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Chapter 1

Introduction

The advent of quantum technologies has opened new avenues in quan-
tum computing, quantum communication, and quantum sensing [1-10].
A key requirement for these applications is the ability to generate, ma-
nipulate, and read out quantum states with high fidelity. Solid-state
platforms, particularly semiconductors, provide a scalable and robust en-
vironment for implementing quantum systems, with point defects emerg-
ing as promising candidates for quantum bits (qubits) and single-photon
emitters (SPEs) [11].

Point defects are atomic-scale imperfections in a crystal lattice that
introduce localized electronic states within the band gap. While his-
torically considered detrimental to semiconductor performance, certain
deep-level defects (often referred to as color centers) exhibit stable op-
tical and spin properties suitable for quantum technological applica-
tions [11]. The nitrogen-vacancy (NV) center in diamond, for example,
has demonstrated coherence times exceeding milliseconds even at room
temperature, making it a leading candidate for quantum sensing and
quantum communication [12-15]. Similarly, defects in silicon carbide
and silicon operate in the near-infrared range, facilitating integration
with fiber-optic networks [16-27].

Given the vast configurational space of possible defect systems, iden-
tifying and optimizing defects for quantum technologies necessitates a
theoretical framework capable of accurately predicting their electronic
and optical properties. First-principles simulations, particularly those
based on density functional theory (DFT), have proven to be indis-
pensable tools for this task. DFT has become the dominant method
for investigating the electronic and atomic structure of solids, including
defect systems. While DFT is, in principle, exact within the Kohn-
Sham formalism [28], practical implementations rely on approximations
to the exchange-correlation functional, which governs electron interac-
tions. The most commonly used functionals for solid-state systems in-
clude generalized-gradient approximation (GGA) functionals, such as
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the Perdew-Burke-Ernzerhof (PBE) functional [29], and hybrid func-
tionals, such as the Heyd-Scuseria-Ernzerhof (HSE) functional [30].
Each class of functionals presents trade-offs. GGA functionals, despite
their computational efficiency, systematically underestimate semicon-
ductor band gaps [31]. Hybrid functionals improve band-gap predictions
but come at a significantly higher computational cost [32]. Moreover,
high-throughput defect discovery and modeling of electron—phonon in-
teractions require a balance between accuracy and computational effi-
ciency [33,34].

A promising alternative to both GGA and hybrid functionals is the
Strongly Constrained and Appropriately Normed (SCAN) functional, a
meta-GGA class functional introduced in 2015 [35]. Unlike traditional
GGA functionals, SCAN incorporates additional information about the
kinetic energy density, significantly improving its treatment of exchange
and correlation effects. It has been shown to yield more accurate lattice
parameters, cohesive energies, and band gaps in semiconductors com-

pared to conventional GGA functionals [36,37].

The SCAN functional presents distinct advantages for modeling
point defects in solids. These systems are typically examined using
the supercell approach, which demands computational efficiency due
to the large number of atoms involved [38]. SCAN enhances the de-
scription of electronic localization and defect states within the band gap
while avoiding the high computational expense of hybrid functionals.
Although SCAN has been widely applied to bulk materials [39], its use
in defect studies remains relatively unexplored [40-43]. Further studies
are required to systematically evaluate its accuracy in modeling excited
states and electron—phonon interactions across a broader range of defect

systems.

The focus of this thesis is to benchmark the SCAN functional and its
variants, rSCAN [44] and r2SCAN [45], against GGA and hybrid func-
tionals to evaluate their accuracy and computational efficiency in mod-
eling the electronic and vibrational properties of color centers. Specifi-
cally, we aim to demonstrate that the SCAN family can reliably predict
optical excitation energies, luminescence, and absorption lineshapes for
key semiconductor defects in materials such as diamond, silicon, and

silicon carbide.

Beyond assessing the performance of SCAN, this research seeks to
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enhance the theoretical framework for describing the optical and vi-
bronic behavior of point defects. A more accurate modeling of electron—
phonon interactions and the influence of lattice vibrations will provide
better understanding of the fundamental properties of defects and their
suitability for quantum technology applications. By conducting compre-
hensive computational analyses and rigorous benchmarking, this study
aims to establish SCAN functional as a practical and reliable tool for de-
fect modeling, enabling accurate, cost-effective investigations that allow
for extensive screening of potential quantum defects.

1.1. Goals of the thesis

The main goal of this thesis is to benchmark the SCAN and its family
of density functionals for point defects in semiconductors by modeling
their electronic and vibrational properties.

1.2. Tasks of the thesis

In order to achieve the goal of this thesis, the following tasks were set:

1. Using the SCAN family of functionals calculate optical excitation
energies for various point defects in diamond, silicon, and 4H-SiC.

2. Model theoretical luminescence and absorption lineshapes of vari-
ous point defects in diamond, silicon, and 4H-SiC using the SCAN
family of functionals.

3. Compare the results calculated using the SCAN family of function-
als with results obtained using standard GGA and hybrid function-

als and experimental results.

1.3. Statements presented for the defense

1. The SCAN family of functionals provides accuracy comparable to
or better than the more computationally expensive hybrid HSE06
functional for optical excitation energies for defects in diamond
and 4H silicon carbide.
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2.

Regarding electron—phonon coupling during optical transitions,
our findings show that SCAN family of functionals yields opti-
cal lineshapes that are in great agreement with the experiments
while being computationally cost-effective.

Employing a novel multi-mode Jahn-Teller computational
methodology together with the r2’SCAN functional, we accurately
captured the optical features arising from Jahn—Teller interactions
in the photoluminescence spectra of split nickel-vacancy center in
diamond, thereby demonstrating the functional’s performance in

determining vibronic-coupling constants.
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Chapter 2
Theoretical background

2.1. Many-particle Schrodinger equation

The fundamental behavior of matter, particularly in the context of de-
fects in solids, is governed by the principles of quantum mechanics. At
the microscopic level, a defect system consists of interacting nuclei and
electrons, whose dynamics and interactions are described by the many-
particle Schrodinger equation. This equation serves as the cornerstone
for predicting observable physical properties of the system.

In the absence of external perturbations, the quantum state of
a system comprising electrons and nuclei is described by the time-
independent Schrédinger equation:

A

H(r,R)¥(r,R) = E¥(r,R), (2.1)

where r = {rq,r9,...,ry,} represents the coordinates of the electrons,
and R = {R1,Ro,...,Ry, } corresponds to the coordinates of the nuclei
(Ne and N, label the number of electrons and ions). The Hamiltonian
operator H encapsulates the kinetic and potential energy contributions
within the system:

A A A

H=To(r) + Tu(R) + Vee(r) + Ven(r,R) + Vin(R),  (2.2)
where the terms represent the following physical contributions:
o T.: electronic kinetic energy,
o T,: nuclear kinetic energy,

e Vee: electron-electron interaction potential,

A,

e Ven: electron-nucleus interaction potential,

A,

e Vin: nucleus-nucleus interaction potential.
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Throughout the thesis, we use Hartree atomic units (i.e., h = me, = e =
4meg = 1). Under these units, the kinetic energy operators take the

form:
. 1Y
T. = _5 Z Vzp (23)
i=1
N,
A 18 1
T,=—=Y —Vi. 2.4

The potential energy terms describing Coulomb interactions among par-

ticles are given by:

N,

~ < 1

ee — s 2.

Ve Z |I'Z — I‘j| ( 5)
1<J
Ne Nn

V=330 (26)
i |I'i -R |7
N,

A N 77

V=S 2% 2.7
2R, -R, 27)
1<)

where Z; denotes the nuclear charge of ion j.

Due to the complexity of the many-particle Schrodinger equation, its
direct solution for realistic systems is computationally infeasible, as the
computational resources required scale exponentially with the number
of particles. Thus, various approximations are employed to make the
problem tractable.

2.1.1. Adiabatic approximation

In quantum chemistry calculations, the most widely used approximation
is the adiabatic approximation, which relies on the large mass difference
between nuclei and electrons. This approximation simplifies the many-
particle problem by assuming that the nuclei move much more slowly
compared to the electrons. Such separation of time scales allows the total
wavefunction to be factorized into electronic and nuclear components.
In the formal analysis presented in this thesis, we use the simplest form
of the adiabatic approximation, often referred to as the static adiabatic
approximation [46] (not to be confused with the Born—Oppenheimer

approximation). In this framework, the nuclear kinetic energy term is
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initially neglected, leading to the electronic Hamiltonian:
ﬁe = Te + ‘A/;ae + ‘A/en- (28)

The electronic Schrodinger equation is then solved for a fixed nuclear
configuration, Ry, yielding a set of electronic states ¥;(r, Rg) with cor-
responding energies €;. The exact solution to the full molecular Hamil-
tonian (2.2) can then be expressed as a linear combination of these

electronic wave functions:
U(r,R) => xi(R)i(r,Ro), (2.9)
i

where the coefficients x;(R) are unknown functions of the nuclear coor-
dinates. Substituting the expansion (2.9) into Eq. (2.1) yields a set of
coupled equations for the nuclear coeflicients:

Toxj(R) + Z(%W!%)Xi(R) = (E —¢j) x;(R), (2.10)

where the potential operator is defined as V= Vee + Ven + Vnn, and the
matrix elements <¢]|V\1/JZ> are evaluated over the electronic coordinates
r. The static adiabatic approximation is derived by neglecting the off-

diagonal matrix elements of the nuclear potential, i.e.,

(| V]gi) =0, for j #i. (2.11)

This assumption implies that the nuclear potential and motion do not
couple different electronic states. As a result, Eq. (2.10) decouples into
a set of independent nuclear Schrodinger equations:

(T + Vi) xal(R) = (B — ) xa(R), (2.12)
where
Vi = (il V|,
defines the adiabatic potential energy surface (APES) for electronic state
;. The solutions of Eq. (2.12) yield the adiabatic form of the total wave

function:

\Iji(rv R) = XZ(R) ¢2(ra RO) (213)

17



In summary, we first solve the electronic Schrédinger equation, then
determine the adiabatic potential energy surfaces (APES) for the se-
lected electronic states of interest. Once these surfaces have been estab-
lished, we solve the nuclear Schrédinger equation (2.12) to obtain the
corresponding vibrational wave functions, y;(R).

The approximation (2.11) is valid when the electronic states of inter-
est are separated by relatively large energy gaps; however, it fails when
these separations are on the order of phonon excitation quanta [47]. This
limitation is addressed in detail in Section 2.4.

Even with the adiabatic approximation, solving the many-particle
electronic Schrodinger equation is a formidable challenge due to the intri-
cate interactions among electrons. These interactions introduce strong
many-body correlations that scale exponentially with system size, mak-
ing direct numerical solutions impractical for all but the smallest sys-
tems. As the number of electrons increases, the dimensionality of the
problem grows rapidly, and in systems like solids with defects, the vast
number of interacting particles far exceeds computational capabilities.
This necessitates the development of advanced computational strategies
and further approximations to accurately approximate the system’s be-

havior within practical means.

2.2. Density functional theory

In this thesis, the chosen computational approach is density functional
theory (DFT), originally formulated by Hohenberg and Kohn [48, 49].
DFT has become the most widely used ab initio (meaning from first
principles) method for electronic structure calculations of solid-state sys-
tems due to its capability to efficiently handle systems containing up to
several thousand atoms. Unlike traditional methods that rely on the
many-electron wave function, DFT simplifies the problem by utilizing
the electron density n(r), which depends only on three spatial coor-
dinates. The electron density represents the probability of finding an

electron within an infinitesimal volume element and is mathematically
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defined as:

Ne
n(r) = (@[a(r)lp) = (B3 —ri)l) (2.14)
= Ne / [ (r, s1,%2,...,xn,)|* dsy dxg - - - dxy,, (2.15)

where x; = (r;, 0;) includes both spatial and spin coordinates. Conven-
tional wavefunction-based methods determine the ground state energy
by minimizing the energy expectation value with respect to the total

wave function ):
A A Ne
E() :Hgl'l <¢’T6+Vée+zﬁext(ri) Wj>7 (216)

where Oyt (r) is the external potential. Although this wavefunction-
based approach provides an exact solution in principle, it becomes com-
putationally unfeasible for large systems due to the exponential scaling
with the number of electrons.

An alternative approach is provided by density functional theory,
which circumvents the explicit dependence on the wave function by in-
stead considering the electron density as the fundamental variable. This
transformation is formally justified by the Hohenberg-Kohn (HK) the-
orems [48], which form the theoretical foundation of DFT.

2.2.1. The Hohenberg—Kohn theorems

The foundation of density functional theory (DFT) is established by the
Hohenberg—Kohn theorems, which form a fundamental link between the

electron density and the many-electron wave function ¢(ry,...,rn,).

The first Hohenberg—Kohn theorem states that: The ground
state electron density ng(r) of a multi-electron system uniquely deter-

mines the external potential Dey(r).

This implies that if two electronic systems with external potentials
Dext,1(r) and Dext,2(r) share the same ground-state electron density, then
the potentials must be identical up to an additive constant. This result
is fundamental to DF'T, as it proves that the ground-state density fully
characterizes the electronic properties of a system, containing the same
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information as the ground-state wave function vg. Consequently, both
the ground-state wave function 1y and energy Ey can be expressed as
functionals of the electron density:

N
Eo[n] = ($o[n)| T + Vee + Z Dext (Ti) [0[n]) - (2.17)

By decomposing the functional into its components, the total energy can
be rewritten as:

Foln] = / n(r)fess (r) dr + Frrc[n], (2.18)

where the first term accounts for the interaction of electrons with the

external potential, and the remaining term,

Fuk[n] = (vo[n]| Te + Vee [¢o[n]) , (2.19)

represents the sum of the kinetic energy and electron-electron interac-
tions. The functional Fyk[n] is independent of the external potential
and is commonly referred to as the universal functional, which applies
to any electronic system.

The second Hohenberg—Kohn theorem states that: The func-
tional Ep[n] attains its minimum value if and only if the provided density
corresponds to the true ground-state density of the system.

This theorem establishes the variational principle, which allows the
ground-state energy and electron density to be determined by minimiz-
ing the total energy functional:

Ey = min E[n], (2.20)

Once the exact ground-state density no(r) is determined, it serves as a
foundation for obtaining all other ground-state properties of the system.
In principle, if the precise form of the universal functional Fyik [n] were
available, the complexity of solving the many-electron problem would
be reduced to simply minimizing the energy functional with respect to
the electron density n(r) under the influence of an external potential
Dext (T).
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However, a major challenge in practical applications of the
Hohenberg—Kohn theorems lies in the fact that the explicit analytical
form of the functional Fig[n] is not known. As a result, while the theo-
rems provide a rigorous theoretical framework, they do not offer a direct
method to obtain the ground-state density ng(r).

2.2.2. Kohn—Sham formalism

For practical implementation of density functional theory, Kohn and
Sham introduced an approach that maps the interacting many-electron
system onto a fictitious system of non-interacting electrons, known as
the Kohn-Sham (KS) formalism [49]. In the KS formalism, the ground-
state density of the interacting system is reproduced by a set of fictious
single-particle orbitals qﬁfs, referred to as Kohn—Sham orbitals. These
orbitals form an antisymmetric Slater determinant:

PKs = RN (2.21)

1
\/Ne!

where the determinant is constructed from the one-electron wavefunc-

tions:
oS (r)  #5S(ry) - oRS(r)
SRS GKS | gKS| = o Pro(ra)  @55(ra) o PRO(r2)
197N | = . . .
PS8 (rn.) ohS(rn,) oo RS (ra.)

(2.22)
The Kohn-Sham wavefunction kg is designed to yield the exact electron

density of the interacting system:

Ne
n(r) = |oi o () (2.23)
i=1

It is important to note that 1kg does not represent the true wavefunction
of the interacting system but serves as a mathematical tool to compute
the exact ground-state density.

The central idea of the KS formalism is to partition the universal

functional Fyg[n] into three components:

A

Fyk[n] = TES[n] + J[n] + Ex[n], (2.24)
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where TXS[n] is the kinetic energy of the non-interacting Kohn-Sham
electrons, J[n] is the classical Coulomb interaction (Hartree term), and
E[n] is the exchange-correlation functional, which encapsulates all non-
classical electron-electron interactions and the residual kinetic energy
difference between the interacting and non-interacting systems.

The term for kinetic energy of non-interacting electrons is given by:

Ne

TS0 = > (¢ 5T o)), (2.25)

%

The Hartree term, or the classical Coulomb repulsion of an electron

density with itself is given by:

// s —r1| dr drs. (2.26)

The final term of Eq.(2.24) is the exchange-correlation energy functional
Eye[n] which is formally defined as:

A

Exe[n] = Tn) — T;%[n] + Vee[n] — Jn], (2.27)

where T[n is the true kinetic energy of the interacting system, and
{Vee (n] — J [n]} represents the non-classical part of electron-electron in-
teraction. The Kohn—Sham equations are derived by minimizing the
total energy functional with respect to the density, leading to a set of
single-particle Schrédinger-like equations:

[T: + ks (r)] o5 = e[S, (2.28)

where 0kg(r) is the effective Kohn—Sham potential, defined as:

Ok (r )+ / . + (1), (2.29)

Here, o(r) is the external potential due to the nuclei, and Uy.(r) =
dExc[n]/on(r) is the exchange-correlation potential. The KS equations
must be solved self-consistently, as the potential 0kxg(r) depends on the
density n(r), which in turn is constructed from the KS orbitals.

In principle, the KS formalism provides an exact framework for itera-
tively calculating the ground-state energy and density of a many-electron
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Figure 2.1: The ”Jacob’s ladder” of density functional approximations,
illustrating the hierarchy of increasingly sophisticated functionals [50].

system. However, the accuracy of the results hinges on the quality of the
approximation used for the exchange-correlation functional Fy. [n]. This
functional remains the only unknown in the theory and is the subject of
ongoing research. In the following subsection, we will discuss the various
approximations for Ey. [n] and their implications for DFT calculations.

2.2.3. Exchange—correlation functionals

The exact form of the exchange-correlation functional, Fiy [n], remains
one of the most significant unresolved challenges in quantum chemistry.
While relatively small compared to the kinetic and Coulomb energy
contributions, Fye [n] plays a crucial role in determining the accuracy
of chemical and physical predictions. To organize the progression of
functional approximations, Perdew introduced the concept of "Jacob’s
ladder” [50], depicted in Fig. 2.1, where each rung corresponds to a more

advanced and accurate functional form.

2.2.3.1 Local density approximation

The local density approximation (LDA), introduced by Kohn and
Sham [49], forms the first rung of Jacob’s ladder. It assumes that the
exchange-correlation energy at any point depends solely on the local
electron density, based on the uniform electron gas model. The LDA
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functional is given by:

EXPA Iy ny) = /eunif(n¢,n¢)n(r) dr. (2.30)

XC

Here, nq(r) are electron spin densities with n(r) = nq(r) + n (r) being

unif

it represents the exchange-correlation en-

the total electron density. e
ergy per electron in a uniform gas. The exchange term follows Dirac’s
analytical result [51] for uniform electron gas, while correlation energies
are usually obtained from quantum Monte Carlo calculations [52]. De-
spite its simplicity, LDA performs well for structural and vibrational
properties in solids but overestimates binding energies and poorly de-

scribes reaction barriers [53].

2.2.3.2 Generalized gradient approximation

The second rung of Jacob’s ladder introduces the generalized gradi-
ent approximation (GGA) [54-56], which enhances the accuracy of the
exchange-correlation functional by incorporating the gradient of the elec-
tron density, Vn(r). This accounts for the inhomogeneity of the electron
distribution, leading to the following functional form:

ESGAny ny) = /ESCGA(nT,ni,VnT,Vni)n(r) dr. (2.31)

Here, Vn, are gradients of electron spin densities. GGA functionals
improve upon LDA by partially addressing its overbinding issue, re-
sulting in better predictions for bond energies and molecular interac-
tions. The most widely used GGA functional is the non-empirical PBE
(Perdew-Burke-Ernzerhof) [56] functional, which is a standard in solid-
state physics. However, both LDA and GGA suffer from the well-known

underestimation of electronic band gaps.

2.2.3.3 Meta-GGA functionals

The third rung of Jacob’s ladder is occupied by meta-GGA functionals,
which extend the flexibility of exchange-correlation approximations by

incorporating the kinetic energy density, 7,:

2
: (2.32)




where leas represents the Kohn—Sham orbitals. The exchange-
correlation energy for meta-GGA functionals is expressed as [28,35]:

EMGGA, n)) = /6%GGA (ng,ny, Vg, Vng, 7, 7)) n(r)de. (2.33)

This formulation allows meta-GGA functionals to capture non-local in-
teractions while avoiding the computational complexity of fully non-local
integral terms. As a result, they satisfy more exact physical constraints
and achieve higher accuracy for diverse systems compared to LDA and

GGA.

Among meta-GGA functionals, the SCAN (Strongly Constrained
and Appropriately Normed) functional [35] is particularly notable.
SCAN was specifically designed to satisfy all possible exact constraints
applicable to meta-GGAs. Its developers demonstrated that SCAN out-
performs other semi-local functionals in describing lattice properties of
solids, such as those included in the LC20 benchmark set [35]. Fur-
thermore, SCAN has proven to be superior in predicting ground-state
structural properties, making it an important tool for solid-state sys-

tems.

However, despite its advantages, SCAN suffers from numerical insta-
bilities that manifest in certain self-consistent all-electron calculations,
particularly for atomic systems [44]. To address these issues, Barték and
Yates proposed a revised functional, rSCAN [44], which retains the accu-
racy of SCAN for many properties while offering significantly improved
numerical stability. This modification made rSCAN more suitable for
calculations prone to numerical issues, such as those involving small or

highly localized systems.

Nevertheless, rSCAN was found to exhibit reduced transferability
in some cases, leading to less accurate predictions of atomization ener-
gies [57,58]. To overcome these limitations, the r?SCAN functional was
developed [45]. By combining the numerical stability of rSCAN with
the transferable accuracy of SCAN, r?SCAN satisfies all the exact con-
straints of SCAN while achieving consistent performance across a wide
range of systems and properties.
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2.2.3.4 Hybrid functionals

The fourth rung of Jacob’s ladder is occupied by hybrid functionals,
which blend a portion of exact exchange from Hartree-Fock (HF') theory
with exchange-correlation approximations from DFT [59]. Becke’s three-
parameter functional (B3LYP) [60] is a well-known example of a hybrid
functional and remains highly popular in molecular quantum chemistry.
However, applying hybrid functionals to periodic systems initially faced
significant computational challenges due to the high cost of evaluating
the exact exchange integrals over delocalized states. To address these
issues, the HSE (Heyd-Scuseria-Ernzerhof) functional [61] introduced a
range-separated approach that divides the Coulomb operator into short-
range (SR) and long-range (LR) components:

1 erfc(wr) n erf(wr) ’ (2.34)

r r r
—_———  N—

short-range  long-range

where erf and erfc are the error function and complementary error func-
tion, respectively. The parameter w determines the separation between
the short-range and long-range interactions. In the HSE functional, ex-
act HF exchange is included only in the short-range component, while
the PBE exchange-correlation functional is applied to both short- and
long-range terms. The overall exchange-correlation energy takes the fol-

lowing form:

Eyela,w) = aBISR (W) 4+ (1 — ) EVBESR () + EPBELR () 4 EPBE,

(2.35)
Here, the mixing parameter a determines the fraction of HF exchange
included in the short range. For the standard HSE functional, a = 0.25
and w = 0.2. One of the key strengths of the HSE functional is its
ability to accurately predict semiconductor band gaps by approximately
accounting for the derivative discontinuity of the exchange-correlation
energy [62].

The HSE functional has become a "golden standard” for studying
deep-level defects, as it provides accurate predictions of thermodynamic
properties and excitation energies. However, it remains computationally
expensive, especially for high-throughput calculations or systems with a
large number of ions. This computational cost arises from the non-local
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nature of HF exchange, which scales unfavorably with system size.

2.2.4. DFT implementation

All calculations in this thesis were performed using the Vienna Ab ini-
tio Simulation Package (VASP) [63]. VASP employs a plane-wave basis
for representing single-particle wavefunctions and uses the projector-
augmented wave (PAW) method to effectively separate core and valence
electrons. The plane-wave approach is naturally suited for periodic sys-
tems such as solids.

2.2.4.1 Plane-wave basis

Crystalline materials exhibit periodicity, allowing the electronic struc-
ture to be efficiently described using Bloch’s theorem [64]. According
to this theorem, the wavefunctions of single-electron states can be ex-

pressed as:
> (r) = e™Tu(r), (2.36)

where k is a wave vector within the first Brillouin zone, and uk(r) is a
function that shares the periodicity of the lattice potential. The periodic
component ug(r) can be expanded in a Fourier series:

uk(r) =Y Ca(k)e’S™, (2.37)
G

where the summation runs over all reciprocal lattice vectors G. In practi-
cal calculations, the expansion is truncated by imposing a kinetic energy

cutoff:
k+ GJ?

2

The cutoff energy is chosen based on convergence tests, ensuring that

< Ecutoff- (238)

total energy and other properties are adequately described.

To compute observables, integrations over the Brillouin zone are re-
quired. These integrals are approximated by a discrete summation over
a set of k-points with appropriate weights:

1
T f(g)é(gn,k - €>dk ~ Z wkf(gn,k)' (2'39)
BZ /BZ "

Here, wy are the weight factors assigned to each k-point. The
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Monkhorst—Pack scheme [65] is widely used to generate uniform k-point
grids, with the optimal grid density determined through convergence
tests. However, for point defect calculations, where the translational
symmetry of the crystal is disrupted, the Brillouin zone is typically
sampled only at the I' point and employing a large supercell (see Sec-
tion 2.2.4.3) containing several hundred atoms, which minimizes artifi-
cial defect-defect interactions.

2.2.4.2 Pseudopotentials

Although plane waves are well suited for periodic systems, they pose
computational challenges in describing core electrons, which exhibit
rapid oscillations near the nuclei due to orthogonality constraints with
valence states. A direct representation of these core states in a plane-
wave basis would require an impractically large number of basis func-
tions. The pseudopotential approach circumvents this problem by lever-
aging two key observations:

e chemical bonding is primarily governed by valence electrons,

o wavefunctions in the bonding region, away from the core, are
smoother than near the nucleus.

The pseudopotential method replaces the all-electron wavefunction with
a smooth pseudo-wavefunction that is identical to the true wavefunction
outside a defined core region, while eliminating the need to explicitly
treat core states.

In this work, we use the PAW method [66], which offers supe-
rior transferability compared to traditional norm-conserving or ultrasoft
pseudopotentials. PAW reconstructs the all-electron wavefunction ¥ag

from the pseudo-wavefunction ¥pg using a linear transformation:

ps = Tap. (2.40)

The transformation operator T is chosen such that the pseudo-
wavefunction smoothly transitions into the all-electron wavefunction in-
side the augmentation sphere around each atom. This formalism ensures
that calculations remain computationally efficient while retaining accu-

racy in electronic structure calculations.
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Figure 2.2: Schematic representation of the supercell method for a
point defect in a solid (specifically a vacancy in this example). The
supercell is delineated by dashed lines, while its periodic images are
shown in gray.

The PAW method is particularly advantageous for computing ma-
trix elements and derived properties, as it allows for the reconstruction
of all-electron wavefunctions without significantly increasing computa-
tional cost. Given its accuracy and efficiency, PAW has become the
standard approach for many electronic structure calculations, including

those performed in this thesis.

2.2.4.3 Supercell approach

From a theoretical perspective, an ideal crystal is an infinitely periodic
structure that can be effectively described using a repeating unit cell,
which encapsulates the fundamental structural and symmetry properties
of the lattice. However, the introduction of a defect breaks this periodic-
ity, necessitating alternative theoretical frameworks to accurately model
the system.

A widely adopted approach in practical calculations is the supercell
method [38], wherein a large, periodically repeated unit cell containing
the defect (see Fig. 2.2) is used to approximate its behavior within an
extended solid. Although supercell models are inherently finite, they
can yield meaningful insights when carefully converged with respect to
system size.

Modern computational capabilities enable us to model supercells
containing up to a few thousand atoms, which is typically sufficient
for capturing the electronic structure of deep-level defects. However,
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these system sizes are often too limited to accurately reproduce the
vibrational structure and interactions with bulk-like, long-wavelength
phonons. This limitation will be addressed in Section 2.6.

2.3. Vibrational structure

2.3.1. Harmonic approximation

The electronic Schrédinger equation can be formally solved for any nu-
clear configuration Rg. However, in practical applications, we are pri-
marily interested in nuclear motion around the equilibrium geometry,
which corresponds to a minimum of the APES. The process of locating
this minimum is referred to as ionic relaxation.

Tonic relaxation involves computing atomic forces, which can then
be used in optimization algorithms such as quasi-Newton or conjugate
gradient methods [28] to identify local minima. The nuclear forces are
obtained from the Hellmann—Feynman theorem:

851-

_ 8‘7(1‘7 RO)
ORo

ORo

Fron = (il |i) - (2.41)
Here, Ry, represents the coordinate of the n-th nucleus, ¢; is the elec-
tronic energy, and V(r,RO) is the potential energy in the electronic
Schrédinger equation. This energy consists of two terms: the electron—
nucleus interaction potential Ven(r,Ro) and the nucleus—nucleus inter-
action potential Vi (Ro) [Egs. (2.6) and (2.7)]. Consequently, the force

depends explicitly on the electron density:

Wen(r, R, OVan (R,
FRO,n:/n() M(:O 9 g + 8R(O o), (2.42)

which can be directly computed using DFT. For further analysis, we
assume the system is in equilibrium. At equilibrium (u = 0), the total
potential energy can be expanded around Ry:

V; :<¢z‘\‘7(r7R)\¢z‘> = (4| V(r,Ro)|ts)
02V
+Z zb@ Iw@ U, + Z (Wil g —[i) Wt + O(u?),
(2.43)
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where u,, denotes the atomic displacement from equilibrium Rg. At
equilibrium, the first-order term vanishes and the zero-order term, be-
ing merely an energy offset, can be ignored. Therefore, the harmonic
approximation focuses only on the quadratic terms:

N 1
vhar () = 3 > Py, (2.44)

n,m

The coefficients form the force constant matrix ®,,,,, (or Hessian matrix),
which characterizes interatomic interactions and is defined as:
02V 9%V,
m = (il |1/11>

u,,0 ou,0u,,

(2.45)

Within this approximation, the vibrational Hamiltonian takes the form:

2
~ P 1
H, = ) 2]&” +3 %@nmunum. (2.46)

Solving the eigenvalue problem for this Hamiltonian remains computa-
tionally challenging due to nuclear coupling through ®,,,. However, a
transformation to normal coordinates, where kinetic and potential en-
ergy terms become diagonal, simplifies the problem. This transformation
is achieved by solving the classical equations of harmonic motion.

2.3.1.1 Classical solution

The equations of motion for the nuclear degrees of freedom in the har-

monic approximation follow from the Hamiltonian:
My, = Z P nu,. (247)

This system of coupled second-order differential equations describes the
vibrational dynamics of the nuclei. Assuming a stationary solution of
the form:

u, (t) = wy, exp(—iwt), (2.48)

where w,, is a three-dimensional amplitude vector characterizing the
mode shape, we obtain the generalized eigenvalue equation:

dw = wMw. (2.49)
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Here, M is the mass matrix, defined as HMHmn = M,,0mn. To simplify
the problem, we introduce mass-weighted coordinates 7,,:

=V M,w,. (2.50)

In this representation, Eq. (2.49) transforms into the standard eigenvalue
problem:
Dn = uw?n, (2.51)

where D is the dynamical matrix, defined as:

~1/2 . - P
P M / , or equivalently, Dy, = W (2.52)

=N’
The solutions of Eq. (2.51) provide the eigenfrequencies wy and the cor-

responding orthonormal eigenvectors 1;,, which describe the stationary
vibrational modes of the system.

2.3.1.2 Quantum-mechanical solution

After obtaining the classical vibrational solution, we introduce normal
coordinates @k, which describe the collective nuclear motion:

Qk = Z V Mn(Rn - RO,n)"k;n? (253)

where R,, is the position of atom n, while Ry, is its equilibrium po-
sition, and )y, represents the eigenvectors of the dynamical matrix
D, characterizing the displacement components for mode k at atom n.
Transforming into normal coordinates diagonalizes the kinetic and po-

tential energy terms:

1 A 1

nm

Thus, in this basis of normal coordinates, the vibrational Hamiltonian
simplifies to a sum of independent harmonic oscillators:

1 02 1
”_Z k  where HF= ZQk. (2.55)

v 28@2
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Since for every k, the [H¥, H¥| = 0, the eigenfunctions can be expressed

as a product of one-dimensional harmonic oscillator wavefunctions:

xX(Q) = x1(Q1)x2(Q2) - - - x3n,, (Q3nN,), (2.56)

where each function xx(Qy) is obtained by solving the Schrodinger equa-
tion:
HYxx(Qr) = erxr(Qr)- (2.57)

Each mode follows the quantum harmonic oscillator energy spectrum:

1
€ = Wk (nk + 2) , (258)
where ng = 0,1,2,... is the vibrational quantum number. The total

vibrational energy is the sum of individual mode contributions:
By =) e, (2.59)
k

In summary, solving the vibrational problem requires diagonalizing the
dynamical matrix [Eq. (2.52)]. This yields quantum-mechanical vibra-
tional states, represented as independent harmonic oscillators. However,
direct diagonalization is infeasible for solids due to the effectively infinite
number of degrees of freedom. The next section explores how transla-
tional symmetry simplifies the vibrational problem in periodic systems.

2.3.2. Crystal vibrations
Translational symmetry in periodic crystals simplifies vibrational anal-
ysis. Each atomic position is given by:

R =R*“+R,, (2.60)

where R is the position of unit cell @ and R, is the atomic position
within the unit cell. The dynamical matrix satisfies:

D, (R® + L,R? + L) = D,,,(RY, R?), (2.61)
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where L is a lattice vector. By Bloch’s theorem, the eigenvectors take
the form:
M,(RY) = ¢ qg,,, (2.62)

where q is any vector and 7, is a lattice-periodic part. Substituting
this into the equations of motion with R* = 0 gives:

N

D(q)7(q) = w(q)*7(a), (2.63)

where the reduced dynamical matrix is:

N

Din(q) = Y Dynn (0, R)e/9R. (2.64)
5

Phonon dispersion relations are computed within the first Brillouin zone
(FBZ), using the equivalence:

ei(q+G)R6 — eiqRﬁ’ (265)

for any reciprocal lattice vector G. In practice, phonon calculations are
performed along paths inside FBZ.

2.3.3. Defect-related vibrations

A point defect in a crystal disrupts periodic symmetry, altering the
vibrational structure compared to the perfect lattice. As a result, the
normal mode analysis used for periodic systems is no longer directly
applicable. However, since the defect is localized within a small region,
its perturbations to the vibrational structure of bulk remain spatially
confined.

The Green’s function approach has historically been used to study
defect-induced vibrational modes [67,68], providing insights into their
qualitative properties. However, its practical application is challenging,
particularly when determining precise vibrational mode shapes. Instead,
the supercell approach is commonly employed for a quantitative analysis
of defect vibrations [38].
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2.3.3.1 Localized and quasi-localized modes

Defects can introduce vibrational modes either within a phonon bandgap
or as modifications to bulk modes. Modes confined near the defect with
large amplitudes are called localized modes, which decay rapidly with
distance and are independent of system size. Strong electron—lattice
interactions can make these modes detectable in luminescence, infrared,
or Raman spectra.

In contrast, if the frequency of defect-induced mode lies within the
bulk phonon spectrum, the vibrational mode is less localized. In this
region, the vibrational perturbation is typically characterized by collec-
tions of quasi-localized modes. These resonance modes (or quasi-local
modes) manifest as peaks in the vibrational spectrum, typically associ-
ated with a sharp increase in impurity vibration amplitude at specific
frequencies. They commonly occur when defects reduce local force con-
stants. Unlike localized modes, their amplitude at the defect site scales
as Nn_l/2, where N, is the number of atoms. As the system size in-
creases, more modes contribute to the resonance.

Resonances play a crucial role in electron—phonon interactions, as
the collective increase in vibrational amplitude near the defect enhances

coupling between the lattice and electronic states.

2.4. Jahn—Teller effect

In our previous discussion of the electronic and vibrational structure of
crystal defects, an adiabatic framework was employed to separate the
nuclear and electronic degrees of freedom. This approximation holds
when the electronic states of interest are separated by energy gaps that
exceed typical phonon energies. However, in the case of paramagnetic
point defects, high-symmetry atomic arrangements often lead to elec-
tronic degeneracies. With a zero energy gap between these degenerate
states, complex non-adiabatic interactions arise between the electronic
and vibrational degrees of freedom. This phenomenon is known as the
Jahn-Teller (JT) effect [47,69-71].

In their seminal work, Jahn and Teller [69] demonstrated that in a
nonlinear molecule with a degenerate electronic state, forces will emerge
on the nuclei along a symmetry-breaking direction, leading to a distor-
tion of the molecular geometry that lifts the degeneracy. However, when
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addressing the dynamical problem of a coupled electron—phonon system
of a degenerate electronic state, Longuet-Higgins et al. [71] demonstrated
that for moderate electron—phonon interactions, the local symmetry and
overall degeneracy remain intact. Instead, the Jahn—Teller interactions
lead to modifications of the vibronic states relative to the adiabatic pic-
ture discussed above. This behavior is known as the dynamical Jahn—
Teller (DJT) effect [71,72]. Notably, static symmetry breaking of the
nuclear configuration is only observed when the non-adiabatic Jahn—
Teller interactions are sufficiently strong.

Among the various types of degeneracies encountered in crystal point
defects, the most common is an orbital doublet (two electronic states
share the same energy), typically denoted as F, which arises in trigonal
symmetry systems. In this thesis, we focus exclusively on such degen-
eracies. The dynamical Jahn-Teller (DJT) effect associated with an E
doublet modifies the effective Hamiltonians governing measurable elec-
tronic properties, such as spin—orbit splitting and the system’s response
to external perturbations [72,73]. Moreover, the DJT interactions in-
fluence the optical features in emission or absorption spectra, leading
to spectral characteristics that deviate from those expected in a purely
adiabatic system, which is the focus of this thesis.

2.4.1. E®(e®ed®---) Jahn—Teller Hamiltonian

Using group theory analysis [47], for orbital doublet E systems non-
adiabatic coupling occurs via degenerate, symmetry-breaking vibra-
tional modes that share the same symmetry as the orbital states (typi-
cally denoted by lowercase e). Systems with such interaction are com-
monly referred to as E® (e ® e @ -- ) systems, reflecting the coupling
between the electronic E state and a set of e vibrational modes. In
contrast, symmetry-preserving modes (usually denoted by a or aq) do
not participate in this electron—phonon interaction, and their degrees
of freedom can be separated from the electronic subsystem, as in the
adiabatic description.

In a formal analysis of doubly degenerate electronic and vibrational
states, one has the freedom to choose any pair of orthogonal states that
share the same energy or frequency. A common and particularly con-
venient choice is the Cartesian representation. In this basis, the states

(or vibrational modes) are chosen to transform under point-group sym-
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metry operations in the same manner as the Cartesian x and y vectors,
with the symmetry axis aligned along the z direction. For instance, un-
der a 27/3 rotation, the state |Ey) is chosen such that it transforms as
Ba) = 3 1E2) + R |B,).

For the derivation of the Hamiltonian describing JT interactions, it is
necessary to relax the adiabatic assumption that vibrational motion does
not couple to degenerate electronic states (i.e., (E;|V|E;) = 0 for states
E; and Ej; that share the same energy). Under these conditions, the
overall wave function can no longer be expressed in the adiabatic form
given by Eq. (2.13). For JT-active systems, it is instead represented in
the vibronic form:

\I/(I‘, Q) = X%(Qa) (I)m(Qe) I‘), (2.66)

where x%(Q,) represents the vibrational wave function corresponding to
the symmetry-preserving (JT inactive) degrees of freedom, described by
the set of normal coordinates Q,. The JT-active part is encapsulated

in the wave function

(I)m(Qea I‘) = Xﬁf(Qe) ’Ea:> + X%y(Qe) |Ey> ) (2'67)

which reflects the entanglement between the two degenerate electronic
states, E, and E,, and their associated vibrational states, x&"(Q.) and
X5Y(Qe), pertaining to JT-active degrees of freedom.

The JT Hamiltonian describing the states defined in Eq. (2.67) is
derived by expanding the matrix elements (E;|V|E;) in terms of the nor-
mal coordinates associated with the e symmetry vibrational modes [47].
Retaining only the linear terms in this expansion yields a vibronic Hamil-
tonian of the form

H =Ho+ HjT,

where Hg represents the vibrational motion within a harmonic potential,
and HjT encompasses all linear interactions arising from non-adiabatic
effects. In the electronic basis of E, and E, orbitals, the zero-order
Hamiltonian is given by:

Ho= Y —hja—2+1w2Q2 I (2.68)
20Q7, 2 FM

ks ye{z,y}
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Here, the index k = 1,..., N enumerates all pairs of degenerate e-
symmetry vibrations, v € {z,y} distinguishes the two components of
these degenerate vibrations, wy denotes the angular frequency of the
k-th mode. I is the two-dimensional identity matrix acting on the or-
bital subspace spanned by the states |E,) and |E,). Ho is identical to
Eq. (2.55), meaning that it describes a system of uncoupled harmonic
oscillators. This Hamiltonian is used to determine both the vibrational
frequencies wy and the corresponding zero-order harmonic vibrational
solutions.

The JT interaction part of the Hamiltonian is given by [47,73]:

Hyw = Y \/2h} Ky, |Cr, Qe + Cim, Quy (2.69)
k

where K} are the dimensionless vibronic coupling constants [74], and
CA'EA/ represents the Clebsch-Gordan (CG) coefficient matrices, as deter-
mined by group-theoretical analysis [47]. For the chosen Cartesian x,y
representation of the degenerate states, the CG matrices take the form:

. 101\ . 1 (1 0
Cp, = — , Cp, = — . 2.70
RG] (1 0) RG] (0 —1) (2.70)

2.4.2. Practical ab initio approach for solving the Jahn—Teller
problem

In this section, we outline a practical ab initio approach to address the
Jahn—Teller problem, with the primary objective of obtaining solutions
of the form (2.67).

The procedure begins with solving the Schrédinger equation for the
zero-order Hamiltonian [Eq. (2.68)], which, by design, excludes non-
adiabatic contributions. To effectively suppress the Jahn—Teller in-
teractions in DFT calculations, we adopt the strategy described in
Refs. [34,75]. This method employs an electronic configuration with
fractional occupations, where the Kohn—-Sham wave function is con-
structed by assigning a fractional occupation of 0.5 electrons to each of
the two degenerate orbitals. Such a configuration simulates an ensem-
ble of two degenerate electronic states with equal probability, thereby
quenching the JT interactions and preserving the high symmetry of the
system [76]. With this configuration, the potential energy surface for e
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Energy
Energy

Figure 2.3: a The characteristic "sombrero-hat” shape of the APES
arising from the linear JT effect in an £ ® e system. b The one-
dimensional cross-section of the APES, illustrating the JT stabilization
energy, Eyr, and the corresponding distortion amplitude, AQ .

modes is harmonic and vibrational modes can be computed using stan-
dard computational techniques and subsequently classified according to
the irreducible representations of the corresponding point group.

Once the vibrational modes are determined, the next step involves
estimating the vibronic coupling constants, K}, [see Eq. (2.69)], associ-
ated with each vibrational doublet k. These constants can be extracted
by analyzing the potential energy surface of the E ® (e e ® ---) sys-
tem [34]. In particular, for the normal coordinates corresponding to
the symmetry-breaking degenerate e modes, the potential of a linear JT
system typically exhibits the characteristic "sombrero-hat” profile (see
Fig. 2.3) [47].

The practical analysis of the potential energy surface begins with the
high-symmetry configuration obtained via partial occupation. By subse-
quently removing the fractional occupation and reassigning the electrons
to represent a single degenerate state, the system relaxes further along
the symmetry-breaking e directions, thereby reaching the minimum of
the energy surface. The displacement associated with this relaxation,
denoted as AQjr, is then projected onto each pair k of e-symmetry
normal modes. This projection yields the vibronic coupling constants
through the relation [34]:

_ wp AQZ
- 2h
39

K} : (2.71)



where AQ? = AQ?, + Asz represents the squared displacement of the
k-th vibrational doublet along its two Cartesian components.

The final step involves the construction and diagonalization of the
Hamiltonian describing the Jahn—Teller system. The JT Hamiltonian,
‘H T, is constructed in the basis of zero-order vibrational states obtained
by solving Hp. To make practical calculations feasible, this basis is
truncated to a finite number of total phonon excitations, Nio. How-
ever, even with a truncated basis limited to a few phonon excitations,
the diagonalization of the full Hamiltonian, H = Ho + Hjr, remains
computationally prohibitive for systems with a large number of vibra-
tional modes. To address this challenge, we adopt strategies proposed
in Ref. [34], which involve identifying aditional symmetry of the linear
JT system and method of few effective modes.

Following symmetry arguments from Refs. [34,71,77], both the JT
Hamiltonian H jT and the zero-order Hamiltonian Hy commute with the

quasi-angular momentum operator,

J = Ja+ Jon, (2.72)
|
Je1 = 56—y, (2.73)
jph =C, Z‘Ck’ (2.74)
k

where jel acts on the orbital component of the wave function, with &,
being the Pauli matrix in the Cartesian representation. The operator
jph quantifies the total angular momentum of the e-symmetry harmonic
modes, and L is the angular momentum operator for the k-th vibra-

tional doublet, defined as

0 0

This commutation implies that, before diagonalization, one can select a
basis of H that is also composed of eigenstates of Eq. (2.72) with well-
defined quantum numbers j = j¢ + > i . By symmetry, these states
are not coupled by Hjr, allowing the JT problem to be solved separately
for each j, thereby reducing the computational complexity.

To achieve this separation, we perform a canonical transformation
of variables so that, in the zero-order basis, the electronic states are
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eigenstates of Eq. (2.73) while the phonon states diagonalize Eq. (2.74).
In the new basis, the electronic states transform as spherical harmonics:

1
V2

which correspond to electronic quantum numbers jg = j:%. The sym-

|Ex) = —= (|Bx) £ |Ey)), (2.76)

metric phonon states are defined by introducing creation and annihila-
tion operators that generate circular phonon modes:

N . .
Gy = ﬁ (Qkg Fiany) (2.77)

where ay, and ag, denote the second quantization operators associated
with the Cartesian Q, and Qy, degrees of freedom, respectively. In this
representation, the total number operators for left- and right-handed
phonons are defined as

At = A g (2.78)

while the operator
N = Ny + N (2.79)

accounts for the total number of phonon excitations in the kth vibra-
tional mode. Accordingly, the phonon angular momentum operator in
Eq. (2.74) becomes

Ly =h(Ngy —ng—). (2.80)

The matrix elements of the Hamiltonians Hg and H T can be derived
following the treatment in Ref. [34]. For the zero-order Hamiltonian, one
obtains:

(naly,....nnln; Bx|Holnily, ... nnln; By) = Zhwk (np +1),
%
(2.81)

where nj denotes the total number of excited phonons for the k vi-
brational doublet and [; is the respective angular momentum. For the
Jahn—Teller interaction Hamiltonian, the relevant off-diagonal matrix
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elements are:

<n'1 /1, e 7n3\7l§\7; E_‘?‘:[JT‘nlll, N ,anN; E+> (2.82)
=2 K hwy O lj+1 [H Ont ;01 1 (2.83)
k £k

ng — Ui ng + Il + 2
. [\/ . 5n;,nk_1+\/26n;€,nk+1]. (2.8)

Because the total quasi-angular momentum operator J commutes with
Hyr, the complete Hamiltonian can be diagonalized independently in
each subspace characterized by a fixed total quantum number

j:jel+zlk-
k

The eigenstates of the full Hamiltonian can be expressed as

(@ fim) = XFon(Qe) 1B4) + X5, (Qe) |E-)

= Z Z C;;m,nl \nlll ce anN; E5> y (285)
s={+,—} nl

where C’f;m,nl are the expansion coefficients determined through diago-
nalization. This approach leverages symmetry to simplify the solution
of the Jahn—Teller problem, significantly reducing the computational
complexity.

To further reduce the computational burden, we adopt an approach
based on a reduced set of effective modes [34,75]. In this framework,
the spectral density of the Jahn—Teller coupling is defined as

K*(hw) = Ki§(hw — hw,). (2.86)
k

This density is then approximated by a density stemming from a smaller
number of effective modes

Neff
K2 (hw) =Y K2gq(hw, — hw), (2.87)
n=1

where g, is a Gaussian function with width ¢. The approximation uses
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N.g effective vibrations, each characterized by a frequency w, and an as-
sociated vibronic coupling strength K2. The parameters K2, w,, and o
are optimized to ensure that KZ;(hw) accurately reproduces K2(hw). By
systematically increasing the number of effective modes, we can monitor
the convergence of the computed observable, which in this thesis, is the
optical lineshape of the transition involving a JT-active electronic state.
In practice, convergence is typically achieved with only a few effective
modes, thereby significantly reducing the computational burden.

2.5. Vibrational broadening of optical spectra

2.5.1. Optical lineshapes for non-degenerate states

In the Franck—Condon approximation, the normalized lineshape L(hw)
for luminescence and absorption at zero temperature (7' = 0 K) is given
by [34]:

L(hw) = Cw"A(hw), (2.88)

where C' is a normalization constant, A(hw) represents the phonon spec-
tral function, and the exponent x takes value of 3 for luminescence and
1 for absorption. The spectral function is expressed as

A(hw) =" [(xiolx fm)|” 6 (BzpL F (fm —g0) — hw),  (2.89)

where Eyzpy, is the zero-phonon line (ZPL) energy, and x;o0 and xf.m
denote the vibrational wave functions of the initial and final electronic
states, respectively. Here, €y, is the energy of the m-th vibrational
state in the final electronic manifold with respect to the potential energy
minima. The minus and plus signs in the argument of the §-function
correspond to luminescence and absorption, respectively. The optical
spectral function A(fw) quantifies the transition amplitudes between
vibrational states and is central in determining the lineshape.

Since the vibrational structures of the ground and excited states typ-
ically differ, the overlap integrals (xs0|x f;m) in Eq. (2.89) are inherently
multidimensional. Given the large number of vibrational modes present
in defect systems, the direct evaluation of these integrals becomes com-
putationally infeasible. In a practical approach, to simplify the calcu-

lation of the overlap integrals, we adopt the equal-mode approximation
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from Ref. [34, 78], which assumes that the shapes and frequencies of vi-
brational modes of the initial and final states are identical. To address
the limitations of this assumption, we follow Ref. [34] and for lineshape
calculations consistently employ the vibrational modes of the final state.

The spectral function A(fw) can be can be efficiently obtained by
computing it in the time domain through the generating function method
of Kubo and Lax [79,80]. In this approach, the spectral function is
obtained from the generating function G(t) via the relation

1 [ .
Alw) = - /_ G(t)e M= iBzrL/h=tqy, (2.90)

The term e ! is introduced as a phenomenological correction to ac-
count for the homogeneous Lorentzian broadening of the ZPL not cap-
tured by the theory, as well as to address inhomogeneous broadening. In
practice, parameter v is adjusted to match the experimental linewidth
of the ZPL.

In the equal mode approximation, the generating function G(t) can
be expressed as:

G(t) = exp | —Sior + »_ Spe™ k" |, (2.91)
k

where the plus sign in the exponent is used for luminescence and the
minus sign for absorption, Sy represents the partial Huang-Rhys (HR)
factor, and the summation runs over all vibrational modes of the system.
Their sum gives the total coupling strength Siot = >, Si. The factor
Si quantifies the average number of excited phonons during an optical
transition [81]. It is defined as

wrAQ?

Sk="gn

(2.92)
where AQ) represents the ionic displacement along the normal mode k
induced by an optical transition. Specifically, AQ); is the projection of
the mass-weighted displacement between the ground and excited states

onto the normalized phonon mode 7,:

AQk = Z V MmARmank;ma- (2'93)

mo
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Here, AR, is the displacement of the atom m along the o coordinate,
and M, is its mass.

To effectively describe the generating function (2.91) in extended
systems, where a continuum of vibrational frequencies is expected, we
introduce the spectral density of electron—phonon coupling (also known
as the spectral function of electron—phonon coupling):

S(hw) = Z Sid(hwy, — hw), (2.94)
k

which allows us to rewrite the generating function as follows:
G(t) = exp [_Stot + / S (hw)eFt dw} : (2.95)

Here, Siot = > Sk is the total HR factor, where the sum is evaluated
over all vibrational modes of the defect system. We employ smoothing
functions tailored to different mode types to approximate the d-functions
in Eq. (2.94). For bulk-like and quasi-localized modes, d-functions are
replaced with Gaussians of specified width, which allows controlled spec-

tral broadening.

2.5.2. Optical lineshapes for A to E transitions

The phonon spectral function A(hw) in Eq. (2.88), which describes tran-
sitions of A — FE (from a singlet initial state to a doublet final state), can
be formulated as a convolution of the spectral contributions arising from
symmetry-preserving and symmetry-breaking vibrational modes [34]:

A(hw) = / Aa(hw — ha) Ay (B )A(). (2.96)

Here, Ay(Aw) and A.(hw) denote the spectral functions associated with
the symmetry-preserving and symmetry-breaking vibrational modes, re-
spectively. The function A,(hw) encompasses vibrational modes of a;
(or ai4) symmetry, which are collectively denoted as a for consistency
across systems sharing similar symmetry. This spectral function is ob-
tained using the formalism developed for the adiabatic case, as presented
in Egs. (2.89)—(2.95).

Ac(hw) characterizes the vibrational modes associated with JT-

active e-symmetry motions. For a transition in which the initial elec-
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tronic state (i) is non-degenerate and the final state (f) forms a degener-
ate orbital doublet, the spectral function for the JT-active e vibrational
modes is given by [34]:

A(h) = 3 || (o

€, 2 € €
Xfﬁn>’ ] 8(e5m — €50 — hw).
(2.97)

Here, x§,, denotes the harmonic vibrational wavefunction correspond-
)

)| [k

ing to the e-symmetry motion of the initial state, while ijffn and X?f;’n
represent the ionic prefactors of the vibronic wavefunction for the final
degenerate state, as introduced in Eq. (2.67). Evaluating this spectral
function requires computing the overlap between the harmonic wave-
functions and the ionic components of the vibronic solution, which, in
turn, necessitates an explicit solution of the Jahn—Teller Hamiltonian as
detailed in Sec. 2.4.

In the circular basis, the bracketed term in Eq. (2.97) can be ex-
pressed as

|G X500+ 1O o IX 0 (2.98)

To calculate these overlap integrals for e-symmetry vibrational modes,
similarly to a modes, we use the equal-mode approximation, which as-
sumes that the vibrational shapes and frequencies of the A orbital mani-
fold are well-represented by the zero-order Hamiltonian of the final state
[Eq. (2.68)]. Furthermore, in the zero-temperature limit, these over-
laps are calculated between the zero-phonon state of the initial state
manifold, denoted as x§, = [00---0), and all vibronic states of the F
manifold. Given that )", I is conserved, only vibronic solutions where
j = £1/2 (with je = £1/2 and >, I, = 0) are relevant for this analysis.

2.6. Embedding methodology

The evaluation of the geometry relaxation profile following an optical
transition is a critical aspect of supercell-based calculations. While
modern DFT calculations can handle supercells with more than 1000
atoms, these sizes, although sufficient for total energy convergence, are
insufficient to fully capture the influence of low-energy acoustic phonons.
This limitation arises due to the constraints imposed by periodic bound-
ary conditions and the finite number of vibrational degrees of freedom
available in such supercells. Consequently, the supercell dimensions are
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Figure 2.4: Illustration of the force constant matrix embedding
methodology for defect vibrational structure calculations.

inadequate for accurately accounting for contributions from the long-
wavelength components of AR,,, in Eq. (2.93).

To address the limitations imposed by finite supercell sizes, we em-
ploy the force constant embedding methodology outlined in Refs. [34,82].
The embedding methodology leverages the short-range nature of inter-
atomic interactions in semiconductors. When an atom is displaced from
its equilibrium position, as performed in the finite-difference approach,
the resulting force exerted on neighboring atoms diminishes rapidly with
increasing distance from the displaced atom. This rapid decay facilitates
allows for the efficient construction of the Hessian matrix for large su-
percells.

The construction of the Hessian matrix follows the criteria below:

o If two atoms lie within a specified cutoff radius 7}, the correspond-

ing elements from the bulk supercell Hessian matrix are utilized.

e For atom pairs within a cutoff radius r4 from the defect, matrix
elements from the defect-containing supercell are applied.

e In all other cases, the matrix elements are set to zero.

This force constant embedding scheme is illustrated in Fig. 2.4.
Using the force constant embedding methodology we calculate AQy
for each vibrational mode of a large supercell by using forces and the
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harmonic relation to displacements. The relaxation component AQy is
then evaluated as

AQk— QZ\/inkmon (299)

Yk ma

where F,,, represents the force on atom m along direction a when the
system is in the final electronic state but remains in the equilibrium ge-
ometry of the initial state calculated in the directly accessible supercell.

Although the embedding procedure is relatively simple, it necessi-
tates additional corrections to account for the symmetry properties of
the Hessian matrix. Specifically, truncating matrix elements beyond a
predefined cutoff radius violates Newton’s third law:

Ppisnj = — _ Prmiiny- (2.100)

m#n

This violation of the "acoustic sum rule” can result in a small net force
acting on the entire system, potentially influencing the accuracy of low-
frequency acoustic modes. To enforce Newton’s third law, one approach
is to redefine each matrix element ®,;.,; (for diagonal atomic indices
n) using the right-hand side of Eq. (2.100). However, applying this
correction when ¢ # j may disrupt the intrinsic symmetry of the Hessian
matrix, particularly when n = m. To preserve the symmetry properties
of the Hessian matrix and ensure that the acoustic mode frequencies at
the I' point remain zero, the correction is applied to ®;.,; only when
the Cartesian components coincide, i.e., when ¢ = j.

The embedding methodology is employed to analyze the convergence
of the optical lineshape with respect to supercell size. As the supercell
size increases, the relaxation profile approaches the dilute limit, captur-
ing contributions from low-frequency phonon modes and potential quasi-
localized defect vibrations in resonance with bulk vibrational modes. In
most cases, convergence is achieved for supercells containing more than

10000 atoms.
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Chapter 3
Benchmarking of SCAN density
functional for bulk properties and
thermodynamic and electronic

properties of point defects

3.1. Introduction

Over recent decades, Kohn-Sham density functional theory (DFT) [28]
has emerged as the principal tool for exploring atomic and electronic
structures in solids. While theoretically exact, DFT relies on ap-
proximations for the exchange-correlation energy due to the unknown
precise form of this contribution. Commonly used approximations
include semilocal functionals like the generalized-gradient approxima-
tion (GGA), most notably the Perdew-Burke-Ernzerhof (PBE) func-
tional [29], and hybrid functionals incorporating fractions of Fock ex-
change, such as PBEO [83,84] and screened Heyd-Scuseria-Ernzerhof
(HSE) [30,85]. However, GGA functionals typically underestimate semi-
conductor and insulator band gaps [28,31], while hybrid functionals im-
prove electronic structure descriptions but are computationally demand-
ing [32-34,86-88].

In 2015, the SCAN (Strongly-Constrained and Appropriately-
Normed) functional was introduced [35] as part of the meta-GGA class
functionals, offering notable improvements in the calculation of lattice
parameters and energetics for solids [36]. SCAN also partially improves
the common underestimation of band gaps observed with GGA function-
als [37]. Its computational efficiency makes it particularly advantageous
for supercell calculations of point defects [38], which are essential for
accurately modeling defects in semiconductors and insulators. While
SCAN has been widely applied to study bulk materials [39], its use in
defect modeling has been more limited [40-42].

In this chapter, we benchmark the SCAN functional along with its
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two variants, rSCAN [44] and r2SCAN [45], for diamond, silicon carbide,
and silicon, as well as for color centers in these materials, to evaluate
the performance of these functionals in predicting both bulk and defect
properties. The primary focus is to assess their accuracy in comparison
with the standard PBE and hybrid HSE06 functionals, considering both
computational cost and predictive capabilities.

The chapter is structured as follows. In Section 3.3.1, we present
the calculated bulk lattice parameters for diamond, silicon carbide poly-
types, and silicon using the SCAN family of functionals. We discuss the
accuracy of these functionals in predicting lattice constants, bulk mod-
uli, and band gaps. Section 3.3.4 details the atomic structures of the
studied point defects, including the NV~ and split-vacancy centers in
diamond, as well as neutral divacancies in 4H-SiC. Section 3.3.6 reports
the calculated defect formation energies, highlighting differences across
functionals. Section 3.3.7 covers the computed charge-state transition
levels (CTLs) for selected defects, aligned to a common reference for
comparison. In Section 3.3.8, we compare the calculated zero-phonon
line (ZPL) energies with available experimental values, demonstrating
the accuracy of the SCAN family in predicting defect excitation en-
ergies. Section 3.3.10 discusses the zero-field splitting (ZFS) calcula-
tions for divacancy defects in 4H-SiC, comparing theoretical predictions
with experimental measurements to evaluate the performance of differ-
ent functionals. Finally, in Section 3.4, we summarize the key findings
of this chapter and present the main statements supporting the thesis
defense.

3.2. Methodology

3.2.1. Computational details

Calculations were performed using spin-polarized density functional the-
ory (DFT) with a plane-wave energy cutoff of 600 eV for diamond and
silicon carbide polytypes, and 500 eV for silicon, as implemented in the
Vienna Ab Initio Simulation Package (VASP) [63]. The functionals em-
ployed were PBE, SCAN, rSCAN, r2SCAN, and HSE06, with a screened
Fock exchange fraction of a = 0.25 [30]. All defects were modeled us-
ing the supercell approach [89]. Brillouin zone sampling was carried
out using a single k-point at I'. The convergence criterion for the elec-
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tronic self-consistent loop was set to 1076 eV for the HSE06 functional,
whereas a criterion of 1078 eV was applied for all other functionals. The

ionic relaxation was terminated when the forces on atoms fell below

1074 eV A1,

3.2.2. Defect formation energies

The thermodynamic stability and concentration of defects can be as-
sessed by calculating the defect formation energies which represent the
energy required to create a defect in a solid. The formation energies of
defects in a charge state ¢ were calculated using the expression [89]:

AH(q) = Etot(q) — Bouic — »_ nipti + q(Evem + Er) + Eeor- (3.1)

(2

In this equation, Ei(q) denotes the total energy of the supercell con-
taining the defect in charge state ¢, while Ep,x is the total energy of
the pristine, defect-free supercell. The term pu; represents the chemical
potential of atom type 7, with n; indicating the number of atoms of type
i that are added to (n; > 0) or removed from (n; < 0) the supercell
to form the defect. For defects in diamond uc is equal to the energy
of diamond per one carbon atom. pus;, pge, and ug, are equal to the
energy of Si, Ge, and Sn elemental solids per one atom, and uy is equal
to 1/2E04(Ng). For calculating the formation energy of the C-center in
silicon, uc is derived from bulk diamond, while po corresponds to the

energy per oxygen atom in quartz (SiOs).

The Fermi energy, Er, is referenced relative to the valence band max-
imum (VBM) Eypum as determined for each functional. An additional
term, Fcorr, is included to correct for spurious electrostatic interactions
between charged defects in the periodically repeated supercell, as de-
scribed in Ref. [90]. The Fermi energy at which the formation energies
of charge states ¢ and ¢’ are equal is known as the charge-state transi-
tion level (CTL), denoted as £(q/q’) [89]. The CTL is a parameter for
identifying the stability regions of different charge states concerning the
electron chemical potential. Its position relative to the band edges is
an important characteristic of a defect, as it largely dictates the defect’s
impact on the electronic and optical properties of the system. The CTL
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is given by:

This transition level, e(q/q’), is also referenced to the VBM. To facili-
tate comparison across different functionals, charge-state transition lev-
els are typically referenced to a common benchmark, such as the average
electrostatic potential or the vacuum level [91-93]. As a benchmark for
band structure alignment across functionals, we determined the position
of VBMs relative to the vacuum level using surface calculations in dia-
mond. These calculations used (001) surfaces, modeled as 20-layer slabs,
and included the (2 x 1) reconstruction of the (001) surface, calculated
at the PBE level. For calculations with the SCAN family and HSE06
functionals, the bulk lattice constant was adjusted to the equilibrium
value specific to each functional.

3.2.3. Zero-phonon line energy

Zero-phonon line (ZPL) energies were calculated using the ASCF (delta-
self-consistent-field) approximation, a widely used method for determin-
ing defect excitation energies in solids [94-102]. In the ASCF approach,
excited states are modeled by modifying the occupancies of defect-
localized Kohn—Sham orbitals, whereby an electron is promoted from
an occupied localized orbital to a selected unoccupied orbital, yielding
a wavefunction that represents the excited state. Although ASCF relies
on constrained orbital occupations based on chemical intuition, it has
a theoretical basis: Gunnarsson and Lundqvist [103] demonstrated that
DFT can extend to excited states by imposing symmetry constraints
on the exchange-correlation functional. However, because a general pre-
scription for achieving this at the functional level is unavailable, the same
functional is typically applied to both ground and excited states. The
ASCF approach thus serves as a practical method, enforcing symmetry
in defect wavefunctions and capturing ZPL energies.

For the NV~ center in diamond and neutral axial divacancies (hh-
VVY and kk-VV?) in 4H-SiC, the ZPL energy was calculated as an en-
ergy difference between the ground triplet state 34y with an electronic
configuration of a?e? and the excited triplet state 3E with aje?® elec-
tronic configuration in distorted C4j symmetry due to the Jahn—Teller
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Figure 3.1: Defect-level diagrams of the NV~ center in diamond. Di-
agrams show Kohn—Sham single-particle configurations showing the oc-
cupancy of these levels for the ground state 345 on the left and excited
state 3E on the right. Shaded areas correspond to the valence band
(VB) and the conduction band (CB).

effect present in the excited triplet state (see Figs. 3.1 and 3.5). This
was achieved by promoting the a; electron in the spin-minority channel
to the e level and allowing the symmetry to break (from Cj, to Cyp,) dur-
ing the calculation. Similarly, the excited doublet states ?E, of SiV™,
GeV™, and SnV~ centers were modeled by promoting an e,, electron in
the spin-minority channel to an empty e, orbital (see Fig. 3.7a). For
these negatively charged group-1V vacancies, the Jahn—Teller effect is
present in both ground and excited states, so ZPL energies were cal-
culated as the energy difference between the 2Eg and 2FE, states with
broken symmetry (from Dsg to Cap,).

For the basal divacancy hk-VV?, the ZPL energy was determined
as the energy difference between the ground triplet state 2A” with
a single-determinant wavefunction |a’(1)a’(1)a”a’(2)| and the excited
triplet state 3 A’, with a single-determinant wavefunction |a’(1)a"a"a’(2)|
(see Fig. 3.6a). In this case, there is no symmetry breaking, and the de-
fect remains in C; symmetry in both ground and excited states. For
the kh-VVY divacancy, the ZPL energy was calculated as the energy
difference between the ground triplet state 3A” and the excited triplet
state 3A in distorted C; symmetry due to the pseudo Jahn-Teller effect
(see Fig. 3.6b).
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3.2.4. Zero-field splitting

If a point defect possesses two or more unpaired electrons, its electronic
spin levels experience splitting even in the absence of an external mag-
netic field. This effect, known as zero-field splitting, arises predomi-
nantly due to the dipole-dipole interaction between electron spins, ex-
pressed as [104]:

STDS

o o o (38 )8, 1)~ 128 -8))
o2 ( e CE)
Here, r represents the displacement vector between the two spins, while
S, and Sj denote the spin operators. In DF'T, the dipole-dipole interac-
tion tensor D is commonly approximated using the square of the Slater
determinant formed by KS orbitals (see Section 2.2.2), such that the

wavefunction for a pairwise spin interaction is given by:

Givj(r1, ) |* = !¢KS(F1)¢KS( 2) = &> (r2) 6> (). (3.4)
The matrix elements of the zero-field splitting tensor are then computed
as:

1 3rary — 126,
D, = 5 ZOT geﬂB ZXW // |G j(r1,12)] (W) drq drs.

(3.5)
Here, x;; takes values of £1, depending on whether the interacting spins
are parallel or antiparallel. The authors of Ref. [105] initially imple-
mented this equation in a stand-alone code using the pseudo part of the
KS orbitals, which accounts for 95% of the total contribution. Later, the
full calculation, including the core regions, was incorporated into VASP
code.

3.2.5. Vertical excitation energies

The vertical excitation energies for negatively charged group-IV vacancy
centers were computed using distorted ground-state configurations with
Csp, symmetry. For the NV~ center, direct convergence of the excited
degenerate ®E state posed challenges due to the degeneracy inherent in
the high-symmetry geometric configuration, so vertical excitation ener-
gies were estimated indirectly, as follows. The vibrational structure of

54



the excited state was calculated by using equal (half-half) occupations
with an electronic configuration of ale;5e;'5 for the two degenerate or-
bitals [34]. Partial Huang-Rhys factors Sj were determined for modes
with a; symmetry, and dimensionless vibronic constants Kj were cal-
culated for degenerate e symmetry modes [34]. Assuming a harmonic
approximation for a; modes and a linear F¥ ® e Jahn—Teller interaction,
the vertical excitation energy is given by:

Evg = Ezpr, + Evel = EzpL + Z Sy hwy, + ZK,%hwk (3.6)
keay kee

In this expression, Eypr, denotes the zero-phonon line energy, E,. is the
ionic relaxation energy, and wj represents the vibrational frequencies
of the defect. The summation k € e spans the doublets of degenerate
modes. The relaxation energy contribution from e symmetry vibrational
modes corresponds to the Jahn-Teller relaxation energy [106].

3.3. Results and discussion

3.3.1. Bulk lattice parameters

First, we evaluate the performance of various exchange-correlation func-
tionals in predicting the bulk parameters of diamond, with the re-
sults summarized in Table 3.1. Regarding the lattice constant a, PBE
provides a value that is 0.14% larger than the experimental value of
a = 3.567 A, which initially might suggest strong correspondance. How-
ever, HSE06 and SCAN slightly underestimate a by 0.59% and 0.36%,
respectively. It is worth noting, as pointed out in Ref. [107], that ex-
perimental equilibrium lattice constants include contributions from the
anharmonicity of zero-point vibrations. This effect should be considered
for accurate comparison with theoretical results. The corrected exper-
imental value is @ = 3.555 A [107], as also given in Table 3.1. With
this correction, both SCAN and rSCAN show excellent agreement with
the experimental value, deviating by only 0.03%. By contrast, PBE
overestimates a by 0.48%, while HSE06 underestimates it by 0.25%.
To determine the bulk modulus, pressures as a function of the lattice
constant were fitted to the universal equation of state [108]. Regarding
the bulk modulus B, the rSCAN and r>SCAN functionals yield the clos-
est agreement with experiment, overestimating B by 2.24% and 1.35%,
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Table 3.1: Lattice constants a (A), bulk moduli B (GPa), derivatives a,
and band gaps E, (eV) for diamond. AEygym and AEcgy are shifts in
the absolute positions of bulk band edges with respect to HSE06 values.

a B (0% Eg AEVBM AECBM
PBE 3.572 435 3.7 4.120 0.59 -0.63
SCAN 3.554 460 3.7 4.558 0.37 -0.41
rSCAN 3.556 456 3.7 4.375 0.40 -0.56
r?’SCAN 3.561 452 3.7 4.331 0.47 -0.54
HSEO06 3.546 473 3.6 5.343 0 0

Expt. 3.567% (3.555P) 446° 3.7 5.48° - -

> Ref. [109] P Ref. [107] © Ref. [110]

respectively. In contrast, PBE underestimates B by 2.47%, while HSE06
overestimates it by 6.05%. For the derivative «, all functionals match
the experimental value closely, as shown in Table 3.1.

Next, we investigate the bulk parameters of several polytypes of sil-
icon carbide. For silicon carbide, lattice constants for the 3C, 4H, and
6H polytypes are summarized in Table 3.2. For 3C-SiC, PBE overesti-
mates the lattice constant a by 0.44% relative to the experimental value
of a = 4.360 A, while HSE06 slightly underestimates it by 0.34%. The
SCAN and rSCAN functionals yield deviations of 0.21% and 0.28%, re-
spectively, showing close agreement with experimental data. Notably,
r’SCAN provides the smallest deviation, underestimating a by only
0.14%, making it the most accurate functional for 3C-SiC.

For the 4H-SiC polytype, the a and c lattice parameters are well-
predicted by the SCAN family of functionals. SCAN and r2SCAN show
very small deviations from experiment, at just 0.19% and 0.13% for a,
and 0.17% and 0.11% for ¢, respectively. The rSCAN functional per-
forms slightly less accurately with deviations of 0.26% for a and 0.26% for
¢, but still closely aligns with experimental values. PBE overestimates
both a and ¢, resulting in deviations of 0.42% and 0.44%, respectively.
HSEO06 provides a relatively accurate result for a, with a small deviation
of 0.32%, but underestimates ¢ with a deviation of 0.34%.

For the 6H-SiC polytype, r?’SCAN again shows strong performance,
deviating by only 0.13% for a and 0.11% for ¢, closely matching the
experimental values. SCAN follows with deviations of 0.19% for a and
0.17% for ¢, providing a slightly less accurate but still reliable prediction.
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Table 3.2: Lattice constants a and ¢ (A) and band gaps E, (eV) for
various SiC polytypes.

3C-SiC 4H-SiC 6H-SiC
a E, a c E, a c E,
PBE 4379 1.370 3.093 10.126 2.223 3.094 15.182  2.029

SCAN 4.351 1.708 3.074 10.065 2.596 3.075 15.089  2.385
rSCAN 4348 1.744 3.072 10.056 2.632 3.072 15.076 2.419
r?’SCAN  4.354 1.724  3.076 10.071 2.611 3.077 15.099  2.399
HSE06 4.345 2247 3.070 10.048 3.172 3.071 15.066  2.941
Expt. 4.360* 2.390° 3.080* 10.082* 3.265> 3.081* 15.115* 3.023P

> Ref. [111] P Ref. [112]

Table 3.3: Lattice constants a (A) and band gaps E, (eV) for silicon.

a E,

PBE 5.469  0.611
SCAN 5.428  0.825
rSCAN  5.435  0.776
r’SCAN  5.440 0.782
HSE06  5.433  1.153
Expt. 5.419* 1.170°

* Ref. [113] " Ref. [114]

The rSCAN functional produces deviations of 0.29% for a and 0.26%
for ¢, which are slightly larger. PBE overestimates both parameters,
resulting in deviations of 0.42% for a and 0.44% for ¢. HSE(6 slightly
underestimates both parameters, especially ¢, with deviations of 0.32%
for a and 0.32% for c.

Finally, we investigated the bulk parameters of silicon, with the re-
sults summarized in Table 3.3. For silicon, PBE overestimates the lattice
constant a by 0.92% relative to the experimental value of a = 5.419 A,
while HSEO06 slightly overestimates it by 0.26%. The SCAN functional
provides the closest agreement, underestimating a by only 0.17%, mak-
ing it the most accurate functional for predicting the lattice constant of
silicon. The rSCAN and r2SCAN functionals also show good agreement,
with deviations of 0.30% and 0.39%, respectively, showing improved ac-
curacy over PBE.
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3.3.2. Bulk electronic structure

For diamond, the electronic band gap E, shows significant variation
across the different functionals used, as displayed in Table 3.1. Con-
sistent with expectations for semilocal functionals, the PBE band gap
of 4.12 eV underestimates the experimental value of 5.48 eV. In con-
trast, the SCAN functional improves upon PBE by increasing the band
gap by 0.44 eV, while rSCAN and r?SCAN provide smaller increases of
0.26 eV and 0.21 eV, respectively. HSEO6 achieves a band gap of 5.34 eV,
aligning most closely with the experimental result.

Beyond band gap values, the absolute positions of the valence band
maximum (VBM) and conduction band minimum (CBM), are also im-
pacted by the choice of functional. These band edge positions are im-
portant for aligning charge-state transition levels (CTLs) of defects as
obtained by different methods [91-93]. The shifts in the VBM and CBM
(AEvpMm and AEcg)) relative to the HSE06 band edge positions are
listed in Table 3.1. Compared with HSE06, semilocal functionals gen-
erally show a near-symmetrical band gap reduction. Prior studies on
PBE and HSE06 alignment, such as Refs. [115,116], support these find-
ings. For AFEypn:, our calculated value of 0.59 eV aligns closely with the
previously reported values of 0.59 eV [115] and 0.63 eV [116].

The calculated electronic band gaps E, for various SiC polytypes are
summarized in Table 3.2. For the 3C-SiC polytype, the PBE functional
underestimates the band gap, yielding 1.370 eV compared to the exper-
imental value of 2.390 eV. The SCAN, rSCAN, and r>SCAN functionals
improve upon PBE, with values of 1.708 eV, 1.744 eV, and 1.724 €V,
respectively. However, the HSEO06 functional offers the most accurate
prediction, yielding a band gap of 2.247 eV, which is closer to the ex-
perimental value but still slightly underestimated.

For the 4H-SiC polytype, a similar trend is observed. The PBE
functional predicts a band gap of 2.223 €V, significantly lower than the
experimental value of 3.265 eV. The SCAN, rSCAN, and r>SCAN func-
tionals show gradual improvement, with values of 2.596 eV, 2.632 €V,
and 2.611 eV, respectively. HSE06 again provides the closest agreement
with experiment, predicting a band gap of 3.172 eV, which is slightly
below the experimental value.

In the case of the 6H-SiC polytype, the trend remains consistent.
The PBE functional underestimates the band gap at 2.029 eV compared
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Table 3.4: LO phonon frequencies (meV) at high-symmetry points for
diamond. Experimental data from Ref. [118].

r X L
PBE 160.7 148.1 154.6
SCAN 167.0 153.2 160.4
rSCAN 165.0 152.5 159.6
r’SCAN 164.7 152.0 159.0
HSEO06 171.0 154.7 160.8
Expt. INS 164.0 151.3 157.0

to the experimental value of 3.023 eV. The SCAN functional yields an
improved value of 2.385 eV, followed by rSCAN and r?SCAN with band
gaps of 2.419 eV and 2.399 eV, respectively. HSEO6 again provides the
most accurate result, predicting a band gap of 2.941 eV, which closely
matches the experimental value.

For bulk silicon, the electronic band gap E, varies significantly de-
pending on the functional, as shown in Table 3.3. Similar to trends
observed in bulk diamond, the PBE functional significantly underesti-
mates the band gap, yielding 0.611 eV compared to the experimental
value of 1.170 eV. The SCAN functional provides a better estimate with
an increased band gap of 0.825 eV, improving upon PBE’s result. Both
rSCAN and r?SCAN give band gap values closer to SCAN, at 0.776 eV
and 0.782 eV, respectively. However, HSEO6 offers the closest agree-
ment with experiment, producing a band gap of 1.153 eV, which is only
slightly below the experimental value.

3.3.3. Bulk phonons of diamond

Phonon dispersion curves for bulk diamond were computed using the
finite displacement method, as implemented in the PHONOPY software
package [117]. Calculations of interatomic force constants were per-
formed in 4 x 4 x 4 supercells (containing 512 atoms) with Brillouin
zone sampling restricted to the I'-point, and atomic displacements
set to 0.01 A. Table 3.4 presents the calculated longitudinal-optical
(LO) phonon frequencies (in meV) at key high-symmetry points, along
with experimental values obtained from inelastic neutron scattering
(INS) [118].

Although all tested functionals yield frequencies close to the exper-
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Figure 3.2: Phonon dispersion curves of diamond calculated using
PBE, HSE06, and r2SCAN. Experimental data from Ref. [118].

imental values, the SCAN family, especially r2SCAN, shows the best
agreement. Figure 3.2 illustrates the phonon dispersion curves obtained
with PBE, HSE06, and r2SCAN and compares them to experimental
data from Ref. [118]. Consistent with Ref. [119], both PBE and HSE06
exhibit some deviation: HSEO6 tends to overestimate, while PBE tends
to underestimate LO phonon frequencies. The r?SCAN functional, how-
ever, provides values that fall between those of PBE and HSEOQ6, closely

matching the experimental data.

3.3.4. Defect geometries

For diamond defects, a 4 x 4 x 4 supercell of 512 atoms was used, where
two carbon atoms were removed and replaced by an impurity atom. All
neutral divacancy centers (Vg; VY or VV?) in silicon carbide were cre-
ated by removing one Si atom and one C atom from a 6 x 6 x 2 supercell
containing 576 atomic sites. The C-center in silicon was created within a
4 x 4 x 4 supercell with 512 atoms. This C-center defect forms a square-
like ring structure within the (110) crystallographic plane, consisting
of two silicon atoms and two interstitial atoms positioned symmetri-
cally. The atomic structures of selected defects are shown in Figures 3.3
and 3.4.

In diamond, the NV center (Fig. 3.3a) consists of a nitrogen atom
adjacent to a vacancy, exhibiting Cs, symmetry. The SiV center
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Figure 3.3: Ball-and-stick representations of atomic structures of a
nitrogen-vacancy and b silicon-vacancy centers in diamond.

(Fig. 3.3b) features an interstitial silicon atom positioned midway be-
tween two vacancies, resulting in a split-vacancy configuration with Dsq
symmetry. The GeV, SnV, and NiV centers in diamond have structures
analogous to the SiV center.

The atomic structures of divacancy defects in 4H-SiC are illustrated
in Fig. 3.4a, where carbon and silicon atoms are represented by brown
and blue spheres, respectively, and vacancy pairs are depicted as hollow
spheres. Four nonequivalent divacancy configurations (hh, kk, hk, kh)
are shown, corresponding to the local symmetry of lattice sites by h
(hexagonal) and k (cubic) planes. All axial divacancies (hh-VV? and
kk-VV?) are aligned along the c-axis of 4H-SiC, while basal divacancies
(hk-VV? and kh-VV?) can occur in three equivalent orientations. The
ground state of neutral axial divacancies exhibits C'3,, symmetry, whereas
neutral basal divacancies exhibit C7j symmetry.

The atomic structure of the C-center in silicon is shown in Fig. 3.4b.
This defect exhibits C'1 symmetry, with its mirror plane aligning with
the (110) crystallographic plane and intersecting the square-like ring
formed by two silicon atoms (blue), one interstitial carbon atom (brown),
and one interstitial oxygen atom (red).

3.3.5. Electronic structure of defects

The Kohn—Sham defect level diagrams of ground and excited states of
NV~ center in diamond is shown in Fig. 3.5a. The electronic struc-

ture arises from molecular orbitals formed by three dangling bonds of
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Figure 3.4: Ball-and-stick representations of atomic structures of a
divacancy defects in 4H-SiC and b C;O; defect in silicon (also known as
the C-center) with the (110) crystallographic plane shown.

a NV~ in diamond

|3A2;m5:1> = |araye ey ‘3E; ms:1> = |areqe ey

b hh-WW° / kk-VV° in 4H-SiC

|3A2; m5:1> = |araye,ey)|

Figure 3.5: Defect-level diagrams of a NV~ center in diamond and
b neutral axial divacancies (hh-VV? and kk-VV?) in 4H-SiC. Diagrams
show Kohn—Sham single-particle configurations showing the occupancy
of these levels for the ground states on the left and excited states on
the right. Shaded areas correspond to the valence band (VB) and the
conduction band (CB).
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three carbon atoms surrounding a nearby vacancy and a dangling bond
from a substitutional nitrogen atom. These molecular orbitals consist
of a non-degenerate a; orbital and a doubly-degenerate set of e or-
bitals. The ground state of the NV~ center is a spin-triplet, denoted

as A, with an electronic configuration of a?e?

. For the spin projec-
tion mg = 1, the wavefunction is represented as single determinant wave
function |a1aiezey|. Optical excitation promotes a spin-down electron
from the a; orbital to an e orbital, resulting in the spin-triplet orbitally

degenerate 3E excited state with the configuration a;e3

. For mg = 1,
the degenerate wave functions of this excited state corresponds to two

Slater determinants: |ajezeyey| and |aiezeqzey).

Figure 3.5b illustrates the defect-level diagrams for the ground and
excited states of axial divacancies in 4H-SiC (hh-VV? and kk-VVO),
which closely resemble those of the NV~ center. The electronic configu-
rations originate from the molecular orbitals formed by carbon dangling
bonds, resulting in three principal orbitals: a non-degenerate a; orbital
and a pair of degenerate e orbitals. DFT calculations also predict the
presence of an additional e-symmetric doublet derived from silicon dan-
gling bonds near the conduction band edge, though these states are not
optically active under standard excitation conditions. In their neutral
charge state, axial divacancies have a spin-triplet ground state, desig-
nated as 34y, with an orbital occupation of a?e? and the corresponding
wavefunction can be written as |ai1aeze,|. Optical excitation transfers a
spin-down electron from the a; orbital to an e orbital, creating the spin-
triplet 3E excited state with the orbital configuration a;e3. This excited
state is represented by two distinct Slater determinants: |aiezey €, | and
lai€zezeyl.

The electronic structure of ground and excited states of neutral basal
divacancies (hk-VV? and kh-VV?) are illustrated in Fig. 3.6. In their
ground states, these basal divacancies exhibit C4; symmetry, with the
molecular orbitals classified into either a’ or a” irreducible representa-
tions. For the hk divacancy, the three orbitals within the band gap
are, in order of increasing energy, a’(1), a”, and a'(2) (see Fig. 3.6a).
The ground state of the hk divacancy is a triplet state, labeled 3A”,
characterized by the electronic configuration |a’(1)a’(1)a”a’(2)|. Optical
excitation results in the 3A’ excited state, with the electronic configu-

ration |a’(1)a"a”a’(2)|, where now the a” orbital is singly occupied. In
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a hk-vVv°

A5, = 1) = [ (0 (Da"a’(2)] Pasm, = 1) = |o'(1)a"a"a/(2)

b kh-vV°

[PA"im, = 1) = |a’ (1)@ (1)’ (2)a"|

Figure 3.6: Defect-level diagrams of a hk-VV? and b kh-VV? defects in
4H-SiC. Diagrams show Kohn—Sham single-particle configurations show-
ing the occupancy of these levels for the ground states on the left and

excited states on the right. Shaded areas correspond to the valence band
(VB) and the conduction band (CB).

contrast, the kh divacancy ground state orbitals, from lowest to highest
energy, are a'(1), a’(2), and a” respectively (see Fig. 3.6b). The ground
state of the kh divacancy is 2A” and is represented by the electronic
configuration |a/(1)a’(1)a’(2)a”|. The excited state of the kh divacancy
has C7 symmetry, with all molecular orbitals possessing a-symmetry.

The defect-level diagrams for the ground and excited states of the
negatively charged group-IV (G4V™) centers in diamond are depicted
in Fig. 3.7a. The ground state of the G4V~ center corresponds to a
spin-doublet single-determinant configuration, QEg represented by the
electronic configuration |€y,€us€uyCuyCqaCqrtqy|- Optical excitation pro-
motes a spin-minority electron from the e, orbital to an unoccupied e,
orbital, resulting in an excited state 2F, with an electronic configura-
tion |eysz€uzuyCga€yreqy€qy|- For the negatively charged nickel-vacancy
(NiV™) center in diamond, the electronic configuration arises from the
interaction of six carbon dangling bonds with the five 3d orbitals of the
nickel atom. The electronic structures of the ground and excited states
of the NiV™ center are illustrated in Fig. 3.7b. The ground state is
a spin-doublet with F, symmetry, corresponding to a configuration of
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a G4V~ in diamond

Figure 3.7: Defect-level diagrams of a negatively charged group-IV va-
cancy (SiV™, GeV~, SnV~) and b NiV~ centers in diamond. Diagrams
show Kohn—Sham single-particle configurations showing the occupancy
of these levels for the ground states on the left and excited states on
the right. Shaded areas correspond to the valence band (VB) and the
conduction band (CB).

’E,, with electronic configuration |a1401g€uzCuzeuy|. Optical excitation
transfers a spin-minority electron from the a1, orbital to the e, orbital,
leading to an excited state with Aj, symmetry and |a1g€us€uz€uyCuy|
electronic configuration.

3.3.6. Defect formation energies

Table 3.5 provides the formation energies for various charge states of NV,
SiV, GeV, and SnV defects in diamond at a Fermi energy level of Er = 0.
The formation energies for neutral (¢ = 0) charge states are highlighted
(in bold) in Table 3.5, as these values are unaffected by the Fermi level,
allowing for direct comparison across different functionals. For the NV
center, the SCAN family of functionals yields formation energies in the
range of 5.60-5.73 eV, lower than the PBE result of 5.89 eV and the
HSEQ06 result of 6.22 V.

In the case of group-IV vacancy centers, such as SiV, the SCAN
family produces values between those of PBE and HSE06: PBE predicts
a formation energy of 5.53 eV, SCAN variants range from 5.66 to 5.75 eV,
and HSE06 gives a higher value of 6.27 eV. For certain defect types,
formation energies from PBE and HSE06 have been previously reported
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Table 3.5: Calculated diamond defect formation energies (in eV) at

Fr = 0. Neutral charge states are highlighted.

NV Siv. GeV SnV
+ 0 — 2— + 0 — 2— + 0 — 2— 2+ + 0 — 2—
PBE 5.13 5.89 795 12.06 | 5.31 5.53 6.70 8.7l | 695 7.3¢ 891 11.37| 9.77 9.81 10.41 1231 15.09
SCAN 512 5.60 7.88 1241 560 5.75 7.00 9.07 | 7.26 7.57 9.32 11.92 | 10.33 10.33 10.84 12.98 15.91
rSCAN | 5.25 5.73 791 1226 | 554 5.71 6.87 886 | 7.17 7.49 9.10 11.55|10.11 10.13 10.66 12.62 15.41
r?SCAN | 525 5.69 7.87 1220 | 550 5.66 6.81 876 |7.11 7.43 9.02 11.45|10.03 10.04 10.55 1249 15.26
HSE06 539 6.22 8.89 13.89 | 6.03 6.27 7.77 10.14 | 7.54 8.02 10.03 12.91 | 10.32 10.47 11.21 13.60 16.82

in the literature, with our results showing close alignment (e.g., the NV
center in Ref. [120] and the SiV center in Ref. [121] using HSE06).

Since defect formation energies are not directly measurable, their
experimental values remain unknown. However, Table 3.5 illustrates
significant variations in formation energies across functionals, with dis-
crepancies up to 0.8 eV, much larger than the typical deviation of about
0.1 eV observed in atomization energies of small molecules [35]. This
difference likely arises due to the substantial diversity in chemical envi-
ronments represented in the total energy calculations involved in defect
formation. For instance, the SnV center shows the largest variation,
as its formation energy combines contributions from bulk diamond (a
wide-bandgap insulator), the defect structure, and bulk Sn (a metallic
system).

Our results align with a broader trend identified in Ref. [122], which
indicates that calculated formation energies for neutral defects in co-
valent materials tend to increase with the material’s band gap. This
pattern is likely due to wider valence bands and stronger covalent bonds
in materials with larger band gaps, resulting in higher energy costs for
bond-breaking during defect formation. The group-IV vacancy centers
follow this trend closely, whereas the NV center shows slight deviations.

The formation energies at a Fermi energy level of Er = 0 of C;, O;,
and C;O; defects in silicon are presented in Table 3.6, with neutral charge
states highlighted in bold. For C; defect, the SCAN functional predicts
a formation energy of 3.49 eV, slightly lower than the HSE06 result of
3.70 eV, indicating a modest discrepancy between functionals. In the
case of the neutral O; defect, the SCAN and HSE06 formation energies
are 1.79 eV and 1.81 eV, respectively, closely matching the upper end of
the experimental range, 1.65(15) eV [123]. For the neutral C;O; complex,
SCAN yields a formation energy of 3.75 eV, while HSE06 provides a
slightly higher value of 3.95 eV. These results agree well with previous
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Table 3.6: Calculated formation energies (in eV) of Cj, Oj, and C;O;
defects in silicon at Er = 0. Neutral charge states are highlighted.

G G;O; O

+ 0 — + 0 0
SCAN | 3.29 3.49 4.20 3.75 | 1.79
HSEO06 | 3.38 3.70 4.69 | 3.56 3.95 | 1.81
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Figure 3.8: Charge-state transition levels of NV, SiV, GeV, and SnV
centers in diamond, aligned to a common reference. Colored regions
within the bandgap correspond to ranges of the stability of different
charge states. Horizontal black bars correspond to the position of VBM
and CBM for a given functional. Zero energy corresponds to the position
of VBM in HSE06.

theoretical studies, which report formation energies in the range of 3.63—
4.85 eV [124-126].

3.3.7. Charge-state transition levels

The computed charge transition levels for four diamond defects are pre-
sented in Fig. 3.8 and Table 3.7. Results from calculations at the HSE06
level align with previous findings in the literature [120,127]. To facili-
tate comparison across functionals, the CTLs were aligned to a common
reference, as described in Sec. 3.2.2. Notably, CTLs derived from the
rSCAN and r?2SCAN functionals are very closely matched; therefore,
rSCAN results are omitted from Fig. 3.8 for improved visual clarity.

In line with expectations, CTLs positioned well within the diamond
band gap show strong alignment between different functionals, despite
their variations in predicted band gaps [91-93]. However, for shallower
defect levels, deviations become more pronounced. For instance, the
(4/0) levels of group-IV vacancy centers in diamond, located near the
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Table 3.7: Calculated charge-state transition levels of NV, SiV, GeV,
and SnV defects in diamond (in eV).

NV Siv GeV SnV
+/0 0/— —=/2—|+/0 0/— —/2—|+/0 0/— —/2—|2+/+ +/0 0/— —/2—
PBE 0.76 2.06 4.1 |[022 1.17 202 |0.39 157 246 0.04 060 191 2.78
SCAN | 048 228 453 |0.15 125 207 |[031 1.75 2.60 0.00 0513 213 293
rSCAN | 048 218 435 |0.16 1.17 198 |032 1.61 245 0.02 053 196 2.79
r?SCAN | 044 2.18 4.33 |0.16 1.15 196 | 031 1.59 243 0.0l 052 1.94 277
HSE06 | 0.83 2.67 5.00 |0.23 151 237 |047 201 288 0.15 074 239 3.22

valence band maximum (VBM), tend to shift alongside the VBM as
band edges vary across functionals.

The NV and SnV centers exhibit the most significant differences
among the functionals. For the NV center, the HSE06 functional pre-
dicts the (—/2—) level to be slightly below the conduction band mini-
mum (CBM) [120], whereas other functionals place this level at or near
the CBM. Since experimental evidence for the doubly negatively charged
state remains inconclusive, it is unclear if this ¢ = —2 state is genuine
or an artifact of the HSEQ6 functional. Similarly, for the SnV center,
HSEOQ6 predicts the (4+/24) CTL to lie very close to the VBM, while
other functionals position this level directly at the VBM. The experi-
mental stability of the ¢ = +2 charge state for SnV remains unconfirmed.

Given that the HSEO6 functional’s band gap closely matches experi-
mental values, we use HSEOQG results as a benchmark. Fig. 3.8 shows that
CTLs calculated with the SCAN and r?SCAN functionals align better
with HSE06 predictions than those from the PBE functional. The calcu-
lated mean absolute error (MAE) for CTLs is 0.30 €V for PBE, 0.12 eV
for SCAN, and 0.15 eV for r?’SCAN. Consequently, when using a com-
mon alignment reference, the SCAN family of functionals demonstrates
at least a twofold reduction in CTL prediction errors compared to PBE.
This improvement suggests that SCAN-based functionals provide en-
hanced accuracy for estimating experimental CTL positions within the
diamond band gap, following the methodology outlined in Refs. [92,93].

3.3.8. Zero-phonon line energies

Calculated ZPL energies of optical transitions for negatively charged
color centers in diamond are given in Table 3.8. Mean absolute errors
(MAE) with respect to the experimental values of the ZPL energy are
also provided. The calculated ZPL energies obtained with PBE and

68



Table 3.8: Calculated zero-phonon line energies for negatively-charged
color centers in diamond, compared to experimental ones (in eV). MAE
is the mean absolute error for each functional.

NV~  SiV-  GeV- SnV- MAE
PBE 1.692 1.486 1.855 1.845 0.203
SCAN 1.867 1.567 2.001 1.974 0.070
rSCAN  1.812 1.543 1.948 1.932 0.114
r2SCAN  1.806 1.533 1.943 1.929 0.120
HSEO6  2.002 1.717 2.139 2.105 0.068
Expt. 1.945*  1.682> 2.059¢ 2.0034

2 Ref. [13] " Ref. [133] © Ref. [134] ¢ Ref. [135)

HSE06 functionals align well with results from earlier theoretical stud-
ies [127-130]. We observe that HSE06 tends to slightly overestimate
ZPL energies, yielding an average deviation of 0.068 eV. In contrast,
other functionals, particularly PBE, generally underestimate ZPL en-
ergies, with PBE showing the largest mean absolute error (MAE) of
0.203 eV. Overall, the SCAN functional achieves accuracy close to that
of HSE06. On the other hand, the rSCAN and r?SCAN functionals
reduce the accuracy of SCAN, resulting in average errors of 0.114 and
0.120 eV, respectively, though they still outperform PBE.

For the negatively charged nickel-vacancy (NiV™) center, the
r’SCAN functional yields a ZPL value of 1.36 eV, which closely matches
the experimental ZPL energy of 1.40 eV [131]. This result also aligns
well with previous theoretical predictions using the HSEO06 functional,
which produced a ZPL value of 1.37 eV [132].

Table 3.9 provides a comparison between the calculated and exper-
imental zero-phonon line energies for four configurations of neutral di-
vacancies. The ZPL energies were determined using the SCAN and
r2SCAN functionals. For reference, previous theoretical ZPL estimates
for divacancy configurations in 4H-SiC, computed with various density
functionals, are also included in the table. In terms of accuracy, we
observe that the SCAN functional yields ZPL energies very close to the
experimental values, with a MAE of 0.021 eV, making it the most accu-
rate among the tested functionals in this study. The r2SCAN functional,
while still achieving a reasonable level of accuracy, produces slightly
higher discrepancies with an MAE of 0.035 eV. Results obtained using
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Table 3.9: Calculated and experimental zero-phonon line energies
(in eV) for neutral divacancy centers in 4H-SiC. Previous theoretical
ZPL predictions are also included. MAE denotes the mean absolute er-
ror (in eV).

hh kk hk kh MAE
SCAN 1.129 1.123  1.141 1.103 0.021

This work  2gcAN 1079 1.081 1100 1.062  0.035
pgp  0925°  0.045% 0.975° 095 0.170

) 0.9375> 0.951> 0.979" — 0.158
Previous 1.056° 1.044* 1.103* 1.081* 0.044
theoretical  popgs  1991b 12180 12696 - 0.122
work 1.13¢  1.14¢  1.21¢  1.24°  0.065
DDH 1.196° 1.201" 1.259 — 0.105

Expt.9 1.095 1.096 1.150 1.119

* Ref. [98]: VASP calculations with PAW pseudopotentials.
P Ref. [102]: Quantum Espresso with ONCV pseudopotentials.

© Ref. [136]: VASP with PAW pseudopotentials. ¢ Ref. [137]

the meta-GGA class functionals (SCAN and r2SCAN) demonstrate a
better match with experimental results than those obtained with the
more computationally demanding hybrid HSE06 or DDH functionals.
In our calculations, meta-GGA functionals demonstrated computational
speeds approximately 26 to 38 times faster than hybrid HSE06 func-
tional, while being about 20% slower than PBE.

3.3.9. Vertical excitation energies

The calculated 345 <+ ®E vertical excitation energies for the NV~ center
in diamond are presented in Table 3.10, while Table 3.11 provides the
calculated ZEg < 2F, vertical excitation energies for negatively charged
group-1V vacancy centers. For comparison, available experimental val-
ues and values computed with time-dependent density functional theory
(TDDFT) are also included.

From Table 3.10, we observe that the SCAN functional yields the
closest vertical excitation energy to the experimental value of 2.180 eV
for the NV~ center, with a calculated value of 2.104 eV. SCAN’s vari-
ants, rSCAN and r?SCAN, also perform well, producing Eyvg values
within a range of 2.055-2.104 eV, which slightly underestimate the ex-
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Table 3.10: Calculated zero-phonon line (ZPL), ionic relaxation energy
(Ere1), and 34y <+ 3F vertical excitation energies (Evg) (in eV) for the
NV~ center in diamond. TDDFT value from the literature are given in
parentheses.

PBE SCAN 1SCAN r?SCAN HSE06 Expt.
Eypr, 1.692 1.867 1.812 1.806 2.002  1.945%
Eral 0.219 0.238 0.245 0.249 0.298 —

Eyg 1911 (2.095*) 2104 2056  2.055  2.300 2.180°

® Ref. [139] P Ref. [140]

Table 3.11: 2B, « 2B, vertical excitation energies (in V) for neg-
atively charged group-IV vacancy centers in diamond. TDDFT value
from Ref. [138].

PBE SCAN HSE06 TDDFT

SiV™  1.506  1.588  1.744 1.59
GeV™ 1878 2.041 2.191 —
SnV~™ 1925 2.043  2.190 -

perimental result. The HSE06 functional, while producing a higher Eyg
of 2.300 eV, tends to slightly overestimate the excitation energy. As
expected, the PBE functional yields a lower Eyg (1.911 eV), indicat-
ing that standard GGA functionals using ASCF methodology may lack
the precision needed to accurately capture excitation energies in defect

centers.

Table 3.11 summarizes the 2Eg < 2F, vertical excitation ener-
gies for group-IV vacancy centers (SiV™, GeV~, and SnV~). For the
SiV™ center, SCAN’s excitation energy of 1.588 eV closely matches the
TDDFT value of 1.59 eV which was calculated with CAM-B3LYP func-
tional [138], demonstrating its reliability. The HSEO06 functional pro-
duces higher excitation energies for SiV~, GeV~, and SnV~ centers,
indicating a trend of slight overestimation when compared to SCAN
and experimental values. As with the NV~ center, PBE functional re-
sults are generally lower across all group-IV vacancies, underscoring its

tendency to underestimate excitation energies.
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Table 3.12: Calculated and experimental zero-field splitting (ZFS) val-
ues (in GHz) for neutral divacancy centers in 4H-SiC. Previous theoret-
ical ZFS predictions are also included. MAE denotes the mean absolute
error (in GHz).

hh kk hk kh MAE

This work SCAN  1.336 1.271 1.320 1.279  0.026
2SCAN  1.335 1.285 1.328 1.292  0.024

, 1.358%  1.321*  1.320°  1.376°  0.052
f}fe“‘)tu,s : PBE 1.387°  1.349>  1.306°  1.356>°  0.064
Woerfi:e rea (1.682)> (1.635)> (1.580)> (1.641)" (0.335)

HSE06  1.329°  1.307°  1.363°  1.314°  0.033
Expt.d 1.336 1.305 1.334 1.222

# Ref. [141]: Calculations were carried out using VASP with PAW pseudopotentials.
> Ref. [142]: Calculations were performed using Quantum Espresso with ONCV
pseudopotentials; values in parentheses were obtained using PAW pseudopotentials.

© Ref. [98]: Calculations used VASP with PAW pseudopotentials. ¢ Ref. [137]

3.3.10. Zero-field splitting

Table 3.12 summarizes the calculated and experimental zero-field split-
ting values for four configurations of neutral divacancy centers in 4H-
SiC. ZFS calculations were performed using the SCAN and r?SCAN
functionals, with previous theoretical predictions from different density

functionals included for comparison.

Among the tested functionals, SCAN demonstrates excellent agree-
ment with experimental values, achieving a MAE of 0.026 GHz. The
r2SCAN functional closely follows, with an MAE of 0.024 GHz, indicat-
ing that both functionals from the meta-GGA class deliver high accuracy
in predicting ZFS values for 4H-SiC divacancies. In contrast, the PBE
functional exhibits greater deviations from experimental results, with
MAESs between 0.052 and 0.064 GHz. The PBE results calculated with
PAW pseudopotentials using Quantum Espresso (shown in parentheses)
display particularly large discrepancies with MAE of 0.335 GHz. The
hybrid HSE06 functional achieves relatively good accuracy with an MAE
of 0.033 GHz, though it remains slightly less accurate than SCAN and
r’SCAN.
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3.4. Summary and conclusions

In this chapter, we have benchmarked the performance of the SCAN
meta-GGA functional and its variants, rSCAN and r2SCAN, in predict-
ing bulk and point defect properties in diamond, silicon carbide, and

silicon. The main achievements of this study are summarized as follows:

1. We demonstrated that the SCAN family of functionals improves

the prediction of bulk properties:

(a)

()

SCAN, rSCAN, and r?SCAN yield lattice constants and bulk
moduli in excellent agreement with experimental values, of-
fering nearly ideal descriptions of bulk lattice properties for
diamond, silicon, and silicon carbide polytypes. In compari-
son, PBE predicts a ”"softer” structure with a slightly larger
equilibrium lattice constant and lower bulk modulus, whereas
HSEOQ06 predicts a "harder” structure with a smaller lattice
constant and higher bulk modulus.

The SCAN family reduces the discrepancy in band gap pre-
dictions compared to PBE functional. While SCAN and its
variants improve the band gap estimate over PBE, they still
fall short of the accuracy achieved by the hybrid functional
HSEO06, which incorporates a portion of exact exchange. Nev-
ertheless, SCAN and its variants offer a valuable balance be-
tween computational efficiency and improved accuracy, par-
ticularly for high-throughput or large-scale simulations.

SCAN, particularly r2SCAN, provides phonon frequencies
best matching experimental data for bulk diamond.

2. For point defect properties, we found that:

()

(b)

Using the SCAN family of functionals, the calculated defect
formation energies fall in between the formation energies cal-
culated using PBE and HSEO06.

When aligned to a common reference, the SCAN and r2SCAN
functionals yield charge-state transition levels that closely
match those calculated with the HSEO06 functional. These
functionals demonstrate a twofold reduction in the mean ab-
solute error of CTL predictions compared to PBE.
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(c) The SCAN and r2SCAN functionals provide highly accurate
predictions of zero-phonon line energies for defects in dia-
mond and 4H-SiC, achieving mean absolute errors that are
comparable to or smaller than those of other hybrid function-
als, while significantly outperforming the PBE functional.

(d) For zero-field splitting values of neutral divacancy centers in
4H-SiC, the SCAN and r’SCAN functionals deliver excep-
tional accuracy, yielding lower mean absolute errors com-
pared to those obtained with the HSEO6 functional.

Thesis Statement (I)

The SCAN family of functionals provides accuracy comparable or
better to the more computationally expensive hybrid HSE06 functional
for optical excitation energies for defects in diamond and 4H silicon

carbide.
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Chapter 4

Electron—phonon coupling modelling

4.1. Introduction

This chapter presents our ab initio study of electron—phonon coupling
and its impact on the optical lineshapes of the negatively charged
nitrogen-vacancy (NV~) center in diamond, neutral divacancy defects
in 4H-SiC, and the C-center in silicon. The primary objective of this
chapter is to evaluate the accuracy of the SCAN family of functionals
in modeling electron—phonon interactions and the resulting optical line-
shapes, comparing them with those obtained using the standard PBE
and HSE06 functionals, as well as with available experimental data.
The content of this chapter is organized as follows. In Section 4.3.1,
we focus on the NV~ center in diamond. We begin by benchmark-
ing the spectral densities of electron—phonon coupling and discussing
the contributions of vibrational modes to the optical spectra. We then
proceed to calculate luminescence lineshapes using different functionals
and compare the theoretical results with experimental data. The sec-
tion concludes with an analysis of the effect of hydrostatic pressure on
the luminescence lineshapes, revealing the changes in the zero-phonon
line energy and phonon sideband structure under increasing pressure.
Section 4.3.2 covers the electron—phonon coupling and subsequent op-
tical lineshapes of neutral divacancy defects in 4H-SiC obtained using
the r2SCAN functional. We present the spectral densities of electron—
phonon coupling and compare the luminescence lineshapes with available
experimental spectra. Additionally, we present absorption lineshapes for
all four divacancy configurations, computed using the standard adiabatic
Huang—Rhys formalism. The influence of Jahn—Teller interactions will
be explored in the following chapter. In Section 4.3.3, we investigate
the electron—phonon coupling in the C-center defect in silicon and com-
pute theoretical optical lineshapes using the SCAN functional, compar-
ing them with available experimental data. Finally, in Section 4.4, we
summarize our findings and emphasize the key statements that support
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the main conclusions of this chapter for the defense.

4.2. Methodology

4.2.1. Computational details

Calculations were performed using spin-polarized density functional the-
ory with the Vienna Ab initio Simulation Package VASP [63]. The
plane-wave energy cutoff was set to 600 eV for diamond and 4H-SiC,
and 500 eV for silicon. The tested functionals included PBE, SCAN,
rSCAN, r?SCAN, and HSE06, with a screened Fock exchange fraction
of a = 0.25. The Brillouin zone was sampled at the I'-point using a
single k-point. Defects were modeled using a supercell approach [143].
The convergence criterion for the electronic self-consistent loop was set
to 1076 eV for the HSE06 functional and 10~8 eV for all other function-
als. Ionic relaxation was considered converged when the forces on atoms
fell below 1074 eV AL

Supercells containing 512 atomic sites (4 x 4 x 4 conventional cells)
were used for the NV~ center in diamond and the C-center in silicon.
For neutral divacancy defects in 4H-SiC, a 6 x 6 x 2 supercell with 576
atomic sites was employed.

4.2.2. Phonon calculations

Phonon calculations were performed using the SCAN functional for the
C-center in silicon, and the r?SCAN functional for the NV~ center in
diamond and neutral divacancies in 4H-SiC. All phonon modes were
calculated using the finite displacement method, with atomic displace-
ments generated by the PHONOPY software package [144]. Displacement
amplitudes of £0.01 A from the equilibrium geometries were used for
the NV~ center and divacancies, while a larger displacement of +0.02 A
was applied for the C-center in silicon.

Extrapolation of phonon modes to the dilute limit was carried out us-
ing the force constant embedding methodology described in Section 2.6.
Vibrational structures and electron—phonon spectral functions were com-
puted for each defect as follows:

e NV~ center in diamond: For PBE and HSE06 functionals,
phonon modes were calculated using a 20 x 20 x 20 supercell con-
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taining 64000 atomic sites. For meta-GGA functionals (SCAN,
rSCAN, r2SCAN), a 18 x 18 x 18 supercell with 46 656 atomic
sites was used. For investigations under hydrostatic pressure, vi-
brational structures were obtained using a 16 x 16 x 16 supercell
with 32 768 atomic sites. To achieve a smooth representation of the
electron—phonon spectral function, delta functions were approxi-
mated with Gaussian functions of variable widths, o, decreasing
linearly from 3.5 meV at zero frequency to 1.5 meV at the highest
phonon energy.

e Neutral divacancies in 4H-SiC: Vibrational structures were
calculated using a 23x23x 7 supercell with 29 622 atomic sites. The
delta functions were smoothed with Gaussian functions of variable
widths, decreasing from 3.5 meV at zero frequency to 1.5 meV at

the maximum phonon energy.

e C-center in silicon: Phonon modes were computed using an
18 x 18 x 18 supercell containing 46 656 atomic sites. To ensure
a continuous electron—phonon spectral function, delta functions
were smoothed with Gaussian broadening ranging from 1 meV at
zero frequency to 0.5 meV at the highest phonon energy.

4.2.3. Spacial localization of phonon modes

To distinguish among various types of vibrational modes (localized
modes, vibrational resonances, and bulk-like modes) in the defect sys-
tem, we analyzed the spatial localization of the vibrational mode am-
plitudes. This localization is quantified using the inverse participation
ratio (IPR), which is defined for each phonon mode k as [145,146]:

1

IPRy = — .
i M

(4.1)

Here my,.,,, denotes the three-dimensional mass-weighted displacement

vector of atom m for phonon mode k, and ni;m = (Z o ni;may, where
Nk;ma Tepresents the normalized mass-weighted displacement of atom m
along the direction «. The inverse participation ratio, IPRy, quantifies
the number of atoms actively vibrating in a given vibrational mode 7.

For instance, IPR = 1 when only a single atom participates in the
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vibration for a particular mode. In contrast, IPR = N if all N atoms
in the supercell contribute equally to the vibration. In scenarios where
only P < N atoms exhibit significant vibrations, IPR ~ P. A localized
mode is identified by an IPR value that remains constant regardless
of the supercell size N, as such modes are spatially confined and lie
outside the bulk phonon spectrum. The localized mode’s frequency does
not overlap with the bulk phonon bands, and its spatial characteristics
remain unaffected by changes in the bulk phonon environment.

Although IPR effectively quantifies phonon mode localization, the
localization ratio B of phonon mode k offers a more convenient param-
eter for practical analysis:

N

m:wm'

(4.2)

From this definition, it is evident that a higher value of the ratio G
indicates greater localization of the phonon mode.

4.2.4. Optical lineshapes

Optical lineshapes in this chapter were computed using the adiabatic
Huang-Rhys formalism, without accounting for the dynamical Jahn—
Teller effect, which will be addressed in the following chapter. The
methodology is outlined in detail in Section 2.5.1. Since homogeneous
Lorentzian broadening of the ZPL is not inherently captured by the
theoretical framework, a phenomenological correction term, e !, was
incorporated into the optical spectral function. The parameter v was
adjusted to match the experimentally observed ZPL linewidth, where
such data were available. For the luminescence of the NV~ center in
diamond, the broadening parameter v was set to 0.3 meV. For the lu-
minescence lineshapes of neutral divacancies in 4H-SiC, v was assigned
a value of 0.15 meV for the hh, kk, and hk configurations, while for the
kh configuration, it was set to 0.5 meV. For the absorption lineshapes
of neutral divacancies in 4H-SiC, v was consistently assigned a value of
0.15 meV. Finally, for the C-center in silicon, v was set to 0.1 meV.
For the comparison between calculated and experimental lineshapes,
the intensities of the experimental lineshapes were scaled to align with
the peaks of the computed lineshapes. This adjustment was necessary
because the experimental lineshapes are often truncated, both in terms
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of the total ZPL height and the full decay of the phonon sideband,
making it impossible to properly normalize the experimental data.
When evaluating theoretical absorption lineshapes, it is essential to
consider potential discrepancies between these predictions and the ab-
sorption lineshapes observed in experiments. These differences can arise
due to the influence of the photoionization. In certain cases, the pho-
toionization threshold, which represents the energy at which electrons
are promoted into the conduction band minimum, may fall in the en-
ergy range of the absorption lineshape. As a result, absorption processes
may include not only optical transitions from the ground state to the ex-
cited state but also photoionization from the excited state into the con-
duction band continuum. Consequently, the experimentally observed
absorption spectrum is expected to reflect a convolution of both pho-
toionization and bound-to-bound transition cross-sections. Despite this,
some sharp features predicted by the theoretical lineshape are likely to

remain discernible in experimental absorption spectra.

4.3. Results and discussion

4.3.1. NV~ center in diamond
4.3.1.1 Electron—phonon coupling

The spectral densities of electron—phonon coupling for the NV~ center
in diamond, associated with the 3E — 3A, transition, are illustrated
in Figure 4.1. Panel a shows the spectral densities S, (Aw), which cor-
respond to phonons of a; symmetry. These densities are defined as
Sa, (hw) = 371 Say k0 (hw — hwy), where Sy, , represents the Huang-Rhys
factor [34,81,82], indicating the average number of a;-symmetry phonons
emitted during an optical transition.

Panel b presents the spectral densities K?(hw) that characterize
electron-phonon coupling for e-symmetry phonons. These densities are
given by K?(hw) = 3, K26(hw — hwy), where K}, denotes the dimen-
sionless vibronic coupling constant [34,74,75]. This constant quantifies
the interaction between e-symmetry vibrational modes and the degen-
erate electronic state 3E. Although the coupling constants K}, were
originally derived for linear Jahn—Teller interactions [see Eq. (2.71)],
they share the same mathematical form as the Huang—Rhys factors [see
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Figure 4.1: a Spectral densities S, (fw) associated with a;-symmetry
phonons of the 3E — 3 A, transition in the case of the NV~ center in
diamond. b Spectral densities of JT linear coupling K?(hw) associated
with e-symmetry phonons of the 3E — 3 A, transition.

Eq. (2.92)]. Furthermore, for transitions between orbital singlet and
doublet states, they are computed identically — since the geometric dis-
tortion along the e-symmetry direction between the adiabatic minima
mirrors the symmetry breaking induced by the Jahn—Teller effect. For
transitions where the final state is non-degenerate, the HR formalism to
compute optical lineshape is a well-justified approximation, as demon-
strated in Ref. [34]. However, for transitions involving a degenerate
final state, the standard HR theory may not be strictly applicable. In
the framework of this chapter, where we exclusively employ adiabatic
theory, we will interpret the squared coupling constants, K ,3, as effective
HR factors.

A comparison of the calculated spectral densities for electron—phonon
coupling in the NV~ center in diamond, considering the total coupling
to vibrational modes of a; and e symmetry, is presented in Figure 4.2.
The calculations are performed using the PBE, SCAN, rSCAN, r2SCAN,
and HSE06 functionals. The spectral densities show a broad peak at
61.9 meV with the PBE functional, which shifts to 65.6 meV when using
the HSE06 functional. For the SCAN, rSCAN, and r2SCAN function-
als, this quasi-local phonon mode is found at 65.8 meV, 64.4 meV, and
64.7 meV, respectively. At the tail-end of the spectral densities, small
peaks are observed, corresponding to localized phonon modes, primarily
associated with e-symmetry phonons (see Fig.4.1b).

The total electron—phonon interaction strength is represented by the
cumulative Huang-Rhys factor, Siot = Y, Sk, while the overall Jahn-
Teller coupling is described by K2, = 3", K7. These spectral densities
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Figure 4.2: Cumulative spectral densities of electron—phonon coupling
S(hw) for the 3E — 3A, transition in the case of the NV~ center in
diamond.

provide insight into the differences in electron—phonon interactions pre-
dicted by various functionals and highlight the vibrational characteristics
linked to the NV~ center.

The values of Sg, tot and K7, are provided in Table 4.1, along with
the total Huang-Rhys factor, Siot = Sq; 1ot + K2, and the experimen-
tal result Siot =~ 3.49 [147]. From the table, it is clear that the PBE
functional yields Siot = 2.90, which underestimates the experimental
value. In contrast, the HSEO6 functional predicts Siot = 3.76, slightly
overestimating the result. The SCAN, rSCAN and r2SCAN functionals
give 3.15, 3.23, and 3.17 total electron—phonon coupling respectively.
These values are all closer to the experimental result compared to PBE,
demonstrating that the SCAN-based functionals achieve a balance be-
tween underestimation and overestimation. These findings highlight the
improved performance of the SCAN family in capturing electron—phonon
coupling characteristics at a fraction of computational cost compared to
hybrid functionals like HSEOQ6.

4.3.1.2 Luminescence lineshapes

The calculated luminescence lineshapes for the PBE, SCAN, rSCAN,
r2SCAN, and HSEO06 functionals are shown in Fig. 4.3 and compared
against the experimental spectrum from Ref. [147]. Each lineshape
features a sharp zero-phonon line accompanied by a phonon sideband
(PSB). The quasi-local phonon mode identified in Fig. 4.2 generates
three increasingly broad phonon replicas, which primarily define the
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Table 4.1: Calculated Huang—Rhys factors for emission of NV~ center
in diamond.

2
Sa1 ,tot K Stot

PBE 239 052 2.90
SCAN 2.55 0.60 3.15
rSCAN 267 0.56 3.23
r’SCAN 262 0.54 3.17
HSE06 3.20 0.56 3.76
Expt. 3.49?

* Ref. [147]

overall lineshape. Additionally, localized e-symmetry phonon modes
contribute small features between the second and third quasi-local
phonon replicas.

For example, the luminescence lineshape obtained with the r2SCAN
functional exhibits three quasi-local phonon replicas (named R1, R2,
and R3) at around 65.4, 126.7, and 192.1 meV, along with small fea-
tures (named F1, F2, and F3) at 138.4, 153.7, and 165.1 meV below the
ZPL energy. In comparison, the experimental lineshape from Ref. [147]
shows these three quasi-local phonon replicas at around 63.5, 127, and
190.5 meV, with small features at 137, 152.2, and 163.6 meV. The de-
tailed comparison between calculated and experimental phonon replica
energies, including fine features, is summarized in Table 4.2.

The HSE06 functional underestimates the intensity of the first two
phonon peaks in the PSB, whereas the PBE functional overestimates
them. The lineshapes calculated using the SCAN family of functionals
exhibit intermediate agreement with the experimental spectrum. No-
tably, the r?’SCAN functional provides the most accurate correspondence
to the experimental data, achieving the smallest mean absolute error of
1.4 meV, as shown in Table 4.2.

The smooth spectral densities of electron—phonon coupling and lu-
minescence were achieved using the force constant embedding method-
ology, as described in Section 2.6. To demonstrate the effectiveness of
this approach, we present the calculated spectral densities of electron—
phonon coupling (see Fig. 4.4a) and normalized luminescence lineshapes
(see Fig. 4.4b) as a function of supercell size using the r2SCAN func-
tional. We considered supercell sizes of 4 x 4 x 4 (512 atomic sites),
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Figure 4.3: Theoretical normalized luminescence lineshapes of NV~
center in diamond. Phonon replicas (R1, R2, R3) and fine features (F1,
F2, F3) are marked for the theoretical lineshape calculated using the
PBE functional. The gray area represents experimental spectra from

Ref. [147].

Table 4.2: Comparison of calculated and experimental phonon replica
energies (R1, R2, R3) and fine features (F1, F2, F3) below ZPL energy
for the luminescence lineshape of the NV~ center in diamond. The ex-
perimental values are taken from Ref. [147]. MAE is the mean absolute
error that quantifies the deviation of each functional from the experi-

Energy shift from ZPL (meV)

mental values. All energies are reported in meV.

R1 R2 R3 F1 F2 F3 MAE
PBE 62.9 1227 1839 135.0 150.3 161.3 3.0
SCAN 66.4 127.2 192.0 139.5 1549 1669 2.2
rSCAN 654 126.1 192.1 1384 154.1 165.8 1.7
r’SCAN  65.4 126.7 192.1 1384 153.7 1651 1.4
HSEO6  66.2 129.8 196.7 145.2 158.6 169.9 54
Expt. 63.5 127.0 190.5 137.0 152.2 163.6
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Figure 4.4: Convergence of a spectral densities of electron—phonon
coupling and b theoretical luminescence lineshapes with respect to su-
percell size. Supercells range from 4 x 4 x 4 (512 atomic sites) to
18 x 18 x 18 (46 656 atomic sites). The gray area represents experi-
mental spectra from Ref. [147].

8 x 8 X 8 (4096 atomic sites), 14 x 14 x 14 (21952 atomic sites), and
18 x 18 x 18 (46 656 atomic sites).

To achieve a smooth representation of the electron—phonon spectral
function, delta functions were approximated using Gaussian functions
with linearly decreasing widths, o(w), from 7, 6, 4.5, and 3.5 meV to 2.5,
2, 1.5, and 1.5 meV, respectively, for these supercell sizes. Convergence
tests confirm that the 14 x 14 x 14 supercell provides a well-converged
and smooth spectral density, effectively capturing contributions from
both low-energy acoustic and high-frequency phonon modes. However,
larger supercells were used whenever computationally feasible to achieve
higher accuracy.

4.3.1.3 Electron—phonon coupling under hydrostatic pressure

The NV~ center in diamond is a versatile quantum sensor capable of
measuring magnetic and electric fields, temperature, stress, and me-
chanical vibrations [148-150]. Its high sensitivity and the stiffness of
the diamond lattice make it ideal for probing materials under extreme
pressures, where remarkable properties like metallic hydrogen [151] and
high-temperature superconductivity in superhydrides [152-154] emerge.

The luminescence lineshape of the NV~ center serves as a sensitive
probe of interactions between its electronic states and the surround-
ing environment. The fine structure of the spectrum provides valu-
able insights into shifts of phonon frequencies and emission characteris-
tics under pressure. First-principles calculations using the SCAN func-
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tional family offer an efficient and accurate means to predict pressure-
dependent behavior, bridging theory and experiment.

4.3.1.3.1 Zero-phonon line energy The ZPL energy of the NV~
center in diamond under varying hydrostatic pressures is calculated us-
ing the ASCF method, as outlined in Section 3.2.3. At zero pressure,
our computations with the r2SCAN functional yield a ZPL energy of
1.806 eV, which slightly underestimates the experimentally measured
value of 1.945 eV [13]. Despite this deviation, the r?SCAN functional
offers a reliable representation of the electronic structure while main-
taining a significantly lower computational cost compared to hybrid
functionals such as HSE06 (see Section 3.3.8). The calculations at vari-
ous hydrostatic pressures were performed using lattice constants derived
from the universal equation of state, as detailed in Section 3.3.1.

Figure 4.5 presents the calculated ZPL energies relative to the ambi-
ent pressure value as a function of hydrostatic pressure. The theoretical
data points are shown as blue circles, with a solid blue line representing a
spline fit to these values. Experimental data from Ref. [150] are depicted
as orange diamonds, providing a direct comparison between theory and
experiment. The experimental ZPL values at pressures of 10, 20, 40,
and 75 GPa are 1.997, 2.054, 2.144, and 2.287 eV, respectively, while
the corresponding calculated values yield relative shifts of 55, 106, 198,
and 332 meV, compared to the experimental shifts of 52, 109, 200, and
342 meV.

The comparison reveals a consistent increase in ZPL energy with
applied pressure, attributed to the compression of the diamond lattice
and its influence on the defect’s electronic structure. The r2SCAN func-
tional effectively captures this trend, demonstrating its capability to
model pressure-induced changes in the NV~ center with high accuracy.
Although the absolute ZPL energies computed with r2SCAN slightly un-
derestimate experimental values, the relative pressure-dependent shifts
exhibit excellent agreement with measurements. This consistency sug-
gests that the computational model provides a reliable representation of
the underlying physical mechanisms governing the NV~ center’s optical

response under pressure.
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Figure 4.5: Experimental values of the ZPL (in units of eV) of the NV~
center in diamond under increasing hydrostatic pressure from Ref. [150]
(orange diamonds). The blue circles represent calculated ZPL values,
shown relative to the ZPL energy at zero pressure (in units of meV).
The solid blue line is a spline fit to the theoretical data.

4.3.1.3.2 Electron—phonon coupling The computed spectral den-
sities of electron—phonon coupling for the luminescence of the NV~ cen-
ter in diamond under increasing hydrostatic pressure are presented in
Figure 4.6. The total electron—phonon coupling (Stot), total electron—
phonon coupling associated with a;-symmetry phonon modes (Sg, tot),
and the total JT linear coupling (K2,), corresponding to e-symmetry
phonon modes (shown in the inset), are depicted in Fig. 4.7, along with
their respective linear fits. The electron—phonon coupling exhibits a lin-
ear increase with hydrostatic pressure with the Sio; ranging from 3.164
at ambient pressure to 4.063 at 60 GPa, with corresponding slopes of
0.015, 0.012, and 0.003 GPa~! for S, Sai tot, and K2, respectively.
The increase in total electron—phonon coupling leads to a reduction of
ZPL intensity and a decrease of emitter efficiency. The Debye—Waller
factor (DWF), defined as the ratio of the ZPL intensity to the total
luminescence lineshape, decreases with increasing hydrostatic pressure.
At very low temperatures, the DWF can be approximated using the re-
lation DWF = e~ Stt, Employing this approach, the calculated DWF
values are 4.23, 3.61, 3.09, 2.29, and 1.72 % for pressures of 0, 10, 20,
40, and 60 GPa, respectively.

The main electron—phonon coupling peak, initially at 65.4 meV under
ambient pressure, exhibits a linear increase with pressure, following a
slope of 0.061 meV/GPa. The high-energy phonon mode, which starts
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Figure 4.6: a Cumulative spectral densities of electron—phonon cou-
pling, S(Aw), for the NV~ center in diamond under increasing hydro-
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Figure 4.7: Total electron—phonon coupling S, electron—phonon cou-
pling for a;-symmetry phonon modes, Sg, tot, and total JT linear cou-

pling, K2, for e-symmetry phonon modes (shown in the inset) for the

NV~ center in diamond as a function of pressure.

at 154.4 meV at ambient pressure, demonstrates an increase in intensity
alongside a linear energy shift of 0.337 meV/GPa. Likewise, the phonon
mode initially at 165.4 meV under ambient pressure increases linearly
with a slope of 0.282 meV/GPa.

4.3.1.3.3 Luminescence lineshapes under pressure The com-
puted normalized luminescence lineshapes under increasing hydrostatic
pressure are presented in Fig. 4.8, highlighting the identified quasi-local
phonon replicas (R1, R2, R3), fine features coming from localized modes
(F1, F2, F3), and the experimental luminescence lineshape at ambient
pressure from Ref. [147]. The features exhibit a linear increase in energy
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relative to the ZPL, indicating that the corresponding phonon modes
shift to higher energies with increasing pressure, as illustrated in Fig. 4.9.

For the phonon replica R1, the peak positions below the ZPL increase
linearly with pressure, with slope of 0.061 meV /GPa. Trends for phonon
replicas R2 and R3 are harder to distinguish due to overlap with other
vibrational modes. Fine features F2 and F3 exhibit slopes of 0.363 and
0.292 meV/GPa, respectively. Fine feature F1 becomes indistinguish-
able from the overall luminescence spectrum as pressure increases. This
can be correlated with the electron—phonon coupling strengths shown
in Fig. 4.6a. At ambient pressure, the phonon mode at 139.4 meV ex-
hibits an electron—phonon coupling strength comparable to that of the
modes at 154.4 and 165.4 meV. However, at pressures of 40 GPa and
higher, the coupling strength of the phonon mode diminishes, while the
higher-energy phonon modes become more prominent, indicating their
increased contribution to the luminescence process under elevated pres-
sures.

The computed luminescence lineshapes are effectively modeled at
0 K temperature, where all fine features of the phonon sideband remain
well-resolved. However, in experimental conditions at higher tempera-
tures, thermal broadening can obscure these fine features, particularly
those with the strongest pressure-dependent shifts. As a result, the first
quasi-local phonon replica (R1) emerges as the most reliable feature for
calibrating and evaluating pressure in NV~ centers based on their lumi-

nescence lineshapes.

4.3.2. Neutral divacancies in 4H-SiC
4.3.2.1 Electron—phonon coupling

The calculated spectral densities of electron—phonon coupling for both
emission (3F — 3A) and absorption (343 — 3E) processes for the
neutral axial hh-VV? and kk-VV? divacancies in 4H-SiC are shown in
Fig. 4.10. Coupling to a;-symmetry modes is represented by the spectral
density Sg, (lw) = >°p Say k0(Aw — hwy) (Figs. 4.10a and 4.10c), where
Sa, 1 quantifies the HR factor for vibrational mode k and represents the
average number of ai-symmetry phonons emitted during optical tran-
sitions. The linear JT coupling for e-symmetry modes is characterized
by the spectral density K?(hw) = ), KZ6(hw — hwy) (Figs. 4.10b and
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energy shift under increasing hydrostatic pressure for the luminescence
lineshape of the NV~ center in diamond.
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Figure 4.10: Spectral densities of electron—phonon coupling and JT lin-
ear coupling for neutral hh-VV? and kk-VV? divacancies in 4H-SiC. Pan-
els a and ¢ show the electron—phonon coupling spectral density Sg, (fuw)
for the 3E — 3A, and 3Ay — 3E processes, respectively. Panels b and
d present the JT linear coupling spectral density K?(hw) for the same
processes.

4.10d), where K}, is the dimensionless vibronic coupling constant. The
total electron—phonon coupling (S, tot = »_j Sa, k) and total JT cou-
pling (K2, = 3, K?) are also provided in the panels.

For the emission (3E — 3Ay) process, the total HR factor Sai tot 1S
1.85 for both hh and kk divacancies, while the total JT coupling K2,
is higher for hh-VV? (1.36) compared to kk-VV® (1.16). During the
absorption process (343 — 3E), the total HR factor increases slightly to
2.02 for hh-VV? and 2.07 for kk-VV?, with corresponding total JT cou-
plings of 1.52 for hh and 1.30 for kk. These JT coupling values are sig-
nificantly larger than those calculated for the absorption of NV~ centers
in diamond, which exhibit values of 0.51 (PBE) and 0.57 (HSE06) [34].

The combined spectral functions for the total coupling to a;- and
e-symmetry phonons during emission and absorption for hh and kk di-
vacancies are presented in Fig. 4.11. The cumulative electron—phonon
coupling factors (Siot) for emission are 3.21 for hh-VV? and 3.00 for
kk-VVY, while for absorption, these values increase to 3.54 and 3.37,
respectively. The stronger coupling during absorption results in more
pronounced phonon sidebands and reduced ZPL intensity.

For the hh configuration, the electron—phonon coupling spectra for
emission process exhibits prominent peaks at 33 meV and 75.7 meV, with
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Figure 4.11: Cumulative spectral functions of electron—phonon cou-
pling S(Aw) for neutral hh and kk divacancies in 4H-SiC. Panels a and
b show the coupling for emission in the hh and kk configurations, re-
spectively, while panels ¢ and d display the coupling for absorption in
the same configurations.

weaker contributions at higher phonon energies of 88.6 meV, 95.4 meV,
and 104.3 meV. In contrast, absorption exhibits weaker coupling at lower
phonon energies, with peaks at 22.2 meV and 36.2 meV, but shows a
more pronounced peak at 74.7 meV and an emerging peak at 58 meV. At
higher phonon energies, absorption reveals distinct peaks at 111.7 meV
and 119.6 meV, reflecting an increased contribution from high-energy
e-symmetry phonons.

In the kk configuration, the emission spectrum is characterized by
strong peaks at 34.1 meV and 74.6 meV, while contributions at higher
phonon energies, such as 94.6 meV and 104.2 meV, are less pronounced.
The absorption process, however, displays notable differences, with an
enhanced peak at 22 meV and a subtler feature at 35.9 meV. In the
mid-energy range, absorption exhibits an emerging peak at 57 meV and
a more pronounced feature at 75.3 meV. High-energy phonons play a
significant role during absorption, as evidenced by prominent peaks at
112 meV and 120.5 meV, indicating stronger coupling in this process
compared to emission.

The calculated spectral densities of electron—phonon coupling for
both emission and absorption processes for basal divacancies, hk-VV°
and kh-VVO, are shown in Fig. 4.12. The total HR factor, Siot, indi-
cates weaker coupling for kh divacancy (Siot = 2.47 for emission and
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Figure 4.12: Spectral functions of electron—phonon coupling S(Aw) for
neutral hk and kh divacancies in 4H-SiC. Panels a and b show the cou-
pling for emission in the hk and kh configurations, respectively, while
panels ¢ and d display the coupling for absorption in the same configu-
rations.

2.83 for absorption) compared to hk divacancy (Siot = 2.83 and 3.11,
respectively).

For the hk configuration, emission exhibits pronounced peaks at
33.2 meV and 75.1 meV, with a shoulder at 20.3 meV and weaker con-
tributions at higher energies, such as 94.6 meV and 104.6 meV. Absorp-
tion, however, shows enhanced coupling at 20 meV, weaker coupling at
35 meV, an additional feature emerging at 54.2 meV and stronger fea-
ture at 74.8 meV. At higher phonon energies there is a similar peak at
96.4 meV and emergent peaks at 107.6 meV and 120.6 meV.

The kh configuration shows a slightly different behavior. Emission
is characterized by prominent peaks at 34.8 meV and 75.3 meV, with
weaker contributions at higher energies (94.9 meV and 104.6 meV). Ab-
sorption reveals subtle changes at higher energies, with small peaks at
96.7 meV, 110.3 meV, and 121 meV. A distinct feature of this configu-
ration is the significant coupling peak at 19.4 meV during absorption,
accompanied by a unique increase in coupling at 36.5 meV and a corre-
sponding decrease at 75.1 meV, distinguishing it from other divacancy
configurations.

The electron—phonon coupling was calculated using the equal mode
approximation, which assumes identical vibrational structures for both
the initial and final states. While this assumption is not entirely accu-
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rate, it serves as a reasonable approximation for low-temperature spectra
by employing the vibrational structure of the final state in the transi-
tion [34]. Nonetheless, the variation in vibrational structure suggests
the presence of quadratic electron—phonon coupling in addition to the
Jahn—Teller effect, which is not included in the present analysis. This
limitation could have significant implications for modeling temperature
effects and ZPL broadening at finite temperatures in future studies.

4.3.2.2 Optical lineshapes

Luminescence lineshapes calculated using the HR theory are shown in
Fig. 4.13 and compared with experimental data (gray shaded area) [102,
155]. The experimental spectrum for the hk-VV? contains a small peak
(marked with an asterisk ”+” in Fig. 4.13¢c) that corresponds to the ZPL
of the hh-VV? configuration. This peak should be disregarded when
comparing theoretical and experimental data for the hk configuration.

Computed luminescence lineshapes closely match the experimen-
tal spectra, successfully reproducing all major spectral features of the
phonon sideband. The DWF (ratio of the ZPL intensity to the total
intensity of the lineshape) highlights notable differences among the four
divacancy configurations. The computed DWFs using HR theory for the
hh, kk, hk, and kh divacancies are 5.60%, 6.82%, 7.84%, and 11.22%,
respectively. These values show good agreement with experimental mea-
surements of 3.69% for hh, 6.11% for kk, 7.54% for hk [102], and 13%
for kh divacancy [155]. Notably, when compared to other divacancy
configurations, the kh configuration has a significantly higher DWF, in-
dicating a more pronounced ZPL contribution relative to its phonon
sideband.

The emission lineshapes for the hh, kk, and hk divacancies are sim-
ilar in profile, whereas the kh divacancy exhibits distinct spectral char-
acteristics. The calculated mass-weighted displacements AQ (in units
of amu®? A), which quantify structural distortions during the optical
transition, are 0.823 for hh, 0.802 for kk, 0.798 for hk, and 0.762 for kh
divacancy. These values reflect the extent of structural rearrangement,
with the kh divacancy showing the smallest displacement after the opti-
cal transition, consistent with its higher DWF and less extensive phonon
sideband. The total electron—phonon coupling factor for kh divacancy
is 2.47 which is significantly lower than for other divacancy configu-
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Figure 4.13: Optical spectra of emission for four neutral divacancy
centers in 4H-SiC. Blue lines are theoretical normalized luminescence
lineshapes calculated using HR theory. The gray area represents experi-
mental data from Ref. [102,155]. The small peak marked with a star ”x”
in the experimental curve for hk-VVY is the ZPL of hh-VV? and should
be disregarded in the comparison between theory and experiment.

rations. The lower mass-weighted displacement and electron—phonon
coupling for the kh divacancy result in a more pronounced ZPL and
unique vibrational properties, setting it apart from the other divacancy
configurations in 4H-SiC.

Absorption lineshapes calculated using the HR theory are shown in
Fig. 4.14. Calculation of absorption lineshapes for neutral axial diva-
cancies using HR theory is not formally suitable due to the Jahn—Teller
effect present in the excited state and will be tackled later in Sec. 5.3.3.

4.3.3. C-center in silicon
4.3.3.1 Vibrational structures

Figure 4.15a displays the calculated localization ratios /3 [see Eq. (4.2)]
for @’ symmetry vibrational modes in the ground state (blue) compared
with experimental luminescence spectra (gray) [156]. The horizontal
axis represents the energy shift relative to the ZPL. Localization ratios
for the excited state are shown in Fig. 4.15b (orange). Higher 8 values
indicate stronger localization of displacement amplitudes around the de-

fect. The a” vibrational modes are excluded, as their symmetry prevents
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Figure 4.14: Optical spectra of absorption for four neutral divacancy
centers in 4H-SiC. Orange lines are theoretical normalized absorption
lineshapes calculated using HR theory.

contribution to linear electron—phonon interactions.

Localized modes with high 8 values (5 > 100) are observed at
65.8 meV, 72.8 meV, 92.7 meV, 107.9 meV, and 139.7 meV. Among
these, modes at 65.8 meV, 72.8 meV, and 92.7 meV strongly correspond
to prominent peaks in the experimental sideband. In contrast, the ab-
sence of luminescence peaks at 107.9 meV and 139.7 meV indicates that
a high 3 alone does not guarantee significant electron—phonon coupling.
Effective contributions require alignment with the relaxation vector AR
after the optical transition, as defined in Eq. (2.93).

Quasi-localized modes (with § > 10) near 32 meV, 54 meV, and
62 meV are classified as vibrational resonances. These modes likely cor-
respond to features in the experimental spectrum, suggesting their role
in electronic transition coupling. In contrast, bulk-like modes with lower
B values (8 < 5) extend to 65 meV, consistent with the phonon band
edge in pristine silicon. These modes represent collective lattice vibra-
tions and appear in both pure and defected systems, corresponding to
experimental luminescence peaks and highlighting their bulk-like nature.

Figure 4.15b illustrates the vibrational frequencies and localization
factors for the positively charged defect, representing the excited state’s
structure. A comparison with Fig. 4.15a reveals a frequency reduction
in localized modes, with the 65.8 meV mode in the ground state shifting

below the bulk phonon band maximum in the excited state, becoming
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(gray). Blue and orange vertical lines correspond to localization ratios
of symmetric o’ vibrational modes. Experimental data from Ref. [156].

a vibrational resonance. Quasi-localized modes at 32 meV, 54 meV,
and 62 meV remain largely unchanged. This shift indicates significant
quadratic electron—phonon interactions, which are beyond this study’s
scope.

The analysis shows that the C-center’s optical sideband features can
be characterized through vibrational modes. However, more detailed
calculations of electron—phonon coupling during optical processes are
needed to fully understand their effect on spectral lineshapes.

4.3.3.2 Electron—phonon coupling

Figure 4.16a presents the calculated spectral density of electron—phonon
coupling for the emission process of the C-center in silicon, while
Fig. 4.16b illustrates the spectral density for the absorption process.
The coupling to @’ symmetry vibrational modes is represented by
the spectral density S(hw) = ") Spd(hw — hwy), where S, denotes the
HR factor for vibrational mode k. The total HR factor, Siot = Y ). Sk, is
indicated in the respective panels. For luminescence, Sio; is 1.79, while
for absorption, it is 1.82. This similarity suggests that the vibrational
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structures of the ground and excited states are closely matched in terms
of phonon modes and energies.

In the luminescence process, significant contributions to emission
arise from localized vibrational modes at 65.9 meV, 72.8 meV, and
92.7 meV. At higher energies, the coupling is negligible at 107.9 meV,
with a more pronounced mode observed at 139.6 meV. The spectral func-
tion also reveals five distinct peaks below 65 meV. Peaks at 18.6 meV
and 41.9 meV are attributed to the high density of bulk-like modes,
while the remaining three peaks at 31.8 meV, 55.1 meV, and 61.5 meV
originate from interactions with quasi-localized vibrational resonances.

For the absorption process, the electron—phonon coupling spectrum
shows several differences. The localized mode near 70.3 meV becomes
less pronounced, while a mode near 63.6 meV shifts downward in energy
and transitions into a vibrational resonance overlapping with bulk-like
modes. At higher energies, a localized mode appears at 90.4 meV and
additional small peaks at 99.1 meV and 131.9 meV. Bulk-like modes at
19.0 meV and 42.2 meV remain largely unchanged, as do quasi-localized
resonances at 31.5 meV and 55.9 meV. However, the quasi-localized
resonance at 63.6 meV overlaps with the previously localized mode at
65.8 meV during luminescence, marking a notable distinction.

4.3.3.3 Optical lineshapes

The calculated emission lineshape (blue) in Fig. 4.17a shows excellent
agreement with the experimental data reported in Ref. [156]. Key fea-
tures in the theoretical spectrum, corresponding to different vibrational
modes, align closely with the peaks observed in the experiment. The rel-
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ative intensities of these features are also accurately captured. Localized
modes at 65.9 meV, 72.8 meV, and 92.7 meV, along with resonances near
31.8 meV, 55.1 meV, and 61.5 meV below the ZPL, are well-reproduced
in the theoretical lineshape, matching prominent experimental peaks.
The contribution of bulk phonons is reflected in broad peaks around
19 meV and 42 meV from the ZPL. The total HR factor Si.t for emis-
sion is calculated as 1.79, with a DWF of approximately 20%.

Although the calculated emission spectrum exhibits excellent over-
all agreement with the experimental data, some discrepancies persist.
The most notable is the absence of a sharp peak and its shoulder near
75.5 meV from the ZPL in the theoretical lineshape. The origin of this
feature remains unclear and warrants further investigation.

Figure 4.17b displays the calculated absorption lineshape (in orange).
A comparison of the absorption and emission lineshapes, reveals quali-
tative similarities within approximately 60 meV below the ZPL. Beyond
this range, the peak energies in the absorption lineshape, influenced by
localized modes, shift to lower values compared to their counterparts in
the luminescence spectrum. Prominent localized modes at 70.3 meV,
90.4 meV, 99.1 meV, and 131.9 meV are clearly associated with the ab-
sorption process.

The difference in relative spectral weights between the luminescence
and absorption lineshapes arises from the w” prefactor in Eq. (2.88).
For luminescence, with x = 3, this prefactor amplifies the lineshape near
the ZPL more significantly than in absorption, where x = 1, creating
a marked asymmetry between the spectra. In contrast, the asymmetry
in the electron—phonon coupling functions S(Aw) is less pronounced and
stems solely from variations in vibrational modes between the ground
and excited states.

4.4. Summary and conclusions

In this chapter, we explored electron—phonon coupling and its impact on
the optical lineshapes of the NV~ center in diamond, neutral divacancies
in 4H-SiC, and the C-center in silicon using ab initio methods. The pri-
mary objective was to evaluate the accuracy and efficiency of the SCAN
family of functionals in modeling electron—phonon interactions and op-
tical lineshapes, with comparisons against PBE, HSE06, and available
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imental data. The key findings of this study are summarized as

follows:

1.

We benchmarked the SCAN, rSCAN, and r>SCAN functionals for
their performance in modeling electron—phonon coupling and lumi-
nescence lineshapes of the NV~ center in diamond. Comparisons
with PBE, HSE06, and experimental data demonstrate that the
SCAN functionals achieve the best agreement with experimental

spectra, accurately reproducing key features of the phonon side-
band.

. The SCAN family of functionals provides good accuracy while

maintaining a computational cost comparable to the widely used
PBE functional, making them a suitable choice for large-scale sim-
ulations and high-throughput defect screening.

The r2SCAN functional was employed to investigate the ZPL en-
ergy, electron—phonon coupling, and luminescence lineshape of the
NV~ center in diamond under hydrostatic pressure. The observed
pressure-dependent trends in electron—phonon coupling and the
evolution of fine spectral features provide valuable insights that
could facilitate the calibration of NV~ centers under external per-
turbations.

The electron—phonon coupling and optical lineshapes of neutral
divacancies in 4H-SiC were modeled using the r2SCAN functional

and compared with available experimental data. The computed
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spectral densities accurately capture key phonon sideband features
and reproduce the fine structure observed in the experimental lu-
minescence spectra. The calculations reveal distinct differences in
electron—phonon coupling strength and luminescence characteris-
tics across the four divacancy configurations (hh, kk, hk, and kh),
with the kh configuration exhibiting the highest Debye—Waller fac-
tor and the most pronounced ZPL contribution.

5. For the C-center in silicon, using SCAN functional we accurately
reproduce the intricate luminescence lineshape with unprecedented
accuracy, capturing the interplay of localized modes and bulk
phonons and reinforcing the attribution of this optical line to the
neutral C;O; complex.

Thesis Statement (II)

Regarding electron—phonon coupling during optical transitions,
our findings show that SCAN family of functionals yields optical
lineshapes that are in great agreement with the experiments while being
computationally cost-effective.
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Chapter 5
Optical lineshape modeling in
Jahn—Teller systems: NiV ™ center in

diamond and divacancies in 4H-SiC

5.1. Introduction

This chapter presents our ab initio study of optical lineshapes influenced
by the pronounced Jahn—Teller (JT) effect in the negatively charged
nickel-vacancy (NiV™) center in diamond and neutral axial divacancy
defects in 4H-SiC. The primary objective of this study is to achieve ac-
curate modeling of optical lineshapes through density functional theory
(DFT) calculations that incorporate the dynamical Jahn-Teller (DJT)
effect, which arises due to the electronic degeneracy present in these
defects.

The content of this chapter is organized as follows. In Section 5.3.1,
we present the results of the computed adiabatic potential energy sur-
faces (APES) for JT active ionic degrees of freedom and key parameters
characterizing the JT coupling. Section 5.3.2 focuses on the NiV™ center
in diamond. We begin by benchmarking the effective mode approxima-
tion and subsequent diagonalization of the JT Hamiltonian and then
proceed to model the luminescence lineshape using a multimode DJT
approach. The modeled lineshape is then compared with experimental
data as well as with the lineshape obtained from the Huang—Rhys (HR)
theory. Finally, Section 5.3.3 covers the optical properties of neutral ax-
ial divacancy defects in 4H-SiC. In this section, we similarly benchmark
the diagonalization of the JT Hamiltonian and compare the computed
luminescence and absorption lineshapes obtained using both DJT and
HR approaches with available experimental spectra. The chapter con-
cludes with a summary of the key findings, emphasizing the importance
of accounting for JT effects in accurately modeling defect-related optical
phenomena for systems with prominent JT coupling.
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5.2. Methodology

5.2.1. Computational details

The calculations for the NiV~™ center in diamond and neutral diva-
cancy defects in 4H-SiC were conducted using spin-polarized density
functional theory. The interaction between electrons and atomic cores
was described using the PAW method with a plane-wave energy cutoff
of 600 eV. All calculations were performed using the VASP code and
the r2SCAN functional [45,63]. The Brillouin zone was sampled at the
I-point using a single k-point. Defects were modeled using a supercell
approach [143].

The NiV~™ center in diamond was created by removing two neigh-
boring carbon atoms and inserting a nickel atom midway between the
two carbon vacancies in a 4 x 4 x 4 supercell containing 512 atomic sites.
Convergence criteria were set to 1076 eV for the electronic self-consistent
loop and 10™* eV /A for ionic relaxation.

Neutral divacancy defects in 4H-SiC were modeled by removing a
silicon atom and a carbon atom from a 6 X 6 x 2 supercell containing
576 atomic sites. The convergence criteria for these calculations were
set to 1078 eV for the electronic self-consistent loop and 10™* eV /A for

ionic relaxation.

5.2.2. Calculation of adiabatic potential energy surfaces

To analyze JT distortions and their associated parameters, the APES
was constructed through a series of first-principles calculations. The
APES was modeled using a quadratic £ ® e vibronic coupling scheme,
which captures the interaction between degenerate electronic states and
vibrational modes of e-type symmetry. For the NiV™ center in diamond,
we examined the lower branch of the 2E,, state, while for the neutral axial
divacancies in 4H-SiC, we focused on the APES of the lower branch of
the excited triplet state 3E, where electronic degeneracy is present.
The calculation of the APES involved two key steps: performing
two separate geometry optimizations for both the NiV™ center in di-
amond and neutral axial divacancies in 4H-SiC. For the NiV™ center,
the first optimization was carried out using the electronic configura-

%gel'f’el'5 preserving the high-symmetry D34 point group. In the

tion af, e, wy
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second optimization, the system adopted the electronic configuration
a%gefmeiy, resulting in relaxation along e symmetry degrees of freedom
to a JT minimum with Cy;, symmetry (as exemplified in Fig. 5.1). The
displacements between the two relaxed geometries were used to deter-

mine the symmetry-breaking distortions for the NiV~ center.

Similarly, for the neutral axial divacancies in 4H-SiC, the first op-

1.5,1.5
T ey

timization was conducted using the electronic configuration aje
while maintaining the high-symmetry C5, point group. In the second
optimization, the system was allowed to lower its symmetry by adopting
the electronic configuration alege}!, relaxing to a JT minimum with Cyp,
symmetry.

In both cases, the mass-weighted displacement AQjr between the
two relaxed structures along the e-symmetry breaking mode was calcu-

lated to quantify the Jahn—Teller distortion.

To map the APES along the symmetry-breaking direction, new ge-
ometries were systematically generated by parametrizing the displace-
ment path AQjr with a parameter ¢, where ¢ = 0 corresponds to
the high-symmetry configuration and ¢ = 1 corresponds to the low-
symmetry configuration. For the NiV™ center, the displacements were
applied along the ey, component of the symmetry-breaking mode and
projected using the irreducible representation matrices of the D34 point
group. Displacement factors ¢ ranging from -1.4 to 1.4 in increments of
0.1 were used to cover a broad range of possible atomic configurations.
These geometries were then used for single-point energy calculations

2 .2 1

with the electronic configuration af ey, ey, -

Similarly, for the neutral axial divacancies in 4H-SiC, the displace-
ments were applied along the e, component of the symmetry-breaking
mode and projected using the irreducible representation matrices of the
Cs, point group. Displacement parameter ¢ was varied from -1.5 to 1.5

in increments of 0.1. For the single-point calculations, the electronic

2,1

configuration ajeze, was employed.

For integral orbital occupations (a%geime}w and ale?te};), the poten-
tial energy surface could not be directly evaluated at high-symmetry
(Dsq or Cs,) geometries due to convergence issues arising from elec-
tronic degeneracy. However, the energy values obtained from the other
configurations provided sufficient data to fit the APES using an effective

Jahn—Teller potential that includes both linear and quadratic interac-
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tion terms [47]. The expression for the APES in mass-weighted polar
coordinates is given by:

1 1/2
e(p,d) = §Hp2 +p {FQ + G%p? +2FGp cos(3¢)} , (5.1)
where p = \/m represents the magnitude of the mass-weighted
displacement, ¢ = arctan(Q,/Q,) is the angular coordinate, £ is the
elastic force constant, F' = v/2w3K is the linear vibronic coupling con-
stant, and G is the quadratic vibronic coupling constant.

5.3. Results and discussion

5.3.1. Adiabatic potential energy surface

The ground doublet state 2E, of the NiV~ center in diamond exhibits an

2 1 .2 2 1

2
CuzCuy and ajg ey e

orbital degeneracy between the configurations aj,e, €y, wzCuy-

This degeneracy induces a dynamical Jahn—Teller effect through inter-
action with vibrational modes of e, symmetry. The coupling between
electronic and vibrational states generates a complex set of vibronic
states, which significantly influence the optical spectra. The correspond-
ing adiabatic potential energy surface displays a characteristic “tricorn
sombrero” shape, with three symmetry-breaking minima separated by
low-energy barriers and barely visible saddle points (see Fig. 5.1), indi-
cating that quadratic Jahn—Teller interactions are negligible.

Similarly, the excited triplet state 3E of the neutral axial divacancies
in 4H-SiC exhibits an orbital degeneracy described by the configurations

1,2

aregze, and areel. This degeneracy leads to a DJT effect through in-

1
teraction with Vigrational modes of e symmetry. The APES for these
systems also shows the "tricorn sombrero” shape but with three clearly
distinct symmetry-breaking minima separated by saddle points (see Fig-
ures 5.2a and 5.3a).

The computed mass-weighted displacements AQ jr, which quantify
the Jahn—Teller distortion, were found to be 0.337 amu®®A for the NiV—
center, 0.519 amu®?A for the hh divacancy, and 0.472 amu®?A for the kk
divacancy. The corresponding vibronic coupling parameters K, F', and
G were extracted from the potential energy curves using Eq. (5.1). For
the NiV~ center, the values were determined to be K = 1.078 eV/ A2,
F =0.364 ¢V/A, and G = 0.012 ¢V/A2. In the case of the hh divacancy,
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the parameters were K = 0.641 ¢V/A%2, F = 0.266 ¢V/A, and G =
0.064 eV /A2, while for the kk divacancy, they were K = 0.701 eV /A2,
F =0.272¢V/A, and G = 0.061 ¢V/A2. These results indicate that the
neutral axial divacancies exhibit significantly larger quadratic vibronic
coupling constants, suggesting a more pronounced quadratic JT effect
compared to the NiV™ center.

The stabilization energy, Ejr, was calculated as the energy difference
between the high-symmetry and distorted configurations. For the NiV ™
center, Fjr was found to be 62.9 meV, whereas for the hh and kk diva-
cancies, it was 69.2 meV and 63.7 meV, respectively. The corresponding
JT barriers, dy7, were 2.9 meV for the NiV™ center, and 23.1 meV and
18.9 meV for the hh and kk divacancies, respectively. These values align
well with previous theoretical studies that employed the hybrid HSE06
functional, reporting a stabilization energy of 72.4 meV and a barrier
height of 2.4 meV for the NiV™ center [132], and a stabilization energy
of 74 meV with a barrier height of 18 meV for the hh divacancy [157].

Contour plots of the APES for both defect systems are shown in
Figures 5.1b, 5.2b, and 5.3b. These plots illustrate the potential energy
landscapes and the paths used to compute the potential energy curves
displayed in Figures 5.1c, 5.2c, and 5.3c, respectively. These paths were
used to parametrize the Jahn—Teller relaxation and extract key vibronic
coupling parameters.

The results confirm that both the NiV™ center and the neutral axial
divacancies undergo dynamic distortions along symmetry-breaking di-
rections, resulting in the characteristic multi-minima APES. However,
the divacancies exhibit substantially higher JT barriers and more pro-
nounced quadratic coupling compared to the NiV~ center.

For basal divacancies, the excited states are not degenerate but are
separated by small energy gaps. For instance, the energy separation
between the excited states of the hk divacancy is 62 meV, while for the kh
divacancy, it is 100 meV. This suggests the presence of a pseudo-Jahn—
Teller (PJT) effect, where symmetry-breaking vibrational modes couple
with electronic states that are close in energy. In static calculations, this
effect modifies the harmonic potential, altering the effective frequency
of PJT-active modes or, in cases of strong coupling, producing double
minima and breaking the symmetry.

Our calculations indicate that the kh divacancy undergoes a
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Figure 5.1: a APES of the lower branch of the 2F,, state of NiV™ center
in diamond. @, @, configuration coordinates represent the collective
motion of effective e,-symmetry modes. Ejr is the JT stabilization en-
ergy, which is the difference in energy between the high-symmetry and
distorted configurations. The three minima are separated by three bar-
riers with the energy of §;r. b Contour plot of the APES. ¢ Computed
potential energy curve along the path defined in b.

symmetry-breaking distortion, gaining a stabilization energy of 15 meV,
while the hk divacancy does not exhibit such behavior, suggesting weaker
PJT coupling. A detailed analysis of electron—phonon coupling param-
eters is necessary to fully understand the PJT effect in these systems.
However, for the emission process, the non-adiabatic nature of the PJT
effect can be approximated using the HR theory [81], which treats the
final state as effectively adiabatic. Nonetheless, further investigation is
required to rigorously address the absorption spectra, which is left for
future work.

5.3.2. NiV™ center in diamond
5.3.2.1 Electron—phonon coupling

To determine the vibrational structure of the ground state and relaxation
profiles necessary for calculating electron—phonon coupling parameters
associated with both HR and JT couplings, we applied the embedding
methodology outlined in Section 2.6. This methodology facilitated the
construction of a large 18 x 18 x 18 supercell containing 46 655 atomic
sites. Using this methodology, we computed spectral densities for two
types of couplings: the HR coupling for modes with a1, symmetry, de-
noted as S, (hw), and the linear JT coupling for modes with e, sym-

106



>- 2 -15
£ = s \ s
= s o A v
B S E Y $ “\ _BOE
g . "
g 5 I 8
K
3 _15 g ow % -45 g
.

\\. 7
- fit RN

.
. =06 -03 00 03 06
Qy (amu®sA) Qx (amu®*A)

Figure 5.2: a APES of the lower branch of the 3E state of hh-VV?
defect in 4H-SiC. @, @, configuration coordinates represent the collec-
tive motion of effective e-symmetry modes. Ejr is the JT stabilization
energy, which is the difference in energy between the high-symmetry
and distorted configurations. The three minima are separated by three
barriers with the energy of d;7. b Contour plot of the APES. ¢ Com-
puted potential energy curve along the path defined in b.

|
=
o

Qy (amu®°A)
Energy (meV)
|
g
Energy (meV)

2
S
1
IS
&

* computed \
- fit T

1
o
5

06 -03 00 03 06 6 03 0.0 03
Qx (amu®*A) Qx (amu®*A)

o
o
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symmetry phonons during luminescence.

metry, expressed as K2(fiw). To achieve a continuous representation of
the electron—phonon interaction, we approximated the delta functions
by Gaussian functions with a variable width o, which decreases linearly
from 3.6 meV at w = 0 to 1.5 meV at the maximum phonon energy.
These results are visualized in Fig. 5.4, where panel a illustrates the
HR spectral density Sg,,(hw), and panel b shows the JT linear cou-
pling spectral density K?(hw). Both panels also include cumulative val-
ues: the total HR parameter, Sg,, tot = > g Salg,k, and the total linear
JT coupling, K2, = >, K?. The computed total HR coupling was
Say gtot = 0.29, whereas the total linear JT coupling was significantly
stronger, with K2, = 0.96.

The parameters S, and K,f represent contributions to changes
in the adiabatic potential energy surface and are directly linked to re-
laxation energies. The relaxation energy in the symmetry-preserving
direction following a vertical transition from the A to E state is given
by AEs, = > hwgSa, k- In contrast, the JT relaxation energy,
AEyr = Y hka,g, describes the system’s progression along the e,
symmetry coordinate from a high-symmetry structure to a distorted low-
symmetry configuration with minimized energy. Our calculations yield
AFE,, = 18.8 meV and AEjr = 63.5 meV, indicating a pronounced
contribution of the JT effect to the overall electron—phonon interaction.
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5.3.2.2 Benchmarking the diagonalization of the Jahn—Teller
Hamiltonian

Diagonalizing the JT Hamiltonian, which accounts for multiple vibra-
tional modes, poses significant computational challenges due to the
large matrix sizes involved. To address this, we adopt an effective
mode approximation strategy, as detailed in Section 2.5.2. This method
approximates the spectral function of linear JT coupling, K?(hw) =
Sk K26(hw — hwy), by using an effective representation, K2 (hw) =
SNt K2 (hwy, — hw), where g, is a Gaussian function with a width o.

This approximation introduces Neg effective vibrational modes, each
defined by a frequency w,, and a vibronic coupling strength K2. The pa-
rameters K2, wy, and o are optimized to ensure that Kgff(h/,u) closely
reproduces K2(hw), thereby capturing the key features of the full vi-
brational spectrum. This reduction to a limited number of effective
modes, significantly reduces the computational cost of diagonalization
while maintaining the accuracy of the spectral function.

The convergence of this approximation is demonstrated in Fig. 5.5,
which shows the convergence of effective linear JT coupling K ezﬁ(hw)
towards K?(hw) as Neg increases for the luminescence of NiV~ center

in diamond.

We investigated the convergence of the computed emission lineshapes
for the 2A1g — 2E, optical transition, with a focus on the parameters
defining the JT Hamiltonian basis. The theoretical approach for mod-
eling vibronic broadening in A — FE transitions and the treatment of
multi-mode F ® (e ® e @ ---) JT systems is detailed in Section 2.5.2.
To assess the impact of basis size on the resulting spectra, we analyzed
the effects of varying the number of effective modes, Neg, and the total

number of excited phonons, nsot.

Our findings indicate that a basis with Neg = 12 sufficiently repro-
duces the experimental lineshape, as shown in Fig. 5.6a. However, to
achieve higher precision, we opted for a more comprehensive basis by
employing Neg = 18 number of effective modes. The convergence be-
havior of the normalized luminescence lineshapes with respect to the
total number of excited phonons is presented in Fig. 5.6b. These re-
sults demonstrate that including niot = 5 excited phonons is sufficient

to achieve convergence for the NiV™ center in diamond.
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Figure 5.6: a Convergence of the theoretical normalized luminescence
lineshapes for the NiV™ center in diamond, calculated using DJT the-
ory, as a function of the number of effective modes Neg. Each lineshape
was computed with a fixed total number of excited phonons, ni.t = 5.
b Convergence of the theoretical normalized emission lineshapes for the
NiV™ center in diamond, calculated using DJT theory, as a function of
the total number of excited phonons n.t. Each lineshape was computed
with a fixed number of effective modes, Nog = 18. Experimental spec-
trum in gray from Ref. [131], recorded at 77 K.

5.3.2.3 Optical spectra of emission

The luminescence lineshapes calculated using both HR and DJT the-
ories are presented in Fig. 5.7, along with the experimental spectrum
from Ref. [131], measured at 77 K. While the HR-based lineshape (blue
curve) aligns with previous theoretical predictions from Ref. [132], it
fails to replicate the experimental trend, particularly missing key fea-
tures influenced by strong JT interactions. This discrepancy highlights
the limitations of the HR approach in capturing optical transitions dom-
inated by JT effects. In contrast, the lineshape generated using the
multimode DJT framework (red curve in Fig. 5.7) exhibits excellent
agreement with the experimental data, accurately reproducing all major
spectral features and capturing the redistribution of intensity.

The DWF, calculated by integrating the ZPL region and expressed as
the ratio of ZPL intensity to the total emission lineshape, is estimated
at 35% for the HR theory and 41% for the DJT model. The DJT
method predicts a higher ZPL intensity with a more extended phonon
sideband compared to HR. theory, reflecting a more accurate description

of electron—phonon coupling in systems with significant JT interactions.
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Figure 5.7: Theoretical normalized luminescence lineshapes for the
NiV~ center in diamond calculated using HR theory (blue line) and DJT
theory (orange line). Results are for 18 x 18 x 18 supercell. Experimental
spectrum in gray from Ref. [131], recorded at 77 K.

5.3.3. Neutral axial divacancies in 4H-SiC

5.3.3.1 Electron—phonon coupling

Spectral densities of electron—phonon coupling, along with the cor-
responding computational details, were previously discussed in Sec-
tion 4.3.2.1 and shown in Fig. 4.10. Panel a presents the HR spectral
density Sy, (hw), while panel b depicts the linear JT coupling spectral
density K?(hw) during the emission process. Panels ¢ and d show the
corresponding spectral densities for the absorption process.

During the absorption process, the relaxation energies are AE,, =
74.2 meV for the hh divacancy and 76.5 meV for the kk divacancy. This
indicates that the contribution from JT-active modes to the electron—
phonon coupling, with stabilization energies of AEjT = 84.5 meV for hh
and 75.8 meV for kk, is comparable to that from symmetry-preserving

modes.
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Figure 5.8: Convergence of linear JT coupling KZ(hw) towards
K?(hw) with increasing number of effective modes Neg for neutral ax-
ial vacancies (hh-VV? on the left and kk-VV? on the right) in 4H-SiC
during absorption. Orange stems represent effective modes with their
respective frequencies and coupling strengths K 2.

5.3.3.2 Benchmarking the diagonalization of the Jahn—Teller

Hamiltonian

We benchmark the diagonalization of the Jahn—Teller Hamiltonian for
axial divacancies hh-VV? and kk-VV? in 4H-SiC using the same method-
ology as described in detail in Section 2.5.2 and demonstrated for the
NiV~ center in diamond (see Section 5.3.2.2).

Figure 5.8 illustrates the convergence of K% (hw) toward the full
vibrational spectrum, K?(hw), for the hh-VV? and kk-VV? defects. The
results demonstrate that Neg = 9 is sufficient to capture the key features
of the vibronic coupling spectrum for both axial divacancies.

Furthermore, Fig. 5.9 highlights the impact of increasing the number
of effective modes on the absorption lineshapes, while Fig. 5.10 presents
the convergence with respect to the total number of excited phonons
included in the phonon basis. Our findings indicate that using Neg = 9
and niot = 6 yields converged absorption lineshapes for both hh-VV?
and kk-VVY in 4H-SiC.
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Figure 5.11: Optical spectra of emission for neutral axial divacancy
centers in 4H-SiC. Blue lines are luminescence lineshapes calculated us-
ing HR theory, while the orange lines are lineshapes calculated using
DJT theory. Results are for a 23 x 23 x 7 supercell. The gray area
represents experimental data from Ref. [102].

5.3.3.3 Optical spectra of emission

The calculated optical emission lineshapes corresponding to the 3E —
3 A, transition, modeled using both HR theory and multimode DJT the-
ory for axial divacancies, are presented in Fig. 5.11 alongside experimen-
tal spectra shown in gray [102]. The intensities of the experimental line-
shapes have been scaled to match the peaks of the computed lineshapes.
The theoretical results were extrapolated to the dilute limit using a
23 x 23 x 7 supercell containing 29 622 atomic sites using force constant
embedding methodology outlined in Section 2.6. Both approaches show
excellent agreement with experimental data, successfully capturing all
major spectral features.

The similarity between the emission lineshapes generated by the HR
and DJT theories aligns with the findings of Ref. [34], which demon-
strated that for an *E — 3Ay optical transition with K2, ~ 1, the
HR theory provides a description comparable to the more rigorous DJT
theory. The main difference between the lineshapes lies in the intensity
distribution. Specifically, the DJT theory predicts a more pronounced
ZPL and, consequently, a higher DWF.

The DWFs obtained from the HR theory are 5.60% and 6.82% for
the hh-VV? and kk-VVO defects in 4H-SiC, respectively. In comparison,
the DWFs calculated using the multimode DJT approach are 7.04% and
7.03%, which deviate further from the experimental values of 3.69% and
6.11% [102].
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Figure 5.12: Optical spectra of absorption for neutral axial divacancy
centers in 4H-SiC. Blue lines are absorption lineshapes calculated using
HR theory, while the orange lines are absorption lineshapes calculated
using DJT theory. Results are for a 23 x 23 x 7 supercell.

5.3.3.4 Optical spectra of absorption

The absorption lineshapes corresponding to the 34, — 3E optical tran-
sition for axial divacancies, calculated using both HR and multimode
DJT approaches, are shown in Fig. 5.12. When comparing the two the-
oretical approaches, the DJT theory predicts a more prominent ZPL
intensity along with broader phonon sidebands compared to HR theory.
This difference becomes especially noticeable beyond 250 meV above
the ZPL. Across all absorption spectra, sharp features near 75 meV are
attributed to quasi-localized phonon modes.

The DWFs calculated using HR theory are 2.53% for the hh config-
uration and 3.02% for the kk configuration. In comparison, the DWFs
obtained from the DJT approach are slightly higher, with values of 3.42%
and 3.72% for the hh and kk divacancies, respectively.

The comparison of absorption lineshapes and DWFs is not provided
due to the absence of experimental PLE spectra. However, we expect
a similar behavior to the luminescence lineshape of the NiV™ center in
diamond, which also exhibits a pronounced Jahn—Teller effect during an
optical transition where the final state is degenerate.

5.4. Summary and conclusions

In this chapter, we investigated the optical lineshapes influenced by
prominent Jahn—Teller effect for two defect systems: NiV™ center in
diamond and neutral axial divacancies in 4H-SiC. Using ab initio meth-
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ods and the r?SCAN functional, we modeled the optical emission and
absorption spectra through both HR and DJT theories, focusing on the
importance of vibronic interactions. The key achievements of this study
are summarized as follows:

1. We computed the adiabatic potential energy surfaces and con-
firmed that the JT effect plays a key role in the ground state of
the NiV~ center in diamond and the excited state of axial diva-
cancies in 4H-SiC. These defects exhibit strong vibronic coupling,
necessitating the use of multimode DJT theory for accurate line-

shape modeling.

2. We demonstrated that the effective mode approximation is a re-
liable method to reduce the computational cost of diagonalizing
the JT Hamiltonian while preserving the accuracy of the spectral

functions.

3. The DJT theory substantially improves the agreement between
computed and experimental luminescence lineshapes of the NiV ™
center in diamond, capturing key spectral features that are missed
by the HR approach. This validates the effectiveness of the multi-
mode DJT methodology for systems with strong JT coupling and
highlights its importance for accurate modeling of defect-related

optical properties.

Thesis Statement (III)

Employing a novel multi-mode Jahn—Teller computational methodology
together with the r?SCAN functional, we accurately captured the
optical features arising from Jahn—Teller interactions in the pho-
toluminescence spectra of split nickel-vacancy center in diamond,
thereby demonstrating the functional’s performance in determining

vibronic-coupling constants.
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Santrauka

1. IZanga

Kvantiniy technologijy plétra atvéré naujas galimybes kvantiniams kom-
piuteriams, kvantinei komunikacijai ir kvantiniams jutikliams [1-10].
Vienas pagrindiniy Siy technologiju reikalavimy yra gebéjimas patikimai
kurti, valdyti ir detektuoti kvantines busenas. Kietakunés platformos,
ypac¢ puslaidininkiai, suteikia gerai iSvystyta aplinka realiztuoti kvanti-
néms sistemoms, o taskiniai defektai gali buti perspektyvus kandidatai
tapti kvantiniais bitais (kubitais) ir pavieniais fotony emiteriais [11].
Taskiniai defektai yra atominio mastelio netobulumai kristalinéje
gardeléje, kurie j puslaidininkio draustine juosta jveda lokalizuotas elekt-
ronines busenas. Nors istoriniu poziuriu Sie defektai buvo laikomi nepa-
geidaujamais puslaidininkiniy prietaisy veikimui, tam tikri gilieji defek-
tai (taip pat vadinami spalviniais centrais) pasizymi stabiliomis optiné-
mis ir sukinio savybémis, tinkamomis kvantinéms technologijoms [11].
Pavyzdziui, neigiamai jkrautas azoto-vakansijos (NV ™) centras deiman-
te demonstruoja milisekundziy eilés koherencijos laikus net kambario
temperaturoje ir tampa pagrindiniu kandidatu kvantiniams jutikliams
ir kvantinei komunikacijai [12-15]. Taip pat tokie defektai silicio kar-
bide ir silicyje veikia infraraudonosios spinduliuotés ruoze, suteikdami
galimybe buti suderinamais su sviesolaidine infrastruktura [16-27].
Kvantiniy technologijy taikymui tinkamy defekty identifikavimas ir
optimizavimas reikalauja teorinio pagrindo, kuris leisty tiksliai ir efekty-
viai prognozuoti ju elektronines ir optines savybes. Ab initio (pirminiy
principy) skai¢iavimai, ypac¢ tie, kurie remiasi tankio funkcionalo teo-
rija (angl. density functional theory, DFT), tapo nepakei¢iamu jrankiu
spresti jvairiems uzdaviniams. Tankio funkcionalo teorija tapo domi-
nuojanciu skaitiniu metodu tirti puslaidininkiy ir jy defekty elektroni-
nei bei optinei strukturai. Nors si teorija pagal Kohn-Sham formaliz-
ma yra i$ principo tiksli [28], praktinis jos jgyvendinimas priklauso nuo
pakaitos—koreliacijos funkcionalo aproksimacijos. Dazniausiai naudoja-
mi funkcionalai puslaidininkiy sistemoms yra apibendrinto gradiento
aproksimacijos (angl. general gradient approximation, GGA) funkcio-
nalai, tokie kaip PBE funkcionalas [29], ar hibridiniai funkcionalai, kaip
HSE [30]. Kiekviena funkcionaly klasé turi savo privalumy ir trukumu.
GGA funkcionalai skaitiniu poziuriu yra labai efektyvus, taciau jie siste-
mingai nuvertina puslaidininkiy draustinj juosty tarpa [31]. Hibridiniai
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funkcionalai pagerina draustinio juosty tarpo vertes, bet yra skaitiskai
zymiai brangesni [32]. Didelés apimties defekty paieska ir elektron—
fononinés saveikos modeliavimas reikalauja pusiausvyros tarp tikslumo
ir skai¢iavimy efektyvumo [33,34].

SCAN tankio funkcionalas [35], priklausantis meta-GGA klasei,
iskaito papildoma informacija apie kinetinés energijos tankj, taip pa-
gerindamas pakaitos—koreliacijos efekty aprasyma. Irodyta, kad SCAN
tiksliau prognozuoja gardelés parametrus ir draustinés juostos tarpus,
palyginti su GGA funkcionalais [36,37]. SCAN funkcionalas turi dideliy
privalumy modeliuojant taskinius defektus, nes tokios sistemos dazniau-
siai tiriamos naudojant supergardelés metodika, kuris reikalauja efekty-
viy skai¢iavimo metody dél didelio atomy skaiciaus [38]. SCAN pagerina
elektrony lokalizacijos ir defekty lygiy aprasyma draustinéje juostoje,
iSvengiant dideliy skaiciavimo kasty, budingy hibridiniams funkciona-
lams. Nors SCAN placiai taikomas idealiems kristalams [39], jo taiky-
mas defekty tyrimuose vis dar yra ribotas [40-43]. Siekiant sistemiskai
ivertinti SCAN tankio funkcionalo tiksluma modeliuojant suzadintas bu-
senas ir elektron—fononine sgveika, reikalingi iSsamesni tyrimai.

Sio darbo tikslas yra jvertinti SCAN funkcionalo ir jo varianty, rS-
CAN [44] ir r2SCAN [45], tiksluma ir skai¢iavimo efektyvuma mode-
liuojant taskiniy defekty elektronines ir virpesines savybes puslaidinin-
kiuose. Konkretus siekis — parodyti, kad SCAN sSeimos funkcionalai gali
tiksliai prognozuoti optines suzadinimo energijas, modeliuoti liumines-
cencijos ir sugerties optines linijas defektams deimante, silicyje ir silicio
karbide. Tikslus elektron—fononinés sgveikos modeliavimas suteiks giles-
niy jzvalgy apie defekty dinamika ir ju tinkamuma kvantinéms techno-
logijoms. Atlikdami iSsamia skaic¢iavimy analize, siekiame jrodyti, kad
SCAN tankio funkcionalas yra patikimas ir praktiskas jrankis defekty
modeliavimui, leidziantis atlikti tikslius ir skaitiskai efektyvius tyrimus,
kurie leisty placiai istirti potencialius kvantinius defektus.

1.1. Tyrimo tikslas

Pagrindinis sio darbo tikslas yra jvertinti SCAN tankio funkcionalo ir jo
varianty (rSCAN ir r2SCAN) tinkamuma modeliuojant tagkiniy defekty
puslaidininkiuose elektronines ir virpesines savybes.

1.2. Tyrimo uzdaviniai

Norint pasiekti sio darbo tiksla, buvo iskelti sie uzdaviniai:

1. Naudojant SCAN, rSCAN ir r2SCAN tankio funkcionalus apskai-
¢iuoti optines suzadinimo energijas jvairiems taskiniams defektams
deimante, silicyje ir 4H silicio karbide.
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1.3.
1.

1.4.

. Naudojant siuos meta-GGA klasés funkcionalus sumodeliuoti teo-

rines liuminescencijos ir sugerties spektrines linijas pasirinktoms
defekty sistemoms.

Palyginti gautus rezultatus su GGA klasés bei hibridiniais funk-
cionalais ir eksperimentiniais duomenimis.

Ginamieji teiginiai
SkaiCiuojant optiniy suzadinimy energijas taskiniams defektams
deimante ir 4H silicio karbide, SCAN tankio funkcionalas ir jo

variantai (rSCAN ir r2SCAN) tikslumu prilygsta arba pranoksta
skaic¢iavimams daug karty reiklesnj hibridinj HSE06 funkcionals.

. Sie SCAN tipo funkcionalai tiksliai modeliuoja elektron—fononine

saveika ir su palyginti mazais kompiuteriniais resursais gaunamos
optinés linijos, kurios labai gerai sutampa su eksperimentiniais
duomenimis.

Naudojant naujoviska daugelio mody Jahn—Teller sistemy skai-
¢iavimo metodologija kartu su r?’SCAN funkcionalu, mes tiksliai
sumodeliavome neigiamai jkrautos nikelio-vakansijos centro dei-
mante fotoliuminescencijos spektra ir nustatéme optines savybes,
kurios atsiranda dél Jahn—Teller saveiky, taip parodydami funk-
cionalo efektyvumag nustatant vibroniniy saveiky konstantas.
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VII. V. Zalandauskas, R. Silkinis, L. Vines, L. Razinkovas, M. E. Bat-
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Stendinis praneSimas.

2. Disertacijos sandara

Sia disertacija sudaro penki pagrindiniai skyriai:

e Pirmame skyriuje trumpai aptariami taskiniai kristaly defektai ir
ju svarba kvantinése technologijose. Cia suformuluojamas tiriamo-
jo darbo tikslas ir pagrindiniai uzdaviniai.

o Antrame skyriuje pristatoma teorija ir metodologija skirta skai-
¢iuoti defekty eletroninei ir virpesinei strukturai bei vibroninei
strukturai, kuri atsiranda dél Jahn—Teller efekto, kur nejmanoma
adiabatiskai atskirti elektroniniy ir virpesiniy laivés laispsniy.

o Treciame skyriuje pristatomi idealiy deimanto, silicio ir silicio kar-
bido kristaly parametrai, kurie buvo suskaic¢iuoti naudojant PBE,
SCAN, rSCAN, r2SCAN ir HSE06 tankio funkctionalus ir palyginti
su eksperimentiniais rezultatais. Taip pat siame skyriuje palygin-
tos taskiniy defekty deimante, silicyje ir 4H silicio karbide forma-
vimosi energijos, kruvio busenos peréjimo lygiai, befononés linijos
energijos ir belaukio suskilimo vertés, kurios suskaic¢iuotos su siais
tankio funkcionalais ir palygintos su eksperimentiniais rezultatais.

o Ketvirtame skyriuje pristatyti neigiamai jkrauto azoto-vakansijos
centro deimante, neutraliy divakansijy 4H-SiC bei C-centro silicy-
je ab initio elektron—fononinés sgveikos ir optiniy linijy skaiciavi-
mai. Sio skyriaus pagrindinis tikslas buvo jvertinti SCAN, rSCAN
ir 2SCAN tankio funkcionaly tiksluma modeliuojant elektron—
fononine saveiky ir optines linijas, palyginant gautus rezultatus su
standartiniais PBE ir HSE06 funkcionalais bei eksperimentiniais
duomenimis.

e Penktas skyrius nagrinéja suskaicuotas optines linijas, kurios yra
veikiamos ryskaus Jahn—Teller efekto neigiamai jkrauto nikelio-
vakansijos centro deimante bei neutraliy hh ir kk divakansijy de-
fekty 4H silicio karbide. Pagrindinis Sio tyrimo tikslas buvo tiksliai
sumodeliuoti optiniy linijy formas, taikant tankio funkcionalo teo-
rijos skaic¢iavimus, panaudojant daugelio mody dinaminio Jahn—
Teller efekto (kuris kyla dél elektroninio issigimimo esancio Siuose
taskiniuose defektuose) skai¢iavimo metodologija.

Toliau trumpai pristatomas disertacijos turinys ir pagrindinés isvados.
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2.1. Teorijos ir metodologijos apzvalga

Schrodinger lygtis ir adiabatiné aproksimacija

Tiesioginis Schrodinger lygties sprendimas realioms taskiniy defekty
puslaidininkiuose sistemoms Siuolaikiniais skaitmeniniais metodais yra
nepraktiskas ar net nejmanomas dél eksponentiskai augancio reikalingy
skaic¢iavimy iStekliy didéjant daleliy skaic¢iui. Todél siekiant iSspresti Sia
problema taikomos jvairios aproksimacijos.

Kvantinés chemijos skai¢iavimuose dazniausiai naudojama adiabati-
né aproksimacija, kuri efektyviai atskiria branduoliy ir elektrony siste-
mas dél didelio banrduoliy ir elektrony masiy skirtumo. Sioje disertacijo-
je naudojama statiné adiabatiné aproksimacija [46] , kuri yra grubiausias
adiabatinis artinys, taciau Sis artinys yra patogus norint nagrinéti ne-
adiabatinius reiskinius kaip Jahn—Teller efekta [47]. Naudojant statine
adiabatine aproksimacija, Schrodinger lygtis sprendziama laikant, kad
branduoliai yra klasikinés nejudancios dalelés, o tada suradus elektroni-
nés lygties sprendinius yra suskaic¢iuojamas gardelés dinamika nusakan-
tis adiabatinis potencinés energijos pavirsius (angl. adiabatic potential
energy surface, APES) branduoliams. Formaliai, adiabatiniy bendrosios
sistemos sprendiniy iSraiska yra tokia:

Vi(r,R) = ¢i(r)xi(R), (2)

kur 4);(r) yra elektroniné banginé funkcija, o x;(R) yra branduoliy ban-
giné funkcija, kai elektronai yra 4 biisenoje. Si aproksimacija yra gana
tiksli tik tada, kai energijos skirtumai tarp elektroniniy lygmeny yra
didesni nei charakteringa virpesinés sistemos suzadinimo energija.

Dél galimo defekto elektroniniy buseny issigimimo nebegalima at-
skirai nagrinéti elektrony ir branduoliy dinamikos. Siose iSsigimusiose
biisenose yra maiSomos elektroninés ir branduolinés biisenos, kurios yra
vadinamos Jahn—Teller (JT) sistemomis, o ju bendra banginé funkcija
yra:

U, R) = Y ilr)wi(R), 3)

kur 7 sumuojamas per issigimusius elektroninius lygmenis ;(r).
Tankio funkcionalo teorija

Sioje disertacijoje naudojama tankio funkcionalo teorija (DFT), ku-
rig suformulavo Hohenberg ir Kohn [48,49]. DFT tapo pla¢iausiai nau-
dojamu ab initio metodu kietojo kuno elektroninés strukturos skaicia-
vimams dél savo efektyvumo modeliuojant sistemas, turincias iki keliy
tukstanc¢iy atomy. Vietoj daugiaelektroninés banginés funkcijos, DF'T
naudoja elektrony tankj n(r), priklausantj tik nuo triju erdviniy koordi-
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naciy (zr. 2.2 skyrelj).

Ne
n(r) = (@a()lp) = (13 o = ri)|). (4)

DFT teorinis pagrindas remiasi dviem Hohenberg—Kohn teoremomis.
Pirmoji teorema teigia, kad pagrindinés busenos elektrony tankis ng(r)
vienareiksmiskai apibrézia sistemos iSorinj potenciala Uexs(r) ir visas
elektronines sistemos savybes. Antroji teorema nusako, kad bendra
elektrony energija yra minimali tada, kai naudojamas tikrasis pagrin-
dinés busenos elektrony tankis. Tai reiskia, kad galima variaciniu prin-
cipu rasti pagrindinés biisenos energija ir elektrony tankj minimizuojant
bendros energijos funkcionala Ey = min,, E[n].

Tankio funkcionalo teorija yra grieztai apibrézta pagrindinei elekt-
roninei busenai, tac¢iau tikslus pakaitos—koreliacijos funkcionalo (angl.
exchange-correlation functional) analitinis pavidalas néra Zinomas.
DFT remiasi apytikriais funkcionalais, kurie skirtingai apraso apraso
pakaitos—koreliacijos efektus. Keli pagrindiniai funkcionaly tipai yra:

o Lokalaus tankio aproksimacija (angl. local density approzima-
tion, LDA) — vienas paprasé¢iausiy funkcionaly, kuriame pakaitos
energija yra tokia pati kaip homogeniskose elektrony dujose ir da-
ro prielaida, kad pakaitos—koreliacijos energija bet kuriame taske
priklauso tik nuo vietinio elektrony tankio. Sis funkcionalas daz-
nai per stipriai surisa elektronus, o tai nulemia per mazus tarpus
tarp lygmenuy kietuose kunuose.

e Apibendrinto gradiento aproksimacija — jtraukia elektrony
tankio gradienta, leidziantj geriau aprasyti nehomogeniskas siste-
mas. Vienas populiariausiy GGA funkcionaly yra PBE [29], kuris
placiai naudojamas kietyjy kuny sistemy modeliavimui.

e Meta-GGA funkcionalai — patobulinta GGA versija, kurioje
prie elektrony tankio ir jo gradiento taip pat jtraukiama kinetinés
energijos tankio priklausomybé. SCAN (angl. Strongly Constrai-
ned and Appropriately Normed) ir r?’SCAN funkcionalai priklauso
siai klasei ir geriau apraso kristaly savybes nei GGA funkciona-
lai [35,45].

e Hibridiniai funkcionalai — j pakaitos—koreliacijos funkcionala
jitraukiama dalis tikslios Hartree-Fock pakaitos. Sie funkcionalai
puslaidininkiuose ir izoliatoriuose pagerina atstumus tarp lygme-
ny. Vienas i§ dazniausiai naudojamy hibridiniy funkcionaly yra
HSE [30], kuris tiksliau prognuozuoja draustinés juostos tarpus ir
defekty lygmenis.
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Idealiame kristale, kuris yra begaliné periodiné struktura, vienas ele-
mentarusis gardelés narvelis apibudina visg kristalg. Taciau defekto
ivedimas j gardele suardo jos periodiskuma, todél reikia alternatyviy
teoriniy metody defekty modeliavimui. Vienas placiausiai naudojamy
metody yra supergardelés metodas [38], kur didelé gardelé su defek-
tu yra periodiskai atkartojama (zr. 2.2 pav.). Nors supergardelés yra
baigtinio dydzio, kruopstus supergardeliy dydzio konvergavimas leidzia
sumodeliuoti giliyjy defekty elektronine struktira.

Virpesiné struktiira ir jterpimo metodologija

Nustacius elektroninés sistemos busenas, defekto gardelés virpesiai
yra apskaic¢iuojami naudojant harmonine aproksimacija, pagal kurig vir-
pesiai atitinka mazos amplitudés judéjima aplink pusiausvyros padétis
(zr.2.3.1 skyriy). Tokie virpesiai dazniausiai vadinami fononais. Defekto
buvimas pakeicia idealios gardelés virpesine struktura. Iterpus defekta,
gali atsirasti lokalizuotos arba rezonansinés modos, kuriy amplitudé de-
fekto aplinkoje yra didesné nei erdviskai iSplitusiy kristalo virpesiy. Dél
Sios priezasties tokie virpesiai stipriau sgveikauja su elektronine siste-
ma ir yra reikSmingi elektron—fononinés saveikos defektuose aprasymui.
Lokalizuotos modos pasirodo energijos srityje, kurioje idealus kristalas
neturi virpesiy. Sios modos yra stipriai lokalizuotos erdvéje aplink de-
fekta, o rezonansinés modos susidaro kaip perturbuoti kristalo virpesiai
tam tikrame energijos intervale.

Siuolaikiniai DFT skai¢iavimai gali modeliuoti supergardeles, kurio-
se yra daugiau nei keli tukstanciai atomy ir yra pakankama energijos
konvergavimui, taciau tokie sistemos dydziai néra pakankami pilnai pa-
gauti mazos energijos akustiniy fonony jtakai. Sis apribojimas kyla dél
periodiniy krastiniy salygy ir riboto virpesiniy laisvés laipsniy skaiciaus
tokiose supergardelése. Norint apeiti riboto supergardéliy dydzio kelia-
mus apribojimus, taikome jégos konstanty jterpimo metodologija [34,82].
Sis metodas isnaudoja puslaidininkiams budinga trumpasieke tarpatomi-
niy saveiky pobiudj. Kai atomas yra pajudinamas i$ savo pusiausvyros
padéties, jéga, kuria jis veikia aplinkinius atomus, greitai silpsta didé-
jant atstumui nuo pajudinto atomo. Sis spartus saveikos slopimas leidzia
efektyviai sukonstruoti dinamine jégos konstanty matrica dideléms su-
pergardeléms. Dinaminés matricos konstravimas atliekamas pagal sias
taisykles (zr. pav. 2.4):

e Jei du atomai yra ne didesniu nuotoliu nei r, tada naudojami
atitinkami elementai iS idealios supergardelés dinaminés matricos.

o Jei atomy poros yra nutolusios ne daugiau kaip r4 atstumu nuo
defekto, naudojami matricos elementai i§ defekta turincios super-
gardelés.
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o Visais kitais atvejais matricos elementai prilyginami nuliui.

Naudojant jégy konstanty jterpimo metodologija stebimas optinés linijos
konvergavimas didinant supergardelés dydj. Esant pakankamai dideliai
supergardelei, gauname mazos energijos virpesines modas ir taip pat
galimus defekto virpesius, kurie rezonuoja su Siomis iSplitusiomis kristalo
modomis. Dazniausiai konvergencija pasiekiama supergardelése, kurios
turi daugiau nei 10 000 atomy.

2.2. Idealaus kristalo savybiy skaic¢iavimai

Norint tirti taskiniy defekty elektroning ir virpesine struktura, pirmiau-
sia svarbu tiksliai aprasyti medziaga, kurioje yra sie defektai. Lenteléje 1
pateiktos su PBE, SCAN, rSCAN, r?SCAN ir HSE06 funkcionalais ap-
skaiciuotos deimanto, 4H silicio karbido ir silicio gardeliy konstantos bei
draustinio juostos tarpo vertés, kurios palygintos su eksperimentiniais
duomenimis.

Deimanto atveju SCAN ir rSCAN duoda artimiausias gardelés kons-
tantos vertes eksperimentui, kurios skiriasi tik per 0.001 A. r2SCAN
ir PBE funkcionalai atitinkamai pervertina gardelés konstanta 0.006
ir 0.017 A, o HSE06 nuvertina per 0.009 A. Draustinio juostos tarpo
skaic¢iavimuose PBE funkcionalu apskaic¢iuotas draustinio juostos tar-
pas 4.12 €V, yra gerokai mazesnis uz eksperimentine verte, kuri siekia
5.48 eV [109]. SCAN funkcionalas pagerina PBE rezultata, padidin-
damas draustinio juostos tarpa 0.44 eV. Tuo tarpu rSCAN ir r?’SCAN
duoda mazesnius padidéjimus (0.26 €V ir 0.21 eV atitinkamai). Su hib-
ridiniu HSEO06 funkcionalu gauta 5.34 eV verté geriausiai atitinka eks-
perimentinj rezultata.

4H silicio karbido atveju SCAN Seimos funkcionalai tiksliai atkarto-
ja tiek a, tiek ¢ gardelés konstantas. SCAN ir r2SCAN nuokrypiai nuo
eksperimentiniy ver¢iy nevirsija 0.006 A (a) ir 0.017 A (¢), o PBE rodo
didesnj nuokrypj, pervertindamas abu parametrus (0.013 ir 0.044 A ati-
tinkamai). HSEO6 gerai prognozuoja a, tac¢iau nuvertina ¢ per 0.034 A.
Draustinio juostos tarpo E, vertés rodo ta pacig tendencijg kaip ir dei-
mante: PBE stipriai nuvertina, SCAN, rSCAN ir r2SCAN duoda ar-
timesnes vertes, taciau tik su HSE06 gaunama eksperimentui artima
reiksme [112].

Silicio gardelés konstanta a taip pat geriausiai prognozuojama nau-
dojant SCAN sSeimos funkcionalus. Kaip ir deimante ar 4H-SiC, PBE
pervertina, o HSEO6 nuvertina gardelés konstantos vertes palyginus su
eksperimentu [113]. Draustinio juostos tarpo skai¢iavimai rodo ryskes-
nius skirtumus: PBE prognozuojama verté yra beveik perpus mazesné
uz eksperimentine, tuo tarpu SCAN tipo funkcionalai duoda geresnius
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1 lentelé: Deimanto, 4H silicio karbido ir silicio gardelés konstantos a
ir ¢ (A) bei draustinio juostos tarpo E, (eV) vertés.

deimantas 4H-SiC silicis
a E, a c E, a K,
PBE 3.572 4.120 3.093 10.126 2.223 5.469 0.611

SCAN  3.554 4.558 3.074 10.065 2.596 5.428 0.825
rSCAN  3.556  4.375 3.072 10.056 2.632 5.435 0.776
r’SCAN  3.561 4.331 3.076 10.071 2.611 5440 0.782
HSE06  3.546 5.343 3.070 10.048 3.172 5.433 1.153
Ekspt.  3.555% 5.48"> 3.080° 10.082° 3.2659 5.419° 1.170F

2[107] P [109] ©[111] ¢ [112] °[113] f[114]

2 lentelé: Deimanto LO fonony energija (meV) pirmos Brillouin zonos
taskuose. Eksperimentiniai duomenys is [118].

r X L
PBE 160.7 148.1 154.6
SCAN  167.0 153.2 160.4
rSCAN  165.0 152.5 159.6
r’SCAN  164.7 152.0 159.0
HSE06  171.0 154.7 160.8
Ekspt.  164.0 151.3 157.0

rezultatus. Kaip ir kitose medziagose, su hibridiniu HSE06 funkcionalu
gauta E, verté yra artimiausia eksperimentinui [114].

Deimanto fonony dispersijos kreivés buvo apskaiciuotos naudojant
PHONOPY programinj paketa [117]. Lenteléje 2 pateiktos su skirtingais
funkcionalais apskaiciuotos iSilginiy optiniy (angl. longitudinal-optical,
LO) fonony energijos aukstos simetrijos pirmos Brillouin zonos I', X ir L
taskuose. Sios suskai¢iuotos vertés palygintos su eksperimentinémis ne-
tampriosios neutrony sklaidos (angl. inelastic neutron scattering, INS)
vertémis [118]. SCAN tipo funkcionalai duoda geriausia atitikima su eks-
perimentinémis vertémis, ypa¢ r2SCAN funkcionalas (zr. 3.2 pav.). PBE
funkcionalas nuvertina, o HSE06 pervertina LO fonony daznius. Taciau
r2SCAN funkcionalas pateikia vertes, kurios yra tarp PBE ir HSE06
rezultaty ir geriausiai sutampa su eksperimentiniais rezultatais [118].

Apibendrinant, SCAN ir r?2SCAN funkcionalai tiksliausiai atkuria
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gardelés konstantas ir fonony daznius, o taip pat pagerina draustinio
juostos tarpo vertes, palyginti su PBE funkcionalu. Vis délto, hibridinis
HSEO06 funkcionalas islieka tiksliausias prognozuojant draustinj juostos

tarpa.

2.3. Defekty elektroniniy suzadinimy skaiciavimai

Optiniai suzadinimai spalviniuose centruose yra glaudziai susije su de-
fekty elektronine struktura. Treciame skyriuje aptariami spalviniy cent-
ry deimante ir neutraliy divakansijy defekty 4H silicio karbide skaicia-
vimy rezultatai, lyginant teorines befononeés linijos (angl. zero-phonon
line, ZPL) energijas su eksperimentiniais duomenimis.

3 lenteléje pateikiamos NV~ SiV™, GeV ™ ir SnV ™~ spalviniy centry
deimante apskaicCiuotos ir eksperimentinés befononés linijos energijos,
gautos naudojant skirtingus funkcionalus. SCAN funkcionalu apskai-
¢iuotos ZPL energijos yra artimos eksperimentinéms vertéms, su 0.070
eV vidutine absoliu¢iaja paklaida (angl. mean absolute error, MAE). Si
paklaida yra beveik identiska hibridinio HSE06 funkcionalo rezultatui
(MAE = 0.068 e¢V). Nors tiek SCAN, tick PBE funkcionalai sistemin-
gai nuvertina draustinj juostos tarpa, su SCAN funkcionalu gautos ZPL
energijos yra Zenkliai tikslesnés ir beveik prilygsta keliasdesimt karty
daugiau skaic¢iavimo istekliy reikalaujanc¢iam HSEQ6 funkcionalui.

4 lenteléje pateikiamos skirtingy 4H-SiC neutraliy divakancijy kon-
figuraciju (hh, kk, hk ir kh) suskai¢iuotos ir eksperimentinés befono-
nés linijos energijos. SCAN funkcionalas pasizymi geriausiu tikslumu,
su 0.021 eV vidutine absoliu¢igja paklaida, o r?’SCAN duoda Siek tiek
didesne paklaida (0.035 eV). Lyginant su anks¢iau publikuotais rezulta-
tais, SCAN funkcionalu gautos vertés yra artimesnés eksperimentiniams
duomenims nei PBE ar net hibridiniy funkcionaly (HSE06 ir DDH) re-
zultatai.

Sie rezultatai rodo, kad SCAN ir r2SCAN funkcionalai gali tiksliai
ir skaitmeniskai efektyviai prognozuoti spalviniy centry optines savy-
bes puslaidininkiuose, sudarydamas pagrinda tolimesniems teoriniams
tyrimams.

2.4. Elektron—fononinés sgveikos modeliavimas

Sios disertacijos ketvirtame skyriuje nagrinéjama elektrony ir fonony
saveikos jtaka giliyjy defekty optinéms linijoms, taikant tankio funkcio-
nalo teorijos skaic¢iavimus. Tirti defektai buvo neigiamai jkrautas NV~
centras deimante, neutralios divakansijos 4H silicio karbide ir C-centras
silicyje. Darbo tikslas buvo jvertinti SCAN, rSCAN ir r?’SCAN funkcio-
naly tiksluma modeliuojant elektron—fononine saveikg ir optines linijas,
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3 lentelé: Suskaiciuotos ir eksperimentinés spalviniy centry deimante
befononeés linijos energijos vertés (eV). MAE yra vidutiné absolucioji
paklaida (eV) kiekvienam funkctionalui.

NV~—  SiV:  GeV™ SnV- MAE

PBE 1.692 1.486 1.855 1.845 0.203
SCAN 1.867 1.567 2.001 1.974 0.070
rSCAN  1.812 1.543 1.948 1.932 0.114
r’SCAN  1.806  1.533 1.943 1.929 0.120
HSE06  2.002 1.717 2.139 2.105 0.068
Ekspt.  1.945* 1.682° 2.059¢ 2.0034

2 13] P [133] °©[134] 9 [135]

4 lentelé: Suskaic¢iuotos ir eksperimentinés neutraliy divakansijos de-
fekty 4H silicio karbide befononés linijos energijos vertés (eV). MAE yra
vidutiné absolucioji paklaida (eV) kiekvienam funkctionalui.

hh kk hk kh MAE

SCAN 1.129 1.123 1.141 1.103 0.021
r’SCAN  1.079 1.081 1.100 1.062 0.035
0.925*  0.945* 0.975* 0.95* 0.170

Sis darbas

PBE

0.9375 0.951°> 0.979" — 0.158

N ‘ 1.056%  1.044* 1.103* 1.081* 0.044
Kittdarbal — popos 10910 12180 1260° - 0.122
1.13¢  1.14°  1.21°  1.24° 0.065

DDH 1.196> 1.201> 1.259P — 0.105

Ekspt.4 1.095 1.096 1.150 1.119

> 98] P [102] ©[136] 9 [137]
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°
o
8
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0.001

0'009350 —300 —250 —200 -150 -100 =50 0

Energijos poslinkis nuo ZPL (meV)

1 pav.: Deimanto NV~ centro teorinés normalizuotos liuminescencijos
linijos suskaic¢iuotos naudojant skirtingus funkcionalus ir palygintos su
eksperimentiniu spektru [147]. Intarpe pavaizduota spektriné elektron—
fononinés saveikos funkcija kiekvienam funkcionalui.

lyginant jas su PBE, HSE06 funkcionalais bei eksperimentiniais duome-
nimis.

Vienas pagrindiniy sio darbo rezultaty yra elektron—fononinés savei-
kos modeliavimas NV~ centre deimante. Skaiciavimai parodé, kad liu-
minescencijos linijos, suskai¢iuotos naudojant SCAN, rSCAN, r2SCAN
geriau sutampa su eksperimentiniu liuminescencijos spektru, nei su PBE
ar HSE06 funkcionalais. Kaip matyti i 1 pav., fonony pajuostés forma
geriausiai sutampa su eksperimentu naudojant SCAN Seimos funkcio-
nalus. Sie rezultatai rodo, kad SCAN tipo funkcionalai sugeba tiks-
liai modeliuoti elektron—fononing saveika, su daug didesniu skaitmeniniu
efektyvumu lyginant su hibridiniais funkcionalais.

Neutralios divakansijos 4H-SiC kristale buvo tirtos naudojant
r2SCAN funkcionalg. 2 pav. parodytos teorinés normalizuotos liumines-
cencijos linijos, kurios sékmingai sutampa su eksperimentiniais spekt-
rais [102, 155]. Skai¢iavimai atskleideé, kad skirtingos neutraliy diva-
kansiju konfiguracijos (hh, kk, hk, kh) pasizymi nevienodu elektron—
fononinés saveikos stiprumu. kh divakansija turi maziausia elektron—
fononinés saveikos stipruma ir didziausia Debye-Waller faktoriy (kuris
nusako befononés linijos santykj su visos liuminescencijos linijos inten-
syvumu).

Galiausiai, su SCAN funkcionalu apskai¢iuotos C-centro silicyje op-
tinés linijos puikiai sutampa su eksperimentiniais duomenimis (zr. 3
pav.). SkaiCiavimai leido tiksliai identifikuoti pagrindines virpesines
modas, jskaitant tiek lokalizuotas, tiek rezonansines defekto ir krista-
lo virpesines modas. Palyginimas su eksperimentiniu spektru rodo, kad
SCAN funkcionalas tiksliai atkuria liuminescencijos linijos struktura, ir
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2 pav.: 4H silicio karbido neutraliy divakansijy liuminescencijos linijos.
Meélynos linijos yra su HR teorija suskaiciuotos normalizuotos liumines-
cencijos naudojant r2SCAN funkcionala. Pilka spalva yra pazyméti ek-

perimentiniai spektrai i$ [102,155].

a o020 b o020
=008 T o0s
L ekspt. S
goos —— liuminescencija sugertis gow
~oo1sp 30% 0.015 3o
1 @ o002 % 002
(] =
£ 0.0, 50 5 000, B 150
o Fonony energija (meV) 2 Fonony energija (meV)
S o010 = 0010
¢
£ 3
£ @
5
= 0.005 0.005
00%;55 125 100 = 000075 25 s

3 pav.:

5 =50
Energijos poslinkis nuo ZPL (meV)

50 75 100 150
Energijos poslinkis nuo ZPL (meV)

Silicio C-centro teorinés normalizuotos a liuminescencijos ir

b sugerties linijos suskaic¢iuotos naudojant SCAN funkcionala. Intarpe

pavaizduota spektriné elektron—fononinés saveikos funkcija.

mentinis spektras i$ [156].
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4 pav.: Efektyvios tiesinés JT saveikos spektrinés funkcijos K gﬁ(hw)
konvergencija j K?(hw) didéjant efektyviy mody skai¢iui Neg NiV ™ cen-
trui deimante liuminescencijos metu. Oranziniai stulpeliai atvaizduoja
efektyvias modas su atitinkamais dazniais ir saveikos vertémis K 2.

sustiprina Sio defekto priskyrima kaip Sios optinés linijos Saltinj.

Apibendrinant, Siame darbe atliktas sisteminis elektron—fononinés
saveikos modeliavimas Sesiuose skirtinguose defektuose. Pritaikant mo-
dernius SCAN Seimos funkcionalus, pavyko pasiekti geresnj sutapima
su eksperimentiniais duomenimis, nei naudojant jprastus PBE ir HSE06
funkcionalus.

2.5. Jahn—Teller efekto tyrimas

Penktame skyriuje buvo atliktas ab initio optiniy linijy modeliavimas,
atsizvelgiant | dinaminj Jahn—Teller (DJT) efekta. Pagrindiné NiV~
centro deimante busena ir 4H-SiC hh ir kk divakansijy suzadintos op-
tinés busenos yra elektroniskai dvigubai issigimusios. Butent Sis iSsigi-
mimas nulemia dinaminj Jahn—Teller efekta, kur reikia iStirti vibronine
struktura, kur nejmanoma adiabatiskai atskirti elektroniniy ir virpesiniy
laisves laipsniy.

Siame skyriuje buvo pritaikyta daugelio efektyviy mody Jahn-Teller
sistemy analizés metodologija [34,75]. 4 pav. iliustruoja efektyvios tie-
sinés JT saveikos spektrinés funkcijos K gﬁ(ﬁw) konvergencija i JT sa-
veikos spektring funkcija K2(hw) didéjant efektyviy mody skaiciui Neg.
Cia oranziniai stulpeliai atvaizduoja parinktas efektyvias modas su ati-
tinkamais dazniais ir saveikos stiprumo vertémis K2. Didinant Ng,
K% (hw) vis tiksliau atitinka visy fonony mody jnasa j JT saveika. Tai
parodo, kad jau santykinai mazas N.g mody skaic¢ius leidzia tinkamai
atkurti vibronineg saveika, o tai zenkliai sumazina reikalingy skaic¢iavimy
sudétinguma.
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5 pav.: Deimanto NiV™ centro teorinés normalizuotos liuminescencijos
linijos suskaiciuotos naudojant HR teorija (mélyna linija) ir DJT teorija
(oranziné linija). Linijos suskai¢iuotos naudojant r2SCAN funkcionala.
Eksperimetinis spektras i§ [131].

5 pav. pavaizduota su HR ir DJT teorijomis suskaic¢iuotos normali-
zuotos liuminescencijos linijos. Naudojant r?’SCAN funkcionala ir naujo-
viska daugelio mody Jahn—Teller sistemy skaic¢iavimo metodologija, bu-
vo tiksliai sumodeliuotas NiV™ centro deimante liuminescencijos spekt-
ras ir nustatytos optinés savybés, kurios ateina butent dél Jahn—Teller
saveiky, taip jrodant sio funkcionalo efektyvuma modeliuoti vibronines
saveikas.

Analogiskas optiniy linijy modeliavimas buvo atliktas neutralioms
4H-SiC hh ir kk divakansijoms. Siy sistemy optinés sugerties linijos,
apskai¢iuotos naudojant DJT teorija, buvo palygintos su HR teorija (Zr.
5.12 pav.).
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