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Low-energy neutron–19C scattering is studied in the three-body n + n + 18C model using a realistic nn
potential and a number of shallow and deep n–18C potentials, the latter supporting deeply-bound Pauli-
forbidden states that are projected out. Exact Faddeev-type three-body scattering equations for transition 
operators including two- and three-body forces are solved in the momentum-space partial-wave frame-
work. Phase shift, inelasticity parameter, and cross sections are calculated. For the elastic n–19C scattering 
in the J� = 0+ partial wave the signatures of the Efimov physics, i.e., the pole in the effective-range ex-
pansion and the elastic cross section minimum, are confirmed for both shallow and deep models, but 
with clear quantitative differences between them, indicating the importance of a proper treatment of 
deeply-bound Pauli-forbidden states. In contrast, the inelasticity parameter is mostly correlated with the 
asymptotic normalization coefficient of the 19C bound state. Finally, in the regime of very weak 19C bind-
ing and near-threshold (bound or virtual) excited 20C state the standard Efimovian behaviour of the n–19C
scattering length and cross section was confirmed, resolving the discrepancies between earlier studies by 
other authors (Mazumdar et al., 2006 [20], Yamashita et al., 2007 [23]).

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Few-particle systems whose two-particle (i j) subsystems are 
characterized by large s-wave scattering lengths aij exhibit uni-
versal properties. Their systematic theoretical study was pioneered 
by V. Efimov almost 50 years ago [1] but the experimental confir-
mation came many years later [2–5]. It was achieved in cold-atom 
systems where the two-atom scattering length in the vicinity of 
the Feshbach resonance can be controlled by an external magnetic 
field and thereby tuned to a large value significantly exceeding 
the interaction range, a condition needed for the manifestation of 
the so-called universal or Efimov physics. The possibility of tun-
ing the scattering length is not available in the nuclear physics. 
Nevertheless, some nuclear systems have quite large two-particle 
scattering lengths and qualitatively show some properties charac-
teristic for Efimov physics. The simplest case is the three-nucleon 
system [1,6–11]. Further examples are systems consisting of a nu-
clear core (A) and two neutrons (n) provided that there is a 
weakly bound or virtual s-wave state in the (A + n) subsystem 
[12–16]. Among them the 18C + n + n system has been studied in 
a number of works (see Refs. [15,16] for a review) hoping to es-
tablish the existence of a 20C excited Efimov state assuming that 
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19C has the binding energy of only Sn = 0.16 MeV [17] while 
the ground state of 20C is bound with S2n = 3.5 MeV (relative 
to the 18C + n + n threshold). However, more recent experiments 
have not confirmed such a weak binding of 19C and presently ac-
cepted value is Sn = 0.58(9) MeV [18], thereby excluding also the 
possibility of excited Efimov state in 20C as a real bound state. 
Nevertheless, the 18C + n + n system in the low-energy n + 19C
scattering process is expected to exhibit some universal proper-
ties that have been studied theoretically both in zero-range and 
finite-range models [19–22]. However, there is no consensus on 
the fate of the 20C excited Efimov state as 19C binding increases 
towards its physical value. Refs. [21–23] predict that it becomes a 
virtual state leading to a pole in the effective-range expansion for 
n + 19C scattering similar to the neutron–deuteron case [24] while 
Refs. [19,20,25] claim that the 20C excited state turns into a con-
tinuum resonance seen as a pronounced peak in the n + 19C elastic 
cross section around 1.5 keV center-of-mass (c.m.) energy. One of 
the conclusions drawn in Ref. [25] was that “there is a need to 
undertake a detailed investigation using realistic interaction”. In-
deed, all the calculations for the n + 19C scattering so far have 
been performed using simple rank-one separable potentials with 
Yamaguchi form factors for n–n and n–18C pairs. Although in the 
ideally universal regime the predictions for observables should be 
independent of the interaction details, some remnant dependence 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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is expected for realistic systems whose universal behaviour is mod-
ified by finite-range corrections.

The goal of the present work is to study the low-energy n + 19C
scattering using more realistic interactions, possibly establishing 
shortcomings of rank-one separable models, and sort out the dif-
ferences between findings of Refs. [19,20,25] and [21–23]. The im-
provement of the interaction models is threefold: (i) For the n–n
pair a realistic high-precision charge-dependent (CD) Bonn poten-
tial [26] is used. (ii) A rank-one separable potential can support at 
most one bound state, thus, it misses deeply-bound core-neutron 
states. These states are occupied by internal neutrons in the core 
(not treated explicitly) and therefore are Pauli-forbidden and must 
be projected out. In this way the identity of external neutrons 
and those within the core is approximately taken into account. 
A proper treatment of Pauli-forbidden states was found to be im-
portant in scattering processes, see e.g. Ref. [27] for α–deuteron 
collisions. Using a n–18C potential supporting the 2s state with the 
0.58 MeV experimental value [18] of the 19C binding energy and 
projecting out the deep 1s state will enable to study the impor-
tance of the Pauli-forbidden state for the n + 19C scattering and 
its impact on the Efimov physics. (iii) Depending on the chosen 
two-particle potentials, an additional three-body force (3BF) may 
be needed to fix the 20C ground-state binding energy that must be 
included also in the n + 19C scattering calculations.

Thus, for the desired study of the n + 19C scattering an accurate 
theoretical description of three-particle scattering process includ-
ing general form of potentials and 3BF is needed; the separable 
quasi-particle formulation of Refs. [19–22] is not applicable. In the 
present work the description is obtained by a combination and ex-
tension of momentum-space techniques from Refs. [27,28]. Both 
are based on exact Faddeev three-body theory [29] in the integral 
form for transition operators as proposed by Alt, Grassberger, and 
Sandhas (AGS) [30], but either neglecting the 3BF [27] or limited 
to the three-nucleon system [28].

The employed potentials are described in Sec. 2 and the three-
body scattering equations with 3BF in Sec. 3. Results are presented 
in Sec. 4, and a summary is given in Sec. 5.

2. Potentials

The system of two neutrons and 18C core is considered as a 
three-body problem. Particle masses mn = 1.00069 mN and mA =
18 mN are given in units of the average nucleon mass mN =
938.919 MeV. The dynamics of the system is determined by two-
particle potentials vnn and vnA acting within the nn pair and two 
nA pairs, and, eventually, by an additional 3BF. Unless explicitly 
stated otherwise, vnn is taken to be the high-precision CD Bonn 
potential [26]; it is allowed to act in the s, p and d waves thereby 
ensuring a perfect convergence of the nn partial-wave expansion. 
Given the uncertainty in the vnA , a number of models will be used. 
A very common choice is the Woods–Saxon potential, in the coor-
dinate space defined as

v̄nA(r) = − V c[1 + exp((r − R v)/av)]−1. (1)

In the present work this kind of potentials is numerically trans-
formed into the momentum-space representation and then used 
in two- and three-particle equations. The potentials parameters 
are the strength V c , radius R v = rv A1/3, and diffuseness av with 
standard values being around rv = 1.2 fm and av = 0.6 fm; this 
parameter set is among the considered models. Two further mod-
els are taken as rv = 0.8 fm and rv = 0.332 fm keeping the ratio 
av/rv = 1/2. In all three cases the strength V c is adjusted such 
that the excited s-wave state 2s has the experimental 19C bind-
ing energy value ε2s = Sn = 0.58 MeV. The ground state is deeply 
bound with the energy ε1s and the wave function |φ1s〉 depending 
Table 1
Parameters of the employed nA force models DPa, DPb, DPc and DPp with 
projected-out deeply-bound Pauli-forbidden states and 3BF. In the last line the pa-
rameters of the shallow WS potential are given.

R v (fm) V c (MeV) � (fm−1) Wc (fm6 MeV) ε1s (MeV)

DPa 3.145 44.569 1.0 312.40 25.52
DPb 2.097 95.995 1.5 43.34 53.98
DPc 0.870 530.745 0.00 292.00
DPp 3.145 44.569 1.0 287.50 25.52

WS 3.119 8.317 0.00 0.58

on the chosen rv , but it is Pauli-forbidden and therefore must be 
projected out. This is achieved [31,32,27] by taking the neutron-
core s-wave potential as

vs
nA = v̄nA + |φ1s〉�〈φ1s| (2)

where formally � → ∞ but in practice � must be large enough 
such that the results for the three-body bound state(s) and scatter-
ing in the considered energy regime become independent of it; in 
the present work � = 50 GeV was proven to be sufficiently large. 
Simultaneously this ensures also the absence of deeply-bound 
three-body states. The potential models projecting out deeply-
bound Pauli-forbidden (DP) states will be denoted as DPa, DPb, 
and DPc; their parameters are collected in Table 1. The predictions 
for the nA scattering length anA and the effective range rnA are 
presented as well. As the potentials of Refs. [19–22], they are re-
stricted to act in the s-wave only. The manifestation of the Efimov 
physics is governed by resonant s-wave interactions but in realis-
tic systems also higher partial waves contribute. To estimate their 
effect, one more model, labeled DPp, is introduced that uses v̄nA

parameters from DPa but is allowed to act in p-waves as well. It 
turns out that v̄nA supports a deeply-bound 1p state |φ1p〉 for 19C
with ε1p = 11.54 MeV that is Pauli-forbidden as well and must be 
projected out in the same way, i.e.,

v p
nA = v̄nA + |φ1p〉�〈φ1p|. (3)

Furthermore, as in Refs. [21,22] the energy of the three-body 
bound state, i.e., the two-neutron separation energy of 20C, is fixed 
at its experimental value of S2n = 3.5 MeV. Except for the DPc 
model whose range R v was adjusted to reproduce S2n , in general 
case the pairwise nn and nA interactions are insufficient for S2n

and an additional 3BF is needed. In fact, when the 3BF is not in-
cluded, S2n = 2.083, 2.404, and 2.126 MeV for DPa, DPb, and DPp, 
respectively. Being unable to derive the 3BF from a microscopic 
many-nucleon theory, usually a phenomenological form of the 3BF 
is assumed, depending either on the hyperradius [32] or hypermo-
mentum [33,34]. The latter choice is obviously more convenient 
in the momentum-space framework and therefore is used in the 
present calculations. The three-body bound-state Faddeev equa-
tions, their solution technique, and the form of the 3BF is taken 
over from Ref. [34]. The latter is

〈pαqα |W |p′
αq′

α〉 = −(4π)−2Wc g(K2)g(K′2) (4)

with the hypermomentum K2 = mN(p2
α/μα + q2

α/Mα) expressed 
in terms of Jacobi momenta pα for the pair and qα for the spec-
tator and the associated reduced masses μα and Mα . Note that 
K2/2mN is the internal motion kinetic energy, thus, the 3BF has 
the same form in any Jacobi configuration labeled by the specta-
tor particle α in the odd-man-out notation (see next section for 
more details). The form factor g(K2) = exp (−K2/2�2) is chosen 
as a Gaussian. The cutoff parameter � is related to the interac-
tion range R w roughly as �R w ∼ √

2; for each two-body model 
R w/R v ∼ √

2/(�R v) < 1/2 ensuring that the 3BF is of shorter 
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Table 2
Predictions of the employed force models for the n–18C scattering length anA and 
effective range rnA , ANC of the 19C nucleus, and the internal kinetic energy expec-
tation value K̄3b of the 20C nucleus with the binding energy of S2n = 3.5 MeV.

anA (fm) rnA (fm) ANC (fm−1/2) K̄3b (MeV)

DPa 9.23 4.32 0.948 32.83
DPb 8.22 3.19 0.802 47.00
DPc 7.01 1.54 0.657 86.82
DPp 9.23 4.32 0.948 33.12

WS 8.12 3.04 0.792 9.87
Y 8.67 3.66 0.871 10.64
YY 8.68 3.67 0.872 11.14

range than vnA . The strength Wc is adjusted to reproduce the de-
sired three-body binding energy. These parameters are collected in 
Table 1 as well.

To isolate the effect of deeply-bound Pauli-forbidden states, sev-
eral models without those states are used, i.e., they support only 
one 19C bound state 1s with the binding energy ε1s = 0.58 MeV. 
The model WS uses a shallow Woods–Saxon potential (1) with 
rv = 1.19 fm, while the model labeled Y is a rank-one separa-
ble potential with Yamaguchi form factor as in Ref. [22] with the 
momentum-range parameter βnc = 0.6167 fm−1. Finally, to get the 
insight on the importance of a realistic nn interaction, instead of 
the CD Bonn the rank-one separable nn potential with Yamaguchi 
form factor from Ref. [22] is used; its combination with the nA po-
tential of the same type as Y but with βnc = 0.6131 fm−1 will be 
labeled YY in the following. The above choices of the range param-
eter values for WS, Y, and YY models ensure the desired binding 
energy of 20C without the 3BF. The WS, Y, and YY potentials will 
be referred in the following as shallow, in contrast to the deep ones 
DPa, DPb, DPc, and DPp.

To get an insight into the correlations between the interaction 
models and physical properties of 19C and 20C, in Table 2 the pre-
dictions for the n–18C scattering length anA and effective range rnA , 
the asymptotic normalization coefficient (ANC) of the 19C bound 
state, and the 20C ground state internal kinetic energy expecta-
tion value K̄3b are collected. Within the group of deep models one 
may easily notice the well-known feature that a longer-range po-
tential leads to larger values of the ANC, effective range, and, to a 
lesser extent, scattering length. However, comparing DPa and WS 
that have almost the same R , one can conclude that deeply-bound 
Pauli-forbidden states cause larger anA , rnA , and ANC values, and 
significantly higher K̄3b . Within the group of DP models the kinetic 
energy expectation value depends also strongly on the range R , but 
in all cases it considerably exceeds the predictions of shallow po-
tentials. Thus, deep potentials strongly enhance high-momentum 
components in the 20C ground state.

3. Neutron–19C scattering equations including 3BF

The momentum-space formulation of the three-body scattering 
theory is convenient when the underlying potentials have nonlo-
cal terms such as those in the deep nA potentials projecting out 
Pauli-forbidden states. The present work is based on Faddeev equa-
tions for the multichannel transition operators Uβα in the version 
derived by Alt, Grassberger, and Sandhas (AGS) [30] but extended 
to include also the 3BF. Such extensions have been proposed in 
a number of works, e.g., [35,28], but their practical applications 
mostly were limited to the symmetrized version in the three-
nucleon system. The general form of three-body equations from 
Ref. [28] is taken for the present study of the n–19C scattering, i.e.,
Uβα = δ̄βαG−1
0 + uα +

3∑

γ =1

δ̄βγ Tγ G0Uγ α

+
3∑

γ =1

uγ G0(1 + Tγ G0)Uγ α,

(5)

with δ̄βα = 1 − δβα , the free resolvent G0 = (E + i0 − H0)
−1 at 

the available energy E , the free Hamiltonian for the internal mo-
tion H0, the two-body transition matrix

Tγ = vγ + vγ G0Tγ , (6)

and the 3BF arbitrarily decomposed into three components

W =
3∑

α=1

uα. (7)

The odd-man-out notation is used, i.e., the channel α corresponds 
to the configuration where the particle α is the spectator and 
the remaining two are the pair. The decomposition of the 3BF 
into three symmetric parts (7) is essential for the symmetriza-
tion of three-nucleon equations [28] but is not needed in the 
present work. Labeling the particles n, A, n as 1, 2, 3 and tak-
ing uα = δα2W , the system of the AGS equations (5) for the n–19C
scattering simplifies to

Uβ1 = δ̄β1G−1
0 +

3∑

γ =1

δ̄βγ Tγ G0Uγ 1 + W G0(1 + T2G0)U21 (8)

with β = 1, 2, 3. The above system of integral equations is solved 
in the momentum-space partial-wave representation employing 
three sets of base functions |pαqα(lα{[Lα(sβ sγ )Sα] jαsα}Sα) J M〉
with (α, β, γ ) being cyclic permutations of (1, 2, 3). Here pα and 
qα are magnitudes of Jacobi momenta for the corresponding pair 
and spectator, while Lα and lα are the associated orbital angular 
momenta, respectively. Together with the particle spins sα , sβ , sγ
they are coupled, through the intermediate subsystem spins Sα , jα
and Sα , to the total angular momentum J with the projection M . 
Only the basis α = 2 is antisymmetric with respect to the permu-
tation of the two neutrons; this is achieved by considering only 
even L2 + S2 states. However, the neutron identity is accounted for 
by taking the antisymmetrized elastic scattering amplitude

fν ′ν(k′,k) = − (2π)2M1[〈ν ′
1 (k′)|U11|ν

1(k)〉
− 〈ν ′

3 (k′)|U31|ν
1(k)〉].

(9)

Here |ν
α(k)〉 is the asymptotic state in the channel α; it is given 

by the product of the bound state wave function for the pair and 
the plane wave with the on-shell momentum k for the relative 
motion between the bound pair and spectator α satisfying E =
−Sn +k2/2M1; the spin quantum numbers are abbreviated by ν . In 
the normalization of Eq. (9) the n–19C elastic differential cross sec-
tion for the νk → ν ′k′ transition is simply dσ/d� = | fν ′ν(k′, k)|2.

4. Results

The Efimov physics manifests itself in the states dominated by 
the s-wave components Lα = lα = 0 for all α; this condition is sat-
isfied only for J� = 0+ where � = (−1)Lα+lα is the total parity. 
For the notational brevity suppressing the dependence on the on-
shell momentum k, the S-matrix and the amplitude in the 0+ state 
are parametrized as s = e2iδ and f = eiδ sin δ/k = (k cot δ − ik)−1, 
respectively. The phase shift δ is real below the inelastic threshold, 
i.e., at c.m. kinetic energies Ek = k2/2M1 ≤ 0.58 MeV, but be-
comes complex above this value due to the open breakup channel 
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Table 3
Parameters of the n–19C effective-range expansion for the employed interaction 
models together with rnA for n–18C.

a (fm) b (fm−1 MeV−1) c (fm−1 MeV−2) E0 (MeV) rnA (fm)

DPa −6.299 1.176 −0.2726 0.20626 4.32
DPb −6.103 1.078 −0.1538 0.26235 3.19
DPc −5.369 1.033 −0.0511 0.33770 1.54
DPp −6.310 1.176 −0.2744 0.20644 4.32

WS −9.419 0.8194 −0.0496 0.39663 3.04
Y −9.802 0.8520 −0.0838 0.34710 3.66
YY −9.653 0.8591 −0.0828 0.34413 3.67

Fig. 1. (Color online.) n–19C reduced effective-range functions (1 − Ek/E0)k cot δ in 
the J� = 0+ partial wave for the interaction models YY (double-dashed–dotted), 
Y (dotted), WS (double-dotted–dashed), DPa (solid), DPb (dashed–dotted), DPc 
(dashed), and DPp (bullets).

whose importance is parametrized by the inelasticity parameter 
η = |e2iδ| ≤ 1.

The presence of the virtual Efimov state leads to a modified 
effective range expansion [24,22] containing a pole, i.e.,

k cot δ ≈ −a−1 + bEk + cE2
k

1 − Ek/E0
, (10)

where a is the n–19C singlet scattering length and E0 is the po-
sition of the pole. The values for the parameters a, b, c, and E0
obtained fitting the n–19C phase shift results at Ek ≤ 0.58 MeV for 
all employed interaction models are collected in Table 3 while the 
corresponding reduced effective-range functions (1 − Ek/E0)k cot δ

are plotted in Fig. 1. It turns out that Eq. (10) yields a very good 
approximation – the quantities calculated directly and from the 
fitted parameters are indistinguishable in the plot. One notices 
immediately that (1 − Ek/E0)k cot δ predictions for the groups of 
the shallow (YY, Y, WS) and deep (DPa, DPb, DPc, DPp) potentials 
clearly separate. A closer inspection of the Table 3 reveals that this 
is mostly due to the differences in the n–19C scattering length a
and, to a lesser extent, in the parameter b. Within each group one 
can see qualitatively the same trend in correlations between the 
n–18C effective range rnA and n–19C parameters, i.e., |a|, b and |c|
increase with increasing rnA while E0 decreases. However, it turns 
out that the presence of deep Pauli-forbidden states is more deci-
sive for a and b than the correlation with rnA , while for c and E0
these two effects are of comparable importance. The parameters c
and E0 show a broad spread of values, especially in the group of 
deep potentials. However, if one disregards the DPc model as be-
ing of unrealistically short range, one can see again some trend, 
i.e., larger |c| and smaller E0 for deep potentials as compared to 
shallow ones. The parameters of DPa and DPp stay very close indi-
cating that the n–18C p-wave interaction is indeed irrelevant in the 
present context. The deviations between Y and YY for all parame-
Fig. 2. (Color online.) n–19C total elastic cross section σ0+ in the J� = 0+ partial 
wave as a function of the c.m. kinetic energy Ek for different interaction models. In 
addition, the J� = 1+ wave cross section σ1+ is shown for the DPp model as the 
upper triple-dotted–dashed curve, other curves are as in Fig. 1.

Fig. 3. (Color online.) n–19C inelasticity parameter η in the J� = 0+ partial wave as 
a function of the c.m. kinetic energy Ek for different interaction models. Curves are 
as in Fig. 1.

ters are insignificant as well, thus, the rank-one separable s-wave 
nn potential is able to capture relevant physics for the n–19C low-
energy J� = 0+ elastic scattering.

The differences in a and E0 are clearly reflected in the J� = 0+
total elastic cross section σ0+ for the n–19C scattering shown in 
Fig. 2: a determines σ0+ at Ek = 0 while Ek = E0 corresponds to 
the minimum of σ0+ . However, this minimum is only clearly seen 
when the initial state n and 19C spins are anti-parallel, such that 
the total channel spin S1 = 0 couples with l1 = 0 to J� = 0+ . If 
the initial state is not polarized, one has to take into account also 
the n+19C triplet state (S1 = 1, l1 = 0) J� = 1+ whose cross sec-
tion σ1+ is also shown in Fig. 2. In fact, σ1+ yields by far the most 
sizable contribution to the unpolarized low-energy cross section, 
given (neglecting l1 = 1 and higher waves) as the spin-weighted 
average σ = (σ0+ +3σ1+ )/4. Since the 1 S0(nn) configuration is not 
allowed in the J� = 1+ state, σ1+ is governed by the nA inter-
action. In fact, for all models with the nn CD Bonn potential the 
n–19C triplet scattering length a1+ ≈ anA + 0.02 fm is simply re-
lated to the n–18C scattering length.

The results in Fig. 2 extend above the breakup threshold; in that 
regime σ0+ depends on Ek only weakly, with the deep models (ex-
cept for DPc) providing higher cross section than the shallow ones, 
although the spread within each group is comparable to the differ-
ence between groups. The DPa–DPp and Y–YY similarities remain 
valid also over the broader regime.

However, the situation is quite different for the inelasticity pa-
rameter η studied in Fig. 3. It exhibits some DPa–DPp and Y–YY 
deviations but shows no trend for the differences between shallow 
and deep potentials, the spread for the latter being very broad. 
Looking back to the model properties in Table 2, one may no-
tice the correlations between the ANC (or anA , or rnA ) and η. 
To make it more evident, the inelasticity parameter at Ek = 1.14
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Fig. 4. (Color online.) n–19C inelasticity parameter η in the J� = 0+ partial wave 
at Ek = 1.14 (boxes) and 1.90 MeV (circles). The symbols from left to right corre-
spond to the interaction models DPc, WS, DPb, YY, Y, DPa, and DPp. The lines are 
for guiding the eye only.

Fig. 5. (Color online.) Dependence of the n–19C singlet scattering length a on the 
19C binding energy Sn for the evolved models Y (dotted), DPb (filled boxes) and 
DPc (dashed).

and 1.90 MeV for all force models is plotted in Fig. 4 against the 
corresponding ANC value. The dependence is roughly linear with 
deviations by YY and DPp models, that either have a different nn
force (YY) from all the others, or have an additional nA p-wave 
dynamics (DPp). This is not surprising since one can expect the 
n–19C breakup reaction to be peripheral at these low energies and 
dominated by the mechanism of the n–n knockout. In fact, even 
neglecting the 3BF for DPa, DPb and DPp models leads to changes 
of η that are significantly smaller than the spread of predictions 
in Fig. 3. Thus, the breakup and inelasticity parameter η is mostly 
governed by the properties of the 19C bound state and the nn force, 
i.e., by the two-body physics without clear evidence for the three-
body Efimov physics.

Finally I turn to the disagreement between Refs. [19,20,25] and 
[21–23] near the regime where the bound excited 20C Efimov state 
disappears. To reach that regime the strength of the nA poten-
tial V c is reduced without changes in other force parameters; this 
leads to the variations of 19C and 20C binding energies and n–19C
scattering observables. The appearance of the bound excited 20C
state, depending on the potential, takes place when Sn is reduced 
to 0.07–0.09 MeV and S2n to 1.4–1.9 MeV. This is different from 
the strategy of Ref. [22] where S2n was fixed at 3.5 MeV, but nev-
ertheless the present results support the conclusions of Refs. [21,
22] that the excited 20C state at the n+19C threshold corresponds 
to a pole in the n–19C scattering length, i.e., a → ±∞, with +(−)

for Sn below (above) the critical value. This behaviour is shown 
in Fig. 5 for selected potential models, but is characteristic for all 
of them. In contrast, the authors of Refs. [19,20,25] claim that the 
n–19C scattering length remains positive also for Sn above the crit-
ical value while the low-energy elastic n–19C cross section exhibits 
a resonance around Ek = 1.5 keV on top of a nearly constant back-
Fig. 6. (Color online.) n–19C total elastic cross section σ0+ in the J� = 0+ partial 
wave as a function of the c.m. kinetic energy Ek for the DPb model evolved to have 
the 19C binding energy Sn of 84.0 keV (dotted), 108.9 keV (dashed–dotted) and 
136.8 keV (solid). The 20C bound excited state exists below Sn = 71.66 keV.

ground. A thorough study of the n–19C scattering in this regime 
performed in the present work excludes such a behaviour: the 
cross section rapidly and monotonically decreases with increas-
ing energy without any signs of resonant peaks. As example the 
J� = 0+ elastic cross section calculated using the evolved DPb 
model is shown in Fig. 6.

5. Summary and conclusions

Low-energy neutron–19C scattering was studied in the three-
body 18C +n +n model. Realistic nn CD Bonn potential and a num-
ber of shallow and deep n–18C potentials of different range were 
used. All deep potentials support deeply-bound Pauli-forbidden 
states that were projected out thereby accounting for the identity 
of external neutrons and those within the 18C core in an approxi-
mate way, while shallow models ignore this aspect. For all models 
the potential parameters were adjusted to reproduce the experi-
mental binding of the 20C ground state; most of the deep mod-
els had to be supplemented by a 3BF to achieve this goal. Exact 
three-body Faddeev-type scattering theory in the AGS version for 
transition operators, extended to include also the 3BF, was imple-
mented in the momentum-space partial-wave framework yielding 
numerically accurate results for the n–19C scattering both below 
and above breakup threshold.

Given the weak binding of 19C and large nn scattering length, 
the 18C + n + n system in the J� = 0+ partial wave exhibits 
some features characteristic for Efimov physics. In particular, the 
presence of an excited 20C Efimov state as a virtual state leads 
to a pole in the J� = 0+ n–19C effective range expansion. The 
reduced effective range functions (1 − Ek/E0)k cot δ clearly sepa-
rate for shallow and deep models, indicating the importance of 
a proper treatment for deeply-bound Pauli-forbidden states. For 
some observables like the n–19C singlet scattering length the pres-
ence of deep Pauli-forbidden states appears to be more decisive 
than the correlation with the n–18C effective range. On the other 
hand, the observed differences between the groups of shallow and 
deep models are of comparable size as the finite range effects 
found in Ref. [22], and therefore do not invalidate the concept of 
the Efimov physics being independent of the short-range interac-
tion details. However, the present work shows that deeply-bound 
Pauli-forbidden states may lead to systematic shifts within the lim-
its of finite-range corrections. The effect is even more important 
for non-observable quantities like the expectation value of the 20C
internal kinetic energy.

For the elastic n–19C scattering in the J� = 0+ partial wave the 
signature of the Efimov physics, i.e., the presence of the cross sec-
tion minimum, was confirmed for both shallow and deep models. 
It was also shown that without the initial antiparallel n–19C polar-
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ization this minimum is, however, hidden to a large extent due to 
the dominating contribution of the J� = 1+ partial wave.

In the hypothetical situation of very weak 19C binding and 
near-threshold (bound or virtual) excited 20C state the standard 
Efimovian behaviour of the n–19C scattering length and cross sec-
tion was confirmed as well, clearly supporting Refs. [21–23] and 
excluding the possibility of near-threshold resonances predicted 
in Refs. [19,20,25]. As both groups have solved Faddeev equa-
tions with rank-one s-wave potentials, a possible explanation for 
this difference could be inaccurate numerical implementation in 
Refs. [19,20,25].

In contrast to the elastic n–19C scattering, the breakup reaction 
is dominated by two-body physics. The inelasticity parameter in 
the J� = 0+ partial wave is mostly correlated with the ANC of the 
19C bound state; this suggests a simple nn-knockout picture for the 
reaction mechanism.

Although the present work demonstrated the importance of 
the deeply-bound Pauli-forbidden states in the low-energy elas-
tic n–19C scattering, further changes can be expected given the 
low excitation energy of the 18C core [18]. This would lead to the 
d-wave admixture in the 19C ground state and possibly to d-wave 
excited states or resonances, thereby bringing d-wave corrections 
to the s-wave dominated Efimov physics of the 18C +n +n system. 
For example, significant d-wave effects have been found in the 
study of cold atom systems with van der Waals interactions [36].
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