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Chapter 1

Introduction

1.1 Background and Motivation

The two common mathematical frameworks for representing geometric
shapes are parametric and implicit equations. A parametric equation
provides a point on the shape through a specific set of parameters, while
an implicit equation establishes an algebraic condition to determine
whether a given point is located on the shape. In real-world applications,
the most commonly used geometric shapes include curves, surfaces,
and volumetric objects in Euclidean space R3. Three main disciplines
that enhance our understanding of design fundamentals are Computer-
Aided Geometric Design (CAGD), Computer-Aided Design (CAD),
and Computer-Aided Manufacturing (CAM). CAGD focuses on the
parametric and implicit representations of curvilinear shapes used
in CAD. CAD utilizes computers to facilitate the design process,
encompassing operations such as shape creation, editing, analysis, and
optimization. CAM employs CAD models for production processes,
which may involve material removal through machining or the addition
of materials through methods such as 3D printing. CAD/CAM is
essential in various industrial design fields, including automotive
and aerospace, allowing for rapid and precise production through
simulation.

In recent decades, CAGD has seen significant advancements, par-
ticularly in developing new methods to handle complex geometric
shapes. A widely used framework in CAGD for representing shapes is
NURBS [58], which stands for Non-Uniform Rational B-Spline. NURBS
employs specific polynomial basis functions applied to a discrete set
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of points to create a rational parametrization of the local area of the
shape. The collective joining of these local parametrizations to form
the intended shape is referred to as a spline. NURBS is powerful for
both shape creation and editing. In architecture, using NURBS directly
can be challenging and costly due to the complexity of the designs
needed to achieve the desired architectural aesthetics. Recent studies
[5, 39] have highlighted the potential applications of a particular class of
surfaces known as Dupin cyclides, which are the focus of this research, in
architecture. Dupin cyclides are surfaces recognized for their distinctive
and unique properties. They can be used to efficiently create transitional
surfaces between the most used surfaces, namely right circular cones,
cylinders, spheres, and planes.

1.2 The Object of Research

This section provides an overview of the definition and properties of
Dupin cyclides, which are essential for our current research.

Dupin cyclides are a surface class containing many circles discovered
by Charles Dupin [22] in 1822. A Dupin cyclide is defined as the
envelope of a variable sphere that continuously touches three fixed
spheres. Since there are 8 possible solutions for the variable sphere,
the definition requires clarification from a practical point of view. One
can use orientations on the spheres to achieve a unique solution. In
general, for a given set of three oriented spheres, a one-parameter family
of oriented spheres maintains oriented contact with these fixed spheres.
The envelope surface generated by this family of spheres is a Dupin
cyclide. Conversely, if we fix a set of three oriented spheres from this
family, we can form a different family of oriented spheres, each of which
maintains oriented contact with the spheres of the first family. Both
families of spheres envelope the same Dupin cyclide, see Figure 1.1.

The geometric properties of Dupin cyclides were first developed by
Maxwell [37] and Cayley [13], and further developed later by Chandru
et al. [15], Valk [52] and Ottens [41]. The derivation of equation of
cyclides and their planar sections based on the generating spheres was
studied by Darboux [18]. Dupin cyclides were generalized by Darboux
[19] and Casey [12] to what is actually known as Darboux cyclides.
However, the latter surfaces are different and lack the best geometric
properties of Dupin cyclides. Here are few properties of Dupin cyclides:

12



Figure 1.1: A Dupin cyclide as the envelope surface of a family of spheres
in two ways.

• The curvature lines are circles or straight lines.

• A Dupin cyclide is an inversion of a torus of revolution, a right
circular cone or cylinder. Hence, it can be smooth (or ring) as in
Figure 1.1, or has isolated singularities (horn or spindle cyclides)
as in Figure 1.2.

• Dupin cyclides are classified as canal surfaces in two ways. The
loci of the centers of the two families of generating spheres form
two conics situated on mutually orthogonal planes, with the focus
of one conic located on the other conic. These planes are planes of
symmetry of the Dupin cyclide.

• Dupin cyclides are algebraic surfaces of degree 4 or 3. Applying
inversion with a center on a quartic Dupin cyclide yields a
parabolic (cubic) Dupin cyclide.

• Dupin cyclides have biquadratic rational parametrizations along
their circular curvature lines.

• The offset of a Dupin cyclide at a fixed distance along normal
directions is again a Dupin cyclide.

By Forsyth [24], a quartic Dupin cyclide, in its Euclidean canonical
form, has the implicit equation(

x2 + y2 + z2 + β2 − δ2
)2 − 4(αx− γδ)2 − 4β2y2 = 0, (1.2.1)

where β2 = α2 − γ2, α, γ, δ ∈ R, and x, y, z here and on later equations
are referred to as the Euclidean coordinates. The parameters α, γ, δ
control the shape of the Dupin cyclide, see Figure 1.2. The standard
parametric equations along the circular curvature lines are given in

13



(a) 0 ⩽ α2 < γ2 < δ2 or
0 ⩽ γ2 < α2 < δ2.

(b) 0 ⩽ δ2 < α2 < γ2 or
0 ⩽ δ2 < γ2 < α2.

(c) 0 ⩽ α2 < γ2 = δ2 or
0 ⩽ γ2 < α2 = δ2.

(d) 0 ⩽ δ2 = α2 < γ2 or
0 ⩽ δ2 = γ2 < α2.

Figure 1.2: (a), (b) Spindle Dupin cyclides. (c), (d) Horn Dupin cyclides.

trigonometric form as

x(θ, ψ) =
δ(γ − α cos θ cosψ) + β2 cos θ

α− γ cos θ cosψ
,

y(θ, ψ) =
β sin θ(α− δ cosψ)

α− γ cos θ cosψ
,

z(θ, ψ) =
β sinψ(γ cos θ − δ)

α− γ cos θ cosψ
,

where 0 ⩽ θ, ψ ⩽ 2π. A biquadratic rational parametrization can be
obtained by applying the parameter changes s = tan(θ/2) and t =
tan(ψ/2). The two families of circles that are curvature lines on Dupin
cyclides are known as principal circles.

A parabolic Dupin cyclide has the Euclidean canonical equation

2x(x2 + y2 + z2)− (p+ q)x2 − py2 − qz2 +
pq

2
x = 0 (1.2.2)

with p, q ∈ R. This equation differs from the one given in Pratt [46,
p.151] by scaling of p, q with factor 2. The corresponding parametric

14



equations are given for s, t ∈ R by

x(s, t) =
1

2

ps2 + qt2

1 + s2 + t2
,

y(s, t) =
1

2

t(q + (q − p)s2)

1 + s2 + t2
,

z(s, t) =
1

2

s(p+ (p− q)t2)

1 + s2 + t2
.

1.3 Review of Related Work

This section provides a brief literature review on Dupin cyclides in
CAGD and architecture, establishing a foundation for our study. We
then identify gaps in the literature and underscore our contributions.

Dupin cyclides have been revived for their crucial applications in
CAGD. In 1983, Martin [35, 36] introduced the concept of blending
patchworks of surfaces bounded by curvature lines, which he referred
to as principal patches. Martin investigated the conditions under which
curvature lines form circles and studied Dupin cyclide principal patches
as modeling tools for surfaces with these specific curvature lines in
CAGD. In this thesis, principal patches will be Dupin cyclide principal
patches. A principal patch is a quadrilateral patch bounded by circular
arcs where two adjacent edges meet at right angles. Martin showed that
the corner points of a principal patch lie on a circle. He also discretized
principal patches using two methods: position-matching and frame-
matching. The position-matching condition guarantees the existence of
a closed loop of 4 circular arcs. The frame-matching condition ensures
that a given frame at a corner point should remain unchanged under
reflections across the edges. Martin showed that principal patches
possess biquadratic rational parametrizations along principal circles,
and also proved that Dupin cyclides are closed under offsets. These
features enhance the utility of Dupin cyclides in modeling applications
by easily creating parallel surfaces that retain the geometric properties
of the original cyclide. Offset operations are crucial in CAGD for
simplifying tasks such as surface thickening and tool path generation in
machining applications.

Since the work of Martin and his coauthors, many authors have
shown interest in NURBS and NURBS-like representations of Dupin
cyclides and Dupin cyclidic (DC) splines. A DC spline is a smooth
surface modeled from a patchwork of Dupin cyclides, blended along
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their principal circles or other curves. McLean [38] introduced a
method to construct a DC spline composed of principal patches by
controlling the tangent data on the unit sphere. This method is less
practical when handling multiple patches. Pratt [45, 46] presented a
rational Bézier representation of Dupin cyclide surface patches that
necessary gives rational offset representation. Pratt demonstrated
the ability of his method to create a smooth transition between two
cones/cylinders by one or two Dupin cyclides. Boehm [10] studied
the Bézier representation of Dupin cyclides based on Maxwell’s string
construction of Dupin cyclides. Then applied his method to blend
two or three cones with a common inscribed sphere by Dupin cyclides.
In the case of three cones, triangular patches on a sphere or a plane
were used to close the gaps in the construction. These triangular
patches are not suitable for applications due to their sharp corners.
This construction will be improved later on in this thesis by relaxing the
cyclide patches under certain subdivisions. A method to get NURBS
representation of Dupin cyclides was introduced by Zhou [58] using
a technique called blossoming. Further blending methods between
natural quadrics or canal surfaces by Dupin cyclides can be found in
[1, 2, 14, 20, 21, 23, 25, 34, 48, 49].

From the perspective of Laguerre geometry, which focuses on the
space of oriented spheres/planes and their oriented contacts, Pottmann
and Peternell [43] extended the theory of cyclides and introduced
triangular patches on parabolic cyclides as versatile blending elements
beyond the traditional principal patches. This approach leads to a certain
duality between parabolic Dupin cyclides and quadratic splines. The use
of quadratic splines allows the well-known Powell–Sabin subdivision
procedure [44], which brings a subdivision procedure on the cyclidic
spline construction. However, one cannot build a model surface with
different signs of Gaussian curvature with this approach. Another
limitation is that, in some cases, the smooth blending is achieved from
incorrect sides, resulting in a ridge along the blending curve. There is
a lack of theory in controlling this behavior, and we shall explore such
problems in this research. Note that the triangular patches on parabolic
cyclides are bounded by certain algebraic curves of degree 3. It was
proved a bit later, by Krasauskas and Mäurer[30], that Dupin cyclides
can be blended smoothly along algebraic curves so-called diagonal
curves of degree 3 or 4, and this is the only possible blending apart from
the basic smooth blending along principal circles. Diagonal curves can
degenerate into Villarceau circles, which are circles on Dupin cyclides
that differ from principal circles. There is a one parameter family of
Dupin cyclides satisfying a smooth blending along a diagonal curve.
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Recently, Zube and Krasauskas [31, 59] studied Dupin cyclides and
DC splines through the quaternionic Möbius geometry framework. They
derived a closed formula for principal patches through a representation
known as quaternionic Bézier (QB) parametrization. The formula
involves the four corner points of the patch and two tangent vectors
at one corner to define the parametrization. The diagonal curves of
degree 3 or 4 on Dupin cyclides discussed earlier are diagonals of the
QB parametrization of principal patches. The QB parametrization of the
family of Dupin cyclides that satisfy smooth blending along diagonal
curves was also introduced in [59]. As the QB formula given there is not
working in some cases, a generalization to a more practicable formula
shall be considered. The thesis will focus on the QB representation
approach because it incorporates all features of DC splines.

In architecture, Dupin cyclides are important because of their
visually appealing geometric properties. The standard approach
for modeling surfaces with Dupin cyclides in architecture involves
blending a collection of principal patches, known as cyclidic nets.
Generalized cyclidic nets were used in [39] as foundational elements
for shape modeling in architecture. Cyclidic nets and their volumetric
generalizations were studied by Bobenko and Huhnen [7] in the context
of discrete differential geometry. A cyclidic net has a circular mesh
support, which is a quad mesh with quadrilateral faces inscribed in a
circle. A mesh is a collection of vertices, edges, and faces that fit together
to form a polygonal structure. The circular mesh support and a specific
frame at a vertex determine the cyclidic net, as the frames at the other
vertices are derived by reflecting the given frame with respect to the
edges of the circular mesh support. An optimization-based method
on cyclidic nets was used in [5, 6] for shape modeling in architecture.
Cyclidic nets were extended in [29, 39] by allowing any even-sided
facets by filling them with virtually infinite rings composed of principal
patches. The current research shall address the hole-filling problem as
an extension of cyclidic nets to DC splines of arbitrary topology.

1.4 Research Problems and Objectives

Despite numerous theoretical results on Dupin cyclides, there remain
intriguing problems worth exploring, especially in relation to practical
applications. Dupin cyclides possess certain characteristics derived from
a broader category of cyclides known as Darboux cyclides. However,
Darboux cyclides are generally less advantageous for modeling applica-
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tions compared to Dupin cyclides. The first problem focuses on how to
recognize Dupin cyclides among Darboux cyclides.

As Dupin cyclides are already used in CAD, the full capacity of DC
splines in modeling applications is not fully explored. The standard
approach to DC splines uses cyclidic nets. This approach has some
limitations in designing surfaces with complex topology. Another
approach uses triangular patches on cubic Dupin cyclides. The latter
approach has the limitation that one cannot model surfaces with varying
signs of curvature. The second challenge is to generalize the two existing
methods to overcome the previous limitations.

To address these problems, this thesis will develop theoretical results
on Dupin cyclides through two approaches: implicit and parametric-
based methods. The following objectives will be pursued:

I1. Finding practicable conditions on their implicit equations to
recognize Dupin cyclides from Darboux cyclides.

I2. Classifying Dupin cyclides: the recognition results will help in
understanding the overall shape structure through its defining
equation.

I3. Computing Dupin cyclides that pass through a fixed circle. Here,
we shall describe the full set of Dupin cyclides that meet the
smooth blending requirement between Dupin cyclides along a
fixed circle.

P1. Efficient parametric representation: a compact formula for prin-
cipal patches and their generalization to volume objects called DC
cubes shall be investigated.

P2. Classification of DC cubes: this shall be helpful to avoid singular-
ities and to analyze the local behavior of DC splines.

P3. DC splines of arbitrary topology: we will use the theoretical results
to solve current problems in DC splines, including the problem on
how to fill multi-sided holes with Dupin cyclides.

The implicit and parametric approaches complement each other, and
their interdependence is illustrated in Figure 1.3.
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Figure 1.3: Interdependence between the objectives in this dissertation.
The arrows are weighted between 1 and 5 indicating varying levels of
dependence among the topics.

1.5 Research Methodology

In this research, we use existing tools from the literature to analyze and
study Dupin cyclides: inversions, Möbius transformations, quaternionic
representations, Laguerre geomery, Minskowski space. From the
implicit-based approach, we employ computational algebraic geometry
tools such as elimination theory, Gröbner bases, syzygies, polynomial
rings and ideals, and algebraic varieties [17]. The Computer Algebra
Systems Maple and Singular were used to support this research.

1.6 Scientific Novelty of the Results

The following contributions were made to this research:

c1. Algebraic conditions related to the free coefficients of the implicit
equation of Darboux cyclides have been derived to identify Dupin
cyclides. This analysis is conducted separately for the different
classes of Dupin cyclides: quartic, cubic, and even quadratic cases.
The established conditions can be used to study Dupin cyclides
and their CAD applications.
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c2. An invariant quantity (under conformal transformation), based
on the coefficients of the implicit equation, was introduced to the
canonical equations of Dupin cyclides. Under the recognition
conditions on Dupin cyclides, the invariant has been generalized
to any equation of Dupin cyclides and has been used to classify
these cyclides, including degenerate cases. Furthermore, these
conditions were also used to identify all Dupin cyclides that ensure
smooth blending along a fixed circle in space. The corresponding
invariant formulas for this more specific class of Dupin cyclides
were derived.

c3. The theory of Dupin cyclides based on a quaternionic Möbius geo-
metry approach has been developed. It includes closed formulas
for principal patches and their 3-dimensional generalization called
DC cubes. The singularities of DC cubes have been investigated,
and the Möbius classification of DC cubes through them was done.

c4. Through quaternionic Möbius geometry, a method to fill a multi-
sided hole has been introduced. This method employs a one-step
filling procedure for the hole and utilizes either a spherical or
planar patch to complete the construction. The effectiveness of
these methods has been demonstrated through several examples,
including the ability of Dupin cyclides patches to smoothly join
multiple cones.

1.7 Dissemination of the Research

The findings from this research were mostly published in the following
articles:

1. Menjanahary, J.M. and Vidunas, R., Dupin cyclides as a subspace
of Darboux cyclides. Mathematics, 12(10), p.1505, 2024.

2. Menjanahary, J.M. and Vidunas, R., Dupin cyclides passing
through a fixed circle. Mathematics, 12(15), p.2390, 2024.

3. Menjanahary, J.M., Hoxhaj, E. and Krasauskas, R., Classification
of Dupin cyclidic cubes by their singularities. Computer Aided
Geometric Design, 112, p.102362, 2024.

4. Menjanahary, J.M. and Krasauskas, R., Formula for Dupin cyclidic
cube and Miquel point. Lietuvos Matematikos Rinkinys, 65, pp.1-8,
2024.
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5. Hoxhaj, E., Menjanahary, J.M. and Krasauskas, R., Sections of
Dupin cyclides and their focal properties. Journal of Symbolic
Computation, 129, p.102402, 2025.

The results of this research were presented by the author at the
following conferences:

1. Lithuanian Mathematical Society, LMD 65-oji konferencija, Šiauliai,
Lithuania, 2024.

2. GRAPES: Final open conference and career fair, JKU Linz, Austria,
2024.

3. GRAPES: Industrial skills and advanced topics in Machine Learn-
ing, Barcelona, Spain, 2023.

4. GRAPES: Software & Industrial workshop II and ESR Days,
Athens, Greece, 2023.

5. SIAM Conference on Applied Algebraic Geometry, Eindhoven,
The Netherlands, 2023.

6. Conference on Geometry: Theory and Applications, Kefermarkt,
Austria, 2023.

7. 10th International Conference on Curves and Surfaces, Arcachon,
France, 2022.

8. GRAPES: Doctoral School II, Lugano, Switzerland, 2022.

9. GRAPES: Academic skills and advanced topics in CAD, Barcelona,
Spain, 2021.

10. GRAPES: Software & Industrial Workshop I, Sophia-Antipolis,
France, 2021.

11. Lithuanian Mathematical Society, LMD 62-oji konferencija, virtual
event, 2021.

1.8 Secondments

During this research period, two secondments of three months each were
undertaken at Johannes Kepler University (JKU) in Linz and at Mod-
uleWorks in Aachen. At JKU, the challenge of reconstructing Darboux
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cyclides from a single view in the plane was addressed, resulting in the
publication of the following article: Hoxhaj, E., Menjanahary, J.M. and
Schicho, J., Using algebraic geometry to reconstruct a Darboux cyclide
from a calibrated camera picture. Applicable Algebra in Engineering,
Communication and Computing, pp.1-17, 2023.

At ModuleWorks, the parametric representation of Dupin cyclides
based on quaternions was implemented in the CAD tool Rihnoceros
3D. A plugin based on the programming language C# was developed to
handle DC splines and is publicly available at https://github.com/
menjanahary/DupinQuaternionicBezier accessed on 28/01/2025.

1.9 Thesis Structure

This thesis explores Dupin cyclides and their applications in CAGD
and architecture. It starts with an introduction and motivation in
Chapter 1. This chapter also includes a literature review on Dupin
cyclides. Chapter 2 covers the derivation of algebraic condition that
differentiate Dupin cyclides from Darboux cyclides using implicit
equations. It also classifies all real cases of Dupin cyclides and examines
the blending of Dupin cyclides along a fixed circle. Chapter 3 delves into
quaternionic representations of Dupin cyclides and Dupin cyclidic cubes.
It presents quaternionic formulas for principal patches and analyzes
the classification of Dupin cyclidic orthogonal systems based on these
cubes. Finally, Chapter 4 introduces a new hole-filling construction
method. This method uses a ring of principal patches along with a
spherical or planar patch in the middle joined smoothly with the ring.
It demonstrates how to blend various cones with a common inscribed
sphere. It also addresses complex topologies such as the Boy’s surface.
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Chapter 2

Recognition of Dupin
Cyclides Among Darboux
Cyclides

Darboux cyclides are a wider class of surfaces that include Dupin
cyclides and quadratic surfaces. Their implicit equation has the form

a0
(
x2 + y2 + z2

)2
+ 2(b1x+ b2y + b3z)

(
x2 + y2 + z2

)
+ c1x

2 + c2y
2 + c3z

2 + 2d1yz + 2d2xz + 2d3xy

+ 2e1x+ 2e2y + 2e3z + f0 = 0. (2.0.1)

Here a0, b1, . . . , f0 are real coefficients. The contrast between Dupin and
Darboux cyclides is illustrated in Figure 2.1. Darboux cyclides generally
have six circles through each point on the surface [4, 51], while Dupin
cyclides have four circles: two principal circles and two Villarceau circles.
Darboux cyclides have promising applications in geometric design and
architecture. These surfaces are natural candidates for modeling surfaces
by blending them along circles. However, this task is still challenging
for more general Darboux cyclides [57].

Due to the relevance of Dupin cyclides in modeling applications,
it is desirable to distinguish Dupin cyclides among general Darboux
cyclides. The implied standard recognition procedures involve bringing
the implicit equation (2.0.1) to a known canonical form by Möbius
transformations [3, 57], or discerning that a geometric characterization
is satisfied [15, 30, 41]. To establish a more convenient recognition
procedure, we compute the set of algebraic equations on the coefficients
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(a) (b)

Figure 2.1: (a) A smooth Darboux cyclide covered by six families of
circles drawn in solid, dash, dot, dashdot, spacedot or longdash. There
are two examplar points with six circles through them near the donut
hole. (b) A smooth Dupin cyclide covered by four families of circles; the
solid circles are principal circles and the dashed circles are Villarceau
circles.

a0, b1, . . . , f0 characterizing Dupin cyclides among the form (2.0.1). Our
starting point is the canonical forms (1.2.1) and (1.2.2) of Dupin cyclides
under the Euclidean transformations. We broadly assume that α2, γ2,
δ2, αγδ ∈ R, thereby allowing cyclides without real points along other
degenerate cases. All degenerate cases are described further in Section
2.5.3. The Euclidean equivalence to these two forms replaces here the
classical definition of Dupin cyclides by Möbius equivalence in R3∪{∞}
to a torus, a cylinder or a cone [41]. We give a generic explicit Möbius
isomorphism between Dupin cyclides and tori in Section 2.5.1.

It is straightforward to normalize the coefficients b1, b2, b3 to zero
(if a0 ̸= 0) by Euclidean translations, but further normalization by
orthogonal or Möbius transformations is cumbersome. This chapter
presents the computed set of necessary and (generically) sufficient
algebraic conditions on a0, b1, . . . , f0 so that the equation (2.0.1) defines
a Dupin cyclide. The problem of recognizing Dupin cyclides from
an implicit equation is a complementary question to the constructive
classification of Dupin and Darboux cyclides by normal forms [57] or
pentaspherical projection from P4 [51]. We view the 14 coefficients
in (2.0.1) as the homogeneous coordinates (a0 : b1 : . . . : f0) in the
real projective space P13, which is identified as the space of Darboux
cyclides. The Dupin cyclides are represented by the projective variety
D0 in P13 defined by the found algebraic conditions. Some of the points
on this variety represent degenerations of cyclides to reducible, non-
reduced or quadratic surfaces. To organize the results, the quartic and
cubic cyclides cases are considered separately. The subvariety of D0
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representing quartic Dupin cyclides has a0 ̸= 0 in (2.0.1); it will be
denoted by D4. The subvariety of D0 representing cubic Dupin cyclides
(i.e., with a0 = 0 and b21 + b22 + b23 ̸= 0) will be denoted by D3. We are
interested only in the real points on those varieties so that the coefficients
in (2.0.1) are real.

To facilitate readability, the results statements are presented first,
followed by the proofs, which are quite extensive and involve methods
from computational algebraic geometry. Section 2.1 outlines the main
results of this chapter: the algebraic equations that characterize the
two main subvarieties, D4 and D3. These results are proved in
Section 2.2 for quartic cyclides and in Section 2.3 for cubic cyclides. The
characterization of the whole variety of Dupin cyclides D0 is considered
in Section 2.4. Additionally, Section 2.5 classifies the real surfaces defined
by the equations for Dupin cyclides. The efficiency of the recognition
results in practice is discussed in Section 2.7.

2.1 Main Results

To present the results in more compact form, these abbreviations are
used throughout the current chapter:

B0 = b21 + b22 + b23, (2.1.1)
C0 = c1 + c2 + c3, (2.1.2)

E0 = e21 + e22 + e23, (2.1.3)

W1 = c1c2 + c1c3 + c2c3 − d21 − d22 − d23, (2.1.4)

W2 = c1c2c3 + 2d1d2d3 − c1d
2
1 − c2d

2
2 − c3d

2
3, (2.1.5)

W3 = b21c1 + b22c2 + b23c3 + 2b2b3d1 + 2b1b3d2 + 2b1b2d3, (2.1.6)

W4 = c1e
2
1 + c2e

2
2 + c3e

2
3 + 2d1e2e3 + 2d2e1e3 + 2d3e1e2. (2.1.7)

These expressions are symmetric under the permutations of the variables
x, y, z, or equivalently, under the permutations of the indices 1, 2, 3. We
will use several non-symmetric expressions, starting from

K1 = (c3 − c2)e2e3 + d1(e
2
2 − e23) + (d2e2 − d3e3)e1. (2.1.8)

Let σ12, σ13, σ23 be the permutations of the coefficients in (2.0.1) which
permute the indices 1, 2 or 1, 3 or 2, 3, respectively. This allows us to
express variations of non-symmetric expressions straightforwardly. In
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particular,

σ12K1 = (c3 − c1)e1e3 + d2(e
2
1 − e23) + (d1e1 − d3e3)e2, (2.1.9)

σ13K1 = (c1 − c2)e1e2 + d3(e
2
2 − e21) + (d2e2 − d1e1)e3. (2.1.10)

Firstly, in order to simplify recognition of quartic Dupin cyclides
among Darboux cyclides, we first assume a0 = 1 in (2.0.1) without
loss of generality. Thereby the ambient space of Darboux cyclides is
identified with the affine space R13 rather than P13. Further, we can
easily apply the shift

(x, y, z) 7→
(
x− 1

2 b1, y −
1
2 b2, z −

1
2 b3
)

(2.1.11)

and eliminate the cubic term 2(b1x+ b2y + b3z)
(
x2 + y2 + z2

)
. Thus the

recognition problem simplifies to consideration of cyclides of the form(
x2 + y2 + z2

)2
+ c1x

2 + c2y
2 + c3z

2 + 2d1yz + 2d2xz + 2d3xy

+ 2e1x+ 2e2y + 2e3z + f0 = 0. (2.1.12)

One could further apply orthogonal or inversion transformations to
bring the quartic equation to an even simpler canonical form with d1 =
d2 = d3 = 0, but those transformations are cumbersome to calculate.
Recognition of Dupin cyclides in the form (2.1.12) is therefore a pivotal
practical problem. The ambient space of Darboux cyclides simplifies
accordingly to a 10-dimensional affine space R10 with the coordinates
c1, c2, . . . , f0. We denote by D∗

4 the variety of Dupin cyclides there.

The variety D4 is the orbit of D∗
4 under the easy translations (2.1.11).

The following theorem describes the equations for D∗
4. The equations

for D4 are obtained by a straightforward modification of the coefficients
in (2.1.12), as described in Section 2.4. Beside (2.1.8), we immediately
use these polynomials:

L1 =
(
W1 + 4f0 − (c2 + c3)

2 − d22 − d23
)
e1 (2.1.13)

+
(
C0d3 + c3d3 − d1d2

)
e2 +

(
C0d2 + c2d2 − d1d3

)
e3,

M1 = 2(c1e1 + d3e2 + d2e3)(W1 + 4f0) + e1(W2 − C0W1 − 4E0). (2.1.14)

Theorem 2.1.1. The hypersurface in R3 defined by Equation (2.1.12) is a
Dupin cyclide if and only if one of the following cases holds:

(a) e1 ̸= 0, σ12K1 = 0, σ13K1 = 0, L1 = 0, M1 = 0.
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(b) e2 ̸= 0, K1 = 0, σ13K1 = 0, σ12L1 = 0, σ12M1 = 0.

(c) e3 ̸= 0, K1 = 0, σ12K1 = 0, σ13L1 = 0, σ13M1 = 0.

(d) e1 = e2 = e3 = 0, W1 + 4f0 = 0, W2 − C0W1 = 0.

(e) e1 = e2 = e3 = 0, C0 ̸= 0,
(
4W1 + 12f0 − C2

0

)2 − 16f0C
2
0 = 0,

(4W1 + 12f0 − 3C2
0 )(W1 + 4f0)− 2C0(W2 − C0W1) = 0.

(f) e1 = e2 = e3 = 0, C0 = 0, W1 + 3f0 = 0, (W2 − C0W1)
2 − 4f30 = 0.

Example 2.1.2. A prototypical example of a Dupin cyclide is the torus
with the minor radius r and the major radius R. It is defined by the
equation(

x2 + y2 + z2 +R2 − r2
)2 − 4R2(x2 + y2) = 0. (2.1.15)

Our main theorem applies with e1 = e2 = e3 = 0 and

c1 = c2 = −2R2−2r2, c3 = 2R2−2r2, d1 = d2 = d3 = 0, f0 = (R2−r2)2,

Case (e) applies, as C0 = −2R2−6r2 < 0, and its last two equalities hold
with W1 = 4(R2 + r2)(3r2 −R2) and W2 = 8(R2 + r2)2(R2 − r2).

Remark 2.1.3. The cases of Theorem 2.1.1 define a stratification of the
variety D∗

4 into pieces that are complete intersections in R10, possibly of
variable dimension. This localization onto complete intersections is our
deliberate strategy of presenting a practical procedure of recognizing
Dupin cyclides. The aim is to check the minimal number of (rather
cumbersome) equations for each particular cyclide. The co-dimension
of D∗

4 in R10 turns out to be 4, hence this minimal number of equations
equals 4. Concretely, the parts (a)–(c) define 3 intersecting open
subvarieties of D∗

4 as complete intersections on the Zariski open subsets
e1 ̸= 0, e2 ̸= 0 and e3 ̸= 0 of R10. Only 4 equations are checked in these
cases, as the codimension equals 4. The cases (d)–(f) define subvarieties
of D∗

4 of smaller dimensions inside the closed subset e1 = e2 = e3 = 0
of R10. There we have two reduced components (d), (e) of dimension 5,
and the former is a complete intersection already. The latter component
is further stratified into the cases C0 ̸= 0 and C0 = 0, leading to the
concluding complete intersections (e), (f) of the codimension 5 or 6,
respectively.
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Secondly, we consider the recognition of cubic Dupin cyclides. The
general cubic Darboux cyclides have implicit equation of the form

2(b1x+ b2y + b3z)
(
x2 + y2 + z2

)
+ c1x

2 + c2y
2 + c3z

2 + 2d1yz + 2d2xz + 2d3xy

+ 2e1x+ 2e2y + 2e3z + f0 = 0. (2.1.16)

The ambient space of Darboux cyclides is therefore considered as the
real projective space P12, in which we describe D3. To formulate the
result for the cubic cyclides, we define the rational expression

E1 = − b1
B0

(
W3

B0
− c2 − c3

)2
+

2b21
B2

0

(b3c3d2 + b2c2d3)

− 4b1
B2

0

(b3d2 + b2d3)
2 +

2(b3d2 + b2d3)

B2
0

(b22c1 + b23c1 − 2b2b3d1)

− 2b2b3
B2

0

(c2 − c3)(b2d2 − b3d3) +
2d1
B0

(b2d2 + b3d3)

+
b1
B0

(
(c1 − c2)(c1 − c3)− d21 + d22 + d23

)
.

Theorem 2.1.4. The hypersurface in R3 defined by Equation (2.1.16) is a
Dupin cyclide if and only if

e1 =
1
4 E1, e2 =

1
4 σ12E1, e3 =

1
4 σ13E1, (2.1.17)

f0 =
W3

4B2
0

(
W3

B0
− C0

)2
+
W3W1

4B2
0

+
W2 − C0W1

4B0
. (2.1.18)

Remark 2.1.5. The co-dimension of D3 equals 4, and the dimension
equals 8 within the hyperplane P12 ⊂ P13. With B0 ̸= 0, the coefficients
b1, b2, . . . , c1, . . . , d3 to the cubic and quadratic parts can be chosen freely,
and then there are unique values for e1, e2, e3, f0 so that (2.1.16) defines a
Dupin cyclide. The analogous question for quartic cyclides is considered
in Remark 2.4.3.

2.2 Recognition of Quartic Dupin Cyclides

In this section we prove Theorem 2.1.1 for recognition of quartic
Dupin cyclides of the form (2.1.12). The proof refers to Gröbner basis
computations which were done using computer algebra packages Maple
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and Singular. But we also present constructive ways of obtaining the
presented equations from the initial ones. The initial equations are
derived from the well-known canonical form (1.2.1) of quartic Dupin
cyclides. We consider the variety D∗

4 as the orbit of this canonical form
under the orthogonal transformations O(3). Rather than introducing the
orthogonal transformations explicitly and eliminating their parameters,
we compare the invariants under O(3) for the general equation (2.1.12)
and the canonical equation. This effective comparison is done in Section
2.2.2. The coefficients of the canonical form are eliminated in Section
2.2.3. Finally, Section 2.2.4 finds the complete intersection cases of
Theorem 2.1.1 as expounded in Remark 2.1.3.

2.2.1 From the Canonical Form

We adopt the parametrized description of the quartic equation (1.2.1)
for quartic Dupin cyclides to the implicit form like (2.1.12).

Lemma 2.2.1. A quartic Dupin cyclide can be expressed, up to translations
and orthogonal transformations in R3, to the form(

x2 + y2 + z2
)2

+A1x
2 +A2y

2 +A3z
2 +Dx+ F = 0, (2.2.1)

with the relations

D2 = − (A2 +A3)(A1 −A2)(A1 −A3), (2.2.2)

4F = A2
2 +A2

3 +A2A3 −A1A2 −A1A3. (2.2.3)

Proof. The comparison of (1.2.1) and (2.2.1) gives these relations

A1 = −2(α2 + γ2 + δ2), A2 = 2(γ2 − α2 − δ2), A3 = 2(α2 − γ2 − δ2),

D = 8αγδ, F = (α2 − γ2 − δ2)2 − 4γ2δ2. (2.2.4)

We eliminate α, γ, δ, and obtain (2.2.2)–(2.2.3). Necessity of these
relations follows from the fact that there are no non-trivial O(3)-
symmetries of equation (2.2.1). □

The canonical form defines a variety of dimension 3 = 5− 2, as we have
5 coefficients in (2.2.1) and 2 relations between them. The O(3) action
adds 3 degrees of freedom, hence the dimension in R10 has to equal 6.
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Remark 2.2.2. An inverse map is defined by

α =

√
A3 −A1

2
, γ =

√
A2 −A1

2
, δ =

√
−A2 −A3

2
. (2.2.5)

Each of these values can be multiplied by −1, as long as D = 8αγδ.

Remark 2.2.3. The cases of Theorem 2.1.1 with e1 = e2 = e3 = 0 are in
the orbit of the canonical form (2.2.1) with D = 0. The splitting into
the cases (d) and (e)–(f) is consistent with the expression D = αγδ. The
canonical form for the case (d) has δ = 0 in (1.2.1), or A2+A3 = 0, D = 0,
F = 1

4A
2
2 in (2.2.1). The canonical form for the case (e) has either α = 0,

A1 = A3, F = 1
4A

2
2, or γ = 0, A1 = A2, F = 1

4A
2
3. The canonical form for

the case (f) has more particularly A1 = A3, A2 = −2A1 (or A3 = −2A1),
and F = A2

1.

2.2.2 Applying Orthogonal Transformations

The direct way to compute the O(3)-orbit of the canonical form (1.2.1)
is to apply an arbitrary orthogonal 3 × 3 matrix to the vector (x, y, z)
of the indeterminates. The coefficients would be then parametrized
by the 14 variables — the 5 coefficients in (2.2.1), and the 9 entries
of the 3 × 3 matrix — restrained by two equations (2.2.2)–(2.2.3) and
the 6 orthonormality conditions between the rows on the 3× 3 matrix.
The expected dimension of D∗

4 is thereby confirmed: 6 = 14 − 2 −
6. But elimination of the parametrizing variables appears to be too
cumbersome even using computer algebra systems such as Maple and
Singular.

Instead of working with the 9 variables of the orthogonal matrix, we
identify the O(3)-invariants for the equations (2.1.12) and (2.2.1). The
group O(3) acts on the quadratic and linear parts of these equations
disjointly, making identification of invariants and their relations easier.
The further elimination of A1, A2, A3, D, F is done in the next section.

Lemma 2.2.4. The hypersurfaces (2.2.1) and (2.1.12) are related by an
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orthogonal transformation on (x, y, z) if and only if these relations hold:

A1 +A2 +A3 = c1 + c2 + c3, (2.2.6)

A1A2 +A1A3 +A2A3 = c1c2 + c1c3 + c2c3 − d21 − d22 − d23, (2.2.7)

A1A2A3 = c1c2c3 + 2d1d2d3 − c1d
2
1 − c2d

2
2 − c3d

2
3, (2.2.8)

A1e1 = c1e1 + d3e2 + d2e3, (2.2.9)
A1e2 = d3e1 + c2e2 + d1e3, (2.2.10)
A1e3 = d2e1 + d1e2 + c3e3, (2.2.11)

D2 = 4E0, (2.2.12)
F = f0. (2.2.13)

Proof. An orthogonal transformation acts as follows:

• The highest degree term (x2 + y2 + z2)2 remains invariant.

• The quadratic forms c1x2 + c2y
2 + c3z

2 + 2d1yz + 2d2xz + 2d3xy
and A1x

2+A2y
2+A3z

2 are related by a conjugation between their
symmetric matrices

P =

 c1 d3 d2
d3 c2 d1
d2 d1 c3

 and Q =

 A1 0 0
0 A2 0
0 0 A3

 . (2.2.14)

As is well known, quadratic forms are transformed by the
corresponding matrix transformations P 7→MTPM . Orthogonal
matrices satisfy MT =M−1, hence O(3) conjugates the matrix P .
Accordingly, we can compare the characteristic polynomials and
obtain (2.2.6)–(2.2.8).

• The linear forms 2e1x+2e2y+2e3z andDx are related by the same
orthogonal transformation M acting on the corresponding vectors
(2e1, 2e2, 2e3) and (D, 0, 0). Their relation to the matrices in (2.2.14)
will be preserved, thus (e1, e2, e3) must be an eigenvector of the
first matrix with the eigenvalue A1. This gives the relations (2.2.9)–
(2.2.11). Besides, the Euclidean norms of the two vectors will be
equal, giving (2.2.12).

• The constant coefficients will be equal, giving (2.2.13).

□
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2.2.3 Eliminating Coefficients of the Canonical Form

Here we start using the abbreviations (2.1.1)–(2.1.7) and the algebraic
language of ideals. Let us denote the polynomial ring

R∗
4 = R[c1, c2, c3, d1, d2, d3, e1, e2, e3, f0].

The variety D∗
4 of Dupin cyclides is defined by the ideal I∗

4 ⊂ R∗
4

obtained by eliminating A1, A2, A3, D, F from the equations (2.2.2)–
(2.2.3) and (2.2.6)–(2.2.13). As an intermediate step, it is straightforward
to eliminate A2, A3, D, F and leave only A1 as an auxiliary variable.

Lemma 2.2.5. The hypersurface (2.1.12) is a Dupin cyclide if and only if there
exists A1 ∈ R such that these polynomials vanish:

G1 = − e1A1 + c1e1 + d3e2 + d2e3, (2.2.15)
G2 = − e2A1 + d3e1 + c2e2 + d1e3, (2.2.16)
G3 = − e3A1 + d2e1 + d1e2 + c3e3, (2.2.17)
H1 = 2 (W1 + 4f0)A1 +W2 − C0W1 − 4E0, (2.2.18)

H2 = (C2
0 + 4W1 + 12f0)A1 − C3

0 + 4C0f0 − 4E0, (2.2.19)

H3 = A2
1 − 2C0A1 + C2

0 −W1 − 4f0. (2.2.20)

Proof. The given polynomials generate the same ideal in R∗
4[A1] as the

ideal obtained after an elimination of A2, A3, D, F from equations (2.2.6–
2.2.13). This can be checked by computing and comparing reduced
Gröbner bases. □

Here is an explicit reversible transformation between the equations
of Lemmas 2.2.4 and 2.2.5. Equations (2.2.9)–(2.2.11) do not contain the
variables A2, A3, D, F we eliminate, so they are copied as G1 = G2 =
G3 = 0. The other equations are symmetric in A2, A3. Using (2.2.6),
(2.2.7), equation (2.2.8) becomes H∗

1 = 0 with

H∗
1 = A3

1 − C0A
2
1 +W1A1 −W2. (2.2.21)

This is the characteristic polynomial of the first matrix in (2.2.14), of
course. Elimination of A2, A3, D from (2.2.2)–(2.2.3) gives

4E0 = (A1 − C0)(W1 − 2C0A1 + 3A2
1).

We expand this equation to H∗
2 = 0, where

H∗
2 = 3A3

1 − 5C0A
2
1 +

(
2C2

0 +W1

)
A1 − C0W1 − 4E0. (2.2.22)
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Equation (2.2.3) with eliminatedA2, A3, F becomesH3 = 0. Considering
H∗

1 , H
∗
2 , H3 as polynomials in A1, we divide the two cubic H∗

1 , H
∗
2 by the

quadratic H3. The division remainders

Ĥ1 = H∗
1 − (A1 + C0)H3, (2.2.23)

Ĥ2 = H∗
2 − (3A1 + C0)H3,

are linear in A1. Indeed, Ĥ2 = H2 and

Ĥ1 = (C2
0 + 2W1 + 4f0)A1 − C0(C

2
0 −W1 − 4f0)−D0. (2.2.24)

We modify Ĥ1 to the somewhat simpler H1 = H2 − Ĥ1.

Elimination of A from the six equations (2.2.15)–(2.2.20) is not
complicated, as five of them are linear in A.

Proposition 2.2.6. The ideal I∗
4 specifying Dupin cyclides in (2.1.12) is

generated by the following 12 polynomials:

(a) K1, K2 = σ12K1, K3 = σ13K1; see (2.1.8)–(2.1.10);

(b) L1, L2 = σ12L1, L3 = σ13L1; see (2.1.13);

(c) M1, M2 = σ12M1, M3 = σ13M1; see (2.1.14);

(d) N1 =
(
4W1+12f0−3C2

0

)
(W1+4f0)−2C0(W2−C0W1−6E0)−4W4,

N2 = 4(W2 −C0W1 − 2E0)(W1 + 4f0) +
(
C2
0 − 4f0

)(
W2 +C0W1 +

8C0f0 − 4E0

)
,

N3 =
(
W2 + C0W1 + 8C0f0 − 4E0

)2 − 4(W1 + 4f0)
3.

Proof. The ideal I∗
4 is obtained by eliminating A1 from the polynomials

(2.2.15)–(2.2.19). Gröbner basis comparison shows that the ideal in R∗
4

generated by the listed 12 polynomials coincides with I∗
4 . □

The 12 polynomials of this proposition can be derived explicitly from
Lemma 2.2.5 as follows. Most straightforwardly,K1,K2,K3 are obtained
by eliminating A1 from the pairs of polynomials in (2.2.9)–(2.2.11). The
polynomial L1 turns up as follows:

L1 = − e1H3 + (c1 + 2c2 + 2c3 −A1)G1 − d3G2 − d2G3.
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The polynomials L2 = σ12L1, L3 = σ13L1 are obtained similarly.
Further, M1, M2, M3 are obtained by pairing H1 with G1, G2 or G3,
and eliminating A1. The polynomial N1 is obtained by the combination

N1 = − (C2
0 + 4W1 + 12f0)H3 +A1H2 − C0(H2 + 2H1)

− 4e1G1 − 4e2G2 − 4e3G3.

It is clear that N2 is the resultant of H1 and H2 with respect to A1. The
polynomial N3 is the resultant of H1 and H3 with respect to A1. Its
compact expression is obtained by translating A1 = Ã1 + C0 so that

H3 = Ã2
1 −W1 − 4f0,

H1 = 2(Ã1 + C0)(W1 + 4f0) +W2 − C0W1 − 4E0,

and by computing the resultant as the determinant of the Sylvester
matrix 1 0 −W1 − 4f0

2W1 + 8f0 W2+ C0W1+ 8C0f0 − 4E0 0
0 2W1 + 8f0 W2+ C0W1+ 8C0f0 − 4E0

 .

Compared with Proposition 2.2.6, our main Theorem 2.1.1 specifies
pieces of D∗

4 that are complete intersections in R10 and cover the whole
D∗

4. This is explained in Remark 2.1.3. We wrote Maple routines for
deciding whether a given implicit equation (2.0.1) defines a Dupin
cyclide using either Theorem 2.1.1 or Proposition 2.2.6. When we tried
to recognize a Dupin cyclide with 5 parameters, the routine that uses
Theorem 2.1.1 recognized correctly in a few minutes, while the other
routine took unreasonably longer.

2.2.4 Proof of Theorem 2.1.1

We find convenient complete intersection pieces of D∗
4 by investigating

the syzygies between the 12 generators of I∗
4 in Proposition 2.2.6.

The simplest and most frequent factors of found syzygies suggest
the localizations in R10 where D∗

4 requires fewer defining equations.
Localization at those factors shrinks the set of generators of I∗

4 . In
particular, we find that the localizations at e1 (or e2, or e3) give complete
intersections immediately, leading to the cases (a)–(c) of Theorem 2.1.1.
The subvariety e1 = e2 = e3 = 0 turns out to be reducible. One
component is a complete intersection already, giving the case (d). The
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other component is additionally stratified to complete intersections by
considering whether C0 = 0.

Here are some simplest syzygies between the 12 generators in
Proposition 2.2.6:

0 = e1K1 + e2K2 + e3K3,

e1L2 − e2L1 = d2K1 + d1K2 + (c1 + c2 + 2c3)K3,

e3L1 − e1L3 = d3K1 + d1K3 + (c1 + 2c2 + c3)K2,

e2L3 − e3L2 = d3K2 + d2K3 + (2c1 + c2 + c3)K1.

Assume that e1 ̸= 0. From the first 3 syzygies we see that K2 = 0,
K3 = 0, L1 = 0 imply K1 = 0, L2 = 0, L3 = 0. Similarly, we have the
syzygy

2e1M2 − 2e2M1 = (c2d2 − c3d2 − 2d1d3)K1

− (2c2d1 + 2c3d1 + d2d3)K2

− (2c23 + 2d21 + d22 − 8f0)K3

+ 2(d3e1 − c1e2 − c3e2 + d1e3)L1

+ (2c2e1 + 2c3e1 − 2d3e2 − d2e3)L2

− d2e2L3,

and the σ23-symmetric syzygy with 2e1M3−2e3M1. Therefore, if we use
M1 = 0, then we have M2 = 0, M3 = 0. There are similar syzygies that
express e1N1, e1N2 and e1N3 in terms of R∗

4-multiples of lower degree
generators as well. Therefore, we obtain the case (a). By symmetry
between e1, e2 and e3, specialization at e2 ̸= 0 gives us the case (b) and
specialization at e3 ̸= 0 gives us the case (c).

Let us consider now the degeneration e1 = e2 = e3 = 0. Let R̂∗
4

denote the polynomial ring R[c1, c2, c3, d1, d2, d3, f0], and let φ : R∗
4 →

R̂∗
4 denote the specialization map e1 = e2 = e3 = 0. Note that the

polynomials K1,K2,K3, L1, L2, L3,M1,M2,M3 vanish in R̂∗
4 and the

image ideal φ(I∗
4 ) is generated by φ(N1), φ(N2) and φ(N3). The product

Y0(W1 + 4f0) belongs to the ideal φ(I∗
4 ) since

Y0(W1 + 4f0) = (C2
0 + 4W1 + 12f0)φ(N1) + 2C0 φ(N2).

If Y0 ̸= 0, the ideal φ(I∗
4 ) ⊂ R̂∗

4[Y
−1
0 ] is generated by W1 + 4f0 and

W2 − C0W1. The option (d) then follows. Assume that W1 + 4f0 ̸= 0.
One can check that the ideal φ(I∗

4 ) in R̂∗
4[(W1 + 4f0)

−1] is generated by
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Y0, Y1, Y2, Y3, where

Y0 =
(
4W1 + 12f0 − C2

0

)2 − 16f0C
2
0 ,

Y1 = (4W1 + 12f0 − 3C2
0 )(W1 + 4f0)− 2C0(W2 − C0W1),

Y2 = (W2 − C0W1)
(
C2
0 − 4W1 − 4f0)− 8W2(W1 + 4f0),

Y3 = (C0W1 + 9W2)
2 − 4W 3

1 − 4W2(C
3
0 + 27W2).

Here are two syzygies between them:

−2C0Y2 = 3Y0(W1 + 4f0) + (C2
0 − 12W1 − 36f0)Y1,

−2C0Y3 = (W2 − C0W1 − 8W3)(Y0 − 3Y1)− (C2
0 − 3W1)Y2.

So the localization with C0 ̸= 0 gives a complete intersection generated
by Y0 and Y1, giving us the option (e). If C0 = 0, then we reduce Y0 to
3f0 +W1. After the elimination of f0 with

f0 =
1

3

(
c21 − c2c3 + d21 + d22 + d23

)
we obtain an ideal generated by one element. We recognize such element
compactly as (W2−C0W1)

2− 4f30 or (W2−C0W1)
2− 4(W1+4f0)

3, and
conclude the last option (f). It is left to track the case W1 + 4f0 = 0. We
have again the syzygy:

(W2 −C0W1)
2 = φ(N3) + 4

(
(W1 + 4f0)

2 + C0W3 − 2C2
0f0
)
(W1 + 4f0).

So we have the ideals inclusion (W1+4f0,W2−C0W1) ⊂ φ(I∗
4 )+ (W1+

4f0). This case is therefore subsumed by (d).

2.3 Recognition of Cubic Dupin Cyclides

Here we prove Theorem 2.1.4, which characterizes cubic Dupin cyclides
D3 in the space of cubic Darboux cyclides (2.0.1) with a0 = 0. We
compute the ideal defining D3 as the orbit of a canonical form (1.2.2) of
cubic Dupin cyclides under orthogonal transformations and translations.
The O(3)-orbit of (1.2.2) is computed in Section 2.3.1, following the same
strategy as in Section 2.2.2. Theorem 2.1.4 is proved in Section 2.3.2 after
applying general translations in R3.
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2.3.1 Applying Orthogonal Transformations

Applying an orthogonal transformation to our initial canonical form
(1.2.2) gives us an intermediate form

2(b1x+ b2y + b3z)
(
x2 + y2 + z2

)
+ ĉ1x

2 + ĉ2y
2 + ĉ3z

2 (2.3.1)

+2d̂1yz + 2d̂2xz + 2d̂3xy + 2ê1x+ 2ê2y + 2ê3z = 0.

of cubic Dupin cyclides. To define the set of generating relations between
the coefficients here, let us define the polynomials:

U = b1(ĉ1 − ĉ2 − ĉ3) + 2b2d̂3 + 2b3d̂2, (2.3.2)

V = ĉ 21 + ĉ 22 + ĉ 23 − 2ĉ1ĉ2 − 2ĉ1ĉ3 − 2ĉ2ĉ3 + 4d̂ 2
1 + 4d̂ 2

2 + 4d̂ 2
3 . (2.3.3)

Recall (2.1.1) that we denote B0 = b21 + b22 + b23 .

Lemma 2.3.1. The cyclide equation (2.3.1) can be obtained from (1.2.2) by
an orthogonal transformation on (x, y, z) if and only if these polynomial
expressions evaluate to 0:

B0−1, U, σ12U, σ13U, 16e1+V b1, 16e2+V b2, 16e3+V b3. (2.3.4)

Proof. As in the proof of Lemma 2.2.4, we consider the O(3) action in
each homogeneous part. Clearly, B0 = 1. The cubic and linear part are
proportional:

(ê1, ê2, ê3) =
pq

4
(b1, b2, b3). (2.3.5)

We obtain the following equations from comparison of the quadratic
parts and the eigenvector role of (b1, b2, b3):

ĉ1 + ĉ2 + ĉ3 = −2(p+ q), (2.3.6)

ĉ1ĉ2 + ĉ1ĉ3 + ĉ2ĉ3 − d̂ 2
1 − d̂ 2

2 − d̂ 2
3 = (p+ q)2 + pq, (2.3.7)

ĉ1ĉ2ĉ3 + 2d̂1d̂2d̂3 − ĉ1d̂
2
1 − ĉ2d̂

2
2 − ĉ3d̂

2
3 = −pq(p+ q), (2.3.8)

b1ĉ1 + b2d̂3 + b3d̂2 = −b1(p+ q), (2.3.9)

b1d̂3 + b2ĉ2 + b3d̂1 = −b2(p+ q), (2.3.10)

b1d̂2 + b2d̂1 + b3ĉ3 = −b3(p+ q). (2.3.11)

This system is similar to (2.2.6)–(2.2.11). Computation and comparison of
Gröbner bases with respect to the same ordering shows that elimination
of p, q gives the ideal generated by the polynomials (2.3.4). □
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Constructively, the equations U = 0, σ12U = 0, σ13U = 0 are obtained
by eliminating p+ q in (2.3.6) and (2.3.9)–(2.3.11). From (2.3.7) we obtain
4pq = −V . The equations for e1, e2, e3 then follow from (2.3.5). The
proportionality in (2.3.5) gives the simple equations b1ê2 = b2ê1, b1ê3 =
b3ê1, b2ê3 = b3ê2. A Gröbner basis with respect to a total degree ordering
shows a few more vanishing polynomials of degree 2: ĉ 21 − (ĉ2 − ĉ3)

2 −
4d̂ 2

1−16b1ê1, (ĉ1−ĉ2−ĉ3)d̂1−2d̂2d̂3+8b3ê2, (ĉ1−ĉ2−ĉ3)ê1+2d̂3ê2+2d̂2ê3,
and the σ12/σ13-variants.

2.3.2 Proof of Theorem 2.1.4

The general form (2.1.16) of cubic Darboux cyclides is obtained by
applying an arbitrary shift

(x, y, z) 7−→ (x+ t1, y + t2, z + t3) (2.3.12)

to the form (2.3.1), up to multiplication of (2.1.16) by a scalar. We
still assume B0 = 1 in the computations, and then homogenize the
expressions by inserting the powers of B0 to match the degrees of
monomials. The shift (2.3.12) leads to these identification relations
between the coefficients of (2.1.16) and (2.3.1):

c1 = ĉ1 + 6b1t1 + 2b2t2 + 2b3t3, (2.3.13)

d1 = d̂1 + 2b2t3 + 2b3t2, (2.3.14)

e1 = ê1 + b1(3t
2
1 + t22 + t23) + 2b2t1t2 + 2b3t1t3

+ ĉ1t1 + d̂3t2 + d̂2t3, (2.3.15)

f0 =2(b1t1 + b2t2 + b3t3)(t
2
1 + t22 + t23) + ĉ1t

2
1 + ĉ2t

2
2 + ĉ3t

2
3

+ 2d̂3t1t2 + 2d̂2t1t3 + 2d̂1t2t3 + 2ê1t1 + 2ê2t2 + 2ê3t3. (2.3.16)

The expressions for c2, c3, d2, d3, e2, e3 are obtained by the symmetries
σ12, σ13. Up to the homogenization, the space D3 is defined by the
ideal generated by these relations and the polynomials of Lemma 2.3.1.
Elimination of the coefficients ĉ1, . . . , d̂1, . . . , ê3 is straightforward. The
accordingly modified equations U = 0, σ12U = 0, σ13U = 0 are linear in
t1, t2, t3 with the discriminant B2

0 . We solve in the non-homogeneous
form (i.e., keeping B0 = 1):

t1 =
−b1c2 − b1c3 + b2d3 + b3d2 + b1W3

2
,

and the respective σ12, σ13 modifications for expressions for t2, t3. Now
we an express f0 using (2.3.16), and e1, e2, e3 using the last 3 equations
in (2.3.4).
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P13

P12(a0=0) D0 R13(a0=1)

D3 D4 R10

D∗
4

Figure 2.2: The inclusion diagram for the varieties of Dupin cyclides
embedded in the spaces of Darboux cyclides.

2.4 The Whole Space of Dupin Cyclides

It is useful to compute the projective closure of the variety D4 ⊂ R13 of
quartic Dupin cyclides. If this closure contains the variety D3 of cubic
Dupin cyclides as a component at a0 = 0, it is natural to define the whole
space D0 of Dupin cyclides as this Zariski closure of D4 in P13. In Section
2.4.1 we indeed conclude that D3 is contained in the closure. As it turns
out, the infinite limit a0 = 0 includes also reducible components with
b21 + b22 + b23 = 0. We discard the components with complex (rather than
all real) points (b1 : b2 : · · · : f0) ∈ P12 ⊂ P13, and describe the quadratic
limit surfaces in Remark 2.4.2. The geometric characteristics such as
the dimension, the degree and the Hilbert series of D0, D∗

4 and D3 are
presented in Section 2.4.2.

2.4.1 Cubic Cyclides as Limits of Quartic Cyclides

An alternative way to obtain the variety D3 of cubic Dupin cyclides is to
consider the projective limit a0 → 0 of the variety D4 of quartic cyclides.
The latter variety is the restriction a0 = 1 of the whole space D0 of
Dupin cyclides. This projective variety D0 is defined by homogenizing
the vanishing polynomials for D4 with a0. Taking a0 = 0 in D0 gives a
limiting variety that we identify with D3 after throwing out complex
components. The general picture of the introduced varieties of Dupin
cyclides and the ambient spaces is depicted in Figure 2.2.

The ideal in R[b1, b2, b3, c1, c2, c3, d1, d2, d3, e1, e2, e3, f0] of the variety
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D4 is obtained from our main results on D∗
4 by employing the normaliz-

ing shift (2.1.11). This shift transforms the general equation (2.0.1) for
Darboux cyclides to

(
x2 + y2 + z2

)2
+

(
c1−b21−

B0

2

)
x2+

(
c2−b22−

B0

2

)
y2+

(
c3−b23−

B0

2

)
z2

+ 2 (d1 − b2b3) yz + 2 (d2 − b1b3)xz + 2 (d3 − b1b2)xy

+ 2

(
e1 +

b1 (B0 − c1)− b2d3 − b3d2
2

)
x

+ 2

(
e2 +

b2 (B0 − c2)− b1d3 − b3d1
2

)
y (2.4.1)

+ 2

(
e3 +

b3 (B0 − c3)− b1d2 − b2d1
2

)
z

+ f0 −
3B2

0

16
+
W3

4
− b1e1 − b2e2 − b3e3 = 0.

Comparing the coefficients here with those in (2.1.12), we modify the
equations for the variety D∗

4 in Proposition 2.2.6 or Theorem 2.1.1, and
obtain the defining equations for the space D4.

Moving towards D3 in Figure 2.2, the homogenized ideal for D0 is
specified using the following standard result.

Proposition 2.4.1. Let I be an ideal of the polynomial ring k[x1, . . . , xn]
over a field k, and let {g1, . . . , gt} be a Gröbner basis for I with respect to a
graded monomial ordering in k[x1, . . . , xn]. Denote by fh ∈ k[x0, . . . , xn]
the homogenization of a polynomial f ∈ k[x1, . . . , xn] with respect to the
variable x0. Then {gh1 , . . . , ght } is a Gröbner basis for the homogenized ideal
Ih =

(
fh | f ∈ I

)
⊂ k[x0, . . . , xn].

Proof. This is Theorem 4 in [17, §8.4]. □

We used Singular computations with respect to the total degree
monomial ordering grevlex(b1, b2, b3, ..., f0) [17, pg. 52]. The computed
Gröbner basis for D0 has 530 elements; the computation took about
an hour on Singular. After the homogenization with a0 and setting
a0 = 0, we get a reducible variety, where some components (possibly
one) are restricted by B0 = 0. We ignore these components by
assuming B0 = 1 additionally. Then the Gröbner basis with respect
to grevlex(b1, b2, b3, ..., f0) has 321 elements. Elimination of e1, e2, e3, f0
leads to the expressions of Theorem 2.1.4 with B0 = 1, without any
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relation between the other coefficients of (2.1.16). This completes the
alternative way of obtaining the ideal for D3.

Remark 2.4.2. It is interesting to see what quadratic surfaces with
a0 = b1 = b2 = b3 = 0 in (2.0.1) are contained in the variety D0 as
Dupin cyclides. After the substitution a0 = b1 = b2 = b3 = 0 in the
Gröbner basis with 530 elements, we obtain a reducible variety with two
components of codimension 2 in P9 ⊂ P13 (over C). One component
is defined by vanishing of two polynomials: the discriminant of the
characteristic polynomial of the matrix P in (2.2.14), and the determinant
of this extended matrix:

P̂ =


c1 d3 d2 e1
d3 c2 d1 e2
d2 d1 c3 e3
e1 e2 e3 f0

 . (2.4.2)

The discriminant equals this sum of squares:

S2
0 +S

2
1 +(σ12)S

2
1 +(σ13S1)

2+15T 2
1 +15(σ12T1)

2+15(σ13T1)
2, (2.4.3)

where

S0 = (c3 − c2)d
2
1 + (c1 − c3)d

2
2 + (c2 − c1)d

2
3 + (c1 − c2)(c1 − c3)(c2 − c3),

S1 = d1(d
2
2 + d23 − 2d21) + (c2 + c3 − 2c1)d2d3 + 2(c2 − c1)(c3 − c1)d1,

T1 = d1(d
2
2 − d23) + (c2 − c3)d2d3.

The real points of this component are therefore defined by the ideal gen-
erated by the 7 cubic polynomials S0, S1, σ12S1, σ13S1, T1, σ12T1, σ13T1.
This ideal defines a variety D2 of co-dimension 2. This variety is
intersected with the degree four hypersurface det P̂ = 0 (which
prescribes a singularity on the quadratic surface).

The second component restricts only the coefficients c1, c2, c3, d1, d2, d3
and coincides with D2. Hence, it subsumes the real points of the first
component. The variety D2 specifies the quadratic part of (2.0.1) to be in
the O(3)-orbit of A1x

2 +A1y
2 +A2z

2. The projective dimension of this
orbit is 3 (rather than 4 = 1 + 3) because the rotations around the z-axis
preserve A1x

2 +A1y
2 +A2z

2. Based on the identification with D2, the
rotational quadratic surfaces (and the paraboloids like z2 + x = 0) can
be considered as Dupin cyclides.

Remark 2.4.3. We have seen from Theorem 2.1.4 that a cubic Dupin
cyclide is determined uniquely from the coefficients b1, b2, . . . , d3 to
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the cubic and quadratic monomials in (2.1.16). For quartic Dupin
cyclides (2.0.1) with a0 ̸= 0, the projection D0 → P9 to the coefficients
a0, b1, b2, . . . , d3 is a 6:1 map generically. It is sufficient to see this 6:1
correspondence for the canonical form (2.2.1). With fixed A1, A2, A3,
there are these 6 possibilities for the linear part: ±Dx+ F , ±(σ12D)y +
σ12F and ±(σ13D)z + σ13F , with D,F satisfying (2.2.2)–(2.2.3). It can
also be checked (by computing a Gröbner basis) that a monomial basis
for I∗

4 in the ring R(c1, c2, c3, d1, d2, d3)[e1, e2, e3, f0] has 6 elements.

2.4.2 Dimension, Degree, Hilbert Series

It is straightforward to compute the Hilbert series for the computed
ideals using Singular or Maple. The Hilbert series for the projective
variety D0 is the rational function H1(t)/(1− t)10 with

H1(t) = 1 + 4t+ 10t2 + 20t3 + 35t4 + 46t5 + 39t6 + 10t7 − 14t8 − 48t9

+ 25t10 + 56t11 − 105t12 + 84t13 − 37t14 + 9t15 − t16. (2.4.4)

The dimension of D0 is indeed 10−1 = 9, and the degree equalsH1(1) =
134. There are

(
8
3

)
− 46 = 10 linearly independent polynomials of the

minimal degree 5.

The Hilbert series for the affine variety D∗
4 is

(1 + t)(1 + t+ t2)(1 + 2t+ 4t2 + t3 − t4)

(1− t)6
. (2.4.5)

The dimension of D∗
4 is 6, and the degree equals 42.

The Hilbert series for projective variety D3 is

1 + 4t+ 10t2 + 20t3 + 35t4 − 25t5 − 9t6 + 10t7

(1− t)9
. (2.4.6)

The dimension of D3 is 9 − 1 = 8, and the degree equals 46. Recall
that D3 describes the component B0 ̸= 0 of the subvariety a0 = 0 of D0.
The homogeneous version of the Gröbner basis for D3 with respect to
grevlex(b1, b2, b3, ..., f0) has 261 elements. It has

(
8
3

)
+ 25 = 81 linearly

independent polynomials of the minimal degree 5.

The co-dimension of all considered spaces of Dupin cyclides inside
the corresponding projective spaces of Darboux cyclides equals 4.
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Remark 2.4.4. Beside the usual grading, the equations of our varieties
have a weighted degree that reflects their invariance under the scaling
(x, y, z) 7→ (λx, λy, λz) with λ ∈ R. The weights of the variables are the
following:

wd(bj) = 1, wd(cj) = wd(dj) = 2, wd(ej) = 3 for j ∈ {1, 2, 3},

and wd(a0) = 0, wd(f0) = 4. The symmetries σ12, σ13 do not change
the weighted degree. The 12 equations in Proposition 2.2.6 have these
weighted degrees:

wd(Kj) = 8, wd(Lj) = 7, wd(Mj) = 9 for j ∈ {1, 2, 3},

and wd(N1) = 8, wd(N2) = 10, wd(N3) = 12.

2.5 Classification of Real Cases of Dupin Cyclides

The torus equation (2.1.15) is defined over R also when r2 < 0 or R2 < 0.
Similarly, the canonical equation (1.2.1) is defined over R if α, β, γ ∈ R,
or if exactly two of these numbers are on the imaginary line

√
−1R ⊂ C.

Then we may obtain degenerations to surfaces with a few (if any) real
points.

Section 2.5.3 classifies all degenerations of Dupin cyclides. For that
purpose, Section 2.5.1 defines general Möbius isomorphisms between
Dupin cyclides and tori, and follows the cases when they are defined
over R. Section 2.5.2 defines a Möbius invariant J0 of Dupin cyclides.
This invariant and a few semi-algebraic conditions classify the Dupin
cyclides up to real Möbius transformations.

2.5.1 Möbius Isomorphisms to the Torus

Spherical inversions or Möbius transformations between Dupin cyclides
and a general torus have been constructed geometrically [41, Theorem
3.5] and computed [52, §2.3]. An explicit Möbius isomorphism that
maps a canonical Dupin cyclide (1.2.1) to the torus equation (2.1.15) is
given by

(x, y, z) 7→αδ + βε

γ
(1, 0, 0) +

2βε

(x− γ)2 + y2 + z2
(x− γ, y, z), (2.5.1)
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where β =
√
α2 − γ2, ε =

√
δ2 − γ2. This Möbius transformation is

defined over R if and only if γ ∈ R \ {0} and βε ∈ R. If γ = 0, the
canonical equation (1.2.1) coincides already with the torus equation
(2.1.15) with α = R, δ = r. With βε ∈ R, the minor and major radiuses
of the torus are given by

r =
γ2ε

αε+ βδ
, R =

γ2β

αε+ βδ
, (2.5.2)

We can further apply scaling by the factor

γ2

αε+ βδ
(2.5.3)

to the immediate torus equation if either all α, δ, β, ε ∈ R or all α, δ, β, ε ∈√
−1R. The resulting torus equation has r = ε, R = β. Otherwise, the

scaling can be adjusted by the factor
√
−1, and the radiuses become

r2 = γ2 − δ2, R2 = γ2 − α2.

On the other hand, the canonical equation (1.2.1) is symmetrical [45,
(1)-(2)] with respect to the simultaneous interchange y ↔ z, α↔ γ. This
symmetry implies a Möbius equivalence to the torus with the minor
radius

√
R2 − r2 (and the same major radius R) as well. Up to scaling,

this Möbius equivalence is symmetric to (2.5.1):

(x, y, z) 7→
γδ +

√
(γ2 − α2)(δ2 − α2)

α
(1, 0, 0)

+
2
√
(γ2 − α2)(δ2 − α2)

(x− α)2 + y2 + z2
(x− α, z, y), (2.5.4)

Both Möbius isomorphisms are defined over R if αγ ̸= 0 and δ2 is
between α2 and γ2 on the real line. This means that 0 < r/R < 1,
because (2.5.2) implies

r

R
=

√
δ2 − γ2

α2 − γ2
. (2.5.5)

A composition of the two Möbius isomorphisms relates two tori with
the minor radiuses r and

√
R2 − r2, when r < R. This transformation

is obtained explicitly by applying (2.5.4) with α = R, γ = 0, δ = r.
After additional scaling of (x, y, z) by r/R we obtain the Möbius
transformation

(x, y, z) 7→
(√

R2 − r2, 0, 0
)
+

2r
√
R2 − r2

(x− r)2 + y2 + z2
(x− r, z, y), (2.5.6)
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that brings torus (2.1.15) to the torus

(x2 + y2 + z2 + r2)2 − 4R2(x2 + y2) = 0. (2.5.7)

When r2 ⩾ R2, this Möbius duality is not defined over R. If 0 < R2 < r2,
then (2.1.15) defines a singular spindle torus [15, p. 288], and the surface
(2.5.7) has no real points. If 0 < R2 = r2, then (2.1.15) defines a singular
horn torus, while (2.5.7) defines a circle.

2.5.2 The Toroidic Invariant for r/R

Any torus (2.1.15) has two clear families of circles on it, namely on the
vertical planes ax + by = 0 or horizontal planes z = c. These circles
are the principal circles of the torus. Less known are two families of
Villarceau circles [53, 54] on the bitangent planes z = ax + by with
a2 + b2 = r2/(R2 − r2), on smooth tori with r < R. The angles θ, π

2 − θ
between principal and Villarceau circles depend only on the families
of the involved circles. The sine (or the complementary cosine) of θ
equals [54] to the quotient r/R. The duality (2.5.6) of tori with the minor
radiuses r and

√
R2 − r2 underscores the constancy of the angle pair

θ, π
2 − θ under the (conformal!) Möbius transformations. Krasauskas

noted to us that the numbers r2/R2 and 1− r2/R2 are equal to the two
possible cross-ratios within the quaternionic representation of Dupin
cyclides [59].

The symmetry between r/R and
√

1− r2/R2 leads to this invariant
under the Möbius transformations:

J0 =
r2

R2

(
1− r2

R2

)
. (2.5.8)

We define the invariant J0 for general Dupin cyclides by the Möbius
equivalence. The maximal value J0 = 1/4 gives the “most round"
cyclides (with R =

√
2 r) that optimize the Willmore energy [55]∫

S
(H2 −K)dS (2.5.9)

for the smooth real surfaces S with the torus topology. The integrand
H2 is the mean curvature H squared, K is the Gaussian curvature, and
dS is the infinitesimal area element. The Willmore energy is conformally
invariant, and it equals

π2R2

r
√
R2 − r2

=
π2√
J0

(2.5.10)
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for a smooth torus (2.1.15); see [56, pg 275]. The Willmore energy of
patches on Dupin cyclides will be explored in Section 3.6. The duality
breaks down for J0 ⩽ 0, as Möbius transformation (2.5.6) is then not
defined over R. The singular horn torus (with r = R) is paired to the
degeneration to a circle (r = 0), and the spindle tori (with r > R) are
paired with algebraic surfaces with no real points (r ∈

√
−1R).

We apply our results to compute the invariant J0 for all Dupin
cyclides. In the case of a canonical quartic cyclide (2.2.1), we choose
Möbius equivalence (2.5.1) with a torus, and obtain

r2

R2
=
δ2 − γ2

α2 − γ2
=

2A2 +A3 −A1

A2 −A3
(2.5.11)

due to (2.5.5) and (2.2.5). Then

J0 = −(δ2 − γ2)(δ2 − α2)

(α2 − γ2)2
(2.5.12)

=
(A1 − 2A2 −A3)(A2 + 2A3 −A1)

(A2 −A3)2
. (2.5.13)

To obtain expressions of J0 for the general quartic cyclide (2.1.12), we
first eliminate A2, A3 as in Lemma 2.2.5. The result is

J0 =
7A2

1 − 8C0A1 + 2C2
0 +W1

3A2
1 − 2C0A1 − C2

0 + 4W1
. (2.5.14)

After the elimination of A1, we generically obtain

J0 =
6C0(d2e1 + d1e2 − c1e3 − c2e3) + (C2

0 + 8W1 + 28f0)e3
4C0(d2e1 + d1e2 − c1e3 − c2e3) + (7W1 + 12f0)e3

(2.5.15)

=
(4f0 − C2

0 )(28f0 + C2
0 ) + 4(8f0 + C2

0 )W1 − 12C0(W2 − 2E0)

12f0(4f0 − C2
0 ) + (28f0 + C2

0 )W1 − 8C0(W2 − 2E0)
.

These expressions were obtained after heavy Gröbner basis computa-
tions with the new variable J0 (or rather, its numerator and denominator
separately) and the superfluous A1. They can be checked by reducing
(to 0) the numerator of the difference to (2.5.14) in the Gröbner basis in
R∗

4[A1] for Lemma 2.2.5.

To obtain an expression of J0 for the cubic cyclide (1.2.2), we apply
the procedure at the beginning of this section: transform the variables
according to the shift (2.1.11) and the form (2.0.1), homogenize with a0,
and set a0 = 0. Here is a relatively compact rational expression of the
lowest weighted degree obtained after heavy computations:

J0 = 3
B0(−2Y5 + c1c2 + c1c3 + c2c3) + Y6

B0(Y5 + 2c21 + 2c22 + 2c23 + c1c2 + c1c3 + c2c3) + 2Y6
, (2.5.16)
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with Y5 = d21 + d22 + d23 − 4b1e1 − 4b2e2 − 4b3e3, and

Y6 = 5b21d
2
1 + 5b22d

2
2 + 5b23d

2
3 + 10b1b2(c3d3 − d1d2) + 10b1b3(c2d2 − d1d3)

+ 10b2b3(c1d1 − d2d3)− 2C0(b1b2d3 + b1b3d2 + b2b3d1)

− b21(c
2
1 + 4c2c3)− b22(c

2
2 + 4c1c3)− b23(c

2
3 + 4c1c2).

The variables e1, e2, e3 could be eliminated in (2.5.16) using Lemma 2.1.4,
but the obtained rational expression of degree 6 (after using B0 = 1) is
much larger.

2.5.3 Classification of Dupin Cyclides

The cubic Dupin cyclides (1.2.2) always have real points and are easy to
classify, starting from [46, p. 151], [15, p. 288]:

• smooth cyclides when pq < 0;

• spindle cyclides when pq > 0, p ̸= q;

• horn cyclides when pq = 0, p ̸= q;

• reducible surface (a sphere and a tangent plane) when p = q ̸= 0;

• reducible surface (a plane and a point on it) when p = q = 0.

Degeneration to quadratic surfaces is explained in Remark 2.4.2.

The full classification of the real points defined by the quartic
canonical equation (1.2.1) depends on the order of 0, α2, γ2, δ2 on the
real line, as we demonstrate shortly. The classification is depicted in
Figure 2.3 (a). The border conditions α2 = 0, γ2 = 0, δ2 = 0 are depicted
by 3 intersecting circles (marked on the outer side by α2, γ2, δ2). Their
inside disks represent positive values of α2, γ2, δ2, respectively, while
the negative values are represented by the outer sides of the circles.
The conditions α2 = γ2, α2 = δ2, γ2 = δ2 are represented by the 3 lines
intersecting at the center. Their markings near the edge of the picture
(say, α2 and γ2) indicate which of the values (α2 or γ2) is larger on either
side of the line. Most triangular regions are marked by a sequence of
inequalities between 0, α2, γ2, δ2; these admissible regions represent the
cases when the canonical equation is defined over R. The 6 asymptotic
outside regions represent the cases when all three α2, γ2, δ2 are negative;
they are not admissible. The admissible regions, several edges, and
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vertices are labeled by abbreviations for various types of Dupin cyclides.
The labels are not repeated when the type does not change when passing
from a triangular region to its edge or vertex. These coincidences are
represented by the non-strict inequalities between 0 and α2, γ2, δ2. When
a distinct edge and its vertex have the same type, the type is indicated
near the vertex, and an arrow is added to the direction of that edge. The
values of J0 can be considered as constant along the radial directions
from the center Q, with the optimal J0 = 1/4 in the vertical directions,
J0 = −∞ on the horizontal line α2 = γ2, and J0 = 0 along the other two
drawn lines; see (2.5.12). The trivial case (α2, γ2, δ2) = (0, 0, 0) is not
represented in Figure 2.3(a), though it is represented by the origin point
in Figure 2.3(b).

This classification can be proved from the easier classification of torus
equations (2.1.15) in Figure 2.3 (b), and by considering which of the
two Möbius transformations (2.5.1) and (2.5.4) are defined over R. The
case r2 < min(0, R2) of “tori" with no real points can be seen from this
alternative form of (2.1.15):

(x2 + y2 + z2 −R2 + r2)2 − 4r2(x2 + y2) + 4(R2 − r2)z2 = 0. (2.5.17)

The cases of tori lie on the circles γ2 = 0 and α2 = 0 of Figure 2.3 (a).
The Möbius equivalence (2.5.1) is defined over R if γ2 > 0 and γ2 is
either larger or smaller than both α2, δ2. It preserves J0 and maps the
applicable triangular regions onto the segments of the circle γ2 = 0
representing tori. Adjacency of the corresponding triangular regions
and segments cannot hold for the two lower-right regions SM, SP with
α2, δ2 ∈ [0, γ2); these are the cases when the scaling by (2.5.3) has to
be adjusted by

√
−1. Similarly, (2.5.4) is defined over R if α2 > 0 and

α2 is either larger or smaller than both γ2, δ2. This covers all cases
except the line α2 = γ2 and the two leftmost triangular regions. When
α2 = γ2, canonical equation (1.2.1) factorizes and defines (generically)
two spheres with the centers at (x, y, z) = (±α, 0, 0) and touching at
the point (δ, 0, 0). If then α2 < 0, only the touching point is real; the
other few deeper degenerations are straightforward. For the leftmost
triangular region with γ2 < α2 ⩽ 0, the canonical equation can be
rearranged to(
x2+y2+z2−α2+γ2−δ2

)2
+4(−γ2+α2)z2+(−4)(αδ−γx)2 = 0; (2.5.18)

see [24, pg. 325]. All three terms are positive for that region, and the
Dupin surface then consists of two points on the line z = 0, x = αδ/γ.
Similarly, two points are obtained for the other leftmost region α2 <
γ2 ⩽ 0.
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(c) SM: Smooth Dupin cyclide

SP: Spindle Dupin cyclide

H: Horn Dupin cyclide

R: Two spheres touching
each other

Q: Sphere and one point on
it

D: Double sphere

C: Circle

P: One real point

PP: Two real points

NP: No real points

Figure 2.3: (a) Classification of real points on quartic cyclides in the
canonical form (1.2.1). (b) Classification of real points on tori (2.1.15). (c)
Legend.
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The SM-regions for smooth Dupin cyclides separate pairs of SP-
regions for spindle cyclides. Accordingly, there are two types of spindle
cyclides in R3; see Figure 1.2(a),(b) and [41, Fig. 3], [52, Fig. 2.23]. Spindle
cyclides have two real singular points which either (a) delimit a lemon-
shaped volume inside a self-intersecting apple-shaped body [47], or (b)
delimit two horn-shaped volumes. These two types of spindle cyclides
are related by a spherical inversion centered inside the apple or horn
parts. There are two types of horn cyclides as well; see Figure 1.2(c),(d).
They are limiting cases of the two types of spindles cyclides, with one
real singular point.

The conditions on α2, γ2, δ2 can be directly translated to the condi-
tions on the coefficients A1, A2, A3 in (2.2.1) using (2.2.5). The quadratic
covering (2.2.2) of the (A1, A2, A3)-plane confirms the topology of 4
admissible regions connected at 6 corners. The translated classification
is as follows:

• Smooth Dupin cyclides, whenA1 ⩽ min(A2, A3) < A1−A2−A3 <
max(A2, A3). Then J0 ∈ (0, 14 ] and A2 ̸= A3, A2 +A3 < 0.

• Spindle cyclides, when either (a)A1 ⩽ min(A2, A3) < max(A2, A3) <
A1 − A2 − A3. or (b) A1 − min(A2, A3) < A2 + A3 ⩽ 0, A2 ̸= A3

with reference to Figure 1.2. In either case, J0 < 0, A2 ̸= A3.

• Horn cyclides, when either (c) A1 − A2 − A3 = max(A2, A3) < 0,
A2 ̸= A3, or (d) A1 −min(A2, A3) = A2 +A3 < 0, A2 ̸= A3. In
either case, J0 = 0.

• Reducible surface of two touching spheres, when 3A2 < A1 <
A2 = A3 (then A2 = A3 < 0) or A1 < A2 = A3 ⩽ 0. In either case,
J0 = −∞.

• Reducible surface of a sphere and a point on it, when A2 = A3 =
1
3A1 < 0. Then J0 is undefined.

• Double sphere, when A1 = A2 = A3 < 0. Then J0 = −∞.

• A circle, when A2 + A3 = 0, A1 = min(A2, A3) < 0. Then J0 = 0,
A1 < 0.

• Two real points, when either min(A2, A3) < A1 −A2 −A3 ⩽ A1 ⩽
max(A2, A3) (then J0 > 0,A2 ̸= A3,A2+A3 ⩾ 0) or max(A2, A3) ⩽
A1 ⩽ A1 −A2 −A3, A2 ̸= A3 (then J0 < 0, A2 +A3 ⩽ 0).

• One real point, when either A1 − A2 − A3 = min(A2, A3) ⩽ 0,
A2 +A3 > 0 (then J0 = 0), or 0 ⩽ A2 = A3 < A1 (then J0 = −∞),
or A1 = A2 = A3 = 0.
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• No real points, when A1 − A2 − A3 < min(A2, A3) ⩽ A1 ⩽
max(A2, A3). Then J0 < 0, A2 +A3 > 0.

Further translation in terms of the coefficients in (2.1.12) is cumbersome.
Some basic distinctions are determined by the J0-invariant, represented
by the directions from the central point Q in Figure 2.3(a). The circular
boundaries α2 = 0, γ2 = 0, δ2 = 0 do not represent semi-algebraic
conditions (except at the vertices C, D), as they separate the cases of
whether the surface equations (1.2.1) and eventually (2.1.12), (2.0.1) are
defined over R or not. To distinguish the 6 regions around Q and the
6 outer regions, it is tempting to invent a polynomial that vanishes at
the vertices C, D and has different signs for the inner and outer regions.
But the polynomials in α2, γ2, δ2 (or the other coefficients) that vanish
at C, D also vanish at the respectively opposite meeting corners or the
PP and NP regions. The practical suggestion to distinguish the cases
is to compute A1 using one of the equations (linear in A1) of Lemma
2.2.5, and then compute A2, A3 as the roots of the quadratic polynomial
X2 − (A2 +A3)X +A2A3. After eliminating A2, A3, we get the equation

X2 + (A1 − C0)X +W1 − C0A1 +A2
1 = 0 (2.5.19)

with the roots X = A2, X = A3. If preferable, one can reduce the degree
in A1 in the last equation using (2.2.20).

2.6 Dupin Cyclides Passing Through a Fixed Circle

The natural CAGD application of the recognition results is the invest-
igation of the smooth blending of Dupin cyclides along a fixed circle.
Our approach in this section is to match implicit equations for the two
Dupin cyclides we blend. To solve the problem algebraically, we first
consider the general linear family of Darboux cyclides passing through
a fixed circle. Then we use the earlier results to characterize the smaller
family of Dupin cyclides in terms of the algebraic relations for the free
coefficients of the general family of Darboux cyclides. This is considered
together with the formulation of the main results in Section 2.6.1. We
prove the main results separately for quartic and cubic equations in
Sections 2.6.2 and 2.6.3. The smooth blending between two implicit
equations of Dupin cyclides along the fixed circle is investigated in
Section 2.6.4. In Section 2.6.5, we express the Möbius invariant J0 of
Dupin cyclides from Section 2.5.1 to our particular families of Dupin
cyclides.
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2.6.1 Statement of the Results

Without loss of generality, we assume that a fixed circle Γ ⊂ R3 with
radius r > 0 is given by the equations

x = 0, y2 + z2 = r2. (2.6.1)

The Darboux cyclides passing through the circle Γ form a linear subspace
of the space of coefficients in (2.0.1), as we formulate in Lemma 2.6.1.
Computing the variety of Dupin cyclides passing through the circle Γ
is less trivial. The defining equations are obtained by restricting the
coefficients of (2.0.1) to cyclides passing through Γ and by considering
the effects on the equations in Theorems 2.1.1 and 2.1.4.

Lemma 2.6.1. A Darboux cyclide passing through the circle Γ has an implicit
equation of the form

u0(x
2 + y2 + z2 − r2)2 + 2(x2 + y2 + z2 − r2)(u1x+ u2y + u3z + u4)

+ 2x
(
v1x+ v2y + v3z + v4

)
= 0, (2.6.2)

where u0, . . . , v4 are real coefficients.

Proof. The equation of a Darboux cyclide passing through the circle Γ
will be in the ideal generated by x and y2 + z2 − r2 of the polynomial
ring R(r)[x, y, z] over the field R(r). The terms of degrees 4 and 3 should
match the general Darboux form (2.0.1). Therefore, we expand the
generator y2 + z2 − r2 to x2 + y2 + z2 − r2 so that the quartic and cubic
terms

u0(x
2 + y2 + z2 − r2)2 + 2(x2 + y2 + z2 − r2)(u1x+ u2y + u3z),

are contained in the ideal of the circle Γ. The remaining terms of degree
⩽ 2 should be in the same ideal; hence, they have the shape

2u4(x
2 + y2 + z2 − r2) + 2x

(
v1x+ v2y + v3z + v4

)
. □

Following this lemma, the ambient-space of Darboux cyclides
passing through the circle Γ are identified as P8, with the coordinates
(u0 :. . .:u4 :v1 :. . .:v4). The Dupin cyclides defined over R are represented
by real points on an algebraic variety DΓ in this projective space. If we
consider the radius r as a variable, the variety DΓ should be invariant
under the scaling of (x, y, z) ∈ R3. Accordingly, the obtained equations
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can be checked to also be weighted-homogeneous, with weight 1 for r
and the respective weights 0, 1, 1, 1, 2, 2, 2, 2, 3 of the coordinates of P8.
We assume r to be a parameter r ̸= 0 in our proofs and computations.

We define the variety DΓ of Dupin cyclides as a specialized image of
the variety D0 that represents the whole variety of Dupin cyclides within
the projective family (2.0.1) of Darboux cyclides. The specialization is
identified by the projective subfamily (2.6.2). The variety DΓ turns
out to be reducible and to have several components with a maximum
dimension of 4. Section 2.6.2 provides a brief description distinguishing
those components. We are interested in the components that generically
correspond to irreducible cyclide surfaces defined over R. There are two
components fulfilling this interest, which reflects the fact that the circle Γ
could be either a principal or a Villarceau circle on a Dupin cyclide; see
Section 2.6.2. Accordingly, we split the main result into two Theorems
as follows.

Theorem 2.6.2. The surface in R3 defined by (2.6.2) is an irreducible Dupin
cyclide containing Γ as a Villarceau circle if and only if the equations

v4 − 2r2u1 = 0, v1 + 2u4 − 2r2u0 = 0, (2.6.3)

u2v2 + u3v3 − 2u1u4 = 0, 4r2(u21 + u22 + u23)− 4u24 − v22 − v23 = 0, (2.6.4)

and the inequality
u24 < r2(u22 + u23) (2.6.5)

are satisfied.

Theorem 2.6.3. The surface in R3 defined by (2.6.2) is an irreducible Dupin
cyclide containing Γ as a principal circle only if the ranks of the following two
matrices are equal to 1:

53



N =

 u2 v2
u3 v3
u4 v4

 ,

M =



u2 v2(v4 − 2r2u1)
u3 v3(v4 − 2r2u1)
u4 v4(v4 − 2r2u1)
2u0 v22 + v23 − 4r2u21
u1 4r2u0v4 − 2r2(u2v2 + u3v3)− 4r2u1(v1 + u4)
v1 4r4(u22 + u23 + 2u0v1)− 4r2(v1 + u4)

2 − (v4 − 2r2u1)
2

v2 −8r4u1u2 − 4r2v2(v1 + u4 − 2r2u0)
v3 −8r4u1u3 − 4r2v3(v1 + u4 − 2r2u0)
v4 −8r4u1u4 − 4r2v4(v1 + u4 − 2r2u0)


.

Remark 2.6.4. The rank conditions mean vanishing of the 2× 2 minors
of the matrices N and M. The 2 × 2 minors from the first 3 rows
of M differ from the minors of N by the common factor v4 − 2r2u1.
Incidentally, this factor appears as an equation for the Villarceau case.
Localizing with (v4 − 2r2u1)

−1 leads to the ideal for the principal circle
case. But the Villarceau case equations of Theorem 2.6.2 do not imply
a lesser rank of M, as the second column does not necessarily vanish
fully, particularly in the 4th row. Rather similarly, the 2× 2 minors from
the last 3 rows of M differ from the minors of N by the common factor
−8r4u1, as the terms −4r2vi(v1+u4−2r2u0) are proportional to the first
column. Therefore, the 2× 2 minors formed only by the first 3 rows or
only by the last 3 rows of M can be ignored.

Remark 2.6.5. The Hilbert series of the two algebraic varieties described
by Theorems 2.6.2 and 2.6.3 can be computed using computer algebra
systems Maple or Singular. The principal circle component of DΓ has
the Hilbert series Hp(t)/(1− t)4, where

Hp(t) = 1 + 4t+ 7t2 − 10t3 + 10t4 − 5t5 + t6.

Hence, the dimension of the variety equals 4, and the degree equals
Hp(1) = 8. The Zariski closure of the Villarceau circle component is
a complete intersection. The Hilbert series of this component is (1 +
2t+ t2)/(1− t)4. Hence, the dimension of this variety equals 4, and the
degree equals 4.
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2.6.2 Distinguishing Principal and Villarceau Circles

As we will analyze in Section 2.6.3, the specialized variety DΓ of Dupin
cyclides turns out to be reducible. We discard some of the components
because they:

• Either represent only reducible cyclide surfaces: namely, a pair of
touching spheres (where one of the spheres could be a plane or
degenerates to a point); see Remark 2.6.7;

• Or generically represent cyclide surfaces with complex (rather
than real) coefficients in (2.6.2); real surfaces appear only in lower-
dimensional intersections with the two main families described in
Theorems 2.6.2 and 2.6.3.

We claim that the two main families are distinguished by the
homotopy class of Γ as either a principal circle or a Villarceau circle.
These two homotopical types can be discerned by inspecting the type of
Γ on representative surfaces under Möbius transformations (which are
finite compositions of inversions). Indeed, principal circles are preserved
[41] (Theorem 3.14) by Möbius transformations. The components of DΓ

are invariant under the continuous action of Möbius transformations
that fix the circle Γ. As mentioned in the introduction, any Dupin cyclide
can be obtained from a torus by a Möbius transformation. Further, the
torus can be chosen to pass through the circle Γ (by Euclidean similarity),
and that circle can be considered as fixed. Therefore, it is enough to check
the homotopy types for the tori on both main components. Furthermore,
the “vertical” principal circles (around the tube) and the “horizontal”
principal circles (around the hole) can be interchanged by a Möbius
transformation centered inside the torus tube; see Section 2.5.1. Hence,
we consider only a fixed “vertical” principal circle in a moment.

Under Euclidean similarities, we can move the torus (2.1.15) so that
the circle Γ is a principal circle (with radius r) or a Villarceau circle
(with radius R). The principal circles on the vertical plane x = 0 are
given by (y ±R)2 + z2 = r2. Identifying one of those circles with Γ by
the shift y 7→ y +R, we obtain an equation of the form (2.6.2) with

(u0 : . . . : v4) = (1 : 0 :−2R : 0 : 2R2 :−2R2 : 0 : 0 : 0) (2.6.6)

for the representative (under the Möbius transformations) tori with Γ as
a principal circle. It is straightforward to check that the second columns
of N and M consist of zeroes for the representative tori (2.6.6), while the
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second and 4th equations of Theorem 2.6.2 are not satisfied generically.
Hence, Theorem 2.6.3 covers the cases where Γ is a principal circle.

Now consider a Villarceau circle of the torus (2.1.15) on the plane
z = αx + βy, where α2 + β2 = r2/ϱ2, ϱ =

√
R2 − r2 as mentioned in

the beginning of Section 2.5.2. It is moved onto Γ by the Euclidean
transformation

(x, y, z) 7→
(
rx+ ϱz

R
, r − y,

rz − ϱx

R

)
. (2.6.7)

Then the torus equation becomes(
x2 + y2 + z2 − 2ry +R2

)2 − 4
(
(rx+ ϱz)2 +R2(y − r)2

)
= 0. (2.6.8)

This identifies (2.6.2) with

(u0 : . . . : v4) = (1 : 0 :−2r : 0 : 2r2 : 2R2 − 4r2 : 0 :−4rϱ : 0) (2.6.9)

as an implicit equation for the representative tori with Γ as a Villarceau
circle. The representative tori (2.6.9) satisfy the equations of Theorem
2.6.2, while the rows with u2 and u0 in the first column form a
lower-triangular matrix with non-zero determinant generically. Hence,
Theorem 2.6.2 describes the cases with Γ as a Villarceau circle.

Remark 2.6.6. We must have u24 ⩽ r2(u22 + u23) for real points on the
Villarceau circle component. Indeed, eliminating v3 in (2.6.4) gives a
quadratic equation for v2 with the discriminant

16u23(u
2
1 + u22 + u23)

(
r2u22 + r2u23 − u24

)
, (2.6.10)

which has to be non-negative. The strict inequality (2.6.5) throws
away horn cyclides; see the case J0 = 0 in Section 2.6.5. Villarceau
circles on horn cyclides coincide with “vertical" principal circles (that is,
those around the tube). The Villarceau and principle circle components
intersect exactly at the locus of horn Dupin cyclides on DΓ. In fact, the
equations (2.6.3)–(2.6.4) together with rank N < 2 imply the equation
r2(u22 + u23) = u24 for horn cyclides already; then, the second column of
M reduces to zero entries.

Remark 2.6.7. The variety DΓ contains a component of dimension 4
(and degree 10) that represents reducible surfaces (2.6.2) of two touching
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spheres (or a sphere and a tangent plane). This component is defined by
the 2× 2 minors of the matrix

L =



u2 v2
u3 v3
u4 v4
u0v2 2(u1v2 − u2v1)
u0v3 2(u1v3 − u3v1)
u0v4 2(u1v4 − u4v1)

 , (2.6.11)

and the additional equation

4r2(u21 + u22 + u23) + v22 + v23 − 8v1(r
2u0 − u4)− 4v4u1 − 4u24 = 0. (2.6.12)

The condition rank L ⩽ 1 alone gives a reducible surface (2.6.2). Its
spherical (or plane) components are defined by

x2 + y2 + z2 + sx− r2 = 0,

u0(x
2 + y2 + z2) + (2u1 − su0)x+ 2u2y + 2u3z + 2u4 − r2u0 = 0,

where s = vi/ui for some or (usually) all i ∈ {1, 2, 3}. Equation (2.6.12)
is the touching condition. The touching point (x, y, z) is

−
(
s(u22 + u23 − 2u0u4) + 2u1u4, u2(su1 − 2v1 + 2u4), u3(su1 − 2v1 + 2u4)

)
2
(
u21 + u22 + u23 − 2u0v1

) .

Further, we have surface degeneration to the circle Γ when rank(L) = 0
and u1 = 0, v1 = 2r2u0. If we restrict the principal circle component to
rank(L) = 0, we have degeneration to a double sphere. The intersection
of this degenerate component with the principal circle component
represents the cases when the touching point is on Γ. The intersection
with the Villarceau component represents a sphere through Γ and a point
on Γ; this intersection has a lower dimension of two and is contained in
the principal circle component as well.

2.6.3 Proof of Theorems 2.6.2 and 2.6.3

Let us define the ring

RΓ = R(r)[u1, u2, u3, u4, v1, v2, v3, v4],

and let us denote the 2× 2 minors N as

T2 = u3v4 − u4v3, T3 = u2v4 − u4v2, T4 = u2v3 − u3v2.
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Let us also denote

U0 = u21 + u22 + u23.

We define the variety DΓ in Section 2.6 as the specialized image of
the variety D0 in Figure 2.2. The variety D0, including the cubic part of
Theorem 2.1.4, can be obtained from the 12 equations of Theorem 2.1.1
by applying the shift (2.1.11) backwards and homogenizing with a0, as
explained in Section 2.4. By straightforward Euclidean equivalence
of cyclide surfaces, it is enough to consider (2.6.2) separately as a
quartic equation that can be simplified by translating to (2.1.12) or as
a cubic equation. Accordingly, we split the proofs into two cases and
use Theorems 2.1.1 and 2.1.4 in a parallel way. We arrive at parallel
options to simplify the reducible variety DΓ from the full consideration
of equations in those Theorems. Most of the particular equations or
factors considered by us appear naturally in examined Gröbner bases.
Even if an equation like (2.6.14) appears as an arbitrary choice, a formal
proof does not have to justify the consideration.

2.6.3.1 Proof for Quartic Cyclides

Without loss of generality, we may assume u0 = 1 while considering
quartic cyclides. To apply Theorem 2.1.1, it is necessary to apply the shift
(2.1.11) with (b1, b2, b3) = (u1, u2, u3) so as to bring the cyclide equation
(2.6.2) to the form (2.1.12). The obtained expression is

(
x2 + y2 + z2

)2
+

(
2(u4 + v1 − r2)− u21 −

U0

2

)
x2

+

(
2(u4 − r2)− u22 −

U0

2

)
y2 +

(
2(u4 − r2)− u23 −

U0

2

)
z2

− 2u2u3yz + 2(v3 − u1u3)xz + 2(v2 − u1u2)xy (2.6.13)
− (2u1v1 + u2v2 + u3v3 − 2v4 − u1(U0 − 2u4))x

− (u1v2 − u2(U0 − 2u4)) y − (u1v3 − u3(U0 − 2u4)) z

− 3U2
0

16
+
U0(u4 + r2) + u1(u1v1 + u2v2 + u3v3 − 2v4)

2
− 2r2u4 + r4 = 0.

Identification with the coefficients c1, c2, . . . , f0 in (2.1.12) defines the
ring homomorphism

ρ : R[c1, c2, c3, d1, d2, d3, e1, e2, e3, f0] → RΓ.
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Let IΓ ⊂ RΓ denote the ideal generated by the ρ-images of the 12
polynomials in Theorem 2.1.1. The polynomials in this ideal have to
vanish when (2.6.2) is a Dupin cyclide. The polynomial ρ(K1) factors in
RΓ: namely, ρ(K1) = −1

4T4V0, where

V0 = u21 (2u1u4−u2v2−u3v3)
+(u22+u

2
3−2u4)(2u1u4+2u1v1+u2v2+u3v3−2v4).

This shows that the variety defined by IΓ is reducible. To investigate
real points of the variety, we consider 3 possible options: T4 ̸= 0, V0 ̸= 0,
and T4 = V0 = 0.

First, assume that T4 ̸= 0. Elimination of v2, v3, v4 gives the product
V1V2 ∈ IΓ in the remaining variables, where

V1 = v1 + 2u4 − 2r2, V2 = (u21 + u22 + u23 − 2u4)
2 + 4r2u21.

If V2 = 0, then U0− 2u4 = 0, u1 = 0 as we look only for real components.
The augmented ideal contains this sum of squares: v24 + r2V 2

1 = 0.
Therefore, V1 = 0 is inevitable for the real components with T4 ̸= 0. The
ideal IΓ + (V1) in RΓ[T

−1
4 ] contains several multiples of the polynomial

V3 = v4−2r2u1. Localizing V3 ̸= 0 gives the trivial ideal of RΓ[T
−1
4 , V −1

3 ],
which is, hence, an empty variety. With V3 = 0, we obtain the equations
of Theorem 2.6.2 in the homogenized form with u0. The points on the
corresponding variety describe cases when Γ is a Villarceau circle, as
analyzed in Section 2.6.2.

Secondly, assume that V0 ̸= 0. Localization of IΓ in the ring RΓ[V
−1
0 ]

gives an ideal generated by the 2× 2 minors of the matrix L in (2.6.11)
and the additional Equation (2.6.12) with u0 = 1. Here, we obtain the
reducible Dupin cyclides of Remark 2.6.7.

The last option is T4 = V0 = 0. We notice polynomial multiples of
T 2
2 + T 2

3 in the Gröbner basis of (IΓ, T4, V0). Localization at T 2
2 + T 2

3 ̸= 0
gives an ideal that contains the 4 polynomials of Theorem 2.6.2. Hence,
it describes some points in the Villarceau circle component (of the option
T4 ̸= 0). We assume further that T2 = T3 = 0. Consideration of the
following polynomial allows further progress:

V4 = (2r2u1 + v4)(U0 − 2u4 − 2v1)− u1(4r
2u4 + v22 + v23)

+ (v1 − 4r2)(u2v2 + u3v3) + 8r2v4. (2.6.14)

The localization V4 ̸= 0 leads to a subcase (describing touching spheres)
of the option V0 ̸= 0. Hence, we assume that V4 = 0. Elimination of
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v2, v3, v4 in the ideal (IΓ, T2, T3, T4, V0, V4) leads to some generators that
factor with

V5 = u21(u
2
2 + u23) + (u22 + u23 − 2u4)

2. (2.6.15)

The further localization V5 ̸= 0 leads to the principal circle component in
Theorem 2.6.3. The remaining case V5 = 0 splits into these two subcases,
as we are interested in the real points only:

(i) u1 ̸= 0, so that u2 = u3 = 0, and eventually u4 = 0. The obtained
ideal is reducible, with the prominent factor V6 = u21(v

2
2+v

2
3)+4v24

after elimination of v1. The localization V7 ̸= 0 belongs to the
principal circle component. The case V6 = 0 simplifies to v2 =
v3 = v4 = 2v1 − u21 = 0, and the cyclide degenerates to a double-
sphere case.

(ii) u1 = 0, u22 + u23 − 2u4 = 0. Elimination of the variables u1, u2, u3,
u4 gives us a principal ideal, and the generator factors with

V7 = (v22 + v23)
3 + (v1v

2
2 + v1v

2
3 + 2v24)

2. (2.6.16)

The localization V7 ̸= 0 belongs to the principal circle component.
With V7 = 0 we get v2 = v3 = v4 = 0, and the resulting ideal
contains the product (u22 + u23 + 2v1)

2(u22 + u23 + 2v1 − 4r2). Either
of the factors leads to points on the principal circle component.

2.6.3.2 Proof for Cubic Cyclides

We use Theorem 2.1.4 to recognize cubic Dupin cyclides in the form
(2.6.2) with u0 = 0. The equation is first transformed to the form (2.0.1)

2(u1x+ u2y + u3z)(x
2 + y2 + z2) + 2(u4 + v1)x

2 + 2u4y
2 + 2u4z

2

+2v2xy + 2v3xz + 2(v4 − r2u1)x− 2r2u2y − 2r2u3z − 2r2u4 = 0.

Let
ρ0 : R[b1, b2, b3, c1, c2, c3, d1, d2, d3, e1, e2, e3, f0] → RΓ.

be the ring homomorphism defined by the coefficient identification.
Since ρ0(B0) = U0, all remaining computations are considered over the
localized ring RΓ[U

−1
0 ]. Let us denote by I∗

Γ the ideal generated by the
numerators of the ρ0-images of the 4 equations in Theorem 2.1.4. This
ideal contains the product T4V ∗

0 , where

V ∗
0 = 2u1u4U0 + 2u1v1(u

2
2 + u23) + (u2v2 + u3v3)(u

2
2 + u23 − u21).
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Like in the quartic case, we consider the 3 options: T4 ̸= 0, V ∗
0 ̸= 0, and

T4 = V ∗
0 = 0.

The localization T4 ̸= 0 gives us directly the u0 = 0 part of the
Villarceau circle component in Theorem 2.6.2.

Localizing V ∗
0 ̸= 0 gives an ideal containing the 2× 2 minors of the

matrix L and the equation (2.6.12). This case describes only reducible
cyclides of Remark 2.6.7.

With T4 = V ∗
0 = 0, the ideal (I∗

Γ, T4, V
∗
0 ) contains the sum of squares

T 2
2 + T 2

3 . Hence, T2 = T3 = 0 since we are looking only for real points of
the variety DΓ. The further candidate for localization to consider is

V ∗
1 = 4r2u21 + v22 + v23 − 4u1v4.

By comparing Gröebner bases, the localization of (I∗
Γ, T2, T3, T4, V

∗
0 ) at

V ∗
1 ̸= 0 indeed coincides with the ideal of the principal circle defined

by the 2 × 2 minors of N and M. The remaining case V ∗
1 = 0 can be

localized further at V ∗
2 = u22 + u23 + u24. The localization V ∗

2 ̸= 0 defines
points on the principal circle component. The case V ∗

2 = 0 simplifies to
u2 = u3 = u4 = 0, and the cyclide equation degenerates to a subcase of
a touching sphere + plane case.

2.6.4 Smooth Blending Along Circles

Here, we apply the main results to the practical problem of blending
smoothly two Dupin cyclides along a common circle. Smooth blending
in this context means that the cyclides share tangent planes along their
common circle.

Lemma 2.6.8. Consider two cyclide equations of the form (2.6.2) with possibly
different coefficients u0, . . . , u4, v1, . . . , v4. Then they are joined smoothly
along the circle Γ if and only if the rational function

F(y, z) =
v2y + v3z + v4
u2y + u3z + u4

(2.6.17)

is the same function on the circle Γ for both cyclides.

Proof. The normal vector of cyclides (2.6.2) along the circle Γ is defined
by the gradient of the defining polynomial. The gradient is computed as(

v2y + v3z + v4, 2y(u2y + u3z + u4), 2z(u2y + u3z + u4)
)
.
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On the two given cyclides, the paired gradient vectors should be
proportional along the circle in order to obtain smooth blending. After
the division by u2y + u3z + u4, the gradient vectors are rescaled to(
F(y, z), 2y, 2z

)
for direct comparison. □

A special case is when the rational function (2.6.17) is a constant on
Γ. This is equivalent to rank(N ) = 1. Therefore, the rational function
F is constant when Γ is a principal circle case of a Dupin cyclide. As
the following Lemma implies, the envelope surface of tangent planes of
any cyclide equation satisfying rank(N ) = 1 along Γ is a circular cone
or cylinder. It is known [30] that the envelope appearing as a cone or
cylinder occurs in the case of Dupin cyclides if the circle is principal.
This is due to the representation of Dupin cyclides as canal surfaces,
where they are considered as conics in the 4-dimensional Minkowski
space, and the tangent lines to those conics represent circular cones or
cylinders; see [30] for details.

Lemma 2.6.9. If the function F(y, z) ≡ λ on the circle Γ for some constant
λ, then the envelope surface of tangent planes of the cyclide (2.6.2) along Γ is
given by the equation

y2 + z2 =

(
r − λx

2r

)2

. (2.6.18)

It is a circular cone if λ ̸= 0 or a cylinder if λ = 0.

Proof. We parametrize the circle by (0, r cosφ, r sinφ). The envelope
line passing through such a point is orthogonal to the rescaled gradient
vector

(
λ, 2r cosϕ, 2r sinϕ

)
and to the tangent vector (0,− sinϕ, cosϕ)

to the circle. The line therefore follows the direction of the cross-
product vector (2r,−λ cosϕ,−λ sinϕ). The envelope of tangent planes
is parametrized therefore as

(x, y, z) = (0, r cosφ, r sinφ) + t (2r,−λ cosφ,−λ sinφ). (2.6.19)

Hence, x = 2rt, y2+z2 = (r−λt)2. Elimination of t gives (2.6.18). □

Remark 2.6.10. The envelope of tangent planes degenerates to the plane
x = 0 of the circle Γ when λ = ∞. If the circle is a Villarceau circle,
then the envelope of tangent planes is a more complicated surface of
degree 4. As mentioned in Remark 2.6.6, the condition rank(N ) =
1 combined with the equations of the Villarceau component leads to
singular horn cyclides. On the other hand, the cone envelope occurs
also in the degenerate case of Remark 2.6.7.
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2.6.4.1 Blending Along Principal Circles

In this section, we focus on smooth blending between Dupin cyclides
having Γ as a principal circle. The main case to investigate is by fixing a
tangent cone along the circle Γ and finding Dupin cyclides that fit the
blending conditions along the circle; see Figure 2.4a.

Proposition 2.6.11. Let us fix the parameter λ ̸= 0 and the cone (2.6.18)
containing the circle Γ. The Dupin cyclides that join the fixed cone smoothly
along Γ as a principle circle are fully characterized by the five equations

v2 = λu2, v3 = λu3, v4 = λu4, (2.6.20)

4r2u1(λu0 − u1) + λ2(u22 + u23)− 2λu0u4 = 0, (2.6.21)

16r4(λu0 − u1)
2−λ2(λ2+ 4r2)(u22 + u23) + 4λ2r2(u21− 2u0v1) = 0.(2.6.22)

Proof. From Lemmas 2.6.8 and 2.6.9, the tangency conditions along the
circle are given by vi = λui for i ∈ {2, 3, 4}. We specialize u0, v2, v3, v4 in
the ideal generated by the 2× 2 minors of N and M and obtain an ideal
Iλ in Rλ = R(r)[u1, u2, u3, u4, v1, λ, λ−1]. We notice many multiples of
u2, u3, u4 in a Gröbner basis of Iλ. If u2u3u4 ̸= 0, we obtain an ideal
I∗
λ ⊂ Rλ[(u2u3u4)

−1] generated by the five equations of the proposition.
The points with u2u3u4 = 0 satisfy the equations of I∗

λ ∪Rλ by checking
the cases u2 = u3 = u4 = 0, ui = 0, ujuk ̸= 0 or ui = uj = 0, uk ̸= 0
with i, j, k ∈ {2, 3, 4} being pairwise distinct. Each of the resulting ideals
RΓ[λ, λ

−1] contains I∗
λ ∪Rλ. □

Remark 2.6.12. The five equations of Proposition 2.6.11 are linear in the
five variables u4, v1, v2, v3, v4. Hence, we can easily solve the equations
for those variables and obtain a parametrization of the family of Dupin
cyclides touching the cone along the circle Γ. Apart from the first 3
equations, the variables u2, u3 appear only within the expression u22+u

2
3,

representing a rotational degree of freedom: rotating the two Dupin
cyclide patches independently around the x-axis preserves the smooth
blending along the circle Γ.

The limit cases λ = 0 and λ = ∞ contain interesting families of Dupin
cyclides as well. The family with λ = 0 allows us to blend two tori or a
torus with a Dupin cyclide; see Figure 2.4(b)–(d). The family in the case
λ = ∞ allows us to blend a Dupin cyclide with a plane; see Figure 2.4(e).
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Proposition 2.6.13. Let us fix the cylinder defined by the parameter λ = 0 in
(2.6.18). The only Dupin cyclides that join this cylinder smoothly along Γ are
characterized by the equations

u1 = v2 = v3 = v4 = 0, (2.6.23)

2r2u0v1 + r2(u22 + u23)− (v1 + u4)
2 = 0. (2.6.24)

Those Dupin cyclides are symmetric with respect to plane x = 0 of the circle Γ.

Proof. The equations v2 = v3 = v4 = 0 follow from the condition λ = 0
and the tangent conditions in Lemma 2.6.8. With those constraints,
the ideal of the principal circle component reduces to the other two
equations u1 = 0 and (2.6.24). The symmetry property with the plane
x = 0 follows from Equation (2.6.23). □

Proposition 2.6.14. Let us fix the plane x = 0 (of the circle Γ) defined by the
parameter λ = ∞ in (2.6.18). The only Dupin cyclides that join this plane
smoothly along the circle Γ are characterized by the equations

u2 = u3 = u4 = 0, v4 = 2r2u1, (2.6.25)

16r4u20 + 4r2u21 − (v22 + v23)− 8r2u0v1 = 0. (2.6.26)

This family of Dupin cyclides is preserved by the reflection with respect to the
plane of the circle.

Proof. Similar to the proof of Proposition 2.6.13. The equations
u2 = u3 = u4 = 0 follow from the tangent condition λ = ∞, and
the ideal of the principal circle component reduces to the other two
equations of the proposition. The reflection (x, y, z) 7→ (−x, y, z) with
respect to the plane x = 0 preserves the coefficients u0, u2, u3, u4, v1
and symmetries u1, v2, v3, v4 to −u1,−v2,−v3,−v4 in (2.6.2). This
transformation preserves Equations (2.6.25) and (2.6.26). □

Remark 2.6.15. The cubic cyclides with u0 = 0 in the family of
Proposition 2.6.14 degenerate to reducible surfaces: namely, the cases of
touching sphere + plane.

It is interesting to distinguish torus surfaces in the principal circle
component. We get two cases depending on the position of the
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(a) (1:−49
30 :0:

76
15 :

323
30 :−1669

120 :0:−76
15 :−

323
30 )

(1:−2:−5:0: 172 :−93
8 :5:0:−17

2 )

(b) (1:0:−3:0: 92 :−
9
2 :0:0:0)

(1:0:0: 7615 :
323
30 :−361

30 :0:0:0)

(c) (1:0:5:0: 252 :−25
2 :0:0:0)

(1:0:−3:0: 92 :−
9
2 :0:0:0)

(d) (1 :0:0:0:−4:8:0:0:0)
(1:0:−3:0: 92 :−

9
2 :0:0:0)

(e) (1:a:0:0:0 : 12a
2 + 15

8 :1:0:2a) (f) (1+t :0:1 :0 : 1213 :
2
13 + 2t:0:−10

13 :0)

Figure 2.4: Two Dupin cyclide equations with different coefficient values
(u0 : . . . :u4 :v1 : . . . :v4) are smoothly blended along the circle Γ with r = 1.
The two cyclides on (e) are obtained from the parameter values a = 1
and a = 1.8. The two cyclides on (f) are obtained from the parameter
values t = 0 and t = 0.4.

65



circle Γ (wrapping around the torus hole or around the torus tube).
Figure 2.4(c),(d) illustrate two different configurations of torus blending
using those two kinds of principal circles. The circle wraps around the
torus tube of both tori in Figure 2.4(c). The circle wraps around the
torus tube for one torus and around the torus hole for the other torus in
Figure 2.4(d). The examples satisfy the pertinent algebraic conditions
exactly; we do not consider the issue of numerical stability.

Proposition 2.6.16. Equation (2.6.2) defines a torus having Γ as the principal
circle if and only if one of the following applies:

(i) u0 = 1, u22 + u23 = 2u0u4, v1 = −u4, v2 = v3 = v4 = 0;

(ii) u0 = 1, u2 = u3 = v2 = v3 = 0, u4 =
2r2u1(λ− u1)

λ2
,

v1 =
λ2u21 + 4r2(λ− u1)

2

2λ2
, v4 = λu4 =

2r2u1(λ− u1)

λ
.

Proof. Assume that the circle Γ is wrapping around the torus tube. Then
we have a tangent cylinder along the circle, defined by v2 = v3 = v4 = 0
as in Proposition 2.6.13. The cross section of (2.6.2) with the plane x = 0
is a pair of circles with the same radius (Γ,Γ′):

Γ′ : x =

(
y +

u2
u0

)2

+

(
z +

u3
u0

)2

− r2u20 − 2u0u4 + u22 + u23
u20

= 0.

We need u22 + u23 = 2u0u4 for the equality of radii. Equation (2.6.24) then
factors into (v1+u4)(v1+u4−2r2u0). Due to the rotations in the yz-plane
that preserve the circle Γ, we can assume that the revolution axis of the
torus is parallel to the z-axis. Then u3 = 0, and we say u2 =

√
2u0u4.

Note that u0u4 > 0 by the derived equation u22+u
2
3 = 2u0u4. The rotated

cyclide equation must be

u0

(
x2+

(
y −
√

u4
2u0

)2
+ z2 − r2 +

u4
2u0

)2

−2u4

(
y −

√
u4
2u0

)2
+2v1x

2 = 0.

Comparing with (2.1.15), we recognize a torus equation (with shifted y)
when v1 = −u4. The other option v1 = 2r2u0 − u4 gives a surface that
is not symmetric around the revolution axis; hence, that is not a torus.
This shows possibility (i).

Assume now that the circle Γ is wrapping around the torus hole.
Then we have a tangent cone along the circle, i.e. v2 = λu2, v3 = λu3,
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v4 = λu4 as in Proposition 2.6.11. The section with x = 0 should be a
pair of concentric circles. Hence, u2 = u3 = 0. Again, with u0 = 1 and
the parametrization in Proposition 2.6.11, the cyclide equation reduces
to ((

x+
u1
2

)2
+ y2 + z2 +

r2(λ− u1)
2

λ2
− u21(λ

2 + 4r2)

4λ2

)2

−4r2(λ− u1)
2

λ2
(y2 + z2) = 0.

This is a torus equation, comparable to (2.1.15). □

2.6.4.2 Blending along Villarceau Circles

By Remarks 2.6.6 and 2.6.10, it is not possible to smoothly blend a Dupin
cyclide that has Γ as a principle circle with a Dupin cyclide that has Γ
as a Villarceau circle. It is left to investigate blending between cyclides
in the Villarceau circle component. The following result is illustrated in
Figure 2.4f.

Proposition 2.6.17. Let D denote a Dupin cyclide (2.6.2) that has Γ as a
Villarceau circle. The only Dupin cyclides that join D smoothly along Γ are
obtained by perturbing the equation of D by

(x2 + y2 + z2 − r2)2 + 4r2x2.

Those cyclides have Γ as a Villarceau circle.

Proof. Let D′ = (u0 : u
′
1 : . . . : u

′
4 : v

′
1 : . . . : v

′
4) be a Dupin cyclide that has

Γ as a Villarceau circle and assume that D′ and D are smoothly blending
along the circle Γ. We obtain the matrix equation:



0 0 0 2 1 0 0 0
−2r2 0 0 0 0 0 0 1
0 r2v2 0 v4 0 −r2u2 0 −u4
0 0 r2v3 v4 0 0 −r2u3 −u4
0 v3 v2 0 0 −u3 −u2 0
0 v4 0 v2 0 −u4 0 −u2
0 0 v4 v3 0 0 −u4 −u3





u′1
u′2
u′3
u′4
v′1
v′2
v′3
v′4


=



2r2u0
0
0
0
0
0
0
0


.

The first two rows of the matrix are linear equations obtained from D′

being in the Villarceau circle component. The last five rows are the
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(a) (b)

Figure 2.5: A cutaway view of singular tori: (a) a spindle torus (J0 <
0, r > R); (b) a horn torus (J0 = 0, r = R).

tangency conditions for the given Dupin cyclide D from Lemma 2.6.8.
Note that the 7× 8 matrix has the full rank seven symbolically. We must
have vi ̸= 0 for some i ∈ {2, 3, 4} to avoid rank N < 2 and degeneracy
to a horn cyclide. Then, by setting s = u′i/vi, we can solve

u′j = suj , v′j = svj , for j ∈ {2, 3, 4},

u′1 = s
v4
2r2

= su1, v′1 = 2r2u0 − 2su4.

After dividing the equation of D′ by s, all coefficients are fixed except
v′1 = 2r2u0/s− 2u4, and u0 becomes u0/s. Hence, with t = u0/s− u0, u0
and v′1 become u0 + t and 2r2u0 − 2u4 + 2r2t = v1 + 2r2t, respectively.
This is exactly a perturbation by amount t. □

2.6.5 The Möbius Invariant J0

In this section, we compute a Möbius invariant denoted by J0 in
Section 2.6.5 for Dupin cyclides in the Villarceau and principal circle
components described by Theorems 2.6.2 and 2.6.3, respectively. This
invariant extends the Möbius invariant

J0 =
r2

R2

(
1− r2

R2

)
for tori to the Dupin cyclides. The smooth Dupin cyclides are
characterized by 0 < J0 ⩽ 1/4, and the singular Dupin cyclides are
characterized by J0 ⩽ 0. A singular Dupin cyclide can be obtained from
a spindle or a horn torus (see Figure 2.5) by Möbius transformations.

We use Formulas (2.5.15) and (2.5.15) to compute J0 for, respectively,
the quartic equation (2.6.2) with u0 ̸= 0 and the cubic equation (2.6.2)
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with u0 = 0. The obtained expression gives the Möbius invariant when
the equation defines a Dupin cyclide. It is convenient to subtract 1/4
from J0 and obtain a perfect square expression frequently. Let us denote
by Ĵ0 the remainder 1/4− J0. The goal is to have a compact equivalent
formula for J0 in each of the two components.

Obtaining a J0-expression for quartic Dupin cyclides in the principal
circle case is not straightforward. Consider the ideal Iλ generated by
the five equations of Proposition 2.6.11. By incorporating separately the
numerator and the denominator of Ĵ0 in the ideal Iλ and by eliminating
the linear variables u4, v1, . . . , v4, we obtain a representative numerator
and a representative denominator with a common factor. This gives a
new expression of Ĵ0 up to a constant multiplier. It is easy to find this
constant by solving it from the difference of the two expressions of Ĵ0
modulo Iλ. The resulting J0 expression is

J0 =
1

4
−
(
8r4(λu0 − u1)

2 − 4r2(λ2 + 4r2)u21 + λ2(λ2 + 2r2)(u22 + u23)
)2

16r4
(
4r2(λu0 − u1)2 − λ2(u22 + u23)

)2 .

By further elimination of u22 + u23 using (2.6.21)–(2.6.22), we obtain the
more compact form

J0 =
1

4
−
(
4r4λu0 − 2r2(λ2 + 6r2)u1 + λ(λ2 + 2r2)u4

)2
16r4

(
2r2λu0 − 2r2u1 − λu4

)2 . (2.6.27)

It is interesting that this compact form (2.6.27) also covers the J0
expression of the family of cubic Dupin cyclides u0 = 0 in Proposition
2.6.11.

Since the majority of Dupin cyclides in the principal circle component
belong to the family of Dupin cyclides in Proposition 2.6.11, 3 equivalent
expressions for J0 in the principal circle component are obtained by
substituting λ = vi/ui into (2.6.27) for each i = 2, 3, 4. The equality of
two different J0 expressions can be checked by reducing the numerator
of the difference between them modulo the ideal of the principal circle
component.

In the two limiting cases of Propositions 2.6.13 and 2.6.14 of the
principal circle component, we use the same method and obtain the
expression

J0 =
1

4
− (4r2u0 − 4u4 − 3v1)

2

4v21
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for the family λ = 0 of Proposition 2.6.13, and

J0 =
1

4
− (3r2u0 − v1)

2

4r4u20

for the family λ = ∞ of Proposition 2.6.14. Note that the latter formula
is always well-defined because the family of Proposition 2.6.14 does not
contain irreducible cubic Dupin cyclides by Remark 2.6.15.

In the Villarceau circle case, the simplification of J0 in (2.5.15) modulo
the equations (2.6.3) and (2.6.4) is straightforward. Elimination of v2, v3,
and v4 gives a common factor of the numerator and the denominator
and leads to the expression

J0 =
r2u22 + r2u23 − u24

16(r2u22 + r2u23 − u24) + 4v21
. (2.6.28)

Alternative eliminations give

J0 =
1

4
− r2v21

4
(
r2(v21 + v22 + v23)− v24

) , (2.6.29)

=
1

4
− v21

16r2
(
u22 + u23 + u0v1 − r2u20

) . (2.6.30)

These expressions are applicable to cubic Dupin cyclides as well. The
invariant values should be positive because singular cyclides have no
real Villarceau circles. Indeed, the numerator in (2.6.28) is positive by
the inequality u24 < r2u22 + r2u23 in (2.6.5). The denominator is positive
for the same condition. The limiting case u24 = r2u22 + r2u23 of Theorem
2.6.2 represents horn cyclides since J0 = 0 from (2.6.28), as mentioned
in Remark 2.6.6.

2.7 Implementation

An algorithm for recognizing Dupin cyclides based on the results of this
chapter is implemented in Maple. It is available at https://github.
com/menjanahary/DupinRecognitionAlgorithm. We checked
the efficiency of this implementation on a 5-parameter family of cyclide
equations constructed following the classical definition [15, 22, 30] of
Dupin cyclides as the envelope of a one-parameter family of spheres
touching three fixed spheres. Let us specify a sphere S(c, r) by its
center c and the radius r. The tangential distance between two spheres
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S1(c1, r1) and S2(c2, r2) equals |S1 − S2| =
√

|c1 − c2|2 − (r1 − r2)2. Up
to Euclidean transformations and scaling, we can assume that the three
fixed spheres generating a Dupin cyclide are given by S0((0, 0, 0), 1),
S1((a1, 0, 0), r1), S2((a2, a3, 0), r2). Following Darboux [18], a point X
on the Dupin cyclide is treated as a sphere of zero radius. The Dupin
cyclide defined by S0, S1, S2 satisfies the equation

(t21d
2
02 + t22d

2
01 − t20d

2
12)

2 − 4(t1t2d01d02)
2 = 0, (2.7.1)

where dij = |Si − Sj | and ti = |X − Si|. Using the localized formulation
in Theorem 2.1.1, the Maple implementation took about 136s CPU time
(on AMD Ryzen 5 4500U processor running at 2.38 GHz) to decide
that this equation indeed defines a Dupin cyclide generally. The large
defining equations of Proposition 2.2.6 could not be checked within a
reasonable time for this particular example.

2.8 Conclusion

The larger class of Darboux cyclides is promising for modeling ap-
plications, yet recognizing Dupin cyclides from the implicit equation
(2.0.1) will remain an important practical problem. Considering the
free coefficients in (2.0.1) as projective coordinates, we identify the
space of Darboux cyclides as the projective space P13. The points in
P13 corresponding to Dupin cyclides form an algebraic variety D0 of
codimension 4. It can be computed as the orbit of canonical equations
(1.2.1) and (1.2.2) under Euclidean transformations in R3. This chapter
aimed at establishing practical sets of algebraic equations for D0 or its
representative subvarieties. The affine chart R13 ⊂ P13 represents quartic
Darboux cyclides. The affine variety D4 of quartic Dupin cyclides can
be simplified by affine translations (2.1.11) to the representative variety
D∗

4 of Section 2.2; see Figure 2.2. The equations for D∗
4 are formulated in

Proposition 2.2.6 and Theorem 2.1.1. The latter theorem is more practical
as it specifies the minimal number (the codimension 4) of equations to
check, depending on a convenient stratification of P13. This stratifies
D∗

4 locally into complete intersections. The cubic cyclides are located at
infinity of P13, and the equations defining the cubic Dupin cyclides are
formulated in Theorem 2.1.4. The variety D3 of cubic Dupin cyclides is
already a complete intersection. It is contained in the Zariski closure of
D4 in P13, as pointed out in Section 2.4.

We also derived the algebraic conditions that fully characterize the
general family of Dupin cyclides passing through the fixed circle defined
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by Equation (2.6.1). The algebraic conditions restrict the coefficients of
the general family (2.6.2) of Darboux cyclides passing through the circle.
The key results are divided to Theorems 2.6.2 and 2.6.3, which reflect the
position of the circle as either a Villarceau circle or a principal circle of
the Dupin cyclides. The two obtained general families are 4-dimensional;
see Remark 2.6.5. The found algebraic conditions are used in Section
2.6.4 to characterize and exemplify pairs of Dupin cyclides that blend
smoothly along circles. The construction of smooth blending constitutes
the basic application of Dupin cyclides in CAGD. The focal case of
smooth blending requires fixing a tangent cone along the circle (2.6.1),
which reduces the dimension of general families of smoothly matching
Dupin cyclides to 3; see Proposition 2.6.11. Even if we would like to join
two Dupin cyclides continuously along a circle at a constant angle [39],
the straightforward way of modeling is to fix the tangent cones meeting
at the desired angle. This leads to choosing within two distinct families
of Dupin cyclides in the context of Section 2.6.4.
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Chapter 3

Quaternionic Bézier
Representation and Dupin
Cyclidic Cubes

Quaternions are widely used to represent rotations in space effectively.
Since the orbit of a point under a rotation yields a circular arc, it is
intuitively clear that quaternions play significant roles in Dupin cyclides
as surfaces made of circles in various ways. This chapter aims to derive
effective formulas for the quaternionic Bézier parametrization of Dupin
cyclide principal patches, and their 3D generalizations called Dupin
cyclidic (DC) cubes. We also derive the formulas for the symmetries of
principal patches and their Willmore energies. All these formulas will be
useful in the context of DC splines considered in Chapter 4. The second
part of the chapter will focus on the singularities of DC cubes and their
classification.

3.1 Quaternions and Möbius Transformations

The algebra of quaternions H is the real non-commutative algebra
generated by the set of three elements {i, j,k}, satisfying the product
rules

i2 = j2 = k2 = ijk = −1.

It is a 4-dimensional real vector space, and has the standard basis
{1, i, j,k}. For a quaternion q written in the algebraic form q =
r + xi + yj + zk, the real part is Re(q) = r, the imaginary part is

73



Im(q) = q − Re(q), the conjugate is q̄ = Re(q) − Im(q), and the norm
is |q| =

√
qq̄. The algebra H is also a division ring, meaning that every

non-zero element is invertible. If q ̸= 0, its inverse is q−1 = q̄/|q|2. The
properties of conjugation and norm are the same as those of complex
numbers, but care must be taken to account for non-commutativity
when permuting product elements; e.g., qp = p̄q̄ and |pq| = |p||q|.

In the quaternionic framework, the Euclidean space R3 is naturally
identified with the space of imaginary quaternions ImH = {q ∈ H |
Re(q) = 0}. The quaternionic multiplication can be expressed using the
standard dot product ⟨·, ·⟩ and cross product in R3 as follows:

qq′ = rr′ − ⟨v, v′⟩+ rv′ + r′v + v × v′, (3.1.1)

where r = Re(q), r′ = Re(q′), v = Im(q) and v′ = Im(q′).

Since we are dealing with objects made of circles in space, it is
convenient to use Möbius transformations, which are circle-preserving
transformations. The prototypical example is an inversion Invrq with
respect to a sphere of center q ∈ ImH and radius r, which can be written
explicitly as Invrq(p) = q − r2(p − q)−1 for all p ∈ ImH. The group
generated by inversion transformations is called the group of Möbius
transformations in R3. To be more precise, Möbius transformations
are defined on the extended space R̂3 = R3 ∪ {∞}, which is identified
with ImĤ = ImH ∪ {∞}. In particular, the inversion Invrq maps the
center q to ∞ and vice versa. Euclidean similarities are examples of
Möbius transformations that preserve the infinity, as they are composed
of inversions:

• Translation Tv : p 7→ p+v = Inv
|v|/2
0 ◦ Inv|v|/2v/2 ◦ Inv|v|/2−v/2 ◦ Inv

|v|/2
0 (p),

v ∈ ImH;

• Reflection En : p 7→ npn = Inv
√
2

n ◦ Inv10 ◦ Inv
√
2

n (p), n ∈ ImH, with
respect to a plane with unit normal vector n;

• Rotation, as composition of reflections, Rq : p 7→ qpq−1, q ∈ H∗,
by angle θ = arccos(Re(q)

2|q| ) about the axis through the origin with
direction Im(q);

• Homothety Hλ : p 7→ λp = Inv
√
λ

0 ◦ Inv10(p), λ > 0.

Alternatively, Möbius transformations can be defined by three kinds of
generators: translations p 7→ p+ v, v ∈ ImH; homotheties p 7→ λp, λ > 0;
and the unit inversion Inv10 : p 7→ −p−1.
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Similar to 2D-Möbius geometry, we have the concept of cross-ratio to
determine the cocircularity or collinearity of points. The cross-ratio of
ordered four points p0, p1, p2, p3 ∈ ImH is defined as

cr(p0, p1, p2, p3) = (p0 − p1)(p1 − p2)
−1(p2 − p3)(p3 − p0)

−1,

provided that the inverses are well-defined.

Proposition 3.1.1. Let p, q, p′, q′ ∈ R3 be 4 distinct points. The following
conditions are equivalent:

(i) The points p, q, p′, q′ are cocircular or collinear.

(ii) cr(p, q, p′, q′) ∈ R.

(iii) There exists a unique sphere S such that InvS(p) = p′ and InvS(q) = q′.

Proof. The equivalence between (i) and (ii) is proved in [59, Lemma 2.3].
The implication (iii) to (i) is obvious by the definition of inversions.
Assume that (i) holds. Up to Möbius transformations, we can further
assume that p, q, p′, q′ lie on a circle, and the lines (pp′), (qq′) intersect at
a finite point c. Then, it is known from elementary geometry, see e.g.
[26, Lemma 7.1], that |c− p||c− p′| = |c− q||c− q′|. Let r be this common
value. The inversion in the sphere S with center c and radius r satisfies
the assertion (iii). □

Remark 3.1.2. The intersection of the two lines defined by the pairs of
points (p, p′) and (q, q′) can be written rationally as

c =
(
(p+ p̂q̂p̂−1)p̂q̂ − qq̂p̂

)
(p̂q̂ − q̂p̂)−1 , (3.1.2)

where p̂ = p−p′ and q̂ = q− q′. The denominator can be zero only when
the lines are parallel. In particular, the inversion InvS mapping p, q to
p′, q′ is the rational quaternionic map x 7→ c+ (p− c)(p′ − c)(x − c)−1.

3.2 The Quaternionic Bézier Form

A rational quaternionic Bézier (QB) form is a map defined by a fraction
of two quaternionic polynomials F = UW−1 such that U and W are
expressed in Bézier form:(

U
W

)
=
∑
i

(
ui
wi

)
Bi, (ui, wi) ∈ H2 \ {(0, 0)},

75



where {Bi} is a certain polynomial Bernstein basis. Here, F takes the
value ∞ if W takes the value zero. For the univariate case, the Bernstein
basis polynomials of degree n are

bni (t) =
n!

i!(n− i)!
ti(1− t)n−i, i = 0, . . . , n.

For the multivariate case, the Bernstein basis polynomials are defined
as the products of univariate Bernstein basis polynomials in different
variables. The pairs of quaternions (ui, wi)’s are called homogeneous
control points and the wi’s are called weights of the QB form. The
points pi = uiw

−1
i are referred to as control points of the QB form. The

homogeneous control points can be expressed in terms of control points
and weights as (piwi, wi) if wi ̸= 0.

Remark 3.2.1. Note that Möbius transformations preserve QB forms.
In particular, the inversion Invrq maps a QB form with homogeneous
control points (ui, wi) to a QB form with homogeneous control points
(u′i, w

′
i) such that

u′i = qui − (r2 + q2)wi, w′
i = ui − qwi. (3.2.1)

In this thesis, we are mostly interested in the linear case (n = 1) and
the multilinear cases of QB forms, such that the image F = UW−1

is completely contained in R̂3. We use the so-called Study quadric
to standardize this requirement. Define the quadratic form S in R8

(identified with H2) by

S(u,w) = 1

2
(uw̄ + wū), (u,w) ∈ H2. (3.2.2)

Let RP 7 be the real projectivization of H2 ∼= R8. The quadric in RP 7

defined by S(u,w) = 0 is actually the Study quadric. The Study quadric
is the preimage of ImĤ under the projective division

π : RP 7 → ImĤ, π(u,w) =

{
uw−1 w ̸= 0,

∞ w = 0.

Since π(u,w) = π(uq,wq) for any quaternion q ̸= 0, the QB forms should
be defined up to right multiplications by non-zero quaternions.
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3.3 The Formula for Circles

We first derive the QB representation of circular arcs using one control
point on infinity. This derivation method is slightly different from those
in [59].

Lemma 3.3.1. Let a circular arc be defined by two endpoints p0, p1, and let v1
be the tangent vector at p0. Then, this arc can be parametrized using the QB
form

C(t) = (u0(1− t) + u1t)(w0(1− t) + w1t)
−1, t ∈ [0, 1], (3.3.1)

such that

(i) if p0 = ∞ and then the arc is the semi-line with endpoint p1 and direction
v01, then (

u0 u1
w0 w1

)
=

(
1 −p1v1
0 −v1

)
; (3.3.2)

(ii) if both endpoints are finite, then(
u0 u1
w0 w1

)
=

(
p0 p1(p1 − p0)

−1v1
1 (p1 − p0)

−1v1

)
. (3.3.3)

Proof. It is easy to check that the semi-line is defined by the formula in
(i). The case (ii) can be reduced to the case (i) under the inversion Inv1p0
by using Remark 3.2.1. □

Remark 3.3.2. Alternatively, according to [31], the circular arc with
finite endpoints p0, p1 can be parametrized by the fractional linear QB
form with weights w0 = (q − p0)

−1, w1 = (p1 − q)−1, where q is a point
on the complementary arc. In this case, the parameter t is just the cross-
ratio t = cr(q, p1, p0, C(t)). The point f = C(1/2) in the interior of the
arc C([0, 1]) is called the Farin point of a quaternionic circular arc. The
Farin point f can be moved to any other interior point of the arc by
changing w1 to λw1, where λ > 0.

3.4 The Formula for Principal Patches

A principal patch of a Dupin cyclide is a quad patch bounded by 4
circular arcs that are curvature lines on the Dupin cyclide; see Figure 3.1.
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Figure 3.1: A Dupin cyclide principal patch.

It is well-known that the four corner points of a principal patch are
always cocircular or collinear and the patch is uniquely determined by
its corner points and two orthogonal tangent vectors at one corner;
see [8] for more details. Zube and Krasauskas [59] introduced the
quaternionic representation of principal patches as a rational bilinear
QB form depending on corner points and two tangent vectors. The goal
of this section is to improve their formulas so that all cases of principal
patches are covered.

Definition 3.4.1. A DC patch is a rational map defined by the bilinear QB
formula

P : (RP 1)2 → ImĤ ∼= R̂3, P = UW−1, U,W ∈ H[s, t], (3.4.1)

with orthogonality condition ∂sP ⊥ ∂tP .

Remark 3.4.2. For a DC patch P (s, t) with control points p0, p1, p2, p3 ∈
ImH, the Farin points on opposite arcs, e.g., f01 = P (1/2, 0) and f23 =
P (1/2, 1) are related since they define a sub-patch with control points
p0, f01, p2, f23. In particular, they are cocircular.

Theorem 3.4.3. The implicit equation of a surface parametrized by bilinear
DC patch with homogeneous control points (ui, wi) is a factor of the 4 × 4
determinant

f(x, y, z) = det([Xwi − ui], i = 0, . . . , 3), X = xi+ yj+ zk, (3.4.2)

where [q] denotes the coordinate column of the quaternion q. The unique
exception f(x, y, z) ≡ 0 happens only when the DC patch is Möbius equivalent
to the planar patch with all coordinate lines being straight lines.
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Proof. This follows from the implicitization theorem for general QB
bilinear patches [32, Theorem 4.5], where the case f(x, y, z) ≡ 0 happens
if and only if the patch is Möbius equivalent to a bilinear QB patch
with real weights, i.e., to the usual Bézier bilinear patch (see also [32,
Lemma 4.2]). In our case, this is a planar rectangular patch since its
intersecting lines should be orthogonal. □

We fix the ordering of the corner points p0, p1, p2, p3 of a principal
patch P such that the two diagonals of the quad are formed by p0, p3
and p1, p2; see Figure 3.1. Also, the notation of tangent vectors v1 ⊥ v2
at p0 is considered such that v1 is the tangent of the boundary arc of the
patch P from p0 to p1 and v2 to is tangent to that from p0 to p2.

Theorem 3.4.4. Let a principal patch be defined by cocircular points p0, p1, p2,
p3, and an orthogonal frame (v1, v2, v3 = v1v2) at p0. Then this patch can be
parametrized using the DC patch with the following weights (or homogeneous
control points):

(i) p0 = ∞ and p1, p2, p3 are collinear, p1 ̸= p2, then(
ui
wi

)
i=0,...,3

=

(
1 −p1v1 −p2v2 p3(p1 − p2)v3
0 −v1 −v2 (p1 − p2)v3

)
. (3.4.3)

(ii) all control points are finite, only p1 and p2 may coincide with p3, then

w0 = 1, w1 = (p1 − p0)
−1v1, w2 = (p2 − p0)

−1v2, (3.4.4)

w3 = (p3 − p0)
−1
(
(p1 − p0)

−1 − (p2 − p0)
−1
)
v3. (3.4.5)

Proof. (i) Up to Möbius transformations, we can assume that v1 = i and
v2 = j, p1 = ai, p2 = bj + k, and p3 = (1 − c)p1 + cp2, where a, b, c ∈ R.
Let x = xi+ yj+ zk be an auxiliary variable. Following Theorem 3.4.3,
the implicit equation of this DC patch is

z(x2 + y2 + z2)− y2 − (1− T )z2 − Tz = 0,

where T = (1− c)a2 − c(b2 + 1). By applying the translation z 7→ z − T
and then interchanging the variables x and z to this equation, we have
the parabolic cyclide equation (1.2.2) with p = 2(1 + T ) and q = 2T .

(ii) This general case is reduced to the previous item (i) by applying
the inversion Inv1p0 with center in the point p0. □
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Bilinear DC patches can parametrize spheres, planes, or can degen-
erate to circles, lines or isolated points when their Jacobian vanishes
everywhere.

Lemma 3.4.5. The non-degenerated bilinear DC patch is a sphere or a plane if
and only if the following two equivalent conditions on its opposite homogeneous
control points are satisfied

S(ui, wj) + S(uj , wi) = 0, (i, j) = (0, 3), (1, 2). (3.4.6)

Proof. This follows from [32, Lemmas 3.1 and 3.2]. □

Remark 3.4.6. The condition (3.4.6) is satisfied when the bilinear QB
surface degenerates to a point, but it might be non-zero in some cases of
degeneration to a circle or a line.

3.5 Symmetries and Central Points

A sphere S is called a symmetry sphere of as set X ⊂ R̂3 if the inversion
in this sphere preserves X , i.e., InvS(X) = X . In the case of planes,
inversion is replaced by reflection. For a principal patch, since the
corner points are on a circle, we have several spheres of symmetries of
these points according to Proposition 3.1.1. We will show that two of
these spheres are spheres of symmetry of the principal patch.

Lemma 3.5.1. Let P be a principal patch with corner points p0, p1, p2, p3.
Let S1 and S2 be the spheres of inversion such that InvS1 maps p0, p1 to p2, p3,
and InvS2 maps p0, p2 to p1, p3, respectively. Then both spheres S1, S2 are
mutually orthogonal spheres of symmetry of P . In particular, these spheres
intersect P along principal circles.

Proof. By applying an inversion with center on (S1∩S2)\P , the spheres
S1, S2 become planes Π1,Π2 and the corner points form a rectangle.
Hence, it is clear that the planes Π1,Π2 are mutually orthogonal. Since
the frames of a principal patch at its corner points on the rectangle are
also reflected by the planes, see [7, p.216], this principal patch must be
symmetric with respect to Π1 and Π2. □
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Figure 3.2: Left: The central point of a principal patch in the intersection
of two symmetry spheres. Right: The central sphere containing the
corner points and tangent to the patch at the central point.

For a principal patch P with symmetry spheres S1 and S2, the
intersection point qc = P ∩ S1 ∩ S2 is called the central point of P ;
see Figure 3.2.

Lemma 3.5.2. Let P be a principal patch with central point qc. Then, there
exists a unique sphere, called the central sphere of P , that contains the corner
points of P and is tangent to P at qc; see Figure 3.2, right.

Proof. By applying an inversion, it is enough to investigate the
canonical case of the patch with vertical symmetry planes x = 0 and
y = 0, and with vertices lying on the unit circle on z = 0. Then the
central point is lying on the z-axis with horizontal tangent plane at that
point. The set of spheres containing the unit circle forms a pencil of
spheres

x2 + y2 + z2 + az − 1 = 0, a ∈ R.

Each of these spheres has horizontal tangency on their intersection with
the z-axis. In particular, the unique sphere from this pencil passing to the
central point is tangent to the principal patch at this central point. □

Theorem 3.5.3. Let a principal patch P (s, t) be defined by the QB-formula
with corner points p0, p1, p2, p3 and the weights in Theorem 3.4.4, such that
u = cr(p0, p2, p1, p3) ∈ [0, 1]. Then, the central point of this patch can be
evaluated at

s0 =
1

1 + δ
√
u
, t0 =

1

1 + δ
√
1− u

,
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where
δ =

|p1 − p2|
|p1 − p0||p2 − p0|

.

Proof. Without loss of generality, we can assume that p0 = 0, p1 =
ai+ bj+ ck, p2 = di+ gj+hk, v1 = i and v2 = j, where a, b, c, d, g, h ∈ R.
Consider the inversions Inv1 that maps p0, p1 to p2, p3, and Inv2 that
maps p0, p2 to p1, p3. It is straightforward to solve that the fixed points
of the arc (p0, p1) by Inv1 are obtained at

s =
1

1± δ
√
u
.

Similarly, the fixed points of the arc (p0, p2) by Inv2 are obtained at

t =
1

1± δ
√
1− u

.

These s and t values are well-defined numbers because 0 ⩽ u ⩽ 1,
and among them, only s0 and t0 belong to the unit interval [0, 1]. The
point P (s0, t0) is indeed the central point of the patch according to
Lemma 3.5.1. □

Remark 3.5.4. If the cross-ratio u = cr(p0, p2, p1, p3) is out of the interval
[0, 1], then the principal patch has one singular point. In this case, the
central point coincides with this singular point.

3.6 Willmore Energy

The Willmore energy of a smooth surface S is

WE(S) =
∫
S
(H2 −K)dS =

1

4

∫
S
(k1 − k2)

2dS,

where H = (k1 + k2)/2 is the mean curvature and K = k1k2 is the
Gaussian curvature of S. The Willmore energy measures the deviation
of a surface from being a sphere or a plane. In particular, the Willmore
energy of a sphere or a plane is zero. For principal patches, it was
proved in [59] that the integrand H2 −K is separable. This leads to a
formula that can be expressed as the product of two simple integrals.
We improve their formulas in terms of homogeneous control points.
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Figure 3.3: Willmore’s torus (R =
√
2r).

Theorem 3.6.1. Let a principal patch P be defined by homogeneous control
points (ui, wi), i = 0, 1, 2, 3. Let Lij = ūiwj + w̄iuj , and define

L1(s) = L02(1− s)2 + (L12 + L03)(1− s)s+ L13s
2, (3.6.1)

L2(t) = L01(1− t)2 + (L21 + L03)(1− t)t+ L23t
2. (3.6.2)

Then, the Willmore energy of this patch P is given by

WE(P ) =
∫ 1

0

|L02|Re(L03)

L1(s)L02
ds

∫ 1

0

|L01|Re(L03)

L2(t)L01
dt.

Proof. The formula was derived in [59, §9] with Lij = w̄i(pi − pj)wj ,
where pi = uiw

−1
i . Since pi ∈ R3, pi = −p̄i = w̄−1

i ūi and then

Lij = −w̄i(w̄
−1
i ūi + ujw

−1
j )wj = −(ūiwj + w̄iuj)

The negative factor is cancelled by the fraction since Re(L12) was used
instead of Re(L03). However, Re(L12) = −Re(L03). □

Remark 3.6.2. The products L1(s)L02 and L2(t)L01 are just quadratic
polynomials in s and t, respectively. One of them vanishes in [0, 1] if
and only if the principal patch is singular. In this case, the Willmore
energy is infinite. Notice that the integrands |L02|Re(L03)

L1(s)L02
and |L01|Re(L03)

L2(t)L01

are Möbius invariant; see [59, Lemma 9.1].

Example 3.6.3. Consider a family of principal patches with corner
points on the unit circle and depending on a parameter c or θ, c =
tan(θ/2), such that

p0 = cos(θ)i+ sin(θ)j =
1− c2

1 + c2
i+

2c

1 + c2
j,
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and the other control points are obtained by reflecting p0 about x-axis
and y-axis; see Figure 3.3, left. The frame at p0 is chosen such that
the normal n0 is tangent to the unit circle, v01 = k and v02 = n0v01.
Therefore, the patch is a quarter of a torus with minor radius r = 2c

1−c2

and major radius R = 1+c2

1−c2
. The homogeneous control points of the

patch can be written as(
p0 −(1 + c2)j 2c+ (1− c2)k −(c2 + 1)2

1 2c+ (1− c2)k −(1 + c2)j −(1− c4)i− 2c(1 + c2)j

)
.

The corresponding parameters in the integrand functions are:

L1(s) = 2(1− c2)
(
1 + (c4 + 2c2 + 2)s2 − 2s

)
v01,

L2(t) = 4c
(
1 + (c4 + 2c2 + 2)t2 − 2t

)
v02,

L02 = −2(1− c2)v01,

L01 = 4cv02,

Re(L03) = −2(1 + c2)2.

By optimizing the Willmore energy with respect to the parameter c, a
minimum energy π2/2 is achieved at c =

√
2−1 or equivalently θ = π/4.

Since the considered patch is a quarter of a torus, we obtain the optimum
energy 4π2/2 = 2π2, corresponding to the Willmore torus R =

√
2r.

3.7 The Formula for Dupin Cyclidic Cubes

A natural generalization of a principal patch to a volume object is the
definition of a Dupin cyclidic cube as a volume cut out of R3 by six
principal patches meeting orthogonally.

Definition 3.7.1. A Dupin cyclidic (DC) system in R3 as the 3-linear
rational quaternionic map to the imaginary quaternions

F : (RP 1)3 → ImĤ ∼= R̂3, F = UW−1, U,W ∈ H[s, t, u],

such that: all three partial derivatives ∂sF , ∂tF , ∂uF are mutually orthogonal
and the Jacobian Jac(F ) is non-zero at least in one point.

Here R̂3 = R3 ∪ {∞} is treated as 3-dimensional sphere S3 and F is a
smooth map between differential manifolds. Therefore, any differential
properties of F at the infinite point ∞ should be computed for the map
Inv10 ◦F at the origin.
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Definition 3.7.2. Two DC systems F and F ′ are Möbius equivalent if and
only if F ′ = µ ◦ F ◦ ρ, where µ is a Möbius transformation of R̂3 and ρ is an
algebraic automorphism of (RP 1)3 generated by projective transformations of
lines RP 1 and their permutation.

This section aims to derive the QB representation of the map F .
Define a Dupin cyclidic (DC) cube associated to the DC system F as a
map D : [0, 1]3 → H2 such that π ◦D = F is given in the Bézier form

D(s, t, u) =

(
U(s, t, u)
W (s, t, u)

)
=

1∑
i,j,k=0

(
uijk
wijk

)
b1i (s)b

1
j (t)b

1
k(u), (3.7.1)

where b10(t) = 1 − t, b11(t) = t are linear Bernstein polynomials. Here
homogeneous control points (uijk, wijk) = (U(i, j, k),W (i, j, k)) define
control points pijk = uijkw

−1
ijk in Im H if uijk ̸= 0 (pijk = ∞ otherwise),

i, j, k ∈ {0, 1}. Alternative indexing of control points also will be used
p0 = p000, p1 = p100, p2 = p010, . . . , p7 = p111.

It is remakable that all the 8 control points of the cube are on a sphere
or a plane. The existence of the point p7 on the sphere or plane can be
derived using Miquel’s theorem on a triangle [40].

Theorem 3.7.3 (Miquel’s Theorem). The 3 circles, each defined by a vertex
of the triangle and two points on the adjacent sides (Figure 3.5), intersect in
one point, called the Miquel point.

To construct a DC cube based on 3 given faces, we apply inversion
Inv1p0 at p0 so that all 7 control points are coplanar and the other one on
infinity. We compute the Miquel point M on the triangle q1q2q4 with
side points q3, q5, q6, where qi = Inv1p0(pi), and apply the same inversion
to obtain p7 = Inv1p0(M).

Lemma 3.7.4 (Miquel point). Let p1, p2, p3 ∈ ImH be three generic points.
Let di = ∥pj − pk∥2 and let qi be a point on a side of the triangle p1p2p3 such
that qi = λ′ipj + λipk, where i, j, k ∈ {1, 2, 3} pairwise distinct and λi ∈ R,
λ′i = 1− λi. Then the Miquel point M , expressed in baricentric coordinates, is
given by

M =

∑3
i=1 piαi∑3
i=1 αi

,
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Figure 3.4: Four steps to build a general Dupin cyclidic cube.

where 
α1 = −λ1λ′1d21 + λ1λ2d1d2 + λ′1λ

′
3d1d3,

α2 = λ′1λ
′
2d1d2 − λ2λ

′
2d

2
2 + λ2λ3d2d3,

α3 = λ1λ3d1d3 + λ′2λ
′
3d2d3 − λ3λ

′
3d

2
3.

Proof. Up to Euclidean similarities, we assume p1 = 0, p2 = i, p3 =
ki +mj, where k,m ∈ R. Then d1 = m2 + (k − 1)2, d2 = k2 +m2 and
d3 = 1. We have the real symbolic cross-ratios

cr(p1, q2, q3,M) =
λ′2HM

λ′22 m
2 + (λ′2k − λ3)2

,

cr(p2, q1, q3,M) =
λ1HM

λ21m
2 + (λ1k + λ′1 − λ3)2

,

whereHM = (λ1λ3+λ
′
2λ

′
3)d2−(2λ1k+λ

′
1−λ3)λ3. From Proposition 3.1.1

and Theorem 3.7.3, it follows that the formula for M defines the Miquel
point. □
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Figure 3.5: Miquel point.

Lemma 3.7.5. A DC cube can be uniquely built from the compatible DC
patches on its three adjacent faces, i.e., when their parametrizations on common
arcs coincide.

Proof. Farin points (see Remark 3.3.2) on opposite boundary arcs
of a DC patch P (s, t) are related according to Remark 3.4.2. Their
positions visualize reparametrizations in two directions that do not
change the surface and boundaries of the patch. Suppose we have
bilinear QB parametrizations of three faces of a DC cube D incident
with p0 that are compatible on common edges. This means that their
Farin points D(1/2, 0, 0), D(0, 1/2, 0), and D(0, 0, 1/2) are compatible
on the corresponding edges. They uniquely determine 6 other Farin
points on opposite edges of these initial three DC patches, e.g., the point
D(1/2, 0, 0) determines two others: D(1/2, 1, 0) and D(1/2, 0, 1). Then
we compute the Miquel point p7 and add three new DC patches, which
have already been prescribed Farin points on the couples of old edges so
that their parametrizations are uniquely defined. Are they compatible
along the last three edges incident with p7? The answer is positive and
follows directly from Miquel Theorem. □

With a similar approach as in the bivariate case, the following
derivations of the homogeneous representations of a DC cubes use
one corner point on infinity first, and then we apply an appropriate
inversion to derive the QB formula for the general case.
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(a) Initial data for a DC cube with one corner point on infinity.

(b) Three compatible faces of a DC cube
with a common intersection point on
infinity.

(c) The resulting 6 faces of the
DC cube from 3 compatible
faces.

Figure 3.6: DC cube construction steps with one control point on infinity.

Theorem 3.7.6. Let a DC cube be defined by 8 corner points p0 = ∞,
p1, p2, p4 ∈ ImH, p3, p5, p6 on the lines (p1p2), (p1p4), (p2p4) respectively,
with the associated Miquel point p7 and an orthonormal frame {v1, v2, v3 =
v1v2} ⊂ ImH at p0. Then, we can parametrize this DC cube using the
trivariate QB parametrization with the following homogeneous control points:(
1 −p1v1 −p2v2 p3(p1 − p2)v3 −p4v3 p5(p4 − p1)v2 p6(p2 − p4)v1 p7w7

0 −v1 −v2 (p1 − p2)v3 −v3 (p4 − p1)v2 (p2 − p4)v1 w7

)
,
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where w7 has the following equivalent expressions

w7 = (p7 − p1)
−1(p4 − p1)(p3 − p5)(p1 − p2) (3.7.2)

= (p7 − p2)
−1(p1 − p2)(p6 − p3)(p2 − p4) (3.7.3)

= (p7 − p4)
−1(p2 − p4)(p5 − p6)(p4 − p1). (3.7.4)

Proof. Let f0123, f0415 and f0246 be the initial three faces of the DC cube
meeting at p0 = ∞; see Figure 3.6(b). Using Formula (3.4.3), we obtain
the presented formula for wi, i = 0, . . . , 6. Note that the frames at p1, p2,
and p4 for the DC cube are the same. On the face f4567, we compute the
weights using Formula (3.4.4). This gives

w′
4 = 1, w′

5 = (p5 − p4)
−1v1, w′

6 = (p6 − p4)
−1v2,

w′
7 = (p7 − p4)

−1(p6 − p4)
−1(p6 − p5)(p5 − p4)

−1v3.

To get the compatibility at p4, we need to multiply such weights with
−v3. This gives

w′′
4 = −v3, w′′

5 = (p5 − p4)
−1v2, w′′

6 = −(p6 − p4)
−1v1,

w′′
7 = (p7 − p4)

−1(p6 − p4)
−1(p6 − p5)(p5 − p4)

−1.

To get the compatibility at p5 and p6, we multiply w′′
5 by λ1 = (p4 −

p1)(p5 − p4) and w′′
6 by λ2 = −(p2 − p4)(p6 − p4). Note that λ1 and λ2

are real because the points p1, p4, p5 and similarly p2, p4, p6 are collinear.
Hence, a reparametrization of the face f4567 using w′′

4 = w4, λ1w′′
5 = w5,

λ2w
′′
6 = w6 and λ1λ2w

′′
7 = w7, which is the compatible weight at p7.

In the product λ1λ2w′′
7 , the factors p5 − p4 and p6 − p4 of λ1 and λ2

will be eliminated, giving the formula (3.7.4) for w7. By studying the
compatibility similarly on the faces f1357 and f2637, we obtain alternative
formulas for w7 in (3.7.2) and (3.7.3). It follows from the compatibility
result in Lemma 3.7.5 that the 3 found weights have to coincide, giving
a compatible parametrization of the DC cube. □

Corollary 3.7.7. The Miquel point p7 can be expressed as

p7 = p1 +A(A−B)−1(p2 − p1) (3.7.5)

= p2 +B(B − C)−1(p4 − p2) (3.7.6)

= p4 + C(C −A)−1(p1 − p4), (3.7.7)

where A, B, C are the right-quaternionic factors of w7, namely

A = (p4 − p1)(p3 − p5)(p1 − p2),

B = (p1 − p2)(p6 − p3)(p2 − p4),

C = (p2 − p4)(p5 − p6)(p4 − p1).
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Proof. From (3.7.2) and (3.7.3), we have

w7 = (p7 − p1)
−1A = (p7 − p2)

−1B.

This implies

BA−1 = (p7 − p2)(p7 − p1)
−1

= (p7 − p1 + p1 − p2)(p7 − p1)
−1

= 1 + (p1 − p2)(p7 − p1)
−1.

Hence (p7 − p1)
−1 = (p1 − p2)

−1(BA−1 − 1) = (p1 − p2)
−1(B − A)A−1,

i.e, p7 − p1 = A(B − A)−1(p1 − p2) = A(A − B)−1(p2 − p1). We obtain
(3.7.5) by adding p1 on both sides. The expressions (3.7.6) and (3.7.7)
can be obtained similarly by considering other pairs of expressions for
w7. □

We apply inversions to relate the formula in Theorem 3.7.6 to a
general formula for DC cubes with finite control points.

Theorem 3.7.8. Let a DC cube be defined by 8 cospherical corner points
p0, p1, p2, p4 ∈ ImH, p3 on the circle (p0p1p2), p5 on the circle (p0p1p4),
p6 on the circle (p0p2p4), the associated Miquel point p7, and an orthonormal
frame {v1, v2, v3 = v1v2} ⊂ ImH at p0; see Figure 3.4. Let qi = (pi − p0)

−1

for i = 1, . . . , 7. Then, this cube can be parametrized using the homogeneous
control points (piwi, wi), i = 0, . . . , 7, where

w0 = 1,

w1 = q1v1, w2 = q2v2, w4 = q4v3

w3 = q3 (q1 − q2) v3, w5 = q5 (q4 − q1) v2, w6 = q6 (q2 − q4) v1,

w7 = −q7(q7 − q1)
−1(q4 − q1)(q3 − q5)(q1 − q2)

= −q7(q7 − q2)
−1(q1 − q2)(q6 − q3)(q2 − q4)

= −q7(q7 − q4)
−1(q2 − q4)(q5 − q6)(q4 − q1).

Proof. This is equivalent to the formula in Theorem 3.7.6 using
inversions as addressed in Remark 3.2.1. For instance, let us consider
the derivation of w7. We apply first Inv1p0 and all the control points are
transformed to p′0 = ∞ and p′i = p0 − qi, i = 1, . . . , 7. By Theorem 3.7.6,
we have w′

7 = (q7 − q1)
−1(q4 − q1)(q3 − q5)(q1 − q2). Hence, by applying

the same inversion, we obtain w7 = (p′7−p0)w′
7 = −q7w′

7. This coincides
with the first displayed formula for w7. The other equivalent formulas
follow from the identities (3.7.2)–(3.7.4). □
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We can derive the formula for the last control point p7 from
Corollary 3.7.7 by applying inversions.

Corollary 3.7.9. With the notations in Theorem 3.7.8, the 8th control point
p7 of the DC cube, analogue of the Miquel point on the plane, can be expressed
as

p7 = p0 + [q1 +A′(A′ −B′)−1(q2 − q1)]
−1, (3.7.8)

where

A′ = (q4 − q1)(q3 − q5)(q1 − q2),

B′ = (q1 − q2)(q6 − q3)(q2 − q4).

Remark 3.7.10. Moving Farin points on three edges incident with p0
will define the reparametrization of the DC cube, which is equivalent to
the multiplication of all 8 homogeneous control points by real nonzero
multipliers in the following order: 1, λ1, λ2, λ1λ2, λ3, λ1λ3, λ2λ3,
λ1λ2λ3. This process will be called interior reparametrization with
factor (λ1, λ2, λ3) of the DC cube or system.

3.8 Singularities of Dupin Cyclidic Systems

Since circles and straight lines are Möbius equivalent, they will both be
called M-circles for the rest of this chapter. Similarly, both spheres and
planes will be called M-spheres.

Any DC system F defines three families of surfaces in R3: namely s-
surfaces Fs∗∗ = {F (s, t, u) | t, u ∈ RP 1}, t-surfaces F∗t∗, and u-surfaces
F∗∗u, defined in similar way.

Definition 3.8.1. The singular locus Sing(F ) ⊂ R̂3 of DC system F is
the image of all points where its Jacobian vanishes. Define Singi(F ) ⊂ R3,
i = 1, 2, 3, as images of sets where ∂sF = 0, ∂tF = 0, ∂uF = 0, respectively.

Lemma 3.8.2. Singular sets of a DC system F have the following properties:

(i) if p ∈ Singi(F ), i = 1, 2, 3, then F−1(p) contains a line in the
corresponding direction of (RP 1)3;
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(ii) Sing(F ) = Sing1(F ) ∪ Sing2(F ) ∪ Sing3(F );

(iii) Sing1(F ) ⊂ Fs∗∗, Sing2(F ) ⊂ F∗t∗, Sing3(F ) ⊂ F∗∗u.

Proof. (i) follows from the linearity of the quaternionic formula when
restricted to a line in (RP 1)3. (ii) follows from the orthogonality of
partial derivatives. Finally, item (iii) follows from (i). □

Remark 3.8.3. A DC cube D can be sliced into families of DC patches
Ds∗∗, D∗t∗, D∗∗u; e.g., for a particular value of s the patch P = Ds∗∗
will have control points (usij , wsij) = (U(s, i, j),W (s, i, j)), i, j = 0, 1,
and similarly in t- and u-directions. Then, Lemma 3.4.5 can be used to
detect when a slice patch degenerates to an M-sphere in three directions:
σ1(s) = 0, σ2(t) = 0, σ3(u) = 0, where

σ1(s) = S
(
us00, ws11

)
+ S

(
us11, ws00

)
,

σ2(t) = S
(
u0t0, w1t1

)
+ S

(
u1t1, w0t0

)
,

σ3(u) = S
(
u00u, w11u

)
+ S

(
u11u, w00u

)
.

We will show in later sections that the singular locus of a DC system
is a collection of 3 curves called focal bicircular quartics, which are
generalizations of focal conics on orthogonal planes.

3.9 Focal Bicircular Quartics

A bicircular quartic is a real plane algebraic curve of degree 4, that
doubly covers the circular points (0 : 1 : ±i) at infinity, where i is the
imaginary unit. Their implicit equation has the form

λ(x2 + y2)2 + L(x, y)(x2 + y2) +Q(x, y) = 0, (3.9.1)

where λ is a constant, L is a linear form and Q is a quadratic polynomial
in x and y. The curve (3.9.1) is a circular cubic if λ = 0 and a conic if
λ = L = 0.

The following classical result will be useful to understand the
singularities of DC systems.

Theorem 3.9.1. A bicircular quartic has 4 mutually orthogonal M-circles of
symmetry, and at least two of these M-circles are real. If the curve has one oval,
then the other two circles are complex conjugated circles. If the curve has two
ovals, three of the circles are real and the other one is imaginary.
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Proof. This is proved in [27, p. 304]. □

The two real M-circles of symmetry of a bicircular quartic can be
brought by Möbius transformations to the x-axis and y-axis, and the
equation of the curve reduced to the canonical symmetric form

Bδ : (x2+y2)2−2Kx2+2My2+δ = 0, δ = ±1, K,M ∈ R. (3.9.2)

For δ = −1 (resp. δ = +1), this curve Bδ has one oval (resp. two ovals).

Definition 3.9.2. Three symmetric bicircular quartics on the orthogonal
coordinate planes

Bδ
1 : z = 0, (x2 + y2)2 − 2Kx2 + 2My2 + δ = 0, (3.9.3)

Bδ
2 : y = 0, (x2 + z2)2 − 2Mz2 + 2Nx2 + δ = 0, (3.9.4)

Bδ
3 : x = 0, (y2 + z2)2 − 2Ny2 + 2Kz2 + δ = 0, (3.9.5)

are called focal bicircular quartics if the coefficients of their equations satisfy

KM +MN +NK + δ = 0. (3.9.6)

Moreover, for each i = 1, 2, 3, the intersection points between the plane of Bδ
i

with the other two focal curves are called focal points of Bδ
i .

In order to have simple expressions for focal points, we change
parameters

K = −cδ + c−1

2
, N = −aδ + a−1

2
, M = −bδ + b−1

2
, δ = ±1,

(3.9.7)
where b = −(a + c)(1 + acδ) is computed using (3.9.6). The Möbius
canonical forms of 1-oval bicircular quartics (δ = −1) are defined by
a, c > 0 and ac > 1 with a clear geometric meaning: the curve B−

1 has 4
real focal points, two of them on the x-axis and the other two on y-axis.
Similarly, for B−

2 and B−
3 of different coordinate axes. The set of focal

points of B−
1 and B−

2 are

Φ−
1 = {±i/

√
a,±j

√
a}, Φ−

2 = {±i
√
c,±k/

√
c}. (3.9.8)

The focal points of B−
3 can also be computed symmetrically. The

condition ac > 1 keeps the focal points of B−
1 inside the oval. Note

that the other two focal curves B−
2 and B−

3 are all 1-oval curves in this
case; see the left side of Figure 3.7. On the other hand, the Möbius
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canonical forms of 2-oval bicircular quartics (δ = +1) are defined by
c < 0 and a > |c| > 1/a with the following geometric meaning: the 4
real focal points of B+

1 and B+
2 are lying on the same x-axis:

Φ+
1 = {±i/

√
a,±i

√
a}, Φ+

2 = {±i
√
−c,±i/

√
−c}. (3.9.9)

The curve B+
3 has no real points in this case. The condition a > |c| > 1/a

restricts B+
1 to a curve with enclosed ovals and B+

2 to a curve with two
separated ovals, see the right side of Figure 3.7.

Figure 3.7: Focal symmetric bicircular quartics are depicted in quarters
on the first octant of the Euclidean space: 1-oval curves on the left and
2-oval curves on the right.

3.10 Spherical Dupin Cyclidic Systems

A DC system is called spherical or of type S if at least one of its families
of surfaces consists of M-spheres. It is useful to understand how the
coordinate lines on the M-spheres behave.

Using M-circles as coordinate lines, there are two classical orthogonal
coordinates on the plane: Cartesian and polar systems. The Cartesian
coordinates have a pole (or singularity) on infinity, and the polar
coordinate has two poles (one on infinity). More examples can be
obtained by applying Möbius transformations. We call those two
types of coordinates 1-polar and 2-polar coordinates on an M-sphere,
depending on the number of poles.

Lemma 3.10.1. A 2-dimensional DC system is Möbius equivalent to a 1-polar
or a 2-polar coordinate system.
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Proof. Consider one family of coordinate lines that are M-circles on an
M-sphere. Depending on their intersections, there are 3 possibilities to
position 2 M-circles from the family. Under Möbius transformations, we
map the case of 2 non-intersecting M-circles to 2 concentric circles, 2
intersecting M-circles to 2 intersecting lines, and 2 touching M-circles to
2 parallel lines on a plane. From the orthogonality condition, the other
coordinate lines are uniquely constructed to fill R2; see Figure 3.8. □

(a) 2 concentric circles
(2-polar)

(b) 2 intersecting lines
(2-polar)

(c) 2 parallel lines (1-
polar)

Figure 3.8: The 2 initial M-circles are in bold, followed by solid M-circles
to fulfill the family. The dotted M-circles form the orthogonal family.

Example 3.10.2. Assume that on the xy-plane, the x-axis and y-axis are
already coordinate lines of a 2-dimensional DC system. We choose the
control points p0 = 0, p1 = i, p2 = j, and the fourth control point p3 is
on the circle define by those points, namely

p3 =
1 + a

1 + a2
i+

1− a

1 + a2
j, a ∈ R.

The corresponding weights are computed using Theorem 3.4.4, giving
us the homogeneous control points(

ui
wi

)
i=0,...,3

=

(
0 i j i+ j
1 1 1 1− ak

)
. (3.10.1)

The associated QB parametrization is F (s, t) = (si + tj)(1 − astk)−1.
This construction is illustrated in Figure 3.9(a). The map F is a double
covering of the xy-plane, where the two preimages are related by
the involution (s, t) 7→ (1/as,−1/at) on (RP 1)2. Note that a = 0
corresponds to the Cartesian coordinate system, and its inverse is shown
in Figure 3.9(b), and defined by the homogeneous control points(

ui
wi

)
i=0,...,3

=

(
0 i 0 i
1 1 1 1 + k

)
. (3.10.2)
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To compute the weights of such a representation, one can apply
Theorem 3.4.4(ii) for the permuted indices (0, 1, 2, 3) 7→ (1, 0, 3, 2) of
the control points.

(a) 2-polar coordinate system
on the xy-plane with a = −1/2
in Example 3.10.2.

(b) 1-polar coordinate system,
inverse of the Cartesian co-
ordinate system at a = 0.

Figure 3.9: Construction of a 2-dimensional DC system using control
points.

There are two natural ways to construct a spherical DC system
from a 2-dimensional DC system, namely the axial and offset based
constructions on the M-sphere. The axial case considers the rotation of a
2-dimensional DC system on a plane about a (straight) line on that plane.
Assume that a DC patch on the plane is defined by homogeneous control
points (ui, wi), i = 0, 1, 2, 3. Then we can build an axial DC cube by left-
multiplying the homogeneous control points with the direction of the
line. More precisely, if n is the direction of the line, then the additional
control points are given by (ui+4, wi+4) = (nui, nwi), i = 0, 1, 2, 3.

The offset based construction applies to any Dupin cyclides as we
will describe in Section 3.11. A DC cube is naturally constructed from a
DC patch by taking offsets along normal directions at a fixed distance.
The control points of the cube is obtained by offsetting the vertices of
the DC patch and using the same weights as described in Lemma 3.11.1.

Theorem 3.10.3. Any spherical DC system is Möbius equivalent to a DC
system obtained from an axial or offset construction based on an M-sphere.
They are classified as following:
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(S1) Offset construction based on a sphere. There is a one parameter family of
Möbius classes where the singular locus is 2 intersecting lines, and two
limit cases where the singular locus is a double line.

(S2) Offset construction based on a plane. Four cases distinguished by the
singular locus: 2 parallel lines, a double line, a line or just a point.

(S3) Axial construction from a 2-polar system. There is a one parameter family
of Möbius classes where the singular locus consists of a double line and
2 circles. Two limit cases where the singular locus is a double line or a
double line and a double circle.

(S4) Axial construction from a 1-polar system. Two cases distinguished by the
singular locus, a double line or a double line and a double circle.

Proof. Depending on the intersection of the 2 M-spheres from the same
family, a Möbius transformation in R3 maps them to either concentric
spheres, intersecting planes, or parallel planes. The unique choice of
positioning M-circles orthogonal to the given 2 M-spheres (as in the
earlier 2-dimensional construction) clarifies the reduction to axial or
offset based construction. The classification is based on the choice of
1-polar or 2-polar coordinate system on the considered M-sphere.

We parametrize generic 2-polar coordinates on the unit sphere using
one parameter a. The offset based construction has homogeneous
representation(
i i+ j i+ k a+ i+ j+ k −i −i− j −i− k −a− i− j− k
1 1 + k 1− j 1− ai− j+ k 1 1 + k 1− j 1− ai− j+ k

)
.

The system is indeed spherical, since the spherical condition σ3(u) (see
Remark 3.8.3 is identically zero. For an arbitrary value of a, we obtain
two intersecting lines as singularities of the system, see Figure 3.10(a).
The cases a = 1 and a = 0 correspond to the classical spherical system
and the 1-polar system respectively. They cover the case (S1).

One can introduce similarly the other choices of 1-polar or 2-polar
system and the offset or axial based construction, and obtained the
properties of singularities of the system. Those systems are described
by (S2), (S3) and (S4) and illustrated by Figures 3.11, 3.12 and 3.13. For
example, in the case of offset of the 1-polar system defined by (3.10.2),
the homogeneous control points are given by(

0 i 0 i k i+ k k −1 + i+ k

1 1 1 1 + k 1 1 1 1 + k

)
. (3.10.3)
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This is illustrated by Figure 3.11(c).

□

(a) Offset of a generic
2-polar system on a
sphere.

(b) The standard spher-
ical coordinate system
with opposite poles.

(c) Offset of a 1-polar
system on a sphere.

Figure 3.10: Spherical DC systems and their singularities (in red) based
on sphere offsets.

(a) Offset of a generic 2-
polar system.

(b) Offset of the 2-polar
system with one pole at
infinity.

(c) Offset of a 1-polar
system.

Figure 3.11: Spherical DC systems and their singular curves based on
plane offsets.
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(a) Rotating a 2-polar system on a
plane about a generic axis on the
plane. This represents all Möbius
classes of all such systems.

(b) Rotating a 2-polar system on a
plane about an axis on the plane,
where the two poles are placed
symmetrically with respect to the
axis.

Figure 3.12: Spherical DC systems obtained by axial-based construction
of a 2-polar system on a plane. Their singularities are concentric circles
and a double line.

(a) Rotating a 1-polar system
about an axis not passing
through the pole.

(b) Rotating a 1-polar system
about an axis passing through
the pole.

Figure 3.13: Spherical DC systems obtained by axial based construction
of a 1-polar system on a plane. Their singularities are a double circle
and a double line. The circle degenerates to a point in the case (b).

3.11 Offset Dupin Cyclidic Systems

A DC system is called offset DC system or of type O if it is Möbius
equivalent to the DC system obtained by offsetting of a Dupin cyclide.
To construct an offset cube from a Dupin cyclide, we use the following
result.
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Lemma 3.11.1. Let a Dupin cyclide be defined by 4 control points pi, i =
0, 1, 2, 3, and orthogonal tangent vectors v1 and v2 at p0. Let wi be the
corresponding weight computed using Theorem 3.4.4. The normal at p0 is
n0 = v1v2. The normal at pi is ni = win0w

−1
i , i = 1, 2, 3. The offset at a

fixed distance d is defined by 4 offsetted control points pi+4 = pi − dni and
the same weights wi+4 = wi, for each i = 0, 1, 2, 3. They naturally define DC
cubes/systems.

Proof. See e.g. [59, Corollary 6.2]. □

Lemma 3.11.2. A DC system is an offset DC system if and only if at least one
of its surfaces degenerates to a point.

Proof. Note that one family of coordinate lines of a system, obtained
by offsetting a Dupin cyclide, is composed of straight lines that meet at
infinity. The infinity is, of course, a degenerate coordinate surface of this
DC system. Conversely, if one coordinate surface degenerates to one
point, then all coordinate lines of the orthogonal family pass through
this point. The inversion with the center at that point will map these
coordinate lines to straight lines, which is the characteristic property of
an offset DC system. □

Theorem 3.11.3. Any non-spherical offset DC system has exactly 2 M-spheres
in different families. They can be reduced by Möbius transformations to the
canonical form where the singular locus is one of the following:

(O1) focal ellipse and hyperbola on orthogonal planes;

(O2) focal parabolas on orthogonal planes.

Proof. It is enough to investigate the properties of the offset cube from
a generic Dupin cyclide. A quartic Dupin cyclide, up to Euclidean
similarities and offsetting, can be reduced to a 2-horn cyclide symmetric
with respect to the planes z = 0 and y = 0. There is one parameter
family of such Dupin cyclides and can be defined by the control points
p0 = −i, p1 = hi, p2 = −hi, p3 = i, h ̸= 0 and tangent vectors v1 = j,
v2 = k at p0. We build the offset cube based on the offset of this Dupin
cyclide at a distance d = 1. A homogeneous representation of this cube
is given by(

ui
wi

)
i=0...7

=

(
−i hj hk h −2i (h+ 1)j (h− 1)k 0
1 −k −j −hi 1 −k −j −hi

)
.
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The implicit equation in the u-direction is given by

(x2 + y2 + z2 + h− u2)2 − ((1 + h)x− u(1− h))2 − 4hy2 = 0.

This is indeed a Dupin cyclide: by substituting a = (1 + h)/2, f =
(1 − h)/2 and r = u, the quartic Dupin cyclide (see [15]) is obtained.
Using Remark 3.8.3, the spherical conditions in 3 directions are

σ1(s) = (1− h)(1− s)s, σ2(t) = −(1 + h)(1− t)t, σ3(u) = 2h.

Each of the solutions s = 0 and s = 1 of σ1(s) = 0 gives the plane y = 0.
Similarly, each of the solutions t = 0 and t = 1 of σ2(t) = 0 gives the
plane z = 0. Of course, in the offset direction, we have σ3(u) = h ̸= 0.
However, the family degenerates to the single point P = ∞.

The singular curves of the offset DC system are obtained by
intersecting the coordinate surfaces in the non-offset directions (which
are circular cones) with the coordinate planes:

y = x2/

(
1− h

2

)2

− z2/h− 1 = 0, z = x2/

(
1 + h

2

)2

+ y2/h− 1 = 0.

Generically, they are focal ellipse/hyperbola. This is the case (O1). The
limit cases h = ±1 emphasis that the basis Dupin cyclide is a torus. The
offset DC system is spherical since σ1 or σ2 is identically zero.

We consider the same approach for parabolic cyclides for the case
(O2). Parabolic Dupin cyclides are equivalent under Möbius and offset
transformations. Consider the one defined by the control points p0 = ∞,
p1 = i, p2 = −3i and p3 = i, and v1 = j, v2 = k. A homogeneous
representation of the offset cube (defined by the other offset layer at
d = 1) is(

ui
wi

)
i=0...7

=

(
1 −k −3j −4i 1 −2k −2j 0
0 −j −k −4 0 −j −k −4

)
.

The implicit equation in the u direction is indeed a parabolic Dupin
cyclide

z2(x+ 3− u) + y2(x− 1− u) + (x+ 3− u)(x− 1− u)(x− 1 + u) = 0.

The spherical conditions 3 directions are computed as

σ1(s) = −(1− s)s, σ2(t) = (1− t)t, σ3(u) = −4.
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The two solutions of σ1(s) = 0 (resp. σ2(t) = 0) give the same plane
y = 0 (resp. z = 0). The singular curves of the offset DC system are two
focal parabolas defined by

y = z2 − 8(x+ 1) = 0,

z = y2 + 8(x− 1) = 0.

Note that in addition to the offset based construction on M-spheres, the
offsets of a circular cone or cylinder form a spherical DC system. □

Figure 3.14: Focal conics, ellipse/hyperbola on the left and two
parabolas on the right, as singular locus of an offset DC system.

3.12 Dupin Cyclidic Systems of Type A

This section considers a big class of DC systems with 3 real M-spheres in
different families, which we refer as DC systems of of type A. These 3 M-
spheres are necessarily symmetry M-spheres of the DC system and are
mutually orthogonal. Since their intersection contains exactly 2 points,
two cases can appear: at least one of the intersection points is regular,
and both intersecting points are singularities of the DC system. Each
of these cases will be addressed in the following Theorems 3.12.2 and
3.12.4.

Lemma 3.12.1. All DC systems symmetric w.r.t. the planes z = 0, y = 0 and
x = 0, and have a regular point at the origin or on infinity, can be parametrized
using the homogeneous control points(

0 i j i+ j k i+ k j+ k d+ i+ j+ k
1 1 1 1− ak 1 1− cj 1− bi 1− bi− cj− ak

)
, (3.12.1)
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where a, b, c ∈ R and d = a+ b+ c. The corresponding parametrization is

F (s, t, u) = (dstu+ si+ tj+ uk)(1− btui− csuj− astk)−1. (3.12.2)

Proof. The construction of a DC cube in this canonical position is based
on the choice of 2-dimensional DC systems on each plane. Hence,
we repeat the general construction in Example 3.10.2, with different
parameters a, b, c on each plane; see the second step of DC cube
construction in Figure 3.4. This gives all homogeneous control points
except (p7w7, w7), where the computation of the Miquel point is required.
From Corollary 3.7.9, we have

p7 =
1 + a− c+ bd

1 + a2 + b2 + c2
i+

1− a+ b+ cd

1 + a2 + b2 + c2
j+

1− b+ c+ ad

1 + a2 + b2 + c2
k.

Next, from Theorem 3.7.8 we obtain w7 = 1 − bi − cj − ak. The
product p7w7 reduces to the simple expression p7w7 = d + i + j + k.
The parametrization F (s, t, u) is obtained by applying the formula
(3.7.1) to the obtained homogeneous control points. The regularity of
those systems at the origin or on infinity follows from Theorem 3.12.2
below. □

Theorem 3.12.2. Any non-spherical DC system with 3 M-spheres of sym-
metry and characterized by the existence of a regular point on the intersection
of those M-spheres, can be reduced to a canonical form, where the singular locus
is one of the following:

(A1) three focal 1-oval bicircular quartics on orthogonal planes,

(A2) two focal 2-oval bicircular quartics on orthogonal planes,

(A3) focal ellipse and hyperbola on orthogonal planes.

Proof. It is enough to characterize all cases of singularities of the
canonical forms defined in Lemma 3.12.1. The quadratic polynomials
for spherical conditions in s, t, u-directions by Remark 3.8.3 are

σ1(s) = s(a+ c), σ2(t) = t(a+ b), σ3(u) = u(b+ c). (3.12.3)

Hence, a degeneration to a spherical DC system appears in the case
a + b = 0, a + c = 0, or b + c = 0. The roots s = 0, t = 0 and u = 0
give the degeneration with the coordinate surfaces to x = 0, y = 0 and
z = 0 respectively. The singular locus of the DC system is obtained by
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intersecting the degenerated planes respectively with the surfaces in
s, t, u-directions; see Lemma 3.8.2. This gives a collection of 3 bicircular
quartics:

BQ1 : z = abc(x2 + y2)2 + (ab− cd)x2 + (bd− ac)y2 − d = 0, (3.12.4)

BQ2 : y = abc(x2 + z2)2 + (ad− bc)x2 + (ac− bd)z2 − d = 0, (3.12.5)

BQ3 : x = abc(y2 + z2)2 + (bc− ad)y2 + (cd− ab)z2 − d = 0, (3.12.6)

where d = a + b + c. If abc = 0, then we have focal ellipse and
hyperbola on two planes and a conic without real points on the third
plane, depending on the signs of the non-zero parameters. On the other
hand, if d = 0, then all the bicircular quartics have a singularity at the
origin. By applying the unit inversion at the origin, we obtain focal
ellipse and hyperbola on orthogonal planes and a conic without real
points on the third plane depending on the signs of the parameters
a, b, c.

Assume now that abc ̸= 0, d ̸= 0 and let δ = d/abc. We further apply
scaling by a parameter λ on (x, y, z). This is equivalent to scaling the
parameters (a, b, c) by λ2. By an appropriate choice of λ, we can further
assume that δ = ±1. The equations of the bicircular quartics accordingly
reduce to

BQ1 : z = (x2 + y2)2 + (δc+ 1/c)x2 − (δb+ 1/b)y2 + δ = 0, (3.12.7)

BQ2 : y = (x2 + z2)2 − (δa+ 1/a)x2 + (δb+ 1/b)z2 + δ = 0, (3.12.8)

BQ3 : x = (y2 + z2)2 + (δa+ 1/a)y2 − (δc+ 1/c)z2 + δ = 0. (3.12.9)

Those curves coincide with the focal bicircular quartics in Definition 3.9.2
with the coefficients change in (3.9.7). The singular locus is then three
focal 1-oval bicircular quartics when δ = −1; and three focal 2-oval
bicircular quartics when δ = +1 and one of the curves has no real points;
see Figure 3.15. □
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Figure 3.15: Singularities of a DC system with three planes of symmetry.
Three focal 1-oval bicircular quartics on the left; and three focal 2-oval
bicircular quartics on the right, where one of the curves has no real
points.

Remark 3.12.3. With the DC cube defined by F (s, t, u) in (3.12.2), each
of the symmetry planes z = 0, y = 0 and x = 0 is covered twice by two
2-polar systems by evaluating the parameters s, t, u at 0 and infinity.
Additionally, the DC systems in Theorem 3.12.2 with focal ellipse and
hyperbola cases as their singularities are not offset DC systems. This
is because the information from σ1(s), σ2(t), σ3(u) in (3.12.3) give only
degeneration to planes, but not a degeneration to points.

Next, consider the case when both points in the intersection of three
M-spheres in the given DC system are singular points.

Theorem 3.12.4. Any non-spherical DC system with 3 M-spheres of sym-
metry, where the 2 intersection points of those M-spheres are singular, can be
reduced to the canonical form (A4) with two intersecting lines in the singular
locus.

Proof. Since the system is non-spherical, both points are 1-polar
singularities on certain M-spheres. Hence, the given 3 M-spheres can be
reduced to 3 orthogonal planes with the cartesian coordinates on one
plane and 1-polar system on one other with the pole at the origin. This
combination of planar parameterizations already happened in one of
the spherical DC systems, namely in the offset case based on the 1-polar
plane.
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The homogeneous control points are defined as follows:(
0 i 0 i k i+ k k −1−a

1+a + i+ k

1 1 1 1 + k 1 1 1− 2a
1+a i 1− 2a

1+a i+ k

)
. (3.12.10)

If a = 0, then we have the offset case in Figure 3.16 on the left (cf. control
points in (3.10.3)). On the right side of the same figure, one can see the
deformed figure with some a > 0. There are 1-polar parametrizations
on the vertical symmetry planes with the same pole at the origin. The
exceptional feature of this DC system is that the parametrizations on
these faces are automatically compatible since they meet at just one
point. This is the source of unexpected degrees of freedom, namely the
parameter a.

Figure 3.16: The offset over the 1-polar plane and its deformation.

Under closer examination, one can detect two intersecting singular
straight lines that are Villarceau lines of the parabolic cyclides in
coordinate families, see Figure 3.17 □

Figure 3.17: Two singular Villarceau lines on a DC cube.
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3.13 Classification of Dupin Cyclidic Systems

In this section, the most general non-spherical DC system will be
constructed and its M-spherical surfaces will be detected. Let us note
that if we have two distinct M-spheres in the same family of surfaces,
the whole family contains only M-spheres (see Section 3.10). Therefore,
a non-spherical DC system can have M-spheres only in distinct families
and they are mutually orthogonal. The exact number of M-spheres is
restricted by the following lemma.

Lemma 3.13.1. Any DC system contains at least two M-spheres of symmetry.

Proof. One can always find a nonsingular point p0 in R3 where three
M-circles of the given DC systems intersect orthogonally. We assume the
system is non-spherical because spherical DC systems already contain
infinitely many M-spheres. Then, one can assume these three M-circles
are not mutually cospherical. After inversion at that point, they all go to
non-intersecting straight lines with mutually orthogonal directions i, j,
and k; see the left side of Figure 3.18. The corresponding DC cube can
be defined with the initial 4 control points:

p0 = ∞, p1 = 0, p2 = k, p4 = gi+ hj, g, h ∈ R.

Indeed, these lines now are not intersecting, and by scaling this
configuration of lines in R3 can be transformed to any other by
certain Möbius transformation. Then according to Theorem 3.4.4(i)
we introduce the following three points:

p3 = p1(1− c) + p2c, p6 = p2(1− a) + p4a, p5 = p4(1− b) + p1b,

and then find the Miquel point p7 and all homogeneous control points
by the algorithm described in Lemma 3.7.5:(
ui
wi

)
i=0,...,5

=

(
1 0 i ck −hi+ gj η(b− 1)j
0 −i −j 1 −k −h+ gk

)
,(

u6 u7
w6 w7

)
=

(
−h+ (ηa+ a− 1)i+ gk cgi+ chj+ η(b− 1)k

g + j+ hk (η + 1)(a− 1) + bη + c+ hi− gj

)
,

where η = g2 + h2. Then, after computation of spherical conditions
(3.4.6) in all three directions, we get three quadratic equations in a, b, c
with the following discriminants:

∆u =(η(1− b− a)− a+ 1)2 + 4ηb,

∆s =(η(1− b)− c)2 + 4g2c,

∆t =(ηa+ c+ a− 1)2 + 4h2(1− c).
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Figure 3.18: Left: canonical position of 3 inverted coordinate M-circles
meeting at a point. Right: 3 non-intersecting parabolic cylinders
separating the (a, b, c)-space into 4 regions.

These discriminants define three non-intersecting parabolic cylinders in
(a, b, c) space, see Figure 3.18. In fact, the cylinders are separated by the
3 regions:

h2/(η + 1) ⩽ a ⩽ η/(η + 1); 0 ⩽ b ⩽ h2/η; 0 ⩽ c ⩽ 1. (3.13.1)

The (a, b, c)-space is then separated by the 3 cylinders into 4 regions:
three insiders and one outside the cylinders. This shows that at least
two of the discriminants are positive. Hence, the DC system has at least
two M-spheres of symmetry. □

Since a DC system has at least two real M-spheres of symmetry,
starting with the two M-spheres, we clarify the separation of classes
in Lemma 3.13.1 by a concrete construction with control points as in
Section 3.12.

Theorem 3.13.2. Any non-spherical DC system is Möbius equivalent to one
of three cases: offset (O), type (A), and type (B) having the symmetries:

(O) two planes and one zero sphere of symmetry;

(A) three planes of symmetry;

(B) two planes and one imaginary sphere of symmetry.

The singular locus for a system of type (B) is composed of two focal 2-oval
bicircular quartics.
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Proof. We apply Möbius transformations such that the M-spheres are
just the planes z = 0 and y = 0. Hence, we choose the following control
points

p0 = 0, p1 = i, p2 = j, p4 = i+ k,

and the initial tangent vectors are v1 = i, v2 = j, v3 = k as usual. The
point p4 is a generic choice for the following reason: a coordinate M-
circle, passing through the origin and orthogonal to the plane z = 0,
is either the z-axis or a circle on the plane y = 0 with center on the
x-axis. The first case coincides with the construction in Section 3.12 up
to scaling, and we disregard this. In the second case, the circle has to
cross the diagonal on the plane y = 0. Hence, the choice of p4 up to
scaling.

In the second step of the DC cube construction, the points p3, p5, p6
are defined using cross-ratios (cf. Remark 3.3.2)

cr(p0, p1, p2, p3) =
1 + c

2
,

cr(p0, p1, p4, p5) = 2(a+ c) + 1,

cr(p0, p2, p4, p6) =
1− 2b

3
,

depending linearly on three parameters a, b, c. This specific choice of
parameters simplifies symbolic expressions of σi below. Indeed, the
homogeneous control points of the DC cube are(

ui
wi

)
i=0,...,5

=

(
0 i j i+ j 2k i+ k
1 1 1 1− ck 1 + j 1 + (2a+ 2c+ 1)j

)
,(

u6 u7
w6 w7

)
=

(
−1 + j+ 2k −(2a+ 2b+ 1) + i+ j+ k
1 + 2bi+ j 1 + (2b− c)i+ (2a+ 2c+ 1)j− ck

)
,

and the quadratic polynomials for sphere detection are simply

σ1(s) = −cs2 − 2as− 1, σ2(t) = −2t(b− c), σ3(u) = −2u(a+ b+ c).

The u-surfaces at the roots u = 0 and u = ∞ of σ3 degenerate to plane
z = 0. Similarly, the t-surfaces at the roots t = 0 and t = ∞ of σ2
degenerate to the plane y = 0. The different cases of the theorem are
obtained from the roots of σ1 being two real, double, or two complex
roots. The discriminant of σ1 is ∆ = a2 − c, which defines a parabolic
cylinder in the (a, b, c)-space.

If σ1 has two distinct real roots, then the s-surfaces at the roots
degenerate to one M-sphere. The DC system then has three M-spheres
in different directions. This belongs to the case (A).
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Assume that σ1 has a double root, which is necessarily s0 = −1/a
since c = a2. Then F (s0, t, u) = i/a for all t, u, which means that the
s0-surface degenerates to one point. This belongs to the offset case (O)
by Lemma 3.11.2.

Assume now that σ1 has complex non-real roots (∆ < 0). The s-
surfaces at the roots s = (−a ±

√
∆)/c degenerate to the imaginary

double sphere

S :
(
(x+ a/c)2 + y2 + z2 −∆/c2

)2
= 0. (3.13.2)

It is straightforward to check on the implicit equations that each surface
of the DC system is preserved by inversion w.r.t. this imaginary sphere:

InvS(p) = −a/c i−∆/c2 (p+ a/c i)−1, p = xi+ yj+ zk.

By intersecting the t-surfaces and u-surfaces with the planes z = 0
and y = 0, we obtain the two non-symmetric bicircular quartics as the
singularities of the system:

BQ′
1 : cb(a+ c)(x2 + y2)2 − c(a− b+ c)x(x2 + y2)

− (a2 + ab+ ac+ 2bc+ c)x2 + (ab+ ac+ b2 + c2)y2

− (a+ b− c)x+ a+ b = 0, (3.13.3)

BQ′
2 : c(4ab+ 4bc+ c)(x2 + z2)2 + 4c(b− c)x(x2 + z2)

− 2(2ab+ 2ac+ 4bc+ c)x2 − 2(2ab+ 2ac+ 2b2 + 2c2 + c)z2

− 4(b− c)x+ 4a+ 4b+ 1 = 0. (3.13.4)

The symmetry with respect to the imaginary sphere on the DC system
induces the symmetry of the curvesBQ′

1 andBQ′
2 w.r.t. to the imaginary

circles S ∩ {z = 0} and S ∩ {y = 0} respectively. This property implies,
by Theorem 3.9.1, that both BQ1 and BQ2 are 2-oval bicircular quartics.

Let us consider all possible degenerate cases. From the expression
of the spherical conditions σi = 0, i = 1, 2, 3, our construction covers
spherical DC systems when b−c = 0 or a+b+c = 0. Next, if c = 0, then
σ1(s) is linear, and the root gives a spherical degeneration in s-direction.
This belongs to the case (A). Lastly, the bicircular quartics might be
singular. The singularity condition for BQ′

1 (resp. BQ′
2) is obtained by

eliminating its variables x, z (resp. x, y) from the equations defined by
the partial derivatives. The found condition results in the same equation

(4a+ 4c+ 1)(4ab+ 4b2 + c)(b− c)2(a+ b+ c)2∆2 = 0.

Except in the spherical DC system cases, this equation is unsatisfied
inside the cylinder (c > a2). Note further that BQ′

2 may degenerate to a
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smooth bicircular cubic if 4ab+ 4bc+ c = 0, but no further degeneration
to conics because the cubic coefficient c(b− c) being zero leads to 4(a+
c)c+ c = 0, which cannot be satisfied inside the cylinder. However, this
cubic case is just Möbius equivalent to a quartic case of the curves. The
focality between BQ′

1 and BQ′
2 follows from Lemma 3.13.3. They are

non-empty because they are images of real cylinders in the parameter
space (RP 1)3 under the QB parametrization F (s, t, u). □

The following lemma clarifies the situation on the canonical form of
DC systems belonging to the type (B). The two planes of symmetry
are assumed to be z = 0 and y = 0 and with the prescribed symmetric
2-oval non-empty bicircular quartics B+

1 and B+
2 defined in (3.9.3) and

(3.9.4) on those planes.

Lemma 3.13.3. There is a unique DC system, with the singular locus B+
1 ∪B+

2

defined by a = k2 and c = −m2 in (3.9.7), that is symmetric with respect to the
planes z = 0, y = 0, and the unit imaginary sphere S− : x2+y2+ z2+1 = 0.
The corresponding DC cube is defined by the homogeneous control points(

0 i 2kj (k2 − 1)j −2mk −(m2 − 1)k h0 −h1
1 0 (k2 − 1)k −2kk (m2 − 1)j −2mj h1i h0i

)
where

h0 = 2(k−m)(km+1), h1 = −((m+ k)2 − (km− 1)2)(k −m)(km+ 1)

(m+ k)(km− 1)
.

Proof. We build the DC cube’s control points based on 2-polar systems
on the planes z = 0 and y = 0, with the poles symmetric with respect to
the unit imaginary sphere S−. Since the x-axis is already a coordinate
line of the cube, we choose the first two control points as p0 = 0 and
p1 = ∞, and with the usual frame i, j,k at p0. Hence, the first two
homogeneous control points are (u0, w0) = (0, 1) and (u1, w1) = (i, 0).
Next, the two symmetric poles of one bipolar system on the plane z = 0
are f1 = ki and f2 = −k−1i. The point p2 is on the unique circle through
p0 and contained in the pencil of circles C12 defined by the two circles of
zero radii at f1 and f2. We choose p2 as the intersection of this unique
circle and the x-axis. The point p3 is on a circle through p0, p1, p2, so
it is again on the x-axis. Since p1 = ∞, the coordinate line through
p1 and p3 must be a straight line. A unique line among the pencil C12
is the line through the mid-point between the poles f1 and f2. Hence
p3 = (f1 + f2)/2. The points p2 and p3 have the expressions

p2 = − 2k

k2 − 1
i, p3 =

k2 − 1

2k
i. (3.13.5)
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The weight w2 is proportional to k, but the real proportion leads to a
reparametrization. Hence, we can assume that w2 = (k2 − 1)k. The
homogeneous control points of the face defined by p0, p1, p2, p3 can
be identified with the formula (3.4.3) by applying the unit inversion
Inv10. From this, we have w3 = −2kk. The homogeneous control points
(piwi, wi), i = 4, 5 are constructed similarly on the plane y = 0 with the
different parameter m, giving

p4 = − 2m

m2 − 1
i, w4 = (m2 − 1)j, p5 =

m2 − 1

2m
i, w5 = −2mj.

(3.13.6)
The point p6 is constructed on the M-circle through p0, p2, p4. Hence
p6 is on the same x-axis, p6 = λ i for some λ ∈ R. The weight w6 is
computed using the formula (3.4.4) and adjustment of real multipliers
preserving w2 and w4. This gives w6 = −h0i/λ. Note that the first six
control points are pairwise symmetric with respect to S−; hence the last
two control points (piwi, wi), i = 6, 7 have the same symmetric property.
Hence (p7w7, w7) = (h0/λ, h0i).

The obtained DC system is symmetric with respect to S−. Indeed, we
consecutively apply the following transformations to the homogeneous
control points: interior reparametrization with factor (−1, 1, 1), inter-
change the pairwise symmetric control points, and apply InvS− which
interchanges ui and wi. The resulting homogeneous control points differ
from the initial ones by the factor i. The fraction division π cancels the
latter factor, giving the same DC system.

The singular curve on the plane z = 0 is a bicircular quartic, which
is not in the symmetric form yet. However, its coefficient in x3 is
proportional to its coefficient in x, which is linear in the parameter λ.
The unique value λ = h0/h1 gives the bicircular quartic in the symmetric
form and coincides with B+

1 . With the same λ, the singular curve of
the system on the symmetry plane y = 0 coincides with the focal curve
B+
2 . □

Theorem 3.13.4. Non-spherical DC systems of types (O), (A), and (B) have
the families of singularities with dimensions shown in brackets:

(O) focal conics: ellipse and hyperbola (1), or two parabolas (0);

(A) focal 1-oval and 2-oval bicircular quartics (2), focal ellipse and hyperbola
(1), or two intersecting lines (1);

(B) focal 2-oval bicircular quartics (2).
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Furthermore, in each of these cases, the Möbius class of a DC system is uniquely
determined by the canonical form of its singularities.

Proof. The list of singularities in cases (O), (A), and (B) follow directly
from Sections 3.11, 6, and Lemma 3.13.3, respectively. It remains to prove
the uniqueness of the constructed DC system with a given singularity
set. We will consider only two cases (A3) and (B) in details. Others can
be examined similarly.

In the case (A3) (see Theorem 3.12.2) with focal ellipse and hyperbola,
the corresponding DC cubeDa,b,c depending on three parameters (a, b, c)
was presented in Lemma 3.12.1. Its singularities BQ1∪BQ3∪BQ3 have
equations (3.12.4), (3.12.5), (3.12.6), which will be conics if abc = 0. It
appears that BQ1 is an ellipse with focal points on x-axis which can
be obtained exactly with three DC cubes Da,b,c with p0 = 0, where
(a, b, c) = (0, T,−1), (T/(T − 1), 0,−1), (T/(T − 1), T, 0), 0 < T < 1.

In the case (B) (see Lemma 3.13.3), the corresponding DC cube Dk,m

with the singularities containing 2-oval bicircular quartic B+
1 is unique

up to the choice of 2-polar systems on the symmetry planes. For example,
one can choose the other poles f ′1 = k−1i and f ′2 = −ki on the plane
z = 0, and similarly, there are two possibilities on the plane y = 0. There
will be four different DC cubes Dk,m having p0 = 0 with parameters
(k,m), (k−1,m), (k,m−1), (k−1,m−1) having the same singularities.

In both cases (A3) and (B), the numbers of the different DC cubes
starting in the same point p0 correspond exactly to the number of
preimages of p0 as explained in Section 3.14. Hence, they are just
reparametrizations of the same DC system. □

3.14 Degrees of Dupin Cyclidic Systems

As an additional characteristic of the families of Dupin cyclides within a
DC system, we introduce the concept of the degree of DC systems.

We define the degree of a DC system F := (RP 1)3 → R̂3 as a number
of points in the preimage of a regular point

degF = #F−1(p), p ∈ R̂3 \ Sing(F ).

This definition does not depend on the choice of the point p, as follows
from the lemma below.
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Lemma 3.14.1. For any regular points p, q ∈ R̂3 of a DC system F , the
number of preimage points at p and that at q are the same: #F−1(p) =
#F−1(q).

Proof. F is a smooth map between two compact 3-dimensional differ-
ential manifolds. By the inverse function theorem, for every regular
value p ∈ R̂3 there is an open neighborhood U(p), such that its
preimage F−1(U(p)) is the disjoint union of a finite number of subsets Vi,
i = 1, . . . , n, where the restriction of F on each Vi is a diffeomorphism
to U(p). Consider the equivalence relation

p ∼ q ⇔ #F−1(p) = #F−1(q)

on the set of regular points R̂3 \Sing(F ). The latter set is connected since
Sing(F ) is of codimension 2. The corresponding equivalency classes are
open disjoint sets. Therefore, there is only one class, i.e., all preimages
have the same number of points. □

Theorem 3.14.2. DC systems F of types (O), (A), and (B) depending on
SingF have the following degrees:

Type O A B
SingF EH 2P BQ± EH 2L BQ+

degF 4 3 4 3 2 4

Notations: BQ± - focal bicircular quartics (2 and 1-oval), EH - focal ellipse
and hyperbola, 2P - focal parabolas, 2L - two intersecting lines.

Proof. The idea of degree counting is to choose a regular point p on a
symmetry plane Π of the DC system F that is parametrized by Fi(s, t) =
F (s, t, ui), i = 0, 1, for two values of u. Each map Fi defines a 2-polar
(or 1-polar) system on Π having 2 points (or 1 point) in the preimage
F−1
i (p). Then degF = #F−1

1 (p) + #F−1
2 (p). For example, in case of

offsets of parabolic cyclide SingF = 2P. The symmetric planar section
of the cyclide will contain a line and a circle, and their offsets will define
Cartesian and classical polar systems, which are of 1-polar and 2-polar
types, respectively. Hence degF = 1 + 2 = 3. □
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3.15 Conclusion

This chapter has two main goals: the parametrizations of circles,
Dupin cyclides and Dupin cyclidic (DC) cubes via quaternions and
the classification of DC cubes. Firstly, Dupin cyclide principal patches
were parametrized by fractions quaternionic polynomials, referred to
as the quaternionic-Bézier (QB) formula. An effective closed formula
for principal patches on Dupin cyclides was derived. We also explored
several symmetric properties of principal patches, such as their central
points, and characterized them within the parameter space of the QB
formula. A formula for Willmore energy adapted to the new QB formula
was presented. Secondly, a natural generalization of principal patches
to volumetric objects called Dupin cyclidic (DC) cubes has been studied.
This DC cube is rationally parametrized by a certain fraction of 3-linear
quaternionic polynomials. The QB formula for DC cubes was derived.
By considering the full range of the parameter space, this QB formula can
parameterize any triply orthogonal coordinate system with coordinate
lines that are either circles or straight lines, which we denote as a DC
system. The chapter includes a comprehensive classification of such DC
systems under Möbius transformations in space. This classification is
achieved through the analysis of singularities, which represent specific
arrangements of bicircular quartics in orthogonal planes, classically
known as focal bicircular quartics. The classification is presented in the
form of four big classes: (S), (O), (A) and (B). The class (S) includes well-
known classical triply orthogonal coordinate systems, such as Cartesian,
cylindrical, and conical coordinates. These systems are characterized
by the property that at least one family of coordinate surfaces consists
of spheres or planes. The class (O) is derived from offsetting a Dupin
cyclide. Offset DC systems were introduced by Maxwell [37] and used
for separation of variables in the Laplace equation (see overview in [50]).
The most general classes (A) and (B) are distinguished by their singular
sets, which are nontrivial arrangements of 1-oval and 2-oval bicircular
quartic curves. It is important to note that the same singularities appear
in 19th-century books of Darboux [19] and Boecher [9] in the context of
orthogonal coordinates of different kinds.

115



Chapter 4

Generalized Cyclidic Splines

To support the current applications of Dupin cyclides in CAGD and
architecture, we explore the problem of filling holes that naturally appear
in Dupin cyclidic splines. The traditional approach to modeling a surface
with Dupin cyclides involves two main steps: creating a regular circular
mesh support and building Dupin cyclide principal patches on this
mesh. A regular circular mesh is a collection of vertices, edges, and
quad faces, where each face is inscribed in a circle, and each vertex has
4 coming edges. A frame at a corner point is required to construct a
principal patch on a circular quad face. This frame can be propagated
on all other vertices of the circular mesh under reflections with respect
to the edges, creating a model surface composed of principal patches;
see Figure 4.1. Such a model surface is called a cyclidic net.

Figure 4.1: A regular circular mesh and a cyclidic net.
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4.1 Quasi-Circular Even Holes

As regular circular meshes has 4 valencies of vertices only, cyclidic nets
are very restricted when modeling surfaces of arbitrary topology. In
[39], the concept of generalized cyclidic nets is considered by allowing
faces with more than 4 edges. The main challenge reduces to the filling
of multi-sided holes over these generalized faces.

In this chapter, we consider a fundamental hole called a quasi-circular
even (QCE) hole, which is typically a closed boundary of a certain
cyclidic net with boundary arcs meeting at right angles at their corners.
This is illustrated in Figure 4.2 for the case of a three-beam structure
rounded by cylindrical patches. A method to fill a QCE-hole was
introduced in [29] and further developed in [39] by filling the hole
with an infinite number of principal patches. We aim to improve this
method by filling the hole using finitely many principal patches and a
spherical or planar patch in the middle; see Figure 4.3. A spherical or
planar patch is necessary due to topological restrictions on global DC
splines presented in Section 4.2.

The following notations will be used throughout this chapter. Define
the filling of a QCE-hole as the union of patches

P =
N⋃
i=1

Vi ∪
N⋃
i=1

Ei,i+1 ∪ Σ,

such that ∂P = H , where Vi is a principal patch adjacent to the circular
edges ei,i+1, ei,i−1 at a corner point pi, Ei,i+1 is a principal patch along
the edge ei,i+1 connecting Vi and Vi+1, and Σ is a spherical or planar
patch filling the middle hole; see Figure 4.3. The patches Vi’s andEi,i+1’s
are called corner and edge patches of the hole filling, respectively.

We will use the identification R3 ∼= ImH as in the previous chapter.
A sequence of even number of points p1, . . . , p2n ∈ R3 is called QCE if
their multi-ratio

mr(p1, . . . , p2n) = (p1 − p2)(p2 − p3)
−1 . . . (p2n − p1)

−1

is real. The case where n = 2 corresponds to the cross-ratio of 4 points.
The case where n = 3 can be considered as the corner points of a DC
cube where two opposite points are ignored. For a quaternion q ∈ H,
denote the reflection

Reflect(x, q) = −qxq−1, x ∈ R3. (4.1.1)
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Figure 4.2: A closed circular mesh obtained from a three-beam corner.

Figure 4.3: Filling a hole on a rounded three-beam corner with principal
patches Vi and Eij , and a planar patch Σ in the middle.

If q = p − p′, where p, p′ ∈ R3, then Reflect is just the reflection in the
median plane of the points p, p′.

Formally, a QCE-hole B([p1, ..., pN ],F) is defined as a closed curve
formed by a union of circular arcs ei,i+1 with endpoints pi, pi+1, which
are determined by an orthogonal frame F at p1 such that:

• The sequence of points p1, ..., pN is QCE;

• The frame at a corner point pi+1 is

Fi+1 = σ12Reflect(Fi, pi − pi+1), (4.1.2)

where σ12 is the permutation of first two vectors in the frame,
indicating a right-turn at pi+1.
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• If Fi = (vi,i+1, vi,i−1, ni) is the propagated frame at pi, then the
tangent of the arc ei,i+1 at pi is vi,i+1.

The indices here are taken periodically modulo N (e.g. N + 1 = 1).

4.2 Topological Restrictions

According to [30, Theorems 24, 28], two Dupin cyclides can be smoothly
blended along two classes of blending curves: principal circles/lines
and diagonal curves. The diagonal curve can be defined by fixing any
parametrization of a Dupin cyclide by a QB formula P (s, t), and then
restricting it to the diagonal C(t) = P (t, t). A diagonal curve varies
according to linear rational reparametrization along the s or t direction
within the same patch. In general diagonal curves are of degree 4 or 3,
but degrees 2 or 1 also possible in the case of Villarceau circles/lines.

Any diagonal curve divides a principal patch into two triangular
sub-patches, each bounded by two principal circles/lines and the latter
diagonal. We call these patches principal triangular patches. The union of
two such patches that are smoothly blended along the common arc of a
diagonal curve will be called a hybrid patch; see Figure 4.4.

Proposition 4.2.1. Four corners of a hybrid patch are on the same circle.

Proof. This is proved in [59, Theorem 7.1]. □

Define cyclidic spline (CS) surface as a smooth surface composed of
patches of Dupin cyclides bounded by blending curves. We allow
boundaries with angles on CS surfaces. Therefore, formally they are
so-called smooth surfaces with corners. Also, we assume, by applying
additional subdivision if necessary, that a CS surface has the associated
triangulation, i.e. all patches are triangular.

The boundary of an n-sided CS surface is called quasi-flat if the sum
of its interior angles matches that of an n-sided polygon in a plane.

Proposition 4.2.2. The boundary of a hybrid patch is quasi-flat, i.e., the sum
of interior angles is 2π.
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Figure 4.4: Two principal patches blended smoothly along a common
diagonal curve.

Figure 4.5: The 3 possible triangular patches on a Dupin cyclide.

Proof. Let a hybrid patch be defined by corner points p0, p1, p′2, p3 and
a frame (v01, v

′
02, n0) at p0. Let the frame of the hybrid patch at p3 be

(v′32, v31, n3). We are going to prove that the angles α between v01, v
′
02

and β between v′32, v31 sum up to π. Let the principal patches P and P ′

forming this hybrid patch be defined by corner points p0, p1, p2, p3 and
p0, p

′
1, p

′
2, p3. The frame at p0 of the patch P is F0 = (v01, v02 = n0v01, n0)

and the frame of P ′ at p0 is F ′
0 = (v′01 = n0v

′
02, v

′
02, n0). The frame of the

patch P at p3 is obtained by rotations F3 = Rq1(F0) = Rq2(F0), where
Rqi(x) = qixq−1

i , q1 = (p3 − p1)(p1 − p0), and q2 = (p3 − p2)(p2 − p0).
Similarly, the frame F ′

3 of P ′ is F ′
3 = Rq′1

(F ′
0) = Rq′2

(F ′
0), where q′1 =

(p3 − p′1)(p
′
1 − p0), and q2 = (p3 − p′2)(p

′
2 − p0). Since the corner points

of P and P ′ lie on a circle, we have Rqi = Rq′i
, i = 1, 2. In particular,

the frames F0 and F ′
0 are rotated by the same rotation to F3 and F ′

3.
Therefore, if α′ is the angle between v02′ and v02, then we have α = π

2+α
′

and β = π
2 − α′ . □

Lemma 4.2.3. If the boundary of a CS surface is made up of principal circles,
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then the sum of all angles of all triangular patches is their number multiplied
by π.

Proof. Each triangular patch T of a Dupin cyclide can be inscribed
into the unique principal quadrangular patch Q on the same cyclide
by adding k = 1, 2, 3 corner principal triangles Pi, i = 1, . . . , k, as
illustrated in Figure 4.5. For each corner triangle Pi, there is a unique
complementary corner triangle P ′

i associated with the adjacent triangle
of T and having a common diagonal boundary edge with Pi. In the
following formulas, the main sum is defined by all triangles T and α(P )
denotes the sum of angles of a patch P :

∑
T

α(T ) =
∑
T

(
α(Q)−

k∑
i=1

α(Pi)

)

=
∑
T

(
α(Q)− 1

2

k∑
i=1

α(Pi ∪ P ′
i )

)
. (4.2.1)

Here the simple equality is applied α(Pi) + α(P ′
i ) = α(Pi ∪ P ′

i ). By
Proposition 4.2.2 α(Pi ∪ P ′

i ) = 2π, so 1
2

∑k
i=1 α(Pi ∪ P ′

i ) = kπ. On the
other hand Q will be (k + 3)-sided with α(Q) = (k + 1)π. Hence, in all
three cases k = 1, 2, 3, the expression in the brackets of (4.2.1) is equal to
π. □

Theorem 4.2.4. Assume that CS surface S has only non-spherical patches.

(i) if S is without boundary, then its Euler characteristic is χ(S) = 0;

(ii) if S is homeomorphic to a disk and its boundary contains only principal
circles, then this boundary is quasi-flat.

Proof. Denote by V , E, and F the numbers of vertices, edges, and faces
(triangles) of the triangulation of S. Denote the sum of angles of a
triangular patch T in S by α(T ). Then by Lemma 4.2.3 the sum Σ of
angles of all triangles is

Σ =
F∑
i=1

α(Ti) = Fπ. (4.2.2)

In case (i), S has no boundary, and Σ can be computed alternatively by
adding all angles that meet at the vertices, that is, Σ = 2V π. Then from
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(4.2.2) follows F = 2V . On the other hand, 2E = 3F , since all triangles
have 3 edges that are sheared with exactly one other triangle. Therefore,
E = 3V and

χ(S) = V − E + F = V − 3V + 2V = 0.

In the case (ii), suppose that S has a boundary of n edges. Then one can
count the edges of all the triangles and get 3F = 2(E − n) + n = 2E − n,
that is, E = (3F + n)/2. Since the Euler characteristic of a disk is 1,

1 = V − E + F = V − (3F + n)/2 + F = V − (F + n)/2.

Hence, F = 2V − n− 2 and Σ = (2V − n− 2)π according to (4.2.2). The
numbers of boundary vertices and boundary edges coincide. Therefore,
the sum of angles around all interior vertices will be Σ′ = 2(V − n)π,
and the sum of angles along the boundary will be Σ − Σ′ = (n − 2)π,
which is exactly the sum of angles of a planar n-sided polygon. □

According to Theorem 4.2.4, the use of a spherical or planar patch is
unavoidable when filling a QCE-hole with 2n corner points for n > 2.
This requirement arises because the sum of the interior angles on a
planar 2n-gon is 2(n− 1)π, while the sum of the interior angles of the
QCE-hole is nπ.

4.3 Central Cyclic Filling of CE-holes

In this section, we consider a particular subclass of QCE-holes called
circular even (CE) holes. A CE-hole is a QCE-hole whose vertices lie on
a circle. Note that the multi-ratio of an even number of points on a circle
is always real.

The importance of CE-holes is that we can manipulate with sym-
metries of points on the circumcircle of the hole, according to Proposi-
tion 3.1.1. For each i = 1, . . . , 2n, denote Si the sphere of the inversion
Invi such that Invi(pi) = pi+1 and Invi(pi−1) = pi+2. The indices here
are taken periodically modulo 2n+1. The case where n = 3 is illustrated
in Figure 4.6. The inversions Invi’s will be used as tools to create corner
patches Vi and edge patches Ei,i+1.

Any corner patch Vi at pi can be reflected to a corner patch Vi+1 at
pi+1. The edge patchEi,i+1 between them is obtained because its corners
are automatically circular; see the right side of Figure 4.6. This reflection
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Figure 4.6: A hexagonal circular QCE-hole on the left and the sphere of
inversion for two neighboring corner patches on the right.

rule applies to every edge of the hole, resulting in a closed circular mesh
due to the following property.

Lemma 4.3.1. The composition ϕ = Inv2n ◦ · · · ◦ Inv1 is the identity map.

Proof. We will prove the case for n = 3; the cases for n > 3 can be
proven similarly. The points p1, p2, p6 are fixed points because the
composition maps them as follows:

p1 7→ p2 7→ p3 7→ p4 7→ p5 7→ p6 7→ p1,

p2 7→ p1 7→ p4 7→ p3 7→ p6 7→ p5 7→ p2,

p6 7→ p3 7→ p2 7→ p5 7→ p4 7→ p1 7→ p6.

Let S be a sphere or the plane containing the circumcircle of the hole.
The composition ϕ induces a Möbius transformation ϕ|S on S with
3 fixed points p1, p2, p6 already. It follows from 2D-Möbius geometry
that ϕ|S necessarily equals the identity map on S. Consequently, ϕ is
the identity map on R3 because all possible such a sphere S cover the
space. □

The next step is to find an appropriate middle sphere to complete the
hole-filling construction. The middle sphere should be preserved by the
inversions Invi, where i = 1, . . . , 2n, to ensure a single spherical cap Σ
is available for the construction. The natural choice for such spheres is
those that contain the circumcircle of the CE-hole. Note that there is a
one-parameter family of spheres containing a fixed circle.
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Figure 4.7: A corner patch as a sub-patch cut at the central point.

Lemma 4.3.2. There exists a one-to-one correspondence between the family
of corner patches and the family of spheres containing the circumcircle of a
CE-hole such that the sphere is tangent to the corner patch.

Proof. The frame of the hole at the corner point p1 defines a pencil
of bigger patches V̂1(u) with corner points p1, p2, p2n, q̂1(u) lying on
the circumcircle, such that u = cr(p1, p2n, p2, q̂1(u)). By Lemma 3.5.2,
we have the one-to-one correspondence u 7→ S(u), where S(u) is
the central sphere of the patch V̂1(u). The sphere S(u) contains the
circumcircle of the hole and is tangent to V̂1(u) at its central point q1(u);
see Figure 4.7. □

Define a central cyclic (CC) filling of a CE hole as

Pcent(u) =

(
2n⋃
i=1

Vi(u)

)
∪

(
2n⋃
i=1

Ei,i+1(u)

)
∪ Σ(u), (4.3.1)

where the corner patches Vi(u), the edge patches Ei,i+1(u), and the
middle spherical patch Σ(u) are defined as follows:

(i) Construct the patch V̂1(u) with corner points p1, p2, p2n, q̂1(u)
on the circumcircle of the CE-hole such that u is the cross-ratio
u = cr(p1, p2n, p2, q̂1(u)) ∈ [0, 1].

(ii) Define the corner patch V1(u) at p1 as the sub-patch of the patch
V̂1(u) ending at its central point q1(u).

(iii) Construct the other corner patches Vi(u), i > 1, by propagating
V1(u) under the inversions Invi, i = 1, . . . , 2n.
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Figure 4.8: Hexagonal CE-hole filled by the CC-filling method, with a
middle sphere passing through the corner points.

(iv) Join Vi, Vi+1 by edge patchEi,i+1(u), which is uniquely determined
and use the central sphere S(u) of V̂1(u) for the middle spherical
patch Σ(u).

Theorem 4.3.3. The CC-filling construction gives a correct CE-hole filling.

Proof. The corner patch at Vi+1(u) is obtained by reflecting V1(u) under
the composition Invi ◦ · · · ◦ Inv1. The full turn gives the same patch V1(u)
by Lemma 4.3.1, and this ensures the compatibility of the construction.
For the edge patch Ei,i+1(u), the circularity condition on its corner
points holds by Proposition 3.1.1 because these points are related by
the inversion Invi ◦ · · · ◦ Inv1. The patches Ei,i+1(u) and Vi(u) share
the same tangent cone along the edge ei,i+1, so they are tangent. The
orbit of the central point q′1(u) under the composition Inv2n ◦ · · · ◦ Inv1
forms a new 2n-gon hole on S(u). The edge patches remain tangent
along the boundary arcs of this new hole because each Invi preserves the
circumcircle of the hole and then also the middle sphere S(u), ensuring
the existence of cutting boundaries of Σ(u). □

Corollary 4.3.4. In the CC-filling construction, the Dupin cyclide containing
the edge patch Ei,i+1(u) has two singularities at pi and pi+1. Therefore, the
edge patch Ei,i+1(u) is always smooth.

Proof. The Dupnin cyclide D containing Ei,i+1(u) contains two prin-
cipal circles from the same family – one on the sphere S(u) and the other
the full circle of the arc ei,i+1. Since pi, pi+1 ∈ S(u), the two principal
circles from the same family intersect at pi and pi+1, and necessarily
these points are singular points of D. □
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A filling result by the CC-filling construction is illustrated in
Figure 4.8 using an appropriate middle sphere S(u). Choosing an
arbitrary middle sphere can result in overlapping corner and edge
patches. However, since the choice of a corner patch is linked to
the middle sphere, we can control this singular behavior by imposing
constraints on the parameter u.

Theorem 4.3.5. The corner patches of a CC-filling do not intersect if and only
if u0 ⩽ u ⩽ u1, where

u = cr(p1, p2n, p2, q̂1(u)),

u0 = max{cr(p2k−1, p2k−2, p2k, p2k+1), k = 1, . . . , n},
u1 = min{cr(p2k, p2k+1, p2k−1, p2k+2), k = 1, . . . , n}.

Proof. First, let us study the non-overlapping condition along the
circular edge e12. Let e12(s) be the QB-parametrization of this arc. By
Theorem 3.5.3, the sphere S1,u, that maps p1 to p2 and p2n to q̂1(u),
intersects e12(s) at e12(su), where

su =
1

1 + δn
√
u
, δn =

|p2n − p2|
|p2n − p1||p2 − p1|

.

Denote u3 = cr(p1, p2n, p2, p3), so that the sphere S1, that maps p1 to
p2 and p2n to p3, intersects e12(s) at e12(su3). Clearly, the necessary
condition for non-overlapping along the arc e12(s) is su ⩽ su3 , which is
equivalent to u3 ⩽ u. The latter condition is also sufficient because it
is geometrically impossible that the spheres S1 and S1,u intersect. By
applying the same condition to the edge e23, the condition for non-
overlapping is

cr(p2, p1, p3, p4) ⩽ cr(p2, p1, p3, Inv1(q̂1(u))) = cr(p1, p2, p6, q̂1(u)) = 1−u.

The middle equality holds because the cross-ratio is Möbius invariant.
By continuing this process through all the vertices, the full conditions
for non-overlapping can be written as

cr(p2k−1, p2k−2, p2k, p2k+1) ⩽ u,

cr(p2k, p2k−1, p2k+1, p2k+2) ⩽ 1− u,

for k = 1, . . . , n. Note that cr(p2k, p2k−1, p2k+1, p2k+2) ⩽ 1− u is equival-
ent to u ⩽ 1 − cr(p2k, p2k−1, p2k+1, p2k+2) = cr(p2k, p2k+1, p2k−1, p2k+2).
By taking the intersection of these intervals, we have u0 ⩽ u ⩽ u1. □
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Figure 4.9: A region in the abc-space representing the cases with
nonoverlapping construction on a hexagonal CE-hole.

Corollary 4.3.6. Let p6, p1, p2, p3(a), p4(b), p5(c) be cocircular points such
that a = cr(p1, p6, p2, p3), b = cr(p1, p6, p2, p4) and c = cr(p1, p6, p2, p5).
Then, the condition for non-overlapping corner patches of a CE-hole defined by
these points is:

u0 = max

(
a,

(b− c) a

(a− c) b
,
b− c

b− 1

)
⩽ u ⩽ u1 = min

(
c,
a

b
,
(b− c) (a− 1)

(b− 1) (a− c)

)
.

Remark 4.3.7. In some cases, the interval for the parameter u may be
empty. For example, when a = 0.3, b = 0.6, and c = 0.85, the resulting
points on the circle are well-distributed. However, in this scenario,
we have u0 = 0.625 > u1 = 0.5. As a result, there is no smooth
filling solution using the middle sphere S(u). The area in abc-space that
corresponds to smooth filling solutions is illustrated in Figure 4.9. This
region encompasses approximately half of the applicable area defined
by the constraints 0 < a < b < c < 1 for the parameters a, b, and c. In
Section 4.5, we will introduce a filling construction that welcomes an
arbitrary middle sphere. However, the choice of a middle sphere S(u)
can be considered the best because the singularities are well-controlled.

The CC-filling construction allows us to fill any CE-hole effectively,
provided the interval for the parameter u is available. This is demon-
strated in Figure 4.10, where we model arched roof structures by filling
a hexagonal and octagonal hole. One can extend the patches of a CC-
filling to obtain a closed surface; see Figure 4.11.
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Figure 4.10: Arched roof structures obtained by filling CE-holes.

Figure 4.11: Complementary CE-hole fillings resulting in smooth
compact surfaces.

Define the complementary CC-filling associated with a CE-hole
H = B([p1, . . . , pN ], (v12, v1N , n1)) as the union 4 CC-fillings P±,±

cent(u)
obtained using the tangent vectors (±v12,±v1N ) at p1, and with the
same parameter u. Notice that the middle spheres of these CC-fillings
are not necessarily the same.

Theorem 4.3.8. Let Pcent(u) be a CC-filling of a CE-hole B([p1, . . . , p2n],F)
with corner patch V1(u) at p1. If the Dupin cyclide D containing V1(u) is
smooth, then P±,±

cent(u) is a smooth orientable closed surface of genus g = n− 1.

Proof. The big patch V̂1(u) containing the corner patch V1(u) has two
spheres of symmetry S1 and S2, which are also spheres of symmetry
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Figure 4.12: Left: Three cones with a common inscribed sphere are
connected by three Dupin cyclides, forming two opposite spherical
triangles with sharp corners. Right: Improved blending construction
based on a CE-hole filling.

of D. Since the circle C12 = S1 ∩ S2 is orthogonal to V̂1(u), this circle
intersects the Dupin cyclide D in 4 points. These points are the central
points of the 4 big patches V̂ ±,±

1 (u). By cutting these big patches at their
central points and applying the CC-filling construction, we obtain a
closed surface, with not necessarily the same middle sphere S(u) for
all 4 holes. Since D is the union of V̂ ±,±

1 (u), and a corner patch is a
quarter of a big patch, the overall smoothness is achieved only if then
D is smooth. In the smooth-filling solution, the Euler characteristic is
χ = 2n− 2n 4

2 + 4 = 2(1− (n− 1)). Hence g = n− 1. □

4.4 Blending Circular Cones/Cylinders

It is a well-known fact, as referenced in [45, 48], that two cones or
cylinders can be smoothly blended by a single Dupin cyclide if and
only if they share a common inscribed sphere. In particular, when three
cones or cylinders share a common inscribed sphere, we can blend
them together in pairs. As examined in [10], this construction results
in a sharp triangular spherical hole between the spheres, as shown
in Figure 4.12, left. We aim to improve this outcome by generalizing
the spherical triangle into a CE-hexagonal hole filled by the CC-filling
method; see Figure 4.12, right. This is accomplished using the algorithm
BlendingThreeCones outlined below. For a larger number of cones that
share a common inscribed sphere, we can blend them in groups of three.
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Notice that the CE-holes themselves are in correspondence with the
cones with a common inscribed sphere through their tangent cones
along the boundary arcs.

Theorem 4.4.1. Every second (tangent) cone along the boundary circles of a
CE-hole shares a common inscribed sphere.

Proof. This property holds because, for each pair of second consecutive
boundary arcs, we can create a principal patch that smoothly blends
the two cones that are tangent to these circles. This is possible because
the endpoints of those arcs are already on the circle of the CE-hole.
Consequently, every second tangent cone shares a common inscribed
sphere, as established by the well-known classical result discussed
earlier. □

The following result applies to any CE-hole not necessarily filled by
the CC-filling construction.

Corollary 4.4.2. Let H be a CE-hole with 2n vertices filled with a ring of
principal patches and a middle spherical patch. Define S1 as the sphere that
contains every second arc and S2 as the sphere that contains the remaining arcs.
If both spheres S1 and S2 are mutually orthogonal, then by applying inversion
in S1 to the filled hole and followed by inversion in S2, we obtain an orientable
smooth closed surface of genus n− 1.

Proof. The orthogonality between S1 and S2 implies that applying
inversion in S1, all the boundary arcs on S2 maps to their complementary
arcs, giving a complementary filling. Then, by applying further
inversion in S2, the boundary arcs on S1 map to their complementary
arcs as well, forming full circles along the boundary arcs and creating a
smooth closed surface. □

To blend three cones or cylinders with a common inscribed sphere,
the primary task is to locate the corner points that lie on a circle and
then apply the CC-filling to complete the blending construction. The
steps are described in the algorithm BlendingThreeCones.

Theorem 4.4.3. The algorithm BlendingThreeCones is correct and produces
smooth blending results among three cones with a common inscribed sphere.
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Algorithm BlendingThreeCones

Input: Cones or cylinders C1, C2, C3 with a common inscribed sphere S.
Output: A blending of C1, C2, C3 by a CC-filling.

1: Increase the radius of S to obtain a bigger sphere S+.
2: Compute the pairs of circles S+ ∩ Ci for i = 1, 2, 3.
3: Select 3 circles c1, c2, c3 from different pairs as the blending pipes.
4: Compute the unique circle C orthogonal to all 3 cospherical circles
c1, c2, c3.

5: Compute the 6 corner points of the CE-hole as the intersections
C ∩ ci for i = 1, 2, 3.

6: Select a frame at one point following the principal direction of the
containing cone.

7: Apply the filling procedure in Theorem 4.3.3 for the resulting CE-
hole.

8: Apply a one-step symmetry in Corollary 4.4.2 to obtain the
complementary filling.

Proof. All the steps are self-explanatory, except steps 2 and 5. The
intersections S ∩ Ci, i = 1, 2, 3 in step 2 are pairs of circles because the
center of the sphere S lies on the axes of the cones. Note that the circle C
in step 4 is contained in the sphere S+ because 3 of its points are already
in S+. In step 5, the 6 intersection points from C ∩ ci, i = 1, 2, 3 are
well-defined because the circle C and ci are cospherical. □

4.5 General QCE-Hole Filling

To fill a hole in general, we select an arbitrary (middle) sphere in space
and connect the boundary arcs to it using principal patches.This process
can be accomplished through the so-called Möbius projection to the
sphere. The orientation of the sphere is crucial here because it determines
a unique hole-filling solution: inward or outward, depending on the
sign of the radius, whether it is positive or negative. The total Willmore
energy of all patches will be optimized to find a suitable middle sphere
for the construction, ensuring smoothness.
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4.5.1 Local Filling Construction

Let (p, n) be an oriented point, i.e., p is a point, and n is a unit normal
vector associated with it. Let S be either an oriented sphere or an
oriented plane. It is straightforward to show that there exists a unique
circle Cp passing through the point p, with tangent direction n at p, such
that Cp is orthogonal to S. Of course, the circle Cp intersects S in two
points. Let p̂ ∈ S be the intersection point such that the normal at p̂
coincides with the reflected vector

n̂ = (p− p̂)n(p̂− p)−1. (4.5.1)

The map (p, n) 7−→ p̂ is called the M-projection of the point (p, n) onto S.

Lemma 4.5.1. The M-projection of an oriented point (p, n) has the following
quaternionic formulas:

(i) On a sphere with center pc and (signed) radius r, we have

p̂ = pc −
r2 + r(p− pc)n

p− pc − rn
;

(ii) On a plane through a point p0 and with unit normal n̂, we have

p̂ = p+
2⟨p− p0, n̂⟩
n− n̂

.

Proof. (i) We have p̂ = pc + rn̂, where n̂ is the normal vector at p̂ to be
determined. From the identity (4.5.1), we obtain

n̂(p− pc − rn) = rn̂2 − (p− pc)n.

Note that n̂2 = −1, leading to the stated formula for the sphere.
(ii) By translations, we can assume that p0 = 0. Since p̂ is on the plane,
⟨n̂, p̂⟩ = 0, i.e., n̂p̂ = −p̂n̂. Now, from the identity (4.5.1), we obtain

pn− p̂n = n̂p̂− n̂p = −p̂n̂− n̂p.

Therefore, we can solve for p̂ as

p̂ =
pn+ n̂p

n− n̂
=
p(n− n̂) + pn̂+ n̂p

n− n̂
= p+

2⟨n̂, p⟩
n− n̂

.

Hence the formula for the plane case. □
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Figure 4.13: The M-projection of a circular arc, with reflected normal
fields, onto a sphere produces two principal patches: one that is
orthogonal and the other that is tangent to the sphere.

Lemma 4.5.2. An M-projection transforms a circle into another circle, in the
sense that the normal fields are reflected along the initial circle.

Proof. We prove that the M-projection maps a linear QB formula to a
linear QB formula so that the projected image must be a circle. The
projection formulas in Lemma 4.5.1 are fractional linear in p already.
The only problem is the product pn. However, if we represent the circle
as p = UW−1 and n = Wn0W

−1, with an initial normal vector n0,
we obtain p = UW−1Wn0W

−1 = Un0W
−1. The latter expression is

still fractional linear. Hence, a linear QB formula is obtained after the
projection. □

The M-projections allow us to construct the edge patches of a QCE-
hole using either a spherical or planar cap. We start with a circular
boundary arc C that has normal vector fields reflected, and we consider
any middle sphere (or plane) S. Let Ĉ represent the M-projected image
ofC on S. For each normal point p onC, the orbit under the M-projection
forms another circular arc C⊥

p , which intersects both C and Ĉ at right
angles. The collection of these orthogonal arcs C⊥

p creates a principal
patch since both the position-matching and frame-matching conditions
are automatically satisfied. By permuting the frame vectors at a corner,
we can also construct an alternative principal patch that is tangent to
both the circle C and the sphere S, as illustrated in Figure 4.13.

Remark 4.5.3. The M-projections clarify the definition of Dupin cyclides
that are generated by spheres. The arcC, together with the normal vector
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Figure 4.14: Illustration of local filling for a QCE-hole: on two adjacent
circular edges, the two edge patches, and the corner patch are uniquely
defined by the middle sphere.

fields, illustrates one generating sphere that contains C and the tangent
cone along the circle C. Any middle sphere can be interpreted as a
generating sphere of a Dupin cyclide. This particular Dupin cyclide is
uniquely determined by the middle sphere and intersects the sphere
along the projected circle.

Theorem 4.5.4. For any QCE-hole and any oriented sphere or plane S, the
edge patchesEi,i+1(S) and corner patches Vi(S) of the hole are uniquely defined
so that they smoothly blend with S.

Proof. We refer to Figure 4.13 to illustrate this proof. Consider the
adjacent circular edges at a point pi. Note that the hole already defines
a frame at pi, and the normal vector is reflected along both edges. The
discussion above determines the two edge patches by applying the M-
projections of these edges to the sphere. The projections of the two edges
are two arcs on the sphere that already intersect at the projection of pi.
Hence, they intersect at another point, say qi. The projection of pi does
not provide a valid corner patch for the construction because it lies on
the boundaries of the edge patches on the sphere. Therefore, there is
nothing to blend with it. Hence, we consider the point qi and trim the
two edge patches along principal circles at it. This defines a point pi,L
on the arc ei,i−1 and a point pi,R on the arc ei,i+1. The points pi, pi,R, pi,L,
and qi are circular because they lie at the intersection of two spheres,
each defined by one boundary arc and the point qi. Additionally, the
frames along the boundary arcs pipi,Rpi,Lqi are automatically compatible
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with the construction of edge patches, resulting in a unique corner patch
for the construction. □

Define the general filling by projection (or GP-filling) of a QCE-hole
H = B([p1, . . . , pN ],F) as

Pgen(S) =

(
N⋃
i=1

Vi(S)

)
∪

(
N⋃
i=1

Ei,i+1(S)

)
∪ Σ(S), (4.5.2)

such that S is an oriented sphere or plane, the corner patches Vi(S) and
the edge patches Ei,i+1(S) are as in Theorem 4.5.4, and Σ(S) is a patch
on S bounded by the M-projection of H onto S.

Example 4.5.5. In this example, we slightly deform a CC-filling of a
hexagonal CE hole to a GP-filling of a general hexagonal QCE hole.
Consider the CE-hole defined by the following sequence of corner points
on the unit circle

p1 =

√
3i− j

2
, p2 =

√
3i+ j

2
, p3 = j, p4 = −p1, p5 = −p2, p6 = −p3,

and tangent vectors v12 = k, v16 = −i at p1. Consider the middle sphere
solution of this CE hole, with center pc = −0.38k and radius r = 1; see
Figure 4.15, left. Define the sequence of QCE points pi, i = 1, . . . , 6 and
an additional point p∞ as follows: pi = pi for i = 1, 2, 3; p4 = p4+εk, ε =
0.1. The points p∞, p5 and p6 are defined such that cr(p2,p3,p1, p∞) =
1/2, cr(p4, p∞,p3,p5) = 5/6, and cr(p5, p∞,p1,p6) = −5/6. The multi-
ratio of these deformed points is mr(p1, . . . ,p6) = −1/5 ∈ R, hence
they form a sequence of QCE points. Using the same tangent vectors
at p1 = p1 with these deformed points, we obtain a QCE hole; see
Figure 4.15, top-right. By deforming the middle sphere solution of the
CE hole to the sphere with center pc = −0.4k + ε(i + j) and radius
r = 0.98, we obtain the smooth GP-filling solution shown in Figure 4.15,
bottom-right.

The main task in GP-filling is to find a suitable middle sphere or plane
for construction. The edge and corner patches blend smoothly with the
middle sphere; however, isolated singularities and overlapping corner
patches may occur. To avoid isolated singularities, it is convenient to
find the middle sphere so that the total Willmore energy remains finite.
Note that the Willmore energy of a principal patch is infinite if and only
if the patch is singular. In our case, it is enough to compute the total
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Figure 4.15: A GP-filling of a general hexagonal QCE hole.

Willmore energy of the corner and edge patches because the Willmore
energy of the middle spherical or planar patch is zero. We refer to
the formula presented in Theorem 3.6.1 when calculating the Willmore
energy of a principal patch.

Our experiments suggest minimizing the Willmore energy to avoid
isolated singularities and overlapping patches. The minimizing optimiz-
ation is convenient because one can build a closed surface using different
initial tangent vectors (±v1,±v2), and the Willmore energy of closed
surfaces has a lower bound. Due to Gauss–Bonnet Theorem, we have
the following fact.

Proposition 4.5.6. For any closed smooth surface S ⊂ R3 of genus g, the
Willmore energy is

WE(S) =W (S) + 4π(g − 1),

where W (S) =
∫
S H

2dS is called Willmore functional and H is the mean
curvature.
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Figure 4.16: Symmetric hexagonal and octagonal CE-holes.

4.5.2 Aproximations of Lawson’s surfaces by CS splines

A Lawson’s surface of genus g is a minimal surface in the 3-dimensional
sphere S3 discovered by Blaine Lawson [33] in 1970.

The recent book by Pinkall and Gross [42] and the work of Hsu et al.
[28] suggest that Lawson’s surfaces are candidates for minimizing Will-
more energy of closed surfaces of genus 2 or 3 when stereographically
project to R3.

In this section, we aim to approximate the stereographic projection
of Lawson’s surfaces of genus 2 and 3 based on a GP-filling of a CE-
hole with minimal Willmore energy. The higher genus cases can be
considered in a similar manner. Consider the CE-hole with N = 2n
corner points (n = 2, 3) on the unit circle C depending on a parameter c
or θ such that c = tan( θ2), where

p1 = cos(θ)i+ sin(θ)j, pN = cos(θ)i− sin(θ)j, 0 < θ <
π

N
,

and the other corner points are defined by rotating p1 and pN by 4π
N

about the z-axis; see Figure 4.16. The angle θ measures the ratio between
the lengths of two neighboring arcs. The initial frame at p1 is chosen
such that the normal n1 is tangent to the circle C and the tangent vector
v1 = −p1 is orthogonal to the plane of C. The other tangent vector is
v2 = n1v1 = k. By Corollary 4.4.2, if the CE-hole is smoothly filled,
then we obtain a closed surface, referred to as an approximation of
the projected Lawson’s surface, by applying inversion in the sphere
containing the vertical arcs and followed by reflection in the horizontal
plane z = 0.

The hole has n planes of symmetry, where each plane cuts two
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Figure 4.17: Regions where ∆6(s, t) ⩾ 0 or ∆8(s, t) ⩾ 0.

opposite boundary arcs into halves. For a chosen corner patch at p1,
the other corner patches are determined by reflections with respect to
the symmetry planes. The edge patches are also uniquely determined
because their corner points satisfy the circularity condition.

To construct a corner patch at p1, we choose arbitrary points p′1 =
C12(s) and p′2 = C1N (t) and q1(u) such that u is the cross-ratio u =
cr(p1, p

′
2, p

′
1, q1). Additional reparametrizations are required here so that

the Farin points C12(
1
2) and C1N (12) are located on the middle points of

the arcs. Hence, the overlapping between corner patches is controlled
by restricting 0 ⩽ s, t ⩽ 1

2 . Next, we solve for the parameter u such
that the normal line at q1(u) intersects the axial symmetry (z-axis). Here,
we solve a quadratic equation in u since all normal lines form a ruled
quadric. The discriminants define quartic curves ∆6 = s2t2 − 16st +
8s+ 8t− 4 for the hexagonal case and ∆8 = s2t2 − 8st+ 4s+ 4t− 2 for
the octagonal case. Notice that these discriminants do not depend on
the parameter c. Their restrictions on the intervals [0, 12 ]

2 are shown in
Figure 4.17. Each solution u0(s, t) and u1(s, t) defines a middle sphere
for the filling construction, with a center on the z-axis.

To compute the Willmore energy of a filling solution, because of
symmetries, it is enough to calculate the Willmore energy of the corner
patch at p1, WE1 and its two neighboring corner patches WE12 and
WE1N . The total Willmore energy of the closed surface, as a Lawson’s
surface approximation candidate, is WET = 24WE1 + 12(WE2 + WE3)
for n = 2 and WET = 32WE1 + 16(WE2 + WE3) for n = 3.
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Next, we optimize the Willmore energy to obtain a better approx-
imation of the projected Lawson’s surfaces. For this, we apply a brute-
force grid search on the parameter space [0, 12 ] × [0, 12 ] × (0, tan( π

N )),
for (s, t, c) that represents a minimal Willmore energy. A uniformly
distributed parameter values of 50 × 50 × 50 were used at first. The
search was done on both u0(s, t) and u1(s, t) with the condition that
the corresponding discriminant is non-negative. Around the obtained
minimal, we repeated the grid search on a smaller cube until the found
minimal energy was stable, i.e., until no smaller energy was found.

We noticed that minimal energies are obtained near the case where
the polygon is regular, i.e, θ0 = π

2N or c0 = tan( π
4N ). Then, we apply

a further grid search on two parameters s, t with fixed value c = c0.
The found minimal value for the case n = 2 is WET = 35.38 obtained
at s = 0.33, t = 0.5. This solution gives a sharp triangle solution;
see Figure 4.18, left. The corresponding Willmore functional is WT =
22.81, which is closer 21.89 – the Willmore functional for the Lawson’s
surface of genus 2 presented in [28]. On the other hand, the found
minimal energy for the case n = 3 is WET = 49.83 obtained at s = 0.46,
t = 0.40. This solution is shown in Figure 4.18, right. The associated
Willmore functional is WT = 24.69, which is also closer to the value
22.82 presented in [28]. By applying the unit inversion with center at i
to the approximated solutions, we obtain the button shapes shown in
Figure 4.19.

4.5.3 Application to Boy’s Surface

The Boy’s surface is an immersion of the projective plane RP 2 into R3. It
was discovered by Werner Boy [11], a student of David Hilbert in 1901,
while attempting to prove that such an immersion does not exist. The
Boy’s surface is a nonorientable surface, and it has a single triple point
as its singularity. Recently, Chéritat [16] produced a model of the Boy’s
surface composed of simple patches: 12 toric, 3 cylindrical, 3 planar,
and a sharp triangular patch on a sphere. We aim to enhance Chéritat’s
construction using our GP-filling method.

Let’s first recover the Chéritat’s construction. The patches used to
model the Boy’s surface come in triplets; one is obtained from the other
by rotating 120◦ about the diagonal axis that passes through the origin
and the point (1, 1, 1). This rotation is simply the map p 7→ qpq−1, where
q = 1 + i+ j+ k. The area surrounding the triple point consists of three
squares that represent sections of the coordinate planes. The endpoints
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Figure 4.18: Approximation of a stereographic projected image of
Lawson’s surfaces of genus 2 and 3.

Figure 4.19: Image of the approximated Lawson’s surfaces using a
different center of the stereographic projection.
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Square
(
0 i j i+ j
1 1 1 1

)
Planar ring

(
−i− j i− j −i− 3j −i− j

1 1 k k

)
Planar patch

(
i− j i+ j 9i− 3j 8i+ 2j
1 1 3 3 + k

)
Cylinder

(
j+ k −j+ k 1 + i− j+ k −1 + i+ j+ k
1 1 −1− j −1− j

)
Tpc

(
−j+ k −1− i− 2j −1 + i+ j+ k −3 + i+ 3j+ k

1 k −1− j i− k

)
T+
pc

(
i+ k 1 + 3i+ j+ k 2i+ 8k 8 + 8i+ 2j+ 6k
1 1− k 3 + j 3− 3k− i+ j

)
Table 4.1: Homogeneous control points for the simple patches used in
Boy’s surface model.

of the coordinate axes on these squares are connected by unique circular
arcs, as illustrated in Figure 4.20(a). These arcs are extended along
the orthogonal squares, forming cylindrical sections. By thickening
the arcs along the sides of the squares, we create planar ring patches
attached to the squares, as shown in Figure 4.20(b). The cylinders and
the planar rings define toric patches, denoted by Tpc (up to the rotational
symmetry); see Figure 4.20(c).

Next, we blend the three tori Tpc’s by Dupin cyclides. This is
equivalent to blending the three cylinders tangent to these tori at their
ending circles. Since each pair of cylinders does not share a common
inscribed sphere, a junction of two Dupin cyclides has to be used to
connect these cylinders. The construction of such junctions can be found
in [10, 43, 45]. To create a bias linking two Tpc’s, we need to connect the
end circle of the torus Tpc with the opposite planar ring. This can be
achieved by projecting the end circle onto the plane of the planar ring,
resulting in a unique Dupin cyclide blending, which turns out to be a
torus denoted as T+

pc. According to the circularity condition of the corner
patches of principal patches, this formulation defines a unique subpatch
of the torus T+

pc and a planar patch that replaces part of the planar
ring; see Figure 4.20(d). Specifically, the biarc boundary is constructed
uniquely. The QB-representation of these uniquely constructed simple
patches are presented in Table 4.1.

We define the hole for filling as the boundary of the union of the
simple patches, as illustrated in Figure 4.21, left. Although this hole
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(a) (b)

(c) (d)

Figure 4.20: Uniquely constructed simple patches of the Boy’s surface.

Figure 4.21: Assembly of toric patches and a sharp spherical triangle to
fully model the Boy’s surface.
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Figure 4.22: Examples of improved Boy’s surface models generated
using the local filling method.

does not strictly meet the criteria for a QCE-hole because it has 9 sides
and flat angles at 3 corners, we can treat it as a degenerate 12-sided QCE
hole. In this case, the three corners with flat angles can be viewed as
a degeneration of the boundary arc into a single point. We consider
the GP-filling method to this hole to find various models of the Boy’s
surface. The center of the middle sphere should be on the diagonal axes
to preserve the symmetry of the Boy’s surface.

Chéritat [16] inadvertently filled the hole using additional toric
patches and a sharp spherical triangle in the middle; see Figure 4.21,
right. This sphere is centered at pc = −i − j − k and has a radius
of r = 1 + 2

√
5. It touches the end circles of the tori Tpc, creating

a junction of two Dupin cyclides, which turned out to be tori with
boundary biarcs on the same sphere. Our method yields the same
results by projecting the boundary biarcs into this particular sphere. By
using the same optimization approach with respect to Willmore energy
as in Section 4.5.2, but this time with two parameters – the center of
the sphere along the symmetry axis and its radius – we can achieve
improved models as illustrated in Figure 4.22.

4.6 Conclusion

We introduced an innovative method for filling an even multi-sided
hole that naturally appears in DC splines. These holes are called quasi-
circular even (QCE), whose vertices satisfy the multi-ratio condition,
being real, and bounded by circular arcs meeting orthogonally at their
junction corner points. The filling method uses a ring of Dupin cyclide
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principal patches and a spherical or planar patch in the middle. The
use of a spherical or planar patch in the middle is necessary due to
topological restrictions on global Dupin cyclidic splines. A central
cyclic (CC) filling was used in the case where the vertices of the hole
lie on a circle. This filling method allows us to achieve the construction
of a surface of arbitrary topology. It is also convenient to use when
blending multiple cones with a common inscribed sphere. A general
filling by projection (GP-filling) was introduced, generalizing the CC-
filling, where we welcome an arbitrary middle sphere. In GP-filling,
the boundary arcs are projected onto the sphere to create unique edge
patches and corner patches for the construction.

The main problem in the GP-filling construction is to find a suitable
middle sphere for the filling construction. Based on numerical exper-
imentations, we suggest minimizing the Willmore energy to find an
appropriate middle sphere. This approach is demonstrated in several
examples, including the approximation of Lawson’s surfaces and the
modeling of the Boy’s surface.
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General Conclusions

This dissertation explores theoretical results about Dupin cyclides
and their applications in Computer-Aided Geometric Design (CAGD)
and architecture. Dupin cyclides are unique surfaces in Euclidean
space characterized by the property that their curvature lines are
circles. These surfaces are used in surface modeling, where Dupin
cyclides are smoothly blended along these circular curvature lines.
Our advancements are divided into three interconnected categories:
recognition through implicit equations, Dupin cyclides and cyclidic
systems based on quaternionic parametrizations, and generalized
cyclidic splines. Each category has contributed unique insights that,
when considered together, provide a comprehensive understanding of
Dupin cylides and their modeling applications.

Summary of Main Results

Chapter 2: Dupin cyclides and Darboux cyclides are algebraic surfaces of
degrees 4 or 3 of the same type. The general equation of a Dupin cyclide
with arbitrary coefficients defines a Darboux cyclide. While both Dupin
and Darboux cyclides are preserved by inversions, general Darboux
cyclides are less commonly used in CAGD due to their complexity and
instability when subjected to offset operations. Therefore, distinguishing
Dupin cyclides from Darboux cyclides is crucial. The chapter examines
the recognition of Dupin cyclides among Darboux cyclides through
implicit equations. In particular, the equations for Dupin cyclides were
derived as a subvariety of Darboux cyclides based of the coefficient of
the general equation. For practical purposes, we stratified this variety
of Dupin cyclides into several Zariski open subspaces that are complete
intersections of codimension 4. Additionally, we considered other points
located in closed subspaces to characterize the variety fully.

The derived equations were used to classify Dupin cyclides by
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describing their torus Möbius class representative based on an abstract
implicit equation. To achieve this, a torus invariant was introduced
and extended to any Dupin cyclide equation as a rational function of
the coefficients of the general implicit equation. This toric invariant
measures the Willmore energy of a smooth Dupin cyclide and also
distinguishes singular cyclides through a specific interval constraint. As
a contribution to the CAGD applications, the derived equations were
applied to compute all Dupin cyclides passing through a fixed circle. In
this application, the resulting subvariety is reducible, indicating that a
circle is either a principal or a Villarceau circle on the Dupin cyclide. The
toric invariant for each component was derived, enabling the selection
of adequate Dupin cyclides from both sides of the fixed circle.

Chapter 3: This chapter presents theoretical results regarding Dupin
cyclides within the quaternionic framework. Quaternions represent
objects such as points and circles in space and enable us to explicitly
express transformations such as rotations and inversions in Euclidean
space through basic quaternionic operations. It is known that Dupin
cyclide principal patches can be parametrized by quaternionic bilinear
fractional polynomials, referred to as the quaternionic-Bézier (QB)
formula. An improved QB formula for principal patches on Dupin
cyclides was derived and proved differently. The chapter discusses
certain symmetric properties of principal patches, particularly focusing
on their central points within the parameter space of the QB formula.
Central points facilitate smooth blending between a principal patch
and a sphere, and can be used in the context of DC splines to fill holes.
Additionally, a formula for Willmore energy was adapted to the new QB
formula. Willmore energy is valuable for preventing singularities, as the
Willmore energy of a singular patch is infinite.

Besides, a natural extension of principal patches to 3-dimensional
objects known as Dupin cyclidic (DC) cubes was explored. These DC
cubes are rationally parametrized using specific fractions of trilinear
quaternionic polynomials. The QB formula for DC cubes was derived.
By considering the full range of the parameter space, this QB formula
parameterizes a triply orthogonal coordinate system with coordinate
lines that are either circles or straight lines, which we denote as a
DC system. The chapter classifies such DC systems under Möbius
transformations in space. This classification is achieved by analyzing sin-
gularities, which represent specific arrangements of bicircular quartics in
orthogonal planes. The classification is presented in the form of four big
classes: (S), (O), (A) and (B). The class (S) includes classical coordinate
systems, such as Cartesian, cylindrical, and conical coordinates. These
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systems are characterized by the property that at least one family of
coordinate surfaces consists of spheres or planes. The class (O) can be
derived from a Dupin cyclide by applying offsets. Offset DC systems
were studied by Maxwell and are well-known for their ability to separate
variables in the Laplace equation. We identified two general classes,
(A) and (B), which are distinguished by their singular sets consisting of
nontrivial arrangements of 1-oval and 2-oval bicircular quartic curves
located on orthogonal planes. A bicircular quartic is later recognized
as a generic planar section of a Dupin cyclide. These bicircular quartics
emerge in the DC system as the intersections of all coordinate surfaces
within a family of coordinate surfaces.

Chapter 4: To support the current applications of Dupin cyclides
in CAGD and architecture, the chapter explored the problem of filling
holes that naturally occur in DC splines. Due to topological restrictions
on global DC splines, principal patches alone are insufficient to model
surfaces of arbitrary topology. In this chapter, we introduced a general
method for filling an even multi-sided hole bounded by circular arcs
using a ring of principal patches that connect a spherical or planar patch
in the middle. The investigation began with the case where all corner
points of the hole lie in a circle. In this case, the natural middle sphere
should necessarily contain the circumcircle, and it is uniquely defined
by the choice of a corner patch touching the sphere at the central point of
this patch. All other corner patches can be obtained by applying certain
reflections to the chosen one, and the edge patches connecting them are
automatically generated. This approach allows us to blend multiple
cones or cylinders with a common inscribed sphere.

Since there are cases where a middle sphere does not provide a
smooth blending solution, we expanded upon earlier techniques by
allowing the use of any sphere or plane in the middle. This generalized
technique can be applied locally by using two adjacent circles and a
sphere, creating the corner patch through a straightforward projection
onto the sphere. This method is demonstrated in two examples of
applications. The first is the approximation of Lawson surfaces of
genus 2 or 3. Here, the symmetric hexagonal (or octagonal) CE hole
filling, depending on three parameters is constructed. Then the shape
is numerically optimized with respect to Willmore energy. The final
surface is obtained by smoothly joining four such parts by reflections
in symmetry planes/spheres. The second application is related to the
famous non-orientable Boy’s surface. The existing CAD model of the
Boy’s surface is explained and improved. This construction is depending
only on the middle sphere that is found by the optimization of the total
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Willmore energy of all patches used.

Broader Insights

All advancements combined, Dupin cyclides have been examined from
both theoretical and practical perspectives. The theoretical aspects
deepen our understanding of these fascinating objects by exploring their
unique properties and their relationships to other geometric structures.
On the other hand, the practical solutions enhance the potential use of
Dupin cyclides in CAGD and architecture to create innovative structures.

Limitations and Future Research

On the hole-filling problem, it is essential to acknowledge that there are
situations where a middle sphere that provides a smooth solution may
not exist. Addressing this limitation, future research will explore a two-
step filling process that could identify an appropriate middle sphere
for such cases. Upcoming work will include the construction of DC
systems based on a Dupin cyclide and a sphere, which will enhance our
understanding of volumetric DC splines. Additionally, future research
will focus on the geometric significance of linear subspaces within the
variety of Dupin cyclides. Some lines in this variety correspond to Dupin
cyclides that blend smoothly along a Villarceau circle. Another area of
study involves determining how many non-degenerate Dupin cyclides
are associated with a single line in the space of Darboux cyclides. This
problem is related to the challenge of fitting nine generic points using
Dupin cyclides. Addressing this issue will improve our understanding
of the capabilities of Dupin cyclides in geometric fitting problems.
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Santrauka (Summary in
Lithuanian)

Šioje disertacijoje nagrinėjami teoriniai rezultatai apie Dupino ciklidus
ir jų taikymas kompiuteriniame geometriniame projektavime (CAGD)
ir architektūroje. Dupino ciklidai yra išskirtiniai paviršiai euklidinėje
erdvėje R3, pasižymintys savybe, kad jų kreivumo linijos yra apskritimai.
Modeliuojant paviršius Dupino ciklidų skiautės glodžiai jungiamos
išilgai šių apskritų kreivumo linijų. Mūsų tyrimas susideda iš trijų
tarpusavyje susijusių dalių: atpažinimas naudojant neišreikštines lygtis,
Dupino ciklidai ir ciklidinės sistemos, pagrįstos kvaternionais, ir
apibendrinti ciklidiniai splainai. Kiekvienos tyrimų dalies rezultatai
suteikė svarbių įžvalgų, kurios leido ne tik praplėsti teorinias žinias, bet
ir jas pritaikyti paviršių modeliavime.

Pagrindinių rezultatų santrauka

Skyrius 2: Dupino ciklidai sudaro poaibį visų Darboux ciklidų aibėje,
kurie lengvai apibūdinami kaip maksimaliai 4 laipsnio algebriniai pavir-
šiai su dviguba konike begalybėje. Nors ir Dupino, ir Darboux ciklidai
invariantiški inversijoms, bendrieji Darboux ciklidai geometriniame
modeliavime naudojami rečiau dėl jų sudėtingumo ir nestabilumo, kai
jiems atliekamos ofseto operacijos. Todėl labai svarbu atskirti Dupino
ciklidus nuo Darboux ciklidų. Skyriuje nagrinėjamas Dupino ciklidų
atpažinimas tarp Darboux ciklidų naudojant jų algebrines lygtis. Visų
pirma, Dupino ciklidų lygtys apibūdinamos kaip Darboux ciklidų
porūšis, pagrįstas bendrosios lygties koeficientais, kurie sudaro 13
matavimų projektyvinę erdvę. Praktiniais tikslais mes suskirstėme šią
Dupin ciklidų vairumą į kelias Zariski atvirus poaibius, kurie yra pilnos
sankirtos. Be to, mes atsižvelgėme į kitus taškus, esančius uždarose
erdvėse, kad apibūdintume žanrą.
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Išvestos lygtys buvo naudojamos klasifikuojant Dupino ciklidus ir
apibūdinant jų Möbius klasės atstovą. Tuo tikslu, buvo įvestas toro
invariantas ir išplėstas bet kuriai Dupino ciklido lygčiai kaip racionali
bendrosios neišreikštinės lygties koeficientų funkcija. Šis torinis
invariantas matuoja reguliaraus Dupin ciklido Willmoro energiją ir taip
pat išskiria pavienius ciklidus pagal tam tikrą intervalo apribojimą.
Kaip indėlis į geometrinį modeliavimą, išvestinės lygtys buvo pritai-
kytos apskaičiuojant aibę visų Dupino ciklidų, einančių per fiksuotą
apskritimą. Tai padeda nesunkiai nustatyti, kada duotas apskritimas
yra pagrindinis arba Villarceau apskritimas Dupino ciklide. Taip pat
buvo gautas kiekvienos komponentės torinis invariantas, leidžiantis
pasirinkti tinkamus Dupino ciklidus iš abiejų duoto apskritimo pusių.

Skyrius 3: Šiame skyriuje pateikiami teoriniai rezultatai apie Dupino
ciklidus naudojant kvaternionų algebrą. Šie metodai leidžia ne tik
kompaktiškai aprašyti reikiamus objektus (pvz. apskritimus erdvėje),
ir patogiai apibrėžti transformacijas, tokias kaip posūkiai ir inversijos
euklidinėje erdvėje, naudojant kvaternionus. Yra žinoma, kad Dupino
ciklido pagrindines skiautes galima parametrizuoti kvaternionininėmis
dvitiesinėmis racionaliomis funkcijomis, apibrėžtomis kvaternionine-
Bézier (QB) formule. Patobulinta QB formulė pagrindinėms Dupin
ciklidų skiautėms buvo gauta ir įrodyta nauju būdu. Skyriuje aptaria-
mos tam tikros simetrinės pagrindinių skiaučių savybės, ypač sutelkiant
dėmesį į jų centrinius taškus QB formulės parametrų erdvėje. Centriniai
taškai palengvina glodų pagrindindinės skiautės ir sferos sujungimą ir
yra naudojami skylių užpildymui 4 skyriuje. Be to, Willmoro energijos
formulė buvo pritaikyta naujai QB formulei. Willmoro energija yra
vertinga siekiant išvengti singuliarių (ypatingų) taškų, nes singuliarios
skiautės Willmoro energija yra begalinė.

Taip pat buvo ištirtas natūralus pagrindinių skiaučių apibendrinimas
iki trimačių objektų, žinomų kaip Dupino ciklidiniai (DC) kubai. Šie
kubai yra racionaliai parametrizuomi naudojant specifines tritiesių
kvaternioninių polinomų trupmenas. Buvo gauta DC kubų parametri-
zacijos QB formulė. Išplėsdami šią QB formulę į visą parametrų erdvės
aibę, gauname trigubai ortogonalią koordinačių sistemą su koordinačių
linijomis, kurios yra apskritimai arba tiesės, kurią vadinsime DC
sistema. Šiame skyriuje tokios DC sistemos klasifikuojamos erdvinių
Möbius transformacijų atžvilgiu. Ši klasifikacija pasiekiama analizuojant
parametrizacijų ypatingų taškų aibes, kurios yra specifinių biciklinių
kvartikų (išdėstytų trijose tarpusavyte statmenose plokštumose) jun-
giniai. Klasifikacija pateikiama keturių didelių klasių pavidale: (S),
(O), (A) ir (B). Klasė (S) apima klasikines koordinačių sistemas, tokias
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kaip Dekarto, cilindrinės ir kūginės koordinatės. Šioms sistemoms
būdinga savybė, kad bent viena koordinačių paviršių šeima susideda iš
sferų arba plokštumų. Klasė (O) gali būti gaunama iš Dupino ciklido,
taikant ofsetus. Ofseto DC sistemas ištyrė dar Maxwellas ir jos yra
gerai žinomos dėl išskirtinės savybės atskirti kintamuosius Laplaso
lygtyje. Mes radome dvi bendrąsias klases (A) ir (B), kurios išsiskiria
ypatingų kreivių rinkiniais, susidedančiais iš netrivialių 1 ovalo ir 2
ovalių biciklinių kvartikų, esančių statmenose plokštumose. Biciklinės
kvartikos vėliau gaunamos kaip bendrieji plokštieji Dupino ciklido
pjūviai. Šios biciklinės kvartikos atsiranda DC sistemoje kaip visų
duotosius koordinatinių paviršių šeimos sankirtos kreivės.

Skyrius 4: Siekiant išplėsti dabartinį Dupino ciklidų taikymą geomet-
riniame modeliavime ir architektūroje, skyriuje buvo nagrinėjama skylių
užpildymo problema, kuri natūraliai atsiranda ciklidiniuose splainuose.
Iš padžių nustatome topologinius ciklidinių splainų apribojimus, kai
neleidžiama naudoti sferinių arba plokščių skiaučių. Gauname išvadą,
kad norėdami sumodeliuoti bet kokius topologijos paviršius, būtinai
turėsime naudoti sferines/plokščias skiautes. Šiame skyriuje pristatome
bendrą konstrukciją, kaip užpildyti 2n-kampę skylę, apribotą apskritimo
lankais, naudojant pagrindinių skiaučių žiedą su viena sferine/plokščia
centrine skiaute. Tyrimas prasideda nuo atvejo, kai visi skylės kampiniai
taškai yra ant apskritimo. Čia natūralioje vidurinėje sferoje būtinai
turi būti apskritimas, o tai vienareikšmiškai apibrėžiama pasirinkus
kampinę skiautę kaip ketvirtį specialios didelės skiautės, kuri įpiešta
į šį apskritimą. Visas kitas kampines skiautes galima gauti pritaikius
tam tikrus atspindžius, o juos jungiantys kraštų skiautės generuojamos
automatiškai. Šis metodas leidžia apjungti kelis kūgius ar cilindrus,
kurie turi bedrą įpieštą sferą.

Kadangi yra atvejų, kai vidurinė sfera negarantuoja glodaus skylės
užpildymo, išplėtėme ankstesnius metodus, leisdami naudoti bet
kurią sferą ar plokštumą viduryje. Šis apibendrintas metodas gali
būti taikomas lokaliai, naudojant du gretimus apskritimus ir sferą,
sukuriant kampinę skiautę per tiesioginę projekciją į sferą. Toks metodas
leidžia modeliuoti paviršius su bet kokiomis topologijomis, naudojant
minimalų skaičių sferų kartu su Dupino ciklidais. Jis efektyviai
prisitaiko prie sudėtingų paviršių, tokių kaip Boy paviršius, kuris
yra neorientuojamas paviršius. Mes paaiškiname ir patobuliname
žimomą Boy’jaus paviršiaus modelį, kuriame autorius stebėjosi, kai rado
vienintelę unikalią sferą užbaigiančią visą konstrukciją. Mūsų būdu
pasiekiamas glodus sprendimas, kai randama vidurinė sfera tinkama
skylei užpildyti. Parodėme, kad ji gali būti rasta specialiai parenkant
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laisvuosius konstrukcijos parametrus taip, kad jie optimizuotų skylės
užpildymo Willmoro energiją.

Platesnės įžvalgos

Visame darbe Dupino ciklidai buvo išnagrinėti tiek teoriniu, tiek
praktiniu požiūriu. Teoriniai aspektai pagilina mūsų supratimą apie
šiuos svarbius paviršius, tyrinėjant jų unikalias savybes ir ryšį su kitomis
geometrinėmis struktūromis. Kita vertus, praktiniai sprendimai padidi-
na galimą Dupino ciklidų panaudojimą geometriniame modeliavime ir
architektūroje kuriant naujoviškas struktūras.

Apribojimai ir ateities tyrimai

Kalbant apie skylių užpildymo problemą, būtina pripažinti, kad yra
situacijų, kai vidurinės sferos, kuri duoda glodų sprendimą, gali ir
nebūti. Spręsdami šį apribojimą, būsimi tyrimai galėtų išnagrinės
dviejų etapų užpildymo procesą, kuris padėtų nustatyti tinkamą
vidurinę sferą tokiais atvejais. Taip pat būtų įdomu ištirti DC sistemas,
apibrėžtas tik vienu Dupino ciklidu ir sfera, kas tikrai pagerintų mūsų
supratimą apie tūrinius ciklidinių spainų apibendrinimus. Be to, būtų
svarbu suprasti geometrinę linijinių poerdvių reikšmę Dupino ciklidų
erdvėje. Kai kurios šios rūšies linijos atitinka Dupin ciklidus, kurie
glodžiai jungiasi išilgai Villarceau apskritimo. Kita tyrimo sritis apimtų
nustatymą, kiek neišsigimusių Dupin ciklidų yra susiję su viena tokia
Darboux ciklidų šeima. Ši problema susijusi su devynių bendrųjų
taškų interpoliavimo iššūkiu naudojant Dupino ciklidus. Išsprendus
šią problemą, geriau suprasime Dupin ciklidų galimybes sprendžiant
taikomuosius geometrinius uždavinius.
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