Utilization of Waste Phosphogypsum in Bioceramic Material Development

Elzbieta Bajorinaite¹, Laura Michailova¹, Simona Jureviciute¹, Denis Sokol¹, Zivile Stankeviciute¹,

Inga Grigoraviciute¹, Aivaras Kareiva¹

Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

elzbieta.bajorinaite@chgf.stud.vu.lt

Faculty of **Chemistry and** Geosciences

Introduction

Calcium hydroxyapatite

Calcium hydroxyapatite $(Ca_{10}(PO_4)_6(OH)_2)$; CHA) is used to reconstruct bone defects due to its high osteoconductivity and natural bone replacement ability.

Phosphogypsum

Phosphogypsum (PG) is an industrial byproduct of phosphoric acid production, primarily composed of calcium sulfate dihydrate. While often considered waste, its high Ca²⁺ content makes it a promising raw material for synthesizing bioceramics

Fig. 4. PG mountains in Kedainiai

Improved bone regeneration

Fig. 2. 3D-Printed Bone Implant.

CHA closely resembles the inorganic component of natural bone tissue

like CHA, offering a cost-effective and sustainable alternative for bone graft materials.

Fig. 5. Utilization of bone graft material in implantology.

Objective and strategy

A strategy to obtain the desired bone implants

Our study aims to explore the potential of PG waste as a sustainable raw material for synthesizing high-quality, cost-effective CHA for artificial bone implants.

Materials and Methods

(1) Experimental

(2) The scheme of the synthesis

PG, disodium hydrogen phosphate (Na₂HPO₄, 98%, Merck), and sodium dihydrogen phosphate (NaH₂PO₄, 99%, Merck) were used as starting materials for the fabrication of CHA powders via a dissolution-precipitation reaction. In the synthesis process, an initial 1.00 g portion of waste PG was placed in the reaction vessel and mixed with a 100.0 mL solution of 1.00 M Na₂HPO₄ or with a mixture containing 50.0 mL of 1.00 M Na₂HPO₄ and 50.0 mL of 1.00 M NaH₂PO₄. The resultant mixture was left for 48 h, 96 h, 144 h and 192 h allowing the reaction to progress in an oven at ~80 °C temperature. After synthesis, the liquid phase was decanted, and the resulting powders was rinsed with 500 mL of hot (~80 °C) deionized water, followed by several additional rinses with 250 mL of room-temperature deionized water. Finally, the vacuum-filtered product was dried at 80 °C for 2 h.

Conclusion

PG has emerged as a valuable raw material for synthesizing bioceramic materials, particularly CHA, which is extensively used in biomedical applications. Experimental findings demonstrate that PG can be efficiently processed via a dissolution-precipitation

[1] W. Roemer, B. Steingrobe, Sustainability, 10 (2018) 1166. [2] P. Vejan, T. Khadiran, R. Abdullah, N. Ahmad, J. Controll. Release, 339 (2021) 321-334. [3] N. Ahmad, M. Usman, H. R. Ahmad, M. Sabir, Z. U. R. Farooqi, M. T. Shehzad, Env. Monit. Assess., 195 (2023) 1326. [4] V. Leskeviciene, D. Nizeviciene, Chem. Indust. Chem. Eng. Quart., 20 (2014) 233-240. [5] J. I. Isek, L. M. Kaluderovic, N. S. Vukovic, M. Milosevic, I. Vukasinovic, Z. P. Tomic, Clay Min., 55 (2020) 63-70. [7] Q. J. Chen, W. J. Ding, H. J. Sun, T. J. Peng, G. H. Ma, Energy, 206 (2020) 118148. [8] Y. N. Kovalev, V. N. Yaglov, T. A. Chistova, V. V. Girinsky, Sci. Techn., 20 (2021) 493-498. [9] H. Liu, C. C. Nie, H. P. Li, G. M. Xie, J. X. Cao, Constr. Build. Mater., 347 (2022) 128500. [10] J. Qi, H. Zhu, P. Zhou, X. Wang, Z. Wang, S. Yang, D. Yang, B. Li, Int. J. Env. Sci. Technol., 20 (2023) 10449-10464. [11] G. R. Lu, Z.H. Feng, Y. Xu, Y. Y. Jin, G. H. Zhang, J. F. Hu, T. H. Yu, M. M. Wang, M. Liu, H. Y. Yang, Agronomy-Basel, 13 (2023) 2726. [12] D. Yelatontsev, J. Hazard. Mater. Lett., 4 (2023) 100089. [13] A. Kyono, R. Ikeda, S. Takagi, W. Nishiyasu, J. Mineral. Petrol. Sci., 117 (2022) 015. [14] H. Boke, S. Akkurt, S. Ozdemir, E. Hale Gokturk, E. N. Caner Saltik, Mater. Lett., 58 (2004) 723–726. [15] R. Raiseliene, G. Linkaite, A. Zarkov, A. Kareiva, I. Grigoraviciute, Materials, 17 (2024) 788

formation of CHA. This process allows PG to be converted into a biocompatible material suitable for various medical uses, offering both an environmentally sustainable solution and a cost-effective approach for producing highquality CHA.