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ECG-Based Detection of Acute Myocardial
Infarction using a Wrist-Worn Device

Karolina Jančiulevičiūtė, Daivaras Sokas, Justinas Bacevičius, Leif Sörnmo, Life Fellow, IEEE, and Andrius
Petrėnas

Abstract— Background: A wrist-worn wearable device for
acquiring limb and chest ECG leads (wECG) may constitute
a promising approach to detection of acute myocardial
infarction (AMI). However, it remains to be demonstrated
whether the information conveyed by the wECG is sufficient
for AMI detection.
Objective: To explore explainable machine learning models
for detecting AMI using the wECG.
Methods: Two types of machine learning models are ex-
plored: a convolutional neural network (CNN) using the raw
ECG as input and a gradient-boosting decision tree (GBDT)
using clinically informative features. 123 participants were
included, divided into patients with AMI, patients with other
cardiovascular diseases, and healthy individuals. A wrist-
worn device equipped with three biopotential electrodes was
used to acquire two ECG leads with a single touch: limb lead
I and another lead involving a specific body site, i.e., either
the V3 or V5 electrode positions, or the abdomen.
Results: The best performance on the test dataset is ob-
tained using models that incorporate all four leads. The CNN
model performs slightly better than the GBDT model, with a
sensitivity of 0.77 and specificity of 0.75 compared to 0.77
and 0.72, respectively. When distinguishing between AMI
and healthy participants, the specificity increases to 0.94
for the CNN model and 0.90 for the GBDT model. Feature
importance analysis shows that the GBDT model primarily
relies on the J point, while the CNN model primarily relies
on the QRS complex.
Conclusions: wECG-based AMI detection shows consider-
able promise in out-of-hospital settings. However, caution
is needed as CNN explanations rarely agree with the ECG
intervals typically analyzed in clinical practice.

Index Terms— Wearable device, interpretability, explain-
ability, decision tree, convolutional neural network, ST
elevation.

I. INTRODUCTION

Effective health management and timely intervention in
individuals under 75 years of age could prevent two out of
three deaths [1], with acute myocardial infarction (AMI) as the
leading cause [2]. Considering that the risk of mortality within
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one year increases by 8% for every half-hour delay [3], timely
treatment is crucial. Therefore, developing widely accessible,
easy-to-use technology for AMI detection in out-of-hospital
settings is essential when early symptoms like chest pain
appear [4], [5]. With the growing adoption of telemedicine,
smart device-based AMI detection offers a promising solu-
tion [6]. However, no such technology is currently available
commercially.

When diagnosing AMI, a single-lead ECG, commonly
available in smart devices, is insufficient because infarct-related
changes may appear in different leads depending on infarct
location. Therefore, sequential acquisition of a multi-lead ECG
has been considered using portable smartphone accessories [7]
and smartwatches with integrated electrodes [8], [9]. The multi-
lead ECG is obtained by acquiring sequential, single-lead ECGs
at different electrode sites, a procedure which is not only
time-consuming but prone to diagnostic errors [10], [11]. An
alternative approach to increasing the number of leads is to
use a device with three electrodes, enabling the simultaneous
acquisition of lead I and an additional lead involving a specific
touch site, such as a precordial [12].

Machine learning models have been explored for detecting
myocardial infarction, often without accounting for whether
the infarction is acute or past although differently manifested
in the ECG. Some models rely solely on clinically meaningful
features like ST segment deviation [13], [14], while others
incorporate additional features which have not been established
in clinical practice [15]. Another increasingly more common
approach is to bypass feature engineering and use the raw ECG,
employing, e.g., convolutional neural networks (CNNs) [16]–
[25], autoencoder deep learning [26], and residual neural
networks [27]. Since most models were developed using the
12-lead ECG, their performance on few-lead ECGs obtained
from wrist-worn devices remains unclear.

An important limitation of CNN models is their lack of
explainability, hindering their adoption in clinical settings.
Despite ongoing efforts to enhance explainability of such
models [28], [29], no major breakthrough has been achieved
thus far. Numerous studies indicate that machine learning
models that bypass feature engineering, particularly those
trained on small datasets, may explore peculiarities in the
ECG, such as artifacts or device-specific properties, rather
than clinically relevant features, see, e.g., [30], [31]. For
instance, a dense CNN employing gradient-weighted class
activation mapping (Grad-CAM) was used to detect myocardial
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infarction [31]. However, the activation maps were not always
clinically informative, as the highlighted ECG intervals lacked
relevance to infarction. Similarly, the local interpretable model-
agnostic explanations method identified the QRS complex as
the most influential interval in a random forest model [30],
thus contradicting the well-established understanding that the
ST segment and T wave are the most relevant.

For the first time, the present study explores AMI detection
using a wrist-worn device capable of acquiring a two-lead
ECG (hereafter referred to as“wECG”) with a single touch.
Another novelty is that detection performance is evaluated on
a tailored dataset comprising patients with AMI and those with
other cardiovascular diseases (CVDs) that cause infarction-
like ECG deviations or pose challenges in ECG interpretation.
Due to the lack of databases containing the necessary wECG
leads, an unconventional approach is adopted in this study in
which the wECGs are converted from a publicly available
12-lead ECG dataset and used for training and validating
machine learning models. This approach has the potential to
facilitate the creation of training databases for non-standard
ECGs, resembling those acquired from chest touch sites using
commercial smartwatches [9]. Moreover, the study examines
whether a wrist-worn device can provide valuable diagnostic
information when the wECG is acquired by the patient without
technician assistance. To compare their explanatory capabilities,
two types of machine learning models are examined: one that
relies on clinically relevant features and another that bypasses
feature engineering.

The paper is organized as follows. Section 2 describes the
study population and the training dataset derived from a public
12-lead ECG database to match the morphology of wECGs.
Section 3 details the architecture of the explainable machine
learning models used for AMI detection and Sec. 4 covers
hyperparameter selection. Section 5 presents the performance
results, followed by a discussion in Sec. 6.

II. MATERIALS

A. Test dataset

A total of 123 participants were enrolled in the present
study to create a test dataset. Patients were recruited from
the inpatient wards of the Cardiology Department at Vilnius
University Hospital Santara Clinics, Lithuania. Participants
provided signed, written informed consent, adhering to the
ethical principles in the Declaration of Helsinki. Approval of
the study was obtained from the regional bioethics committee
under the reference number 158200-18/7-1052-557.

The participants were aged 18 or older, without an implanted
cardiac device or cognitive/linguistic deficits. They were
classified into three groups: (1) The AMI group consisting
of patients diagnosed with ST-elevation (STEMI) or non-ST-
elevation myocardial infarction (NSTEMI), with the wECG
recorded within 24 hours of percutaneous coronary intervention;
(2) The other CVD group consisting of patients with heart
conditions causing infarction-like ECG deviations or chal-
lenging interpretations, e.g., acute pericarditis, left ventricular
hypertrophy, and bundle branch blocks; (3) The healthy group
consisting of participants with no history of heart disease. The

AMI and other CVDs groups were well-matched in terms of
age, height, weight, and BMI (p > 0.05); however, participants
in the healthy group were significantly younger, weighed less,
and had a lower BMI compared to the AMI and other CVDs
groups.

The test dataset was acquired using a wrist-worn wearable
device (Biomedical Engineering Institute, Kaunas University
of Technology), equipped with three biopotential electrodes:
one at its base, another at its upper end, and a third on the
strap. Using this configuration, two wECG leads were acquired
with a single touch. One lead corresponds to limb lead I as one
electrode is touched by the right index finger, while another
contacts the left arm near the wrist (LA) where the wrist-
worn device is attached. The other lead is nonstandard and
obtained between the LA electrode and the strap electrode,
which contacts a specific body part. The wECG was acquired
at a sampling rate of 500 Hz.

To assess the utility of different touch sites, the dataset was
collected by touching specific body sites under the guidance
of a technician. The three selected sites correspond to the V3
and V5 electrode sites and the abdomen (A), positioned 2 cm
to the left of the umbilicus. As a result, leads between the LA
electrode and specific sites were established, labeled as V3-
LA, V5-LA, and A-LA. The placement of A-LA was chosen
based on the perceived ease for patients to accurately touch the
abdomen compared to the V3 and V5 sites. After acquiring lead
A-LA, the participants acquired by themselves the same lead
without technician assistance, then denoted A-LAw. In total,
four pairs of leads were obtained for each participant. During
wECG acquisition, participants were positioned in a supine
posture with their upper bodies slightly elevated at an angle not
exceeding 30 degrees. Each recording lasted approximately one
minute, with at least a 1-min interval in-between successive
recordings.

Some participants, particularly elderly patients, had problems
with maintaining constant pressure on the electrode for the
required duration, leading to fewer ECGs of acceptable quality.
The participant demographics and the test dataset composition
are presented in Table I.

The wECG dataset used in this study is publicly available
through the open-access portal Zenodo [32].

B. Training and validation datasets
To train the proposed models, a subset of recordings from

the Physikalisch-Technische Bundesanstalt PTB-XL dataset
(version 1.0.3) was used [33]. This subset includes 238 12-lead
ECGs, each of 10-s duration and sampled at 500 Hz, from
patients with AMI (100 women, 138 men, age: 68.5 ± 12.2).
Only recordings labeled “stadium I”, “stadium I-II”, and
“stadium II”, corresponding to acute and subacute stages of
infarction, were used. Among these, 215 recordings (90%)
had a confidence level of 100%, indicating that the diagnosis
reported in clinical records is certain, while only 20 recordings
had a confidence level of 50% or lower, indicating a probable
diagnosis. The subset also includes 685 controls (392 women,
293 men, age: 52.3 ± 16.6) labeled as normal in the PTB-XL
dataset. The ECGs were randomly divided into training and
validation sets with an 80:20 ratio.
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TABLE I: Participant demographics and test dataset composi-
tion.

AMI Other CVD Healthy

Men 36 15 29
Women 16 5 22
Age, yrs 62.3 ± 12.8 58.7 ± 15.8 27.0 ± 7.8

(p < 0.01)
Height, m 1.74 ± 0.10 1.73 ± 0.16 1.76 ± 0.11

(p = 0.51)
Weight, kg 87.2 ± 15.9 87.3 ± 19.8 72.6 ± 12.9

(p < 0.01)
BMI, kg/m2 28.6 ± 3.9 29.0 ± 5.6 23.4 ± 3.0

(p < 0.01)
AMI type
NSTEMI 11
STEMI 41
AMI location
Anteral 27
Lateral 16
Inferior 14
Other CVDs
Right bundle branch block 7 8
Left bundle branch block 3 6
Atrial fibrillation 2
Myocarditis 2
Pericarditis 2
Conduction disorder 3
Left ventricular
hypertrophy 3
Prior infarction 6 4
Aortic stenosis 2
Test dataset composition
I & V3-LA 42 17 45
I & V5-LA 42 17 45
I & A-LA 42 17 45
I & A-LAw 50 18 50
Note: In some STEMI patients, infarction affected multiple heart regions,
resulting in a larger number of locations. p-values among the three groups
are based on the Kruskal–Wallis test.

Given that the wECG lead between LA and a specific site is
nonstandard, ECGs from the PTB-XL dataset were converted
to match the wECG. The nonstandard leads of the wECG are
obtained as follows:

V3-LA ≈ IIIs − Is
3

+ V3s, (1)

V5-LA ≈ IIIs − Is
3

+ V5s, (2)

where leads Is, IIIs, V3s, and V5s correspond to leads I, III,
V3, and V5, respectively, of the 12-lead ECG in the PTB-XL
dataset.

Lead A-LA resembles lead III because the electrode’s contact
site on the abdomen is farther from the heart and its voltage
potential is closer to that of the left leg electrode in the 12-
lead ECG system. Therefore, no conversion was applied. The
resemblance between the acquired wECG and the converted
wECG, obtained from a simultaneously acquired 12-lead ECG,
is illustrated in Fig. 1.

III. METHODS

A. Preprocessing
The main aim of preprocessing is to address the fact that

the signal quality of wECGs is often poor. This is done by

A

LA

RA
V3 V5

LA-RA (I)

V5-LA

V3-LA

A-LA

Fig. 1: Example of wECGs acquired using a wrist-worn device
(black) and converted from a simultaneously acquired 12-lead
ECG (red). To facilitate comparison, a wECG of higher than
usual quality is used.

reducing the influence of baseline wander and high-frequency
noise using zero-phase bandpass filtering (cutoff frequencies
at 0.5 and 100 Hz) [34], and excluding poor-quality segments.
Signal quality was determined in each segment using the bsqi
index [35], defined as the fraction of beats detected by one
QRS detector matching those detected by another detector [36],
together with an acceptance threshold of 0.65 [34].

To further suppress noise, an average beat is computed; for
details, see [34]. The following two-step procedure is used to
ensure that only representative beats are included for averaging:
1. Beats whose energy exceeds the 90th percentile of the
energy distribution of all beats are excluded as such beats are
most likely influenced by substantial finger movement artifacts.
2. Each beat that remains after the first step is correlated to
the average of the other remaining beats to further exclude
distorted beats, including premature ventricular beats. Provided
the correlation coefficient exceeds 0.5, the beat is included for
averaging. If less than 10 beats are accepted, the entire wECG
is excluded from further analysis. Given that fiducial points
are more accurately identified in lead I, beat averaging was
performed using the synchronously acquired pairs, with lead I
serving as reference. Beats from the wECG were extracted by
splitting at the midpoint of the TP interval. To ensure uniform
length, each beat was padded at the start and end to reach a
fixed length of 500 samples, with 33% of the samples preceding
the R peak and 67% following it.

In each lead, wave onset and end are determined using
a validated wavelet-based delineator [37]. To improve the
accuracy of wave delineation, two synchronously acquired
wECG leads are used in pairs: I and V3-LA, I and V5-LA,
and I and A-LA.

B. Detection using a convolutional neural network

Deep learning models extract features from the raw ECG,
thus eliminating the need for expert-crafted features. This
capability makes deep learning well-suited for tasks such as
detecting AMI-related changes in the preprocessed wECG.

1) Detector structure: Four different models are explored,
where each model assumes a certain lead set as input. Each
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lead of the preprocessed wECG is condensed into an average
beat so that the model input consists of a lead set of average
beats. The first model, denoted D0, assumes a four-lead set
obtained by sequentially touching specific body sites:

D0 = {I, V3-LA, V5-LA, A-LA}, (3)

where lead I is selected from the pair that includes A-LA.
The other three models, denoted D1, D2, and D3, assumes

two-lead sets obtained from a single touch:

D1 = {I, V3-LA}, (4)
D2 = {I, V5-LA}, (5)
D3 = {I, A-LA}. (6)

Each model employs a 1D CNN that uses a 500×2 matrix
as input to D1, D2, and D3, and a 500×4 matrix to D0,
corresponding to the number of samples in the average beat and
the number of wECG leads, respectively. The CNN architecture
consists of three convolutional blocks, each comprising a 1D
convolutional layer, batch normalization, dropout, and max
pooling [38]. Each convolutional layer uses the rectified linear
unit (ReLU) activation function to introduce non-linearity. The
output from the final convolutional block is flattened and passed
through a fully connected layer with ReLU activation function,
followed by a dropout layer for regularization. A second fully
connected layer produces the output for each class, i.e., AMI
and non-AMI, with a softmax activation function applied to
generate probability distributions over the output.

2) Explanation: Grad-CAM is used to explain CNN deci-
sions [39]. The Grad-CAM highlights intervals of the wECG
that contribute the most to the detection by analyzing the
outputs of the convolutional filters in the final convolutional
layer, see Fig. 2. Each filter produces a vector of values, known
as a feature map, which forms an activation map after applying
the activation function. The activation map is then weighted
by the gradients.

Fig. 2: Gradient-weighted class activation mapping (Grad-
CAM) for determining the intervals that contribute the most
to the decision.

The importance weights of the k:th activation map in the
output convolutional layer for the AMI class, denoted αk, are

computed by applying global average pooling to each activation
Ak and taking the gradient of the output y:

αk =
1

L

L∑
i=1

∂y

∂Ak
i

, (7)

where i index the element of the activation map and L is the
total number elements in the activation map.

The localization map, which highlights the importance
of intervals in the wECG, is then computed as a weighted
combination of the activation maps, followed by the ReLU
function to preserve only non-negative contributions:

Grad-CAM = ReLU

(
C∑

k=1

αkAk

)
, (8)

where C refers to the total number of activation maps in the
final convolutional layer.

Since the localization map contains fewer samples in time
than the input, it is upsampled to have the same length as the
wECG.

To determine the interval contributing the most to the
decision, each average beat is divided into intervals representing
the P wave, the QRS complex, the ST segment, the T wave,
and the TP interval. The interval with the largest average value
in the localization map is chosen as the one contributing the
most to the decision.

C. Detection using gradient-boosted decision trees

For expert-crafted features, the use of gradient-boosted
decision trees (GBDTs) is known to be efficient, especially
when the training dataset is small. Therefore, this technique is
considered in the following.

1) Detector structure: The GDBT technique combines deci-
sion trees to improve the detection performance by learning
from previous mistakes. Each tree recursively splits the dataset
based on the feature values, reducing impurity in a subdivided
dataset as measured by the reduction in entropy between
AMI and non-AMI after each split. The process continues
until a stopping criterion is fulfilled, either the maximum
number of decision splits or the minimum number of leaf
node observations.

Gradient boosting builds a sequence of decision trees, where
each tree is trained to correct the misclassifications of the
previous tree by fitting the negative gradient of the logarithmic
loss function. Thanks to gradient boosting, each tree can focus
on previously misclassified wECGs so that the classification
error is reduced iteratively.

The GBDT models corresponding to the CNN models are
denoted G0, G1, G2, and G3, respectively.

2) Feature selection and extraction: The ECG waves are
characterized by their respective amplitudes, measured relative
to the baseline in the PR segment. Features relevant to AMI,
i.e., T wave amplitude, the amplitudes at the J point and at the
point 80 ms after the J point to characterize the ST segment,
and Q wave amplitude [40], are extracted from the average
beat of each lead. In total, eight features are used as inputs to
G1, G2, and G3, while sixteen features are used to G0.
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3) Explanation: To assess the importance of different fea-
tures, the Shapley additive explanations (SHAP) method
is employed [41]. With this method, the average additive
contribution of each feature to the model’s output can be
quantified. For a given feature j, its additive contribution ϕm

j

at the m:th iteration is computed by

ϕm
j = f(lm+j)− f(lm−j), m = 1, . . . ,M, (9)

where f(·) is the GBDT, lm+j is the feature vector with feature j
included, and lm−j is the feature vector with feature j excluded,
and M is the total number of possible feature combinations.
The final SHAP value of feature j, denoted ϕj , is then obtained
by averaging the contributions across all M iterations:

ϕj =
1

M

M∑
m=1

ϕm
j . (10)

The magnitude of ϕj reflects the importance of feature j:
a positive ϕj suggests that the presence of feature j has
an increasing effect on the detection, while a negative ϕj

indicates a decreasing effect. To accelerate the computations,
the interventional Tree SHAP algorithm is used instead of
computing ϕj for every value of M [42].

To determine the feature contributing the most to the decision,
the average SHAP value of a particular feature across all leads
is computed. The feature associated with the largest value is
considered the one contributing the most.

D. Performance evaluation
The area under the receiver operating characteristic (ROC),

denoted A, is used to assess how different hyperparameters
influence the performance of the GBDT and CNN models
when using the validation dataset. The following performance
measures are used: sensitivity (Se), defined as the number
of correctly detected infarcts divided by the total number
of infarcts, and specificity (Sp), defined as the number of
correctly detected non-infarcts divided by the total number of
non-infarcts.

Agreement between the detection performance on wECGs
acquired with and without technician assistance is quantified
using Fleiss’ kappa, κ.

The models were initialized 100 times, and the average
results are reported.

IV. HYPERPARAMETER SELECTION

A. CNN hyperparameter selection
Each convolutional layer employs eight filters with a kernel

size of 1 × 15 with a stride of 1, followed by a 1 × 2 average-
pooling layer with a stride of 2. The fully connected layer
contains 128 neurons using the ReLU activation function and
two output neurons a softmax activation function. To prevent
overfitting, dropout layers with a probability of 0.1 are applied
after each layer. Batch normalization is performed on the
outputs of the convolutional layers. The detector is trained
using the Adam optimizer [43], with a learning rate of 0.001.

Using the validation dataset, Fig. 3(a) shows A as a function
of batch size for the four models. For models D1, D2, and D3,

performance no longer improves beyond a batch size of 32,
which is therefore used in the following.

Figure 3(b) presents the ROC for each model. The detection
thresholds, determined by the point closest to the upper left
corner of the ROC curve, are as follows: 0.08 for D0, 0.14
for D1, 0.18 for D2, and 0.11 for D3. The models D1, D0,
and D2 exhibit similar performance for the chosen batch size,
resulting in A = 0.98, Se = 0.95, Sp = 0.97, A = 0.98,
Se = 0.95, Sp = 0.96, and A = 0.98, Se = 0.93, Sp = 0.95,
respectively. The model D3 performs slightly worse, with
A = 0.96, Se = 0.92, and Sp = 0.95.
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Fig. 3: (a) Area under the ROC (A) as a function of batch
size using CNN models on the validation dataset. (b) ROCs
for different models using a batch size of 32.

B. GBDT hyperparameter selection
Based on systematic experimentation on the training dataset,

the following hyperparameter values were found adequate and
therefore used for performance evaluation: The learning rate,
controlling the step size in the optimization process, is set to
0.01; the maximum number of decision splits, controlling the
maximum number of decision splits per tree, is set to 6; the
minimum samples split, determining the minimum number of
samples required to split an internal node, is set to 2; and the
minimum samples per leaf, determining the minimum number
of samples that must be present in a leaf node, is set to 20.
The Gini impurity, measuring the likelihood of incorrectly
classifying a randomly chosen element based on the label
distribution in the node, is used as a split criterion.

The number of trees in the boosting process is an important
hyperparameter. Increasing the number of decision trees often
leads to better performance, as more trees can refine the model’s
decision. However, too many trees can result in overfitting.
Using the validation dataset, Fig. 4(a) shows A as a function
of the number of decision trees for the four models. While A
increases with an increasing number of decision trees, adding
more decision trees contributes negligibly to performance above
a certain point. Therefore, the number of trees is set to 150
for all models.

Figure 4(b) presents the ROC for each model. The detection
thresholds are as follows: 0.52 for G0, 0.33 for G1, 0.49 for
G2, and 0.41 for G3. The best performance is obtained using
G0, with A = 0.97, Se = 0.90, Sp = 0.92. The models G2
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Fig. 4: (a) Area under the ROC (A) as a function of the number
of decision trees using the GBDT models on the validation
dataset. (b) ROCs for different models using 150 decision trees.

and G1 exhibit similar performance, resulting in A = 0.95,
Se = 0.90, Sp = 0.90, and A = 0.94, Se = 0.87, Sp = 0.91,
respectively. The model G3 perform slightly worse, yielding
A = 0.92, Se = 0.87, Sp = 0.89, respectively.

V. RESULTS

A. Feature distribution among datasets

Figure 5 shows the feature distributions of the training,
validation, and test datasets. For most features and leads, the
distribution shapes are similar (p > 0.05). An exception is the
J point in leads I and V3-LA of the test dataset, which exhibits
slightly lower values compared to the training and validation
datasets.

Fig. 5: Feature distributions on the training, validation, and
test datasets for: (a) lead I, (b) lead V3-LA, (c) lead V5-LA,
and (d) lead A-LA.

B. Performance on the test dataset
The best AMI detection performance on the test dataset is,

as expected, obtained using G0 and D0 which both involve four
leads, see Fig. 6. Of these two models, D0 performs slightly
better than G0, with Se of 0.77 and Sp of 0.75 compared to
0.77 and 0.72, respectively. However, a more substantial drop
in performance is observed for the CNN models compared to
the GBDT models. Relative to the validation dataset, Se drops
by 19.2%, 26.1%, 24.3%, 26.8% for D0, D1, D2, D3 and by
15.5%, 19.2%, 21.2%, 18.2% for G0, G1, G2, G3. The drop
in Sp is similar – 21.4%, 28.6%, 24.7%, 23.4%, for D0, D1,
D2, and D3, respectively, and 21.3%, 17.6%, 19.4%, 22.5%,
for G0, G1, G2, and G3, respectively. However, after excluding
patients with other CVDs, the drop in Sp becomes much less
pronounced – 1.7%, 14.5%, 8.8%, 7.2% for D0, D1, D2, D3,
and 1.3%, -1.0%, 0.1%, 7.2% for G0, G1, G2, G3.

0.0
0.2
0.4
0.6
0.8
1.0

All groups included AMI vs healthy AMI vs CVD

(a) (b)

0.0
0.2
0.4
0.6
0.8
1.0

Fig. 6: (a) Sensitivity and (b) specificity of the CNN and GDBT
models obtained on the test dataset. Note that sensitivity is the
same across all three subsets, since they all include the same
AMI patients.

C. Impact of wECG recording duration
To evaluate the impact of a shorter wECG recording duration

on performance, sensitivity and specificity was also determined
when using only the first 30 s instead of the entire 1-min
recording. As indicated by Table II, the performance is largely
unchanged across most models, except for G0, G0, G2, and G3,
whose performance improved. On the other hand, 11 wECGs
(six from the AMI group, two from the other CVDs group, and
three from the healthy group) were excluded because they did
not meet the criterion of having at least 10 representative beats
for averaging. In addition, fewer representative beats reduce
the validity of the average beat which in turn contributes to
the slight changes in performance.

D. Detection of infarcts from different locations
Figure 7 shows the sensitivity of the different models when

detecting AMI for different infarct locations. Both types of
models successfully detects infarcts in lateral and anterior
locations, with Se ranging from 0.72 to 0.93 for CNN models
and from 0.85 to 0.98 for GBDT models. While CNN models
are relatively sensitive to inferior infarcts, GBDT models
perform poorly, with the exception of G0.
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TABLE II: Change in sensitivity and specificity when using the
first 30 s of the wECG instead of the entire 1-min wECG.

Model Se Sp
D0 -0.01 0.03
D1 -0.00 0.01
D2 0.03 0.00
D3 -0.03 0.05
G0 0.08 0.05
G1 0.00 0.01
G2 0.10 0.06
G3 0.07 0.03

Anteral

Inferior

Lateral

Se Se

Sp Sp

0.94 0.92 0.85 0.98

0.60 0.41 0.48 0.43

0.890.860.890.89

0.93 0.88 0.73 0.89

0.74 0.62 0.67 0.62

0.770.720.820.87

0.720.720.690.75 0.690.720.740.72

Fig. 7: Sensitivity of different models when detecting AMI
across different infarct locations.

E. Detection in wECGs obtained with/without assistance
Table III presents the agreement between decisions when

the wECG is acquired with and without technician assistance.
Discrepancies in detection occurred in 19.5% (23/118) of
the wECGs for G3 and in 17.8% (21/118) for D3, with
corresponding κ values equal to 0.64 and 0.61, respectively.
This difference can be attributed to inaccurate touch sites,
leading to changes in wECG morphology.

TABLE III: Agreement between decisions when the wECG is
acquired with and without technician assistance. The superscript
“w” refers to the model using the wECG acquired without
technician assistance.

AMI Non AMI
D3 Dw

3

AMI 44 9
Non AMI 12 53

G3 Gw
3

AMI 43 13
Non AMI 10 52

F. Explanations
Figure 8 shows how the initialization of D0 and G0 influence

the explanations on the test dataset. The results indicate that
the explanations of D0 are highly dependent on initialization,
suggesting that CNN optimization does not always result in
the same intervals.

The decision is most often influenced by the QRS complex
(median count: 64), followed by the T wave (median: 19) and

P wave QRS complex ST segment T wave TP segment
Feature

0  

25 

50 

75 

100

C
ou

nt

(a)

(b)

Q wave J point J + 80 ms T wave
Feature

0  

25 

50 

75 

100

C
ou

nt

Fig. 8: Impact of the initialization of (a) D0 on the most
important interval and (b) G0 on the most important feature.
Each circle represents the number of times a specific interval
or feature was identified as the most influential in the model’s
decision across the entire test dataset for a single initialization.

the ST segment (median: 13). In contrast, using G0, the J point
emerged as contributing the most (median: 51), followed by
the T wave amplitude (median: 34).

Lead I Lead V3-LA Lead V5-LA Lead A-LA

-0.05
0

0.05
0.1

0.15
0.2

(a)

(b)

(c)

SH
A

P
va

lu
e

non AMI
AMI

Q wave J point J + 80 ms T wave

Fig. 9: Explanation for a patient with AMI: (a) wECG, (b)
activation map generated by Grad-CAM to explain CNN
detection, where the rectangle highlights the beat interval
contributing the most to the decision for that specific lead,
and (c) SHAP values explaining GBDT detection.

Figure 9 shows an example of explanations for a patient with
AMI using G0 and D0. Interestingly, using D0, the intervals
that contributed the most to the decision (e.g., the end of the T
wave for lead V3-LA and the QRS complex for lead V5-LA)
do not correspond to the intervals typically analyzed in clinical
practice for AMI detection.

To shed further light on the agreement between explanations
of G0 and D0, Fig. 10 shows a confusion matrix for patients
with AMI. Only 20.2% (34/168) of the intervals identified by
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Fig. 10: Agreement between GBDT and CNN explanations
combined for all four models in AMI patients. Highlighted
cells indicate explanatory GBDT features corresponding to
explanatory CNN intervals.

the CNN as contributing the most to the decision corresponding
to the respective GBDT features. This discrepancy is primarily
due to the QRS complex, identified as the most important
interval for the CNN models in 41.1% (69/168) of all intervals.

VI. DISCUSSION

The main finding of the study is that the GBDT models,
which rely on clinically meaningful features, are more robust
than the CNN models when transitioning from the train-
ing/validation dataset to the test dataset. This can be attributed
to the capability of the CNN to learn dataset-specific features;
this finding applies considerably less to the GBDT models.
As a result, while the CNN models performed well on the
validation dataset, the performance dropped more substantially
when analyzing wECGs of the test dataset than did that of
the GBDT models. Moreover, the explanations of the GBDT
models are less sensitive to initialization, see Fig. 8. The finding
that the QRS complex, the TP interval, and the P wave were
sometimes identified as the most influential to the decision is
consistent with previous research [30], [31], which reported
that the intervals contributing the most to CNN decisions often
do not agree with intervals conventionally used for infarction
detection.

The results indicate that the CNN models perform slightly
better on the test dataset than the GBDT models, see Fig. 6.
However, it is important to note that decision trees are better
suited for small datasets, while CNNs often perform better
using large training datasets. Consequently, final conclusions
regarding model performance should not be drawn from this
study alone.

A. Machine learning for detection of myocardial infarction

While the majority of studies have used the standard 12-
lead ECG as input [44], reduced-lead configurations have
also attracted research interest. For example, a deep learning
model was developed to diagnose infarction based on six limb
leads [45]. However, the model exhibited poor performance due
to the absence of information from the precordial leads. The

performance improved when the model input was augmented
with synthesized precordial leads, resulting in performance
comparable to that using the standard 12-lead ECG. Other
studies combined limb and precordial leads, such as a CNN
trained on four leads, of which three were from precordial
sites [17], [46]. Efforts have also been made to use single-
lead input. For example, lead I was used as input to a long
short-term memory network [47], whereas lead II was used
as input to a k-nearest neighbors classifier, a support vector
machine [48], and a long short-term memory network [49].
Leads I and II were explored in various CNN architectures [22],
[23], [47], [47], [50]. However, the clinical utility of a single
lead remains unclear as anterior and septal AMI is likely not
reflected in leads I and II.

Current research on AMI detection using wrist-worn devices
is still in an early stage and relies primarily on case studies and
manual interpretation, e.g., [9], [51], [52]. Automated AMI
detection was partially addressed in a study that simulated
sequential ECG acquisition using asynchronous leads from a
standard 12-lead ECG [53]. The study assumed that precordial
leads obtained from a smartwatch between the precordial site
and the right index finger are equivalent to those in a standard
12-lead ECG. However, this assumption is an approximation, as
acquiring precordial leads requires a central terminal obtained
by connecting the three limb electrodes, which is not feasible
with smartwatches. Using a separate dataset for testing, the
sensitivity of AMI detection ranged from 0.59 for two input
leads to 0.68 for four input leads at a fixed specificity of
0.87 [53].

Previous studies have applied CNN and GBDT models with
architectures similar to those used in this study. For example,
individual beats from the 12-lead ECG were used as input
to a CNN [31], [54]. The present study uses average beats
rather than individual beats, as the lower quality of the wECG
makes beat-level analysis more susceptible to noise. A modified
random forest classifier based on morphological ECG features is
comparable to the use of GBDT in this study [15]; however, the
focus here is on features commonly analyzed in clinical practice
to facilitate interpretation. Given the substantial differences in
number of leads, electrode configurations, and signal quality
of the wECG compared to those of the standard 12-lead ECG,
the models were specifically designed and trained to learn the
characteristics of the wECG.

B. Implications of dataset shift

Machine learning models for infarction detection are typi-
cally evaluated using cross-validation [23]. However, this ap-
proach can result in overoptimistic performance estimates [55],
[56], as cross-validation within a single dataset does not expose
the model to the variability encountered in real-world scenarios.
Since self-acquired wECGs are often influenced by varying
levels of noise and artifacts and exhibit morphological changes
due to inaccuracies in touch site, we used separate datasets
for training/validation and testing to better reflect real-world
conditions, even at the cost of lower performance.

The present study shows that the drop in performance when
transitioning from the training/validation to test dataset varies
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across models and model types, suggesting that the extent of
performance drop depends on both model architecture and
features used. The more pronounced drop in performance
of the CNN models relative to that of the GBDT models
can be attributed to a covariate dataset shift [57]. Machine
learning models perform best under the assumption that the
training and test datasets have the same distribution. However,
this assumption rarely holds in real-world scenarios, where
discrepancies between the two distributions are inevitable.

Another reason for the performance drop on the test dataset
may be differences in the timing of ECG acquisition relative
to the onset of AMI. While this is not specified for the PTB-
XL dataset [33], the wECG was acquired within 24 hours
following percutaneous coronary intervention, a period during
which ECG features are likely to change rather than remain
stable. For example, ST segment recovery can begin as early
as 30 min after the intervention [58]. Within two days post
intervention, biphasic T wave changes in leads V2, V3, and V4
are commonly observed in patients with anterior STEMI [59].
Moreover, the development of Q waves may begin within
minutes to hours after myocardial injury [40]. Preferably,
the wECG should be acquired prior to intervention to more
accurately reflect the real-world scenario in which a wrist-worn
device is supposed to be used for early detection.

The difference in the residual noise level of the wECGs
between the training/validation and test datasets may also
have influenced detection performance. The noise level after
bandpass filtering typically falls within the range of 50–80 µV
RMS. With about 50 representative beats available per minute,
averaging reduces the noise level to 7–11 µV RMS. In contrast,
the noise level of the ECGs from the PTB-XL database is
generally less than 20 µV RMS, however, the shorter recording
duration allow averaging of about 10 beats, reducing the noise
level to less than 7 µV RMS.

Techniques for handling dataset shifts, such as adjusting the
training loss function using importance weights, reweighting
the input data to match the test distribution, or invoking a
transfer learning approach, may improve the performance on a
test dataset [57]. In real-world scenarios, the issue still remains
as the performance drop is likely due to temporal shifts [60].

C. Effect of infarct location on detection sensitivity
The best performance obtained using G0 and D0 suggests

that the combination of leads I, V3-LA, V5-LA, and A-LA is
sufficient for detecting AMI of different infarct locations. How-
ever, all models, particularly those based on GBDT, perform
poorly in detecting inferior infarcts, which is unexpected given
that such infarcts typically manifest in leads II, III, and aVF.
Therefore, D3 and G3, both including the abdomen touch site,
are expected to perform better. Another unexpected finding is
that D2, including the V5 touch site, misses 27% of the lateral
infarcts despite their typical manifestation in leads I, aVL, V5,
and V6. In contrast, G2 detects lateral AMI with a sensitivity
of 0.85. Why G2 and D2, despite using the same wECG as an
input, behave differently remains to be answered. The ability of
the models to detect rare isolated septal infarctions, primarily
presenting changes in leads V1 and V2, also needs further
investigation.

D. Feature selection

Most research on AMI detection has not accounted for the
time elapsed since the infarction, often mixing ECGs from
AMI with those from past infarction. However, this distinction
is essential because beat morphology during AMI evolves over
time, meaning that the relevance of a certain feature depends
on when the ECG is acquired.

Within a few hours, ST segment elevation becomes notice-
able, i.e., the hallmark of ST-elevation AMI. Therefore, the
amplitudes at the J point and J + 80 ms were selected to
describe the initial and ending parts of the ST segment. As
the infarction progresses, the T wave may become inverted or
flattened, making T wave amplitude an important feature as
well. Meanwhile, an increase in Q wave amplitude indicates
that a large area of the myocardium has suffered damage [61].

A peaked T wave is yet another feature that may appear
shortly after the onset of symptoms and has therefore been
suggested as an early indicator of AMI, with recognition
in clinical practice guidelines [40]. However, these changes
typically last only up to 30 minutes, making them less
reliable for diagnosing AMI [62]. In the present study, patients
were included after having undergone percutaneous coronary
intervention, and, therefore, several hours had passed between
the onset of AMI and the acquisition of the wECG, thereby
reducing the relevance of the peaked T wave.

QRS complex-based features, such as duration, fragmenta-
tion, and angle, have been associated with STEMI [63]. To
quantify such changes, QRS scores have been developed and
shown to be effective in assessing the severity of myocardial
injury [64]. Features derived from the high-frequency QRS,
with a bandwidth from 150 Hz to 250 Hz, have been used to
diagnose AMI [65], and has proven valuable in detecting acute
coronary artery occlusion [66] and evaluating patients with
chest pain [67]. It remains to be investigated whether CNN-
based models have learned to capture QRS changes while
assigning less weight to conventional features, e.g., the ST-
segment, leading to that the QRS complex becomes the most
important interval.

E. Electrode touch site

The proposed approach depends on accurately touching
specific body sites; however, this requires attention as electrode
placement errors are unavoidable even in clinical practice.
Studies have shown significant inter-rater variability in electrode
positioning, especially when ECGs are obtained by less quali-
fied staff [68]. For example, average displacements of 13.5 mm
vertically and 16.5 mm horizontally have been reported when
the ECG was acquired by nurses in emergency settings, with
greater inconsistency observed in chest leads and among
females [69]. Such inaccuracies can distort ECG morphology,
potentially mimicking or obscuring the diagnosis of conditions
like AMI [68]. Morphological changes become especially
pronounced when the precordial lead displacement exceeds
2 cm [70]. Lead V2 is the most sensitive to misplacement,
followed by leads V3, V1, and V4, whereas leads V5 and V6
are less influenced, mainly manifested by a reduction in signal
amplitude rather than by alterations in morphology [70].
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To evaluate the impact of touch site errors on detection
performance, participants were asked to touch the abdominal
site without technician assistance. The outcome remained
unchanged in 82.2% and 80.5% when using D3 and G3 respec-
tively (see Table III). Since this experiment was conducted after
the site had been previously touched with technician assistance,
it is likely that participants learned the correct position through
demonstration. Consequently, correctly recalling the correct
touch site in a real-world setting may be more challenging
than in a controlled environment, potentially leading to more
incorrect detections. An alternative touch site that may be
easier to replicate is the lower sternum at the level of the fifth
intercostal space, corresponding to the position of electrode E
in the EASI system.

F. Limitations
A limitation of the present study is that the models were

trained using wECGs converted from the 12-lead ECG. Better
performance is likely to be achieved with training data collected
from a wrist-worn device. The differences between wECGs in
the training and test datasets may be explained by the electrode
placement, which was approximately 1–2 cm away from the
conventional V3 and V5 sites, due to the electrodes attached
for acquiring the standard 12-lead ECG.

Another limitation is the demographic imbalance between
the AMI and non-AMI groups used for model training and
testing. Since the use of a CNN has been found useful for
estimating age from the ECG [71], age-related changes, such as
a subtle decline in QRS amplitude [72], may have introduced
confounding effects. The imbalance in sex distribution between
the groups may represent another source of bias, as sex-related
differences in the ECG, such as a steeper slope of the ST
segment observed in males [72], could have influenced model
performance as well.

The features were extracted from the average beat using a
wave delineator whose performance drops in conditions that
cause major changes in the ECG, such as left or right bundle
branch block or AMI. In such conditions, the widened and/or
distorted QRS complexes can lead to inaccuracies in localizing
the Q wave and the J point. Since incorrect determination
of the J point causes the J + 80 ms point to be incorrect,
these inaccuracies may have contributed to a greater deviation
in feature values among patient groups with AMI and other
CVDs compared to the healthy group, which in turn may have
improved the performance of the GBDT models.

VII. CONCLUSIONS

The present study shows that the machine learning models
explored for AMI detection offer acceptable performance,
despite using only two to four ECG leads acquired with a
wrist-worn device. The CNN models perform slightly better
than the GBDT models. However, caution is warranted as the
explanations of the CNN-based decisions rarely agree with the
ECG intervals typically used in clinical practice.
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[34] K. Jančiulevičiūtė et al., “An echo state network for synthesizing the
standard 12-lead ECG from a two-lead ECG obtained from a single
touch of a wrist-worn device,” Biomed. Signal Process. Control., vol.
109, p. 108008, 2025.

[35] Q. Li, R. G. Mark, and G. D. Clifford, “Robust heart rate estimation
from multiple asynchronous noisy sources using signal quality indices
and a Kalman filter,” Physiol. Meas., vol. 29, no. 1, pp. 15–32, 2008.

[36] J. Behar et al., “ECG signal quality during arrhythmia and its application
to false alarm reduction,” IEEE J. Biomed. Health Inform., vol. 60, no. 6,
pp. 1660–1666, 2013.

[37] N. Pilia et al., “ECGdeli—an open source ECG delineation toolbox for
MATLAB,” SoftwareX, vol. 13, p. 100639, 2021.
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