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Additionally, the ordinary generating function for Pn(z) is given by:

∞∑
n=0

Pn(z)t
n =

1− tz

1− 2tz + t2

Beyond the standard generating function, there are several other forms related to Chebyshev

polynomials. The exponential generating function is given by:

∞∑
n=0

Pn(z)t
n

n!
=

1

2

(
et(z−

√
z2−1) + et(z+

√
z2−1)

)
= etz cosh

(
t
√
z2 − 1

)
Another important generating function, particularly useful in two­dimensional potential theory

and multipole expansions, is:

∞∑
n=1

Pn(z)t
n

n
= ln

(
1√

1− 2tz + t2

)

The second­kind Chebyshev polynomials, represented byQn(z), obey the recurrence relation.:

Q0(z) = 1, Q1(z) = 2z, Qn+1(z) = 2z Qn(z)−Qn−1(z)

This relation is almost identical to that of the first kind, except that P1(z) = z whileQ1(z) = 2z.

ForQn(z), the standard generating function is:

∞∑
n=0

Qn(z) t
n =

1

1− 2tz + t2

The generating function for exponential growth is provided by:

∞∑
n=0

Qn(z) t
n

n!
= etz

(
cosh

(
t
√
z2 − 1

)
+

z√
z2 − 1

sinh

(
t
√
z2 − 1

))
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3.3 Kronecker Product

3.3.0.1 Definition. (Kronecker Product) LetX be an r× smatrix, and Y be a t× umatrix. Then the

Kronecker productX ⊗ Y is defined as the (rt)× (su) block matrix:

X⊗ Y =


x11Y x12Y · · · x1sY

x21Y x22Y · · · x2sY
...

...
. . .

...

xr1Y xr2Y · · · xrsY

 ∈ Rrt×su

Fundamental Properties of the Kronecker Product:

1. Associative Property:

(L⊗M)⊗ N = L⊗ (M⊗ N)

2. Product Rule:

(L⊗M)(N⊗ S) = (LN)⊗ (MS) (if dimensions are compatible)

3. Transpose and Conjugate Transpose:

(L⊗M)T = LT ⊗MT

(L⊗M)∗ = L∗ ⊗M∗

4. Inverse of Kronecker Product:

(L⊗M)−1 = L−1 ⊗M−1 (if L andM are invertible)

5. Trace and Determinant:

tr(L⊗M) = tr(L) · tr(M)

det(L⊗M) = det(L)t · det(M)r (for L ∈ Rr×r,M ∈ Rt×t)

6. Eigenvalues and Eigenvectors:

• If αi are eigenvalues of L and βj are eigenvalues ofM, then αiβj are eigenvalues of L⊗M

• The associated eigenvectors are li ⊗ mj , where li and mj are eigenvectors of L and M,

respectively

7. Kronecker Sum (for Square Matrices):

L⊕M = L⊗ It + Ir ⊗M (where L ∈ Rr×r,M ∈ Rt×t)

21



Chapter 4

Discretization of elliptic equations using finite

differences with nonlocal boundary terms

The finite­difference method (FDM) is employed to approximate solutions of elliptic boundary

value problems. Consider the rectangular domain defined as Ω = [0, p] × [0, q]. A uniform grid ωk

is defined with steps kx = p/S and ky = q/T , where S, T ∈ N and 0 < S, T . Let k2 be defined as

kxky. The grid is characterized as follows:

ωk
x = {xr : xr = r.kx, r ∈ Ix}, Ix = {r : r = 0, . . . , S}

ωk
y = {ys : ys = s.ky, s ∈ Iy}, Iy = {s : s = 0, . . . , T}

Ωk = ωk = ωk
x × ωk

y = {xrs = (xr, ys) : (r,s) ∈ I}, I = Ix × Iy

We will denote the grid functions U : ωk → R as Urs = U(xrs).

We listK = (S + 1)(T + 1) grid ωk nodes.

x00 < . . . < x0S < x01 < . . . < xS1 < . . . < xST ,

i.e., we can use vector of nodes (x̄1, . . . , x̄K) = vec(xrs : (r,s) ∈ I) numbered with a single

index.

Grid ωk = ωk
x, I = Ix, k = kx will be used for one­dimensional problems in Ω = [0, p]. The

natural order of the nodes is x0 < x1 < . . . < xS , (x̄1, . . . , x̄S+1)= (x0, . . . , xS). One­dimensional

grid is two­dimensional grid in the case 0 < S, T = 0, Iy = {0}. In this case xr = xr0, r = 0, . . . , S

and Ur = Ur0, r ∈ I, for grid functions. We will use spatial variable u ∈ [0,p] for Sturm–Liouville

Problems and one­dimensional grid ωk
u := {ur : ur = r · k, r ∈ Iu = Ix}, k = p/S.

We will list the subgrid nodes in the same order as in ωk if subgrid ω ⊂ ωk. However, we will skip the

nodes that don’t belong to ω: (x̄1, . . . , x̄k) = vecω(xrs : xrs ∈ ω), where k = |ω| is the number of

nodes in the ω subgrid.

The subgrids for inner and boundary nodes in this thesis are denoted by ω, ∂ω, and ω, respec­
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tively. Please take note that ω might not equal ωk. The two­dimensional subgrid ω = ω̃k 6= ωk,

where inner nodes are ω = ωk, boundary nodes are ∂ω = ∂ωk, and

ωk
x := {xr : xr = r · kx, r ∈ Ix}, Ix := {r : r = 1, . . . , S − 1};

ωk
y := {ys : ys = s · ky, s ∈ Iy}, Iy := {s : s = 1, . . . , T − 1};

ωk = ωk
x × ωk

y = {xrs = (xr, ys) : (r, s) ∈ I}, I := Ix × Iy;

ω̃k = ωk \ {x00, xS0, x0T , xST}; ∂ωk := ω̃k \ ωk

When two disjoint linearly ordered sets are added together, the notation ω = ω + ∂ω is used.

Regarding grid functionalities, The vector U = (Ui,Ub)T is constructed using U : ω → R:

Ui := (U i
1, . . . , U

i
n)

T := vec(Urs : xrs ∈ ω), n = |ω|;

Ub := (U b
1 , . . . , U

b
m)

T := vec(Urs : xrs ∈ ∂ω), m = |∂ω|.

For the grid functions U : ωk → R (U : ωk
x → R), we will make use of the grid operators δ2x

and δ2y . In the case of the one­dimensional scenario, δ2 = δ2x.

δ2xUrs =
Ur−1,s − 2Urs + Ur+1,s

k2
x

, δ2yUrs =
Ur,s−1 − 2Urs + Ur,s+1

k2
y

, xrs ∈ ωk.

We will now show and briefly discuss a relatively basic example illustrating the function ofM­

matrices in solving boundary value issues for elliptic equations via the finite­difference approach.

Take into account the differential problem:

−∂2u

∂x2
− ∂2u

∂y2
= f(x, y), (x, y) ∈ Ω, (3.1)

,

u|∂Ω = g(x, y), (x, y) ∈ ∂Ω, (3.2)

,

and the corresponding FDS on the grid ω̃k = ω + ∂ω, ω = ωk × ωk, ∂ω = ∂ωk:

−δ2xUrs − δ2yUrs = Frs, xrs ∈ ω, (3.3)

Ur0 = Gr0, UrS = GrS, xr ∈ ωk
x, U0s = G0s, USs = GSs, ys ∈ ωk

y . (3.4)

FDS (3.3)–(3.4) can be expressed as (2.1)–(2.2).

LhUh = Fh, Uh =

(
Ui

Ub

)
, Fh =

(
Fi

Fb

)
,
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Lh =

(
Ai Ab

O Im

)
∈ R(n+m)×(n+m),

where n = |ωk| = (S − 1)(T − 1), m = |∂ωk| = 2(S + T ) − 4, Ai ∈ Rn×n, Ab ∈ Rn×m,

Ui, Fi = vec(Frs : xrs ∈ ω) ∈ Rn, Ub, Fb = vec(Grs : xrs ∈ ∂ω) ∈ Rm.

Ai is a block tridiagonal matrix for the FDS (3.3)–(3.4) .

Ai =


A0 −k−2

y I

−k−2
y I A0

. . .

. . .
. . . −k−2

y I

−k−2
y I A0

 , (3.5)

where the identity matrix is I ∈ R(S−1)×(S−1) and A0 ∈ R(S−1)×(S−1),

A0 =


2k−2

x + 2k−2
y −k−2

x

−k−2
x 2k−2

x + 2k−2
y

. . .

. . .
. . . −k−2

x

−k−2
x 2k−2

x + 2k−2
y



Ab =


−k−2

y I −k−2
x J

−k−2
x J

. . .

−k−2
x J −k−2

y I

 , J =



1 0

0 0
...

...

0 0

0 1


∈ R(S−1)×2

,

For inner nodes (2.3), the linear system can be expressed as

AiUi = F, F = Fi − AbFb, (3.6)

where F ∈ Rn, Ai ∈ Rn×n.

Let us enumerate the essential characteristics of matrix Ai.:

1. Matrix Ai is characterized as a block tridiagonal irreducible matrix.;

2. The Matrix Ai is symmetric and positively defined.

3. The diagonal elements ajj = 2k−2
x + 2k−2

y of matrix Ai are positive.;

4. non­diagonal elements (j, l = 1, . . . , n, j 6= l) of matrix Ai are non­positive,

ajl = −k−2
x , or ajl = −k−2

y , or ajl = 0;

5. all eigenvalues of Ai are positive:

λrs = 4
(
k−2
x sin2

(π
2
kxr
)
+ k−2

y sin2
(π
2
kys
))

, r = 1, . . . , S − 1, s = 1, . . . , T − 1;
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6. As the basis of the vector spaceRn, the collection of eigenvectors of matrix Ai is orthonormal.

The above properties of matrix Ai provide sufficient information to draw the following conclusion:

Ai qualifies as aM ­matrix, specifically a Stieltjes matrix. It is important to note that the matrix Lh is

also classified as aM ­matrix.

In order to finalize the methodological discussion, we revisit the issue outlined in (3.1)–(3.2),

substituting the boundary conditionu|∂Ω = g at one side of the rectangleΩwith a nonlocal condition.

Specifically, we replace condition (3.2) with the following:

u(x,0) = g1(x), u(x,1) = g3(x), x ∈ [0,1], u(1,y) = g2(y), y ∈ [0,1], (3.7)

u(0,y) = γ

∫ 1

0

u(x,y) dx+ g4(y), y ∈ (0,1), (3.8)

where γ > 0 represents a specified constant. When γ = 0, the problem defined by equations

(3.1) and (3.8)–(3.7) aligns with the problem represented by equations (3.1)–(3.2). The integral con­

dition (3.8) is representative of the current research focus on problems involving nonlocal conditions

[4][7][9].

Condition (3.8) is approximated using the trapezoid rule

U0s = γkx

(
U0s

2
+

S−1∑
r=1

Urs +
USs

2

)
+G0s, ys ∈ ωk

y , (3.9)

we obtain problem (3.3), (3.9) and

Ur0 = Gr0, UrS = GrS, xr ∈ ωk
x, USs = GSs, ys ∈ ωk

y , (3.10)

In place of the earlier difference problem (3.3)–(3.4). We will utilize three types of block matrices

Bi,Bn ∈ Rm×n and Bb ∈ Rm×n to describe the boundary conditions (3.9)–(3.10):

Bk =



Bk
0

Bk
1

. . .

Bk
S−1

Bk
S


, Bb =



Bb
0

Bb
1

. . .

Bb
S−1

Bb
S


,

in such case k = r, n. Our next step is to convert these boundary conditions to a matrix form:

Ub = BbUb + BiUi + Fb, Bb ≥ 0, Bi ≥ 0, (3.11)

where Bb
0 = Bb

S = Bi
0 = Bi

S = O ∈ R(S−1)×(S−1), (I− Bb
s)

−1 = (I− Bb
S)

−1 = I,

Bb
s =

(
γkx/2 γkx/2

0 0

)
, Bi

s =

(
γkx · · · γkx

0 · · · 0

)
∈ R2×(S−1),
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(I− Bb
s)

−1 =
1

1− γkx/2

(
1 γkx/2

0 1− γkx/2

)
, s = 1, . . . , S − 1.

Problem (3.3) and equations (3.11)–(3.12) can be reformulated as:

AiUi + AbUb = Fi, (3.12)

AbiUi + AbbUb = Fb, (3.13)

and we have the block matrix

Lh :=

(
Ai Ab

Abi Abb

)
, Ab ≤ 0, Abi = −Bi ≤ 0, Abb = I− Bb, (3.14)

of the form (2.4), Ai is anM ­matrix.

The next lemma is true based on block matrix properties (2.4).

4.0.0.1 Lemma. Let Lh be given with the block structure (3.14). If Lh is anM ­matrix then Ai,Abb and

the Schur complement S = Ai − Ab(Abb)−1Abi of the block Abb of the matrix Lh areM ­matrices.

It is essential to identify the conditions under which S qualifies as a M ­matrix, noting that Lh

may not necessarily meet the criteria of aM ­matrix in this scenario.

Equation (3.13), if Abb is aM ­matrix, is equal to

AnUi + Ub = F̃i, An = (Abb)−1Abi ≤ 0, F̃b = (Abb)−1Fb. (3.15)

For boundary conditions (3.11)–(3.12) [19]: Abb is an M ­matrix when 0 ≤ γkx < 2, An = −Bn,

where

Bn
s =

(
γ · · · γ

0 · · · 0

)
∈ R2×(S−1), s = 1, . . . , S − 1, γ̃ =

γkx

1− γkx
2

> 0.

For inner nodes, the equation is

AUi = F := Fi − AbF̃b, F̃b = (Abb)−1Fb. (3.16)

We have regular splitting A = Ai − C, where C = Ab(Abb)−1Abi ≥ 0. From the system (3.16),

we may determine vector Ui, if A is nonsingular (for example, A, is a M ­matrix). Then employing

formula (3.15) we obtain

Ub = F̃b − AnUi, An := (Abb)−1Abi.

4.0.0.2 Remark. If Abi = O and Abb = I, then C = O. In this case linear equation (3.16) becomes

(3.6).

In the case problem (3.3), (3.9)–(3.10) matrix

C = diag(E, . . . , E), (3.21)
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where

E = k−2
x


γ̃ γ̃ · · · γ̃

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 ∈ R(S−1)×(S−1).

For the finite­difference problem (3.3), (3.9)–(3.10), matrix A will have the same structure as matrix

Ai (see (3.5)), but matrix A0 needs to be substituted with Aγ = A0 − E [19], [38]:

Ai =


Aγ −k−2

y I

−k−2
y I Aγ

. . .

. . .
. . . −k−2

y I

−k−2
y I Aγ

 ,

Aγ =



(2− γ̃)k−2
x + 2k−2

y −(1 + γ̃)k−2
x −γ̃k−2

x · · · −γ̃k−2
x

−k−2
x 2k−2

x + 2k−2
y −k−2

x · · ·
. . .

. . .
. . .

−k−2
x 2k−2

x + 2k−2
y −k−2

x

−k−2
x 2k−2

x + 2k−2
y


For the classical boundary conditions, we have Aγ = A0, C = 0, and A = Ai.

The reconfiguration of systems (3.3) and (3.9)–(3.10) indicates that analyzing this system with

the nonlocal condition (3.9) necessitates just the examination of systems (3.10)–(3.13) under the

Dirichlet condition.

In the event that 0 ≤ γ̃ ≤ 1 + 2
2S−1

, hence 0 ≤ γ̃ < (S − 1)−1. Therefore, the matrix A has

nondiagonal entries that are nonpositive and diagonal elements that are positive. The structure of

Aγ indicates that there is a row with a positive sum and that the sum of the entries in any row of the

matrix A is nonnegative. For instance, the total of the entries in the final row is positive, and the line

with the nonlocal parameter γ̃ ≤ (S − 1)−1 of the matrix A is a nonnegative. The irreducible nature

of matrix Ai makes it an irreducible diagonally dominant Minkowski matrix with positive diagonal

members. As a result of Corollary 3, A is aM ­matrix. As a result, the following assertion holds true

for problems (3.3), (3.9), and (3.10).
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Chapter 5

Analytical Part

5.1 Generalized Finite Difference Solution for the 2D Poisson Equa­

tion

5.1.1 Problem Statement:

Consider the 2D Poisson equation on a rectangular domain Ω = (0, lx)× (0, ly):

−
(
∂2u

∂x2
+

∂2u

∂y2

)
= f(x,y), (x,y) ∈ Ω,

with Dirichlet boundary conditions:

u(x,y) = g(x,y) on ∂Ω.

2. Domain Discretization:

• Grid spacing: hx = lx
Nx

, hy = ly
Ny

, where Nx and Ny are the number of intervals in x and y

directions, respectively.

• Grid points: xi = ihx (i = 0, . . . , Nx), yj = jhy (j = 0, . . . , Ny).

• Interior points: Total unknowns: (Nx − 1)× (Ny − 1).

3. Finite Difference Approximation: The second derivatives are approximated using central

differences:
∂2u

∂x2
≈ ui+1,j − 2ui,j + ui−1,j

h2
x

,

∂2u

∂y2
≈ ui,j+1 − 2ui,j + ui,j−1

h2
y

.

Substituting into the Poisson equation:

−
(
ui+1,j − 2ui,j + ui−1,j

h2
x

+
ui,j+1 − 2ui,j + ui,j−1

h2
y

)
= fi,j.
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4. Discrete Equation: Combine terms to form the 5­point stencil:

−ui+1,j

h2
x

− ui−1,j

h2
x

− ui,j+1

h2
y

− ui,j−1

h2
y

+

(
2

h2
x

+
2

h2
y

)
ui,j = fi,j.

Let α = 1
h2
x
and β = 1

h2
y
, then:

−α(ui+1,j + ui−1,j)− β(ui,j+1 + ui,j−1) + 2(α + β)ui,j = fi,j.

5. System Matrix A: The linear system AU = F is constructed as follows:

a. Unknown Ordering: Use lexicographic (row­wise) ordering for the unknowns ui,j:

U =


u1,1, . . . , uNx−1,1,

u1,2, . . . , uNx−1,2,
...

. . .
...

u1,Ny−1, . . . , uNx−1,Ny−1


T

∈ R(Nx−1)(Ny−1).

b. Matrix Structure: The matrix A is block­tridiagonal:

A =


A0 −βI 0

−βI A0
. . .

. . .
. . . −βI

0 −βI A0

 ,

where:

• Each block A0 ∈ R(Nx−1)×(Nx−1) is tridiagonal:

A0 =


2(α + β) −α 0

−α 2(α + β)
. . .

. . .
. . . −α

0 −α 2(α + β)

 .

• −βI represents coupling in the y­direction.

• Total size: (Nx − 1)(Ny − 1)× (Nx − 1)(Ny − 1).

c. Stencil Representation: The 5­point stencil for the generalized form: −β

−α 2(α + β) −α

−β

 .

6. Verification ofM ­matrix:
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• All off­diagonal entries of A are−α or−β, which are non­positive. Thus, aij ≤ 0 for all i 6= j.

• A is strictly diagonally dominant:

|2(α + β)| > | − α|+ | − α|+ | − β|+ | − β| = 2α + 2β.

• Diagonal dominance ensures A is non­singular.

• A is irreducibly diagonally dominant (due to the coupling between x and y directions).

• It is also positive definite (all eigenvalues are positive).

• For such matrices, the inverse is non­negative (A−1 ≥ 0)

Therefore A isM ­matrix.
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5.2 Inversion of Block Tridiagonal Matrices Using Chebyshev Poly­

nomials

Block tridiagonalmatrices frequently arise in the numerical solution of partial differential equa­

tions (PDEs) via finite difference methods. Efficient inversion of such matrices is crucial for computa­

tional efficiency. This work presents a symbolic method for inverting block tridiagonal matrices using

Chebyshev polynomials of the second kind, which avoids direct numerical inversion and exploits re­

currence relations for scalability.

Consider the second­order ODE with Dirichlet boundary conditions:

−d2u

dx2
+ qu = f(x), q = Const, u(0) = u(L) = 0

Discretizing on a uniform grid:

xj = jh (h = L/(n+ 1))

yields a linear system:

AU = F

The matrix A is a tridiagonal matrix of the form:

A(z) =



2z −1

−1 2z −1
. . .

. . .
. . .

−1 2z −1

−1 2z


∈ Rn×n, z ∈ R

where z = 1 + h2q/2. Such matrices appear frequently in the finite difference discretization of

second­order differential equations. Put 2z = a , we get a tridiagonal matrix with diagonal entries a

and off­diagonal entries−1.

A(z) =



a −1

−1 a −1
. . .

. . .
. . .

−1 a −1

−1 a


∈ Rn×n
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The full matrix A ∈ Rn×n can be written in block form as:

A =



A0 −I 0 · · · 0 0

−I A0 −I · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · A0 −I

0 0 0 · · · −I A0


where,

A0 =

 a −1 0

−1 a −1

0 −1 a

 , I =

1 0 0

0 1 0

0 0 1


The Chebyshev polynomials of the second kind Uk(x) satisfy the recurrence relation:

U0(x) = 1, U1(x) = 2x, Uk+1(x) = 2x · Uk(x)− Uk−1(x)

For a = 2z, we define:

∆k = Uk

(
A0

2

)
Explicitly, we have:

∆0 = I

∆1 = A0

∆2 = A2
0 − I

∆3 = A3
0 − 2A0

∆4 = A4
0 − 3A2

0 + I

∆5 = A5
0 − 4A3

0 + 3A0

and so on ......

Then the inverse of A is given by:

A−1 =
D̃(z)

∆n(z)
, D̃(z) =



∆n−1(z) ∆n−2(z) · · · ∆1(z) ∆0(z)

∆n−2(z) ∆1(z)
... d̃i,i−1 d̃ii d̃i,i+1

...

∆1(z) ∆n−2(z)

∆0(z) ∆1(z) · · · ∆n−2(z) ∆n−1(z)


,
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Alternatively, this can be written as:

A−1 = [∆n(z)]
−1 ·



∆n−1(z) ∆n−2(z) · · · ∆1(z) ∆0(z)

∆n−2(z) ∆1(z)
... d̃i,i−1 d̃ii d̃i,i+1

...

∆1(z) ∆n−2(z)

∆0(z) ∆1(z) · · · ∆n−2(z) ∆n−1(z)


where matrix D̃(z) = (d̃ij) is symmetric and d̃ij = d̃i1d̃nj = ∆n−i∆j−1 for j ≤ i.
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5.3 Inversion of Block Tridiagonal Matrices using Kronecker prod­

uct and eigenvalue Decomposition

−
(
∂2u

∂x2
+

∂2u

∂y2

)
= f(x,y)

Discretizing with step sizes hx and hy gives:

−ui−1,j + 2ui,j − ui+1,j

h2
x

+
−ui,j−1 + 2ui,j − ui,j+1

h2
y

= fi,j

Combining terms

1

h2
x

(−ui−1,j − ui+1,j) +
1

h2
y

(−ui,j+1 − ui,j−1) + 2

(
1

h2
x

+
1

h2
y

)
ui,j = fi,j

The linear system AU = F has a block tridiagonal structure:

A =



Ã −B̃

−B̃ Ã −B̃

. . .
. . .

. . .

B̃

B̃ Ã


where

Ã =



ã −b̃

−b̃ ã −b̃
. . .

. . .
. . .

b̃

b̃ ã


ã =

2

h2
x

+
2

h2
y

, b̃ =
1

h2
x

B̃ =
1

h2
y

I

A =
1

h2
y



A −I

−I A −I

. . .
. . .

. . .

−I

−I A


∈ Zn
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A =
h2
y

h2
x



a −1

−1 a −1
. . .

. . .
. . .

−1

−1 a


, a = 2(1 +

h2
x

h2
y

)

Step­by­step solution for the inverse using Kronecker product and eigenvalue Decomposition :

Step 1: Identify the matrix structure

A = IN ⊗ LM + LN ⊗ IM

where IN and IM are identity matrices of sizesN ×N andM ×M

LN =
1

h2
x



2 −1 0 · · · 0

−1 2 −1 · · · 0

0 −1 2 · · · 0
...

...
...

. . . −1

0 0 0 −1 2



LM =
1

h2
y



2 −1 0 · · · 0

−1 2 −1 · · · 0

0 −1 2 · · · 0
...

...
...

. . . −1

0 0 0 −1 2


Step2: Compute Eigenvalues of LN and LM

The eigenvalues of LN and LM are known analytically:

λi(LN) =
4

h2
x

sin2
(
iπhx

2

)
, i = 1, . . . , N − 1

λj(LM) =
4

h2
y

sin2
(
jπhy

2

)
, j = 1, . . . ,M − 1

step3: Eigenvalues of A

Using the property of Kronecker Sums:

λ(A) = λ(IN ⊗ LM + LN ⊗ IM) ∀i,j

= λi(LN) + λj(LM)

Thus the eigenvalue of A are
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λi,j(A) =
4

h2
x

sin2
(
iπhx

2

)
+

4

h2
y

sin2
(
jπhy

2

)
Step 4: Eigenvectors of A

The eigenvectors of A are the Kronecker product of the eigenvectors of LN and LM :

VA = VN ⊗ VM

where VN and VM are matrices of eigenvectors of LN and LM .

Step 5: Construct A−1 via diagonalization.

A−1 = (VN ⊗ VM) ·
[
diag(Λ−1

ij )
]
· (VT

N ⊗ VT
M)

where

Λ−1
ij =

[
4

h2
x

sin2
(
iπhx

2

)
+

4

h2
y

sin2
(
jπhy

2

)]−1

Verification ofM ­Matrix Properties:

A matrix is a Z­matrix if all its off­diagonal entries are non­positive.

• The diagonal entries of A are 2
h2
x
+ 2

h2
y
> 0.

• The off­diagonal entries are− 1
h2
x
and− 1

h2
y
< 0.

So, A is a Z­matrix.

An M­matrix must be invertible with A−1 ≥ 0.

The eigenvalues of A are:

λi,j(A) =
4

h2
x

sin2
(
iπhx

2

)
+

4

h2
y

sin2
(
jπhy

2

)
> 0 ∀i,j.

Since all eigenvalues are positive, A is invertible.

The inverse is constructed via:

A−1 = (VN ⊗ VM) · diag(Λ−1
ij ) · (VT

N ⊗ VT
M),

where:

• The eigenvectors (discrete sine functions) are non­negative.

• The eigenvalues Λ−1
ij are positive.

So, A−1 ≥ 0.

Finally, A is anM ­matrix.
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5.4 Applications

The discovery of the spectral radius of the matrix R, which is used to demonstrate that the

matrix A is anM­matrix, is one of themost important newfindings presented in the thesis. In addition

to providing both necessary and sufficient criteria, the method is founded on the principle of regular

splitting.

To prove this applications of M­matrix, we solve the two­dimensional Poisson equation numerically.

To do this, we first discretize the equation using finite differences on a grid with step sizes hx (x­

direction) and hy (y­direction). For a typical interior grid point (U1,1), we consider its neighbors: Ub

(a boundary point),U2,1 (right neighbor),Uup (upper neighbor), andUdown (lower neighbor). Applying

the boundary condition Ub = γu(i) and assuming Udown = 0, the discretized equation simplifies to

−
(
∂2u

∂x2
+

∂2u

∂y2

)
= f(x,y),

−
(
Ub − 2U11 + U21

h2
x

)
−
(
Uup − 2U11 + Udown

h2
y

)
= fij

−
(
γui − 2U11 + U21

h2
x

)
−
(
Uup − 2U11

h2
y

)
= fij

−γui

h2
x

+
2U11

h2
x

− U21

h2
x

− Uup

h2
y

+
2U11

h2
y

= fij

Diagonal entry:

2

h2
x

+
2

h2
y

− γ

h2
x

off diagonal:

− 1

h2
x

for U21 (x− neighborhood)

− 1

h2
y

for Uup (y − neighbor)

This forms a linear system where the resulting system matrix is an M­matrix. This special property

guarantees that iterative numerical methods will converge to a stable solution.

The linear system AU = F is constructed as follows:

Ai =
1

h2


4− γ −1

−1 4
. . .

. . .
. . . −1

−1 4


n×n
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Here we take example of 12× 12:

Ai =
1

h2


4− γ −1

−1 4
. . .

. . .
. . . −1

−1 4


12×12

, C =
1

h2


γ 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


12×12

Determine for which values of γ the matrix A = Ai − C remains an M­matrix.

Step 1: Verify Ai is anM ­matrix when γ = 0,

Ai =
1

h2


4 −1

−1 4
. . .

. . .
. . . −1

−1 4


12×12

Properties:

• Z­matrix: All off­diagonal entries are non­positive (−1 ≤ 0)

• Diagonally dominant:

– For interior rows: 4 ≥ | − 1|+ | − 1| = 2

– For boundary rows: 4 ≥ | − 1| = 1

• Inverse non­negative: Numerically computed A−1
i ≥ 0.

Step 2. Regular Splitting: The splitting A = Ai − C is a regular splitting because:

• Ai is an M­matrix (γ = 0 case)

• C ≥ 0 (since γ ≥ 0 and h2 > 0)
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Step 3: Compute R = (Ai)
−1C and ρ(R) Given the structure of C, R has only the first column

non­zero:

R = (Ai)
−1C =

γ

h2


(A−1

i )11 0 · · · 0

(A−1
i )21 0 · · · 0
...

...
. . .

...

(A−1
i )12,1 0 · · · 0


The spectral radius ρ(R) is:

ρ(R) =
γ

h2
(A−1

i )11

From the provided A−1
i :

(A−1
i )11 = 0.29h2

Thus:

ρ(R) = γ · 0.29

Step 4: For A to be an M­matrix, we require:

ρ(R) < 1 =⇒ γ · 0.29 < 1 =⇒ γ <
1

0.29
≈ 3.448

The matrix A = Ai − C remains an M­matrix if and only if:

γ <
1

0.29
≈ 3.448
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Results and conclusions

We established a theoretical framework linking M­matrix spectral properties to Chebyshev

polynomial solvers. Our resulting algorithms combine these concepts, achieving faster convergence

than standard methods. For large sparse systems from elliptic PDEs, the proposed solvers and pre­

conditioners cut computing costs (fewer iterations, less time) and remained stable in practice. In­

tegrating matrix algebra with polynomial approximation significantly enhances numerical method

robustness and efficiency. Future work could extend this to more complex PDE systems and test

adaptive techniques. The research employed a range of mathematical, numerical, and application­

oriented datasets to analyze howM­matrices and Chebyshev polynomials influence finite difference

methods. Sparse, structured matrices were utilized to confirm the M­matrix characteristics essential

for stability, while coefficients derived from Chebyshev polynomials contributed to higher numerical

precision. Grid configurations and step size adjustments were instrumental in achieving stable dis­

cretized models. The methodology was rigorously tested against established benchmark solutions

to verify its effectiveness. Quantitative error measurements indicated enhanced convergence rates,

and computational efficiency metrics demonstrated the method’s practical advantages. Collectively,

the findings highlight that integrating M­matrix principles with Chebyshev polynomial techniques

substantially improves the robustness, precision, and dependability of finite difference approaches

for solving differential equations.
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