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ABSTRACT Papillary (PTC) and follicular (FTC) thyroid carcinomas require different treatment strategies,
but their accurate differentiation remains a challenge in conventional histopathology. Misclassification can
lead to overtreatment of low-risk PTCs or inadequate treatment of FTCs, increasing the risk of recurrence and
metastasis. Since the structure of the collagen capsule surrounding thyroid nodules provides diagnostically
valuable information, label-free imaging with second harmonic generation (SHG) microscopy combined
with machine learning (ML)-based analysis offers a promising approach for automated classification.
In this study, we extracted intensity and texture features from SHG images of thyroid nodules scanned as
a whole and optimized several ML classifiers, including logistic regression, support vector classification
(C-SVC), multilayer perceptron, random forest, XGBoost, and LightGBM, using hyperparameters tuning
with stratified 10-fold cross-validation. One of the major challenges in classification was label noise
resulting from 1) mislabeling of adjacent tissue, 2) PTC calcifications mimicking FTC features, and 3)
capsule heterogeneity. To address this issue, we applied unsupervised segmentation to exclude mislabeled
regions and consider capsular heterogeneity as a diagnostic feature. Recursive feature elimination and
mutual information selection further refined the feature set and improved classification accuracy. Among
all models, C-SVC achieved the highest accuracy (84.73%) with robust generalization to unknown data,
significantly outperforming standard ML approaches (60-70%). These results demonstrate the feasibility of
SHG microscopy-based ML classification as a reliable adjunct to existing histopathologic methods, which
could improve diagnostic accuracy and patient outcomes.

INDEX TERMS Association rule learning, automated machine learning, boosting, biomedical image
processing, cancer, image analysis, wide-field second harmonic generation microscopy.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and Papillary and follicular thyroid carcinomas (PTC and FTC)
approving it for publication was Tallha Akram . are both well-differentiated carcinomas and account for
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approximately 88% of all thyroid tumors [1]. The prognosis
for FTC is often worse than for PTC [2], [3] and requires a
total thyroidectomy [4]. However, low-risk PTCs are often
over-diagnosed and thus overtreated with total thyroidectomy
and/or radioactive iodine [5], whereas a less aggressive
approach is feasible and may prevent postoperative complica-
tions and hypoparathyroidism [6]. To prevent overtreatment,
a precise diagnosing of FTC and PTC is needed.

The collagen capsule surrounding a thyroid nodule is an
important histopathological feature, as it provides insight
into tumor invasiveness, malignancy potential, and prognosis.
In PTC, the capsule may be incomplete, infiltrative, or absent,
whereas in FTC, the capsule is typically more well-defined.
Differences in the capsular structure may correlate with
the biological behavior of these tumors, including their
metastatic potential and response to treatment.

A comparison of the capsules surrounding PTC and FTC
nodules which are often evaluated through histopathological
examination could yield valuable insights into their pathogen-
esis, clinical outcomes, prognostic indicators and ultimately
may improve diagnostic accuracy.

Second harmonic generation (SHG) microscopy enables
label-free visualization of fibrillar collagens which comprise
the capsule around the nodule and can be used to supplement
traditional histopathology. Intensity and texture analysis of
SHG microscopy images of tissue sections based on the
first, second and high order statistics (F-, S-, HOS) [7],
[8] enables extraction of a set of numerical features which
quantitatively describe collagen network properties and allow
interpretation of specific changes in tumor microenvironment
accompanying tumor progression.

Texture analysis of collagen structures imaged by SHG
microscopy has a strong diagnostic potential for classification
of benign and malignant thyroid nodules. Statistically signif-
icant differences in SHG texture features have been shown
among various thyroid benign and malignant pathologies [9],
[10], [11], [12], [13], [14], [15]. However, comparison of
randomly selected small ROIs (approx. 100 um - 200 um
for the above studies) may be flawed and not provide a
correct and complete picture of the characteristics of collagen
structures in these neoplasms. The heterogeneity in collagen
structures along the whole capsules of PTCs [16] and around
follicular adenomas (FA) and FTC [15] was demonstrated.

Wide-field variant of SHG microscopy [16], [17], [18],
[19], [20], [21], [22], [23] allows the rapid accumulation of
separate images of approximately 100 um x 100 um. These
images can be arranged into a sub-centimeter-sized mosaic
of the tissue sample [16], providing an alternative to whole
slide scanning often used for imaging tissue sections stained
with hematoxylin and eosin (H&E) [24]. This approach
also overcomes the ROI size limitation, which is critical
for analyzing thyroid nodule capsules. However, the manual
analysis of large datasets of SHG images is limited and
requires application of machine learning (ML) algorithms.
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Unsupervised ML techniques, such as principal component
analysis (PCA) and k-means clustering, applied to texture
features of SHG images of whole PTC nodules, enabled
identification of patterns associated with altered helical pitch
angles of collagen fibers, particularly in areas of PTC
capsular invasion [16]. These methods also highlighted the
structural heterogeneity of the collagen capsule around PTC,
identifying characteristic patterns in collagen textures and
networks related to invasions, tight collagen barriers and
altered areas [16].

Supervised ML classifiers (e.g., logistic regression (LR),
linear support vector machines (SVM), random forest (RF),
gradient boosting, and multilayer perceptron (MLP)) are
often applied to distinguish between different types of
cancer [25], [26], [27], [28], with classification primarily
based on MRI or CT texture image analysis [29]. Although
studies have reported efforts to classify thyroid nodules using
features extracted from SHG and multiphoton fluorescence
images [30], research on ML classification of thyroid
neoplasms based on SHG imaging remains limited.

Data quality plays a crucial role in classifier perfor-
mance. The accuracy of measurements (apparatus noise),
the presence of irrelevant or redundant features (feature
noise), and mislabeling (label noise) can all hinder model
training and performance. Improving data quality often
leads to better classifier performance, lower computational
costs, and enhanced model generalization [31], [32]. While
apparatus-related noise is difficult to eliminate, data quality
can be improved by selecting only highly discriminative
features and addressing label noise.

In real-world situations, feature diversity is required since
there is often no prior knowledge about which features are
relevant to the target. However, increasing feature diversity
can introduce irrelevant features, which are not associated
with the target but still affect the ML classifier, as well as
redundant features that do not provide new information about
the target [31]. High dimensionality of the feature space can
lead to overfitting and hampered model performance [33].
Removing feature noise from data is an important step in the
design of classification models, often achieved by reducing
the dimensionality of the feature space. Dimensionality
reduction is often done by feature extraction (e.g. PCA;
linear discriminant analysis (LDA); etc.) which creates new
features from the original ones, or through feature selection
which reduces the number of initial features by removing less
important ones. The latter approach is generally preferred,
as it keeps the original features interpretable, while the new
features lack biophysical meaning [31].

Label noise appears if a subset in the sample is labelled
differently than the sample. The opposite situation may also
occur: the sample is labelled as a whole, but it contains
subsets that do not correspond to the assigned label, e.g.,
an imaged sample labelled as a tumor, may contain areas
of normal tissue. Label noise may originate from automated
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labelling, but even manual labelling by experts can lead to
error rates of tens of percent in data labels [34].

Given these challenges, diagnosing PTC and FTC from
SHG images is a complex task, since data is likely prone to
both feature and data noise. However, existing research [9],
[10], [11], [12], [13], [14], [15], [16] highlights the high
diagnostic potential of SHG image analysis for distinguishing
thyroid cancer types. Well-designed and properly trained
classification models could supplement the diagnosis and
contribute to the disclosure of mechanisms of FTC and PTC
progression.

In this study, we used three monolithic (LR; C-support vec-
tor classification, C-SVC and MLP) and three ensemble (RF;
XGBoost and LightGBM) classifiers to: (i) diagnose PTC and
FTC based on texture features extracted from SHG images of
whole thyroid tissue section scans; (ii) evaluate the impact
of label noise and feature noise (irrelevance/redundance) on
the predictive performance of these models; (iii) assess the
feasibility of SHG-based discrimination between PTC and
FTC in real-life applications.

We show that the label noise originating from the
similarity of collagen structures in PTC and FTC samples
and the heterogeneity of the capsules significantly affect the
performance of ML classifiers. Feature selection improves
the accuracy of all classifiers if label noise is removed.
C-SVC and MLP classifiers outperform other classifiers,
with C-SVC showing better performance even when feature
and label noise are not excluded. The reduction of label
and feature noise increases the accuracy of the C-SVC
classifier up to almost 85% on the validation set. The
developed classification model shows good generalization
and provides satisfactory classification of the unknown
samples, making it a reliable complementary technique for
conventional methods of differential diagnosis of thyroid
carcinoma.

Il. EXPERIMENTAL SECTION

A. THYROID TISSUE SAMPLE PREPARATION

The tissue sections of the PTC and FTC nodules were pre-
pared according to the standard histological procedure [35].
The formalin-fixed, paraffin-embedded 4 um — 7 pum thick
tissue sections were placed on glass slides and stained with
hematoxylin and eosin (H&E). Bright field imaging of the
slides was performed using the Aperio LV1 IVD Whole
Slide Scanner (Leica Biosystems) equipped with a 20x
objective. The classification of the samples as PTC or FTC
was performed by an expert histopathologist (LGE).

The thyroid tissue samples were used for research
purposes with written informed consent obtained from the
patients. All samples were anonymized before analysis. The
use of the samples was approved by the Carol Davila
University Central Emergency Military Hospital, Bucharest,
Romania (protocol number 380/09.06.2020). All experiments
were performed according to the relevant guidelines and
regulations and in accordance with the Declaration of
Helsinki.
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B. WIDE-FIELD SHG IMAGING SETUP

SHG images were obtained with a custom-built wide-
field non-linear microscopy setup based on a modular
microscope from ASI (Applied Scientific Instruments) [18].
Measurement conditions and SHG microscopy setup are
described in detail in [16]. For the analysis, 45360 separate
SHG images of sizes 150 um x 150 um were collected.
In total, 10 samples of PTC (5) and FTC (5) nodule sections
were imaged for this work. The scanned areas of PTC and
FTC tissue sections ranged in size from 2.1 mm x 2.1 mm to
8.4 mm x 8.4 mm. Bright field and SHG images are shown
in Fig. S1 and Fig. S2, Supplementary Material 1.

The SHG images of the PTC capsules selected for
this study were previously analyzed by unsupervised ML
algorithms [16], [17], which facilitated exploratory data
analysis prior to optimization of classifiers and interpretation
of the results of ML model performance.

C. SHG IMAGES PRE-PROCESSING

The edges of the 150 um x 150 um SHG images were
cropped to 117 pum x 117 pum (800 pixels x 800 pixels)
to minimize illumination inhomogeneity caused by the
Gaussian laser beam intensity profile. Further preprocessing
included applying a threshold of 110 counts [36] and a two-
stage 99" percentile reduction applied to the grey levels of
the entire 16-bit SHG image dataset, as described in [16].

D. INTENSITY AND TEXTURE FEATURE EXTRACTION

For a complete quantitative evaluation of the textural changes
in collagen structures, statistical moments of different orders
were applied:

1) First-order statistics (FOS): based on image intensity,
includes the following parameters: mean (u1), standard
deviation (o), skewness (g1), and kurtosis (g2).

2) Second-order statistics (SOS): derived from the grey
level co-occurrence matrix (GLCM) [37], calculated for
five-pixel distances (1, 3, 6,9, and 12 px). Parameters include
energy (E), inertia (1), correlation (C), local homogeneity (L)
and entropy (H) [7].

3) High-order statistics (HOS): computed from the grey
level run-length matrix (GLRLM) [8], including short run
emphasis (SRE), long run emphasis (LRE), grey-level non-
uniformity (GLN), run length non-uniformity (RLN), and run
percentage (RP) [7].

A total of 34 texture and intensity features (4 FOS,
25 SOS, and 5 HOS) were extracted from each single SHG
image, forming a feature vector that characterizes each image.
A complete description of these parameters can be found
in [16].

E. MACHINE LEARNING ANALYSIS

The schematic workflow outlining dataset preparation,
strategies of handling feature noise and label noise, model
optimization, training, testing and generalization are shown
in Fig. 1.
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FIGURE 1. The schematic workflow of (a) dataset preparation, feature extraction, feature selection, and label noise reduction, and (b) optimization and
generalization of the ML classification models. An asterisk indicates that, for permutation importance analysis (feature importance analysis for C-SVC and
MLP), the validation set was used. Numbers 1-3 correspond to dataset preparation with label noise reduction approaches without feature noise reduction
(feature selection). Numbers 4-6 correspond to dataset preparation with feature selection followed by label noise reduction approaches. Feature
selection consists of RFECV-LinearSVC for reducing redundant features and mutual information feature selector (MIFS) for removing target-irrelevant

features. MI - mutual information parameter.

1) MANAGING LABEL NOISE
Since the most obviously mislabeled data relate to the
SHG images of glass slide, glass-related SHG images
were excluded as previously described in [16] from further
consideration except for the multiclass classification, where
these data were added as a separate class.

Label noise reduction was done according to the following
label correction approaches:

I. All tissue-related data (original dataset excluding
images of glass and intensity outliers) [16] was used,
assuming that collagens in capsule and surrounding
tissue contain features relevant to target (label PTC or
FTC) and reflect the tumor progression;
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II. Only capsular collagen-related data was used with the
assumption that surrounding tissue does not contain
any noticeable features of tumor progression. The
capsular collagen was separated by applying the same
algorithm (as in approach I) to all tissue-related data.
Multi-class classification, in which glass and
non-capsular collagen data from both PTC and FTC
were sorted in one class, with an assumption that
these data are not relevant to the target (label PTC
or FTC) and are identical in both carcinomas. Since
heterogeneity of collagen capsules of PTC was
previously demonstrated [16], an assumption that FTC
capsule may also be heterogeneous was made. To take
this into account, PCA and multi-cluster k-means

III.
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were applied to segment both carcinomas according to
patterns in texture features. The detailed description is
provided in section III-C.

Prior to further analysis, the datasets of the standardized
features from the selected SHG images were reset to
the original, non-standardized values. The scaling of the
validation and the global test sets is further performed
with the scaling parameters that are determined during the
optimization of the ML classifiers on the training set.

2) MANAGING FEATURE NOISE

The feature noise reduction process aimed to remove
redundant and non-target-related features was done through a
two-step feature selection approach (Fig. 1a). First, Recursive
Feature Elimination with Cross-Validation with LinearSVC
estimator (RFECV-LinearSVC) was applied to remove
redundant features. RFECV-LinearSVC feature selection
enables the best classification performed on texture features
of images compared to other feature selection techniques,
including subgroup-based multiple kernel learning, RFE with
naive Bayes/bagged trees/RF and LDA classifiers, etc. [38].
This method ranks features in descending order by recur-
sively considering feature subsets of decreasing sizes [38].
Feature scores were averaged across cross-validation folds,
and the optimal number of features was selected to maximize
the cross-validation score. Only features with Rank = 1 were
selected for further analysis [39].

Next, Mutual Information Feature Selector (MIFS) [40]
was used to identify features relevant to the target labels
(PTC or FTC) after RFECV-LinearSVC selection. MIFS
allows measuring feature-target relations and significantly
improves the classification results when applied together
with feature selectors which use feature importance scores
for selection [26]. Mutual information (MI) measures the
dependency between features and labels, with MI = 0 indi-
cating independence. Features with higher MI values are
considered more relevant to a label [41]. A selection threshold
of MI>0.001 (in nat units) was applied in this study.

Feature selection was applied independently on the
training sets for each label noise reduction approach
(subsection II-E1) prior to optimizing the classifiers by
stratified k-fold cross-validation (subsection II-E5). The
most discriminative and target-relevant feature sets, selected
by RFECV-LinearSVC and MIFS, were then used for the
classifiers’ optimization.

To estimate whether feature noise and/or label noise
hamper the performance of the classification models, both
initial datasets containing all features and datasets treated
with RFECV-LinearSVC and MIFS were used in label
correction approaches I-III (see Fig. 1a).

3) PREPARATION OF THE TRAINING, VALIDATION AND TEST
DATASETS

A total of 23652 SHG images were obtained for PTC
and 21708 for FTC, ensuring that the initial datasets were
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balanced. One complete PTC and one complete FTC sample
were set aside as unknown data (global test set) for the final
validation and generalization of the trained ML classifiers.

The dataset of feature vectors from SHG images, repre-
senting 4 PTC and 4 FTC samples, was randomly split into
a training set and a validation set using three different ratios:
70/30%, 80/20%, and 90/10%. Data was split in a stratified
manner. Each training dataset was scaled using the Robust
scaler algorithm with (1; 99) percentiles [36].

Since different strategies for managing label noise (see
subsection II-E1) affect the number of SHG images available
for analysis, these splits were applied separately for each
label correction approach. The number of SHG images used
for feature extraction in each approach and their corre-
sponding splits are summarized in Table S1, Supplementary
Material 1.

4) MACHINE LEARNING CLASSIFIERS

The following ML classifiers were used in the study: ensem-
ble classifiers Random Forest (RF) [42], Extreme Gradient
Boosting (XGBoost) [43], Light Gradient-Boosting Machine
(LightGBM) [44], and monolithic classifiers Logistic Regres-
sion (LR), N-Support Vector Classifier (C-SVC) [45] and
Multilayer Perceptron (MLP) [46], which relates to Deep
Learning algorithms. All models have been developed in the
Python platform libraries scikit-learn 1.6.1 [47]. Depending
on the task, all data were labelled either “PTC/FTC” or
“PTC/FTC/Non-target” and the developed models aimed at
either binary or multi-class classification, respectively.

5) OPTIMIZATION OF ML CLASSIFIERS WITH
HYPERPARAMETER TUNING AND CROSS-VALIDATION

The hyperparameters are top-level parameters of the ML
classifier that control model development process and must
be optimized before training the best/final model [48]. The
hyperparameters of each ML model, tuned and used in this
study, are detailed in Table S2, Supplementary Material 1.
Hyperparameters not listed in Table S2 were set to their
default values.

Hyperparameter tuning was performed using either grid
search or halving grid search. The grid search considers all
possible combinations of hyperparameters and was used for
models with a small number of hyperparameters (LR, C-SVC
and LightGBM). Halving grid search, based on the successive
halving (SH) algorithm [49], was used for models with larger
hyperparameter combinations (RF, XGBoost and MLP) [50].

Since the imbalance of the PTC/FTC ratio could not
be excluded after separation of the tissue-related data,
a stratified 10-fold cross-validation [51] was performed
for both tuning algorithms. The input dataset was equally
divided into 10 stratified subsets, with 9 subsets used
for training and the remaining subset used for validation.
Each subset preserved the original class distribution. The
training/validation process was repeated 10 times, with
the validation subset changing each time [52]. Stratified
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TABLE 1. Features selected by RFECV-LinearSVC and MIFS within each label correction approach.

Excluded by RFECV-LinearSVC;

Excluded by MIFS;

Label correction approach Split (excluded £, No.) (excluded £, No.) No. of remained f;
70/30 Ep, Ci; (2) Ciz, 1y, Co I3, Cs; (5) 27
1. Tissue-related 80/20 RLN, I, H;, Cj; (4) Ci2, Co, I3, Cs5, (4) 26
90/10 RLN, E,», Iy, Ls, Es, Hi, E1; (7) Ciz Cs, 15; (3) 24
70/30 LRE, L3, E1», Eg, Hy, Eg, 15, E 4, 1115 (9) 0) 25
I1. Capsule-related 80/20 GLN, LRE, Ly, Crs, Epp, Eo, Hs, Eg, I3, Es, E, 15 (12) ) 22
90/10 LRE, E», Eg, jt; (4) © 30
I11. Multi-class, accounts for 70730 £ Eg (2) © Z
capsular heterogeneity 80720 L5 (1) O 33
90/10 Iy, Ey, Eg, E3; (4) © 30

Footnote: Lower index indicates the step (in px) used for calculating GLCM. f; — features.

10-fold cross-validation can handle multi-class problems,
so it was also applied in the “PTC/FTC/Normal tissue”
classification [47], ensuring carcinoma-specific cluster ratios
were preserved in both training and validation sets.

The ML models with the highest accuracy were considered
optimized and were retrained using the entire training dataset.
The schematic workflow for model optimization, training,
and testing is shown in Fig. 1b.

The hyperparameter values for all optimized classifiers are
summarized in Table S3, Supplementary Material 1.

6) CLASSIFIER PERFORMANCE EVALUATION

The performance of the developed models was estimated
using the confusion matrix. In binary classification, samples
labelled as PTC were treated as positive class, and samples
labelled as FTC as the negative class. In this context,
false positives (FP) and false negatives (FN) refer to
incorrect predictions, while true positives (TP) and true
negatives (TN) refer to correct predictions for PTC and
FTC, respectively. The model performance was quantitatively
compared using accuracy, precision, recall, and Fl-score,
which were calculated from the confusion matrix elements
according to [53].

The accuracy, precision, recall, and F1-score metrics were
calculated using fixed thresholds, set to 0.5 for the predicted
class probabilities in the current study. To evaluate the perfor-
mance of the developed binary classification models across
a range of thresholds for sensitivity and specificity, Receiver
Operating Characteristic (ROC) analysis was performed [54].
The performance of the classifier was represented by the area
under the ROC curve (AUC) values [53].

In multiclass classification, evaluation metrics included
accuracy, precision “macro” (unweighted mean of precision
for each label), recall “micro” (global recall calculated by
counting the total TP, FN and FP), F1 “weighted” (average
weighted F1 score for each label by the number of true
instances for each label) [47].

7) FEATURE IMPORTANCE ANALYSIS AND INTERPRETATION
To identify the features which contribute most to the
classifiers’ decision-making, a feature importance analysis
was performed. Since the texture features of SHG images are
expected to be correlated, as demonstrated for PTC samples
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in [16], there is no single universal approach for estimating
the most important features. For instance, multicollinearity
may affect the results of permutation feature importance
analysis (PIA) if applied to LR or tree-based classifiers.
Thus, feature contribution to decision-making was treated
independently using model-specific approaches, as detailed
in Table S4, Supplementary Material 1.

8) COMPUTATION

The calculations were performed in Python v3.9 with an
Intel 17-13700KF CPU with 16 cores and 24 threads; 32 GB
random-access memory; Nvidia GeForce RTX 3060 Ti
graphics card with 4864 cores.

Ill. RESULTS AND DISCUSSION

All FTC and PTC samples were imaged using the SHG
microscopy setup and the combined images of all samples
are shown in Fig. S1, S2 (Supplementary Material 1).
To ensure diverse sample description, 34 intensity and texture
features (4 FOS, 25 SOS and 5 HOS) extracted from
each 117 pum x 117 um SHG image tile were used for
further analysis. However, not all the features are necessarily
highly discriminative and relevant to the target, which may
affect the classification results. To evaluate the impact of
feature redundancy and irrelevance on classification, feature
selection was performed using RFECV-LinearSVC followed
by MIFS. The results of feature selection for each label
correction approach are shown in Table 1.

A. TISSUE-RELATED SHG IMAGES

The tissue-related SHG images were separated from the non-
tissue-related images using PCA of the texture feature vectors
extracted from SHG images. Binary k-means clustering,
based on the first five principal components (PCs) covering
more than 92% of data variance, enabled segmentation of the
tissue section image into tissue- and non-tissue related SHG
images [16]. A typical SHG image segmentation is shown
in Fig. 2. Such clustering separates tissue and non-tissue
related points in two well-defined clusters. As previously
shown [16], tissue- and non-tissue-related data points (glass)
have projections with opposite signs on PC1 in the score plots
and can be clearly visualized (Fig. 2).
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(a) SHG scans (b)

Segmentation (I) (c)

PTC (Tissue-related)

Segmentation (Il)

PTC (Capsular)

FIGURE 2. Typical SHG and brightfield images of PTC and FTC nodule sections (a) and the result of the separation of tissue-related (b) or capsule-related
(c) SHG images based on k-means clustering performed on the principal components PC1-PC5. The images separated for the analysis are colored yellow
in (b) and (c). Bright field, SHG image (a) and tissue-related image segmentation (b) of a PTC nodule are reproduced with permission 2024 Y. Padrez et al.

Published by Elsevier Ltd. Licensed under CC BY 4.0 [16].

Either complete or reduced feature vectors (via RFECV-
LinearSVC/MIFS) of tissue-related SHG images were used
for classifier optimization.

The predictive performance results of all ML classifiers
are summarized in Table S5 (Supplementary Material 1)
and Fig. Sla-1 — Fig. Sla-18 (Supplementary Material 1).
The highest accuracy values were achieved with a 90/10
(training/validation) data split and classifier optimization
using the complete feature vectors (Table 2 “I. Tissue-
related”, Fig. 3).

All ensemble ML models (RF, XGBoost, and LightGBM)
show signs of overfitting, suggesting data leakage, which
led to overly optimistic results on the training dataset but
poor performance on the validation dataset. Although the
LR classifier had relatively satisfactory accuracy, its other
metrics were significantly worse than those of the other
models. MLP and C-SVC demonstrated the best performance
on the validation set (Fig. 3a-c), with C-SVC surpassing MLP
in all metrics. The lower recall and F1-score values for MLP
indicate a higher rate of false negatives (PTC predicted as
FTC) and false positives (FTC predicted as PTC) as compared
to C-SVC.

On the unknown test set, MLP demonstrates correct
classification rates slightly above 50% (Fig. 3e), while
C-SVC exhibited low discriminative power for PTC but
performed well in distinguishing FTC (Fig. 3d). Visual
inspection of the classified PTC images revealed that the
normal tissue surrounding the circular PTC capsule was
frequently misclassified as FTC (yellow), resulting in false
negatives. Restricting the analysis area closer to the PTC
capsule improved the classification performance, increasing
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the proportion of true positives to 48.84% for C-SVC and
62.40% for MLP.

Two distinct regions within the collagen capsule of PTC
were consistently classified as FTC by both C-SVC and MLP.
Optical and SHG images of the capsule suggest that these
areas correspond to calcifications (Fig. 4).

Calcifications are more frequently observed in PTCs
than in FTCs and are generally accepted as a reliable
indicator of PTC [55]. Calcifications of sizes less than
1 mm are called microcalcifications and can be referred
to as stromal calcification, bone formation, or psammoma
bodies, whereas calcifications > 1 mm are macrocal-
cifications. Calcifications are believed to form due to
necrosis, hemorrhage and subsequent fibrosis within the
tumor. Collagen I serves as a scaffold for mineraliza-
tion — deposition of mineral salts [56], such as calcium
carbonate phosphates [57], calcium hydroxyapatite [55],
or other calcium compounds within the fibrous extracellular
matrix. Mineral deposits do not generate SHG [58], [59],
indicating that SHG signal detected in PTC samples originate
from fibrillar collagens which favored the formation of
macrocalcifications.

The areas of the PTC capsule which are associated
with calcifications (Fig. 4) were classified as FTC (Fig. 3)
indicating that the collagen texture features in calcifications
resemble those of either normal tissue or FTC. This
introduces another potential source of data errors, categorized
as mislabeling: despite being a characteristic feature of PTC,
calcifications possess texture features that align with other
targets. One possible solution is to create an additional
class for calcifications and perform multi-class classification.
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TABLE 2. Numerical estimation of the optimized model performance (based on maximized accuracy) obtained for data split training/validation 90/10 for
MLP and C-SVC models.

Label ML Accuracy Accuracy Accuracy  Accuracy  Accuracy
correction model (validation), (train), Recall  Precision F1 AUC (FTC (PTC (PTC* Comment
approach % % test), % test), % test), %
MLP 75.88 76.77 0.588 0.781 0.671  0.850 54.57 56.82 62.40 +++
I. Tissue- _MLP* 78.001 79.001 0.687 0.763 0.723  0.862 63.94 44.69| 49.91 1T++]
related C-SVC 81.71 87.09 0.767 0.789 0.778  0.881 72.13 45.09 48.84 ++
C-SVC* 80.31) 82.85] 0.736 0.780 0.757  0.870 70.76] 42.01] 46.13 l
MLP 81.94 83.95 0.745 0.798 0.771  0.898 64.67 38.05 40.91 ++
Ca;:;lle- MLP* 80.00 82.15 0.707 0.781 0.742  0.881 67.89 44.93 46.61 ++1
related C-SVC 82.07 88.36 0.770 0.785 0.778  0.901 71.35 43.28 46.19 ++
C-SVC* 82.20 87.61 0.748 0.802 0.774  0.886 65.69 52.74 56.16 1

Footnote: * — indicates that feature selection was performed prior to the optimization of the hyperparameter configurations of the used classifiers; good
accuracy validation/training, good Recall/Precision/F1/AUC, poor for real test set; +++ good accuracy validation/training, “classified” for real test set. The
arrow (1) indicates the improvement of the model performance and (|) indicates the decrease in the model performance after the removal of redundant and
irrelevant features.
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0.0 (7 —— MLP (AUC = 0.851)
00 02 04 06 08 10 - PTC FTC - PTC FTC
False positive rate
(d) C-SVC: FTC 72.13%; (e) MLP: FTC 54.57%;

PTC 56.82%
— PTC* 62.40%

PTC 45.09%
— PTC* 48.84%

MLP (62.40%)

i

FIGURE 3. Performance of the best developed ML models optimized based on accuracy: (a) ROC curves of all ML models, (b) confusion matrix for C-SVC;
(c) confusion matrix for MLP; (d) C-SCV classification performed on new data set (test set); () MLP classification performed on new data set (test set).
Blue colored tile images mark images classified as PTC, yellow - classified as FTC. Percentage for PTC indicates the portion of correctly predicted PTC tiles
in the PTC sample, which includes surrounding tissue. Asterisk marks the portion of correctly predicted PTC tiles in the PTC sample excluding surrounding
tissue. White circles mark the areas of calcifications.

However, due to limited sample size, attempting to separate the tree models. Consequently, C-SVC may be better suited

the dataset this way would result in unbalanced data.

Both C-SVC and MLP classify the samples based on a
combination of approximately half of all features, as indi-
cated by the PIA of C-SVC and MLP (Fig. 5). PIA reveals
how the model’s accuracy is disrupted when one feature
is randomly changed, providing insight into the model’s
reliance on specific features [42]. C-SVC uses more texture
features for training than MLP and significantly more than
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to reveal hidden relationships between the texture features of
SHG images within PTC and FTC samples.

Adding a feature selection step prior to the optimization
and training of the classifiers, results in the removal of
both redundant features (from 2 to 7 features) and irrelevant
features to the target (from 3 to 5 features), indicating that
data is corrupted by both feature and label noise (Table 1).
However, the performance of the classifiers decreases in all
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FIGURE 4. Bright-field (a) and SHG microscopy (b) of a whole PTC nodule with calcifications: (c)-(e), (f)-(h) and (i)-(k) - bright-field, SHG aﬁd merged

— - =) J 2 —

images of calcifications marked with white rectangles in (a) and (b). Bright field and SHG image of a PTC nodule are reproduced with
permission 2024 Y. Padrez et al. Published by Elsevier Ltd. Licensed under CC BY 4.0 [16].

cases, indicating that there is another, more significant source
of noise beyond feature noise, e.g. label noise (Table S5
in Supplementary material 1, and Fig. S1b-1 — S1b-18 in
Supplementary material 2b). The proportion of mislabeled
data is likely considerable, and the classification models
mainly fail in handling this mislabeled data.
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This noise may originate from non-capsular collagen
structures in the tissue surrounding the PTC and FTC nodules,
as well as from calcifications. Removing normal tissue
surrounding the neoplasm from the analysis is considered
as a possible approach to increase classification accuracy.
The perinodular tissue may contain signatures of tumor

112029



IEEE Access

Y. Padrez et al.: Supervised Machine Learning Thyroid Carcinoma Diagnosis

MLP

RP+
RLN+
GLN-+
LRE+
SRE-+
Local Homogeneity (d=12 px)+
Inertia (d=12 px)+- i
Entropy (d=12 px)+
Correlation (d=12 px)+- HWH
Energy (d=12 px)+
Local Homogeneity (d=9 px)+ }—E»
Inertia (d=9 px)+ iR
Entropy (d=9 px)+
Correlation (d=9 px)+ i
Energy (d=9 px)+
Local Homogeneity (d=6 px)+ I—i%
Inertia (d=6 px)+
Entropy (d=6 px)+ l-i—<
Correlation (d=6 px)+ A
Energy (d=6 px)+ Hh
Local Homogeneity (d=3 px)+
Inertia (d=3 px){- HH
Entropy (d=3 px)+
Correlation (d=3 px)+
Energy (d=3 px)+
Local Homogeneity (d=1 px)+ i
Inertia (d=1 px)+
Entropy (d=1 px)+ HiH
Correlation (d=1 px)}+ HH
Energy (d=1 px)+
Kurtosis+ W
Skewness+ A
Standard deviation+

Mean+ HH

Features

T

0.0 0.1 02 0.3
Decrease in accuarancy score

FIGURE 5. Permutation importance analysis of C-SVC and MLP models.

progression, such as collagen network remodeling induced by
increased MMP9 secretion from macrophages recruited to the
tumor growth sites [60], providing additional information for
classification models. However, since these changes may be
similar in both carcinoma types [61], labelling surrounding
tissues as PTC or FTC could lead to mislabeling and
misclassification.

B. CAPSULE-RELATED SHG IMAGES

To minimize data overlap between PTC and FTC samples
caused by surrounding tissue, only SHG images of nodule
capsules were selected. To automate label noise reduction,
capsule images separation was performed using an unsu-
pervised ML approach [16]: PCA was performed to the
SHG dataset, followed by binary k-means clustering on the
acquired PCs. A typical result is shown in Fig. 2c. While
neither manual labelling nor this method ensures perfect
capsule separation, k-means clustering based on feature
variance differences provides a more objective segmentation
than visual inspection. Further analysis was carried out on the
capsule-related SHG images.
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Filtering out non-capsule SHG images significantly
reduced the training/validation datasets and caused slight
but manageable class imbalance (Table S1, Supplementary
Material 1). Compared to the tissue-related SHG image
dataset, RFECV-LinearSVC significantly reduced the num-
ber of features, while MIFS removed none. The absence of
features removed by MIFS indicates that all features selected
with RFECV-LinearSVC were relevant for distinguishing
PTC and FTC capsules.

While feature selection can improve model performance,
a significant dataset reduction may negatively impact clas-
sifier performance [62]. Thus, classifier performance results
are presented below for both the full and reduced feature set.

The predictive performance of all ML models trained on
the full feature set is summarized in Table S6 (Supplementary
Material 1) and Fig. S2a-1 —S2a-18 (Supplementary Material
2a). Unlike the all-tissue approach, accuracy remains consis-
tent across 70/30, 80/20 or 90/10 (train/validation) splits, with
two best (MLP and C-SVC) shown in Table 2 “II. Capsule-
related”. Overall, models perform better than those trained on
all tissue-related data (Fig. 6a). However, ensemble models
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FIGURE 6. Performance of the ML models developed on capsule-related datasets for a split of (90/10): (a) ROC curves of all ML models, (b) confusion
matrix for C-SVC; (c) confusion matrix for MLP; (d) C-SVC classification performed on the new data set (test set); (e) MLP classification performed on
the new data set (test set); (f) C-SCV (trained on a reduced set of features) classification performed on the new data set (test set); (g) MLP (trained on a
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classified as FTC. Percentage for PTC indicates the portion of correctly predicted PTC tiles in the PTC sample, which includes surrounding tissue. Asterisk
marks the portion of correctly predicted PTC tiles in the PTC sample excluding surrounding tissue. White circles mark the areas of calcifications.

(RF, XGBoost and LightGBM) remain overfitted, showing
overly optimistic results on the training dataset but failing
on the validation dataset. RF achieves satisfactory accuracy,
but low recall and F-1 score. Feature importance analysis
(Fig. S2a-13, Supplementary material 2a) shows that low
coefficients were assigned to most features, leading to the
classification of PTC and FTC capsules as identical in the
unknown dataset.

For MLP and C-SVC, accuracy on the validation set
improves to 81.94% and 82.07% respectively (Table 2 “II.
Capsule-related”, Fig. 6). In addition, the recall and F-1 score
metrics increase for the MLP model, indicating enhanced
performance when trained on capsule-related datasets.
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Both MLP and C-SVC not only showed improved
performance on the validation set, but also correctly classified
FTC samples in the global test dataset (Fig. 6d, e). The
C-SVC model’s classification results for PTC were similar
to those from the all-tissue-related datasets (Fig. 6d),
suggesting that C-SVC is able to manage the overlap in
all tissue-related datasets and focus solely on the patterns
associated with the capsular collagen. In contrast, the MLP
classification accuracy for PTC decreases when trained with
the capsule-related datasets compared to the all tissue-related
datasets (Fig. 6d).

PIA reveals that C-SVC is better at identifying feature
relevance and addressing feature multicollinearity (Fig. 7).
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FIGURE 7. Permutation importance analysis of the performance of (a) C-SVC (90/10) and (b) MLP (70/30) classifiers, optimized based on the complete

(red) and reduced (blue) feature sets.

While the importance of individual features changed between
tissue-related and capsule-related datasets, the model’s over-
all performance remained stable. In contrast, MLP struggles
with the capsule-related datasets and/or suffered from high
feature multicollinearity. The very small fluctuations in MLP
accuracy in response to random changes in feature values
revealed by the PIA may indirectly indicate this issue (Fig. 7).

Feature selection with RFECV-LinearSVC slightly
decreased accuracy for all classifiers, but significantly
improved performance on the unknown global test dataset
for all splits (Table 2 “II. Capsule-related”, Table S6
(Supplementary Material 1), rows marked with asterisks).
The only exception is the LR classifier, which showed no
change in performance between full and reduced feature
sets, suggesting that feature redundancy is not the reason
for the model’s failure. The tree classifiers and C-SVC
benefited most from feature selection, with C-SVC reaching
65.69% and 56.16% accuracy for FTC and PTC, respectively,
on the training/validation split, outperforming all previous
approaches (Fig. 6f). MLP, which appeared to be sensitive
to the size of the training dataset, showed improved
classification, reaching 57.50% and 60.28% for PTC and
FTC, respectively, on the global test set (Fig. 6g). The
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classification results for all classifiers are summarized in
Fig. S2b-1 — S2b-18 in Supplementary Material 2b.

PIA of C-SVC and MLP, trained on the reduced feature sets
(Fig. 7), showed that the features important to C-SVC before
feature selection, remained significant after feature selection.
Increased contributions from HOS (RP, RLN, GLN) and SOS
(d = 6 px, 9 px) more likely explain the improvement in
C-SVC performance. The exclusion of features Ej», E¢ and
1 by RFECV-LinearSVC had minimal effect. Although LRE
contribution was relatively high in all previous approaches,
its removal with RFECV-LinearSVC did not affect the
classification performance.

For MLP, removing redundant features (L2, E1,6,9,12, 13,
Hg and 1) increased the contribution of almost all remaining
SOS parameters and SRE. Both C-SVC and MLP classifiers
focused on HOS (RP, RLN, GLN and SRE) and SOS,
suggesting that these features capture the main structural
differences in PTC and FTC capsular collagen networks,
while FOS parameters provided no valuable information.

To sum up, ML training and testing using capsular
collagen-related SHG images selected by two-step binary
clustering improved the accuracy of MLP and C-SVC
estimated on the validation set, with accuracies reaching

VOLUME 13, 2025



IEEE Access

Y. Padrez et al.: Supervised Machine Learning Thyroid Carcinoma Diagnosis

(@ ! (b)

All fix FTC fix

@® 1537 (18.4%-23.8%)
@ 1630 (19.3%-25.1
® 70(0.8%>1.1%)
1982 (23.9%-30.6%) fu
® 1856 (22.6%30%) k
1255 (15.0%19.4%)

12 i ) 3
PC1

All fix

2 S

PC1

PTC fix

3.0p 3 Op=————

2.5( 251 ¢

29 200 1%

15

1.0{ *=3s ™ gofii

PC3

05| -
0.0} %

=05

® 555 (10.2%-15.9%)
@ 1409 (25.9%40.4%)
® 9(0.1%-0.3%)
1218 (22.3%-34.9%)
® 1957 (36.0%0%)
299 (5.5%8.5%)

-1.0

PTC fix

PC3

0
PC2

pC2 P2
13777 images 8330 images 5447 images

FIGURE 8. PCA analysis of the feature datasets of PTC and FTC samples and their clustering using k-means: (a) score plots of PC1 vs. PC2, PC3 vs. PC1 and

PC3 vs. PC2 for all data and separately for PTC and FTC; (b) cluster map of random PTC and FTC samples. The numbers indicate the percentage of each

cluster in the corresponding data set. The second number in parentheses is the percentage of each cluster within the capsule. The ‘magenta’ cluster was

assigned to normal collagen surrounding normal tissue follicles and was therefore excluded from the ‘capsular collagen’ class and added to a separate

class combining glass and normal tissue images present in both PTC and FTC samples.

81.94% and 82.07%, respectively. Feature selection, per-
formed prior to classifier optimization (excluding LR),
significantly improved performance on the global test set.

However, accurate PTC classification remains challenging,
despite improvements with label and feature denoising. This
could be due to the high heterogeneity of collagen features
along the PTC capsule and similarity between certain PTC
and FTC capsule segments, leading to higher accuracy in
identifying FTC and lower accuracy for PTC (Fig. 6d-
g). While FTC tends to have a more uniform capsular
structure, some PTC capsule areas may share structural
similarities with FTC, possibly due to common stromal
response pathways or similar collagen alignment, density,
or biochemical properties. Histopathological studies have
shown that thyroid tumor capsules are heterogenous, with
variations in collagen composition and structure influenced
by tumor subtype, growth patterns, and interaction with
host tissue. Further supporting these observations, advanced
imaging techniques, such as SHG microscopy bundled with
Al methods for image analysis, can provide quantitative
insights into these variations.

C. MULTICLASS CLASSIFICATION BASED ON THE
SPECIFIC RATIO OF CLUSTERS DESCRIBING PTC AND FTC

The tissue surrounding the nodules in both carcinoma types
does not provide relevant information for classification based
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on SHG image texture features. However, texture features
like LRE, E13, Eg, 11, removed during feature selection
when only capsule collagen was considered, likely explain the
differences between the adjacent tissue and the nodules. This
suggests that adjacent tissue could form an additional class,
helping address mislabeling in the tissue-related approach.

Segmentation based on intensity and texture features was
performed as described in [16] to prove the similarity of
perinodular tissue. PCA and multi-class k-means clustering
results (Fig. 8) show that while capsular collagen is hetero-
geneous in both PTC and FTC, adjacent tissue is separated in
one class (colored magenta, Fig. 8b-sc).

Both carcinoma capsules consist of the same clusters, and
this complicates classification of PTC and FTC capsules even
when adjacent tissue is excluded from the analysis (e.g.,
Fig. 6d-g). Despite shared cluster composition, the cluster
ratios differ between carcinoma types. PCA score plots
representing all data (Fig. 8a) and examples of segmented
SHG scans (Fig. 8b-c) show that FTC capsules are dominated
by brownish and yellow clusters, while PTC capsules are
more heterogeneous. The former likely explains the better
classification of FTC by C-SVC classifier in previous
approaches, while the latter probably led to a higher error rate
for PTC.

The higher heterogeneity of collagen capsules surrounding
PTC nodules, compared to FTC nodules may be due to
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FIGURE 9. Confusion matrices calculated for all classifiers developed with a 70/30 split (optimized by maximum accuracy) for
datasets considering the ratio of clusters in PTC and FTC samples.

differences in growth rates of the nodules. PTC tends to grow
more slowly, while FTC exhibits increased aggressiveness
and a higher tendency for metastasis [63]. FTC often
presents with larger nodules at diagnosis [64], contributing
to its faster growth. Furthermore, FTC has a tendency for
hematogenous spread, contrasting with the lymphatic spread
more commonly associated with PTC [63], which influences
clinical management and prognosis.

These differences may enhance classification results,
as both the clusters and their ratios describe the capsules of
PTC and FTC nodules.

Prior to the stratified 10-fold cross-validation for model
optimization, the ratio of clusters, which was identified for
the whole train dataset via k-means, was fixed. SHG images
of adjacent tissue and glass were added to a “‘non-target”
class to avoid preprocessing steps aimed at the removal of
SHG images which are irrelevant to the target and thus that
could introduce label noise. The “FTC”’, “PTC” and ‘“‘non-
target” classes were balanced prior to classifier optimization,
though some data disproportion remained. This reduced
dataset size compared to both all-tissue and capsular-related
approaches (Table S1, Supplementary Material 1) could
affect the classifier performance.

Multi-class classification, which includes all SHG images
and tends to correct the mislabeling by adding a ‘‘non-target
class”, also lead to a slight reduction in redundant features,
with all remaining features being relevant for the target.

The results of classifier optimization for all data splits
are shown in Table S7 (Supplementary material 1) and
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Fig. S3a-1 — S3a-18 (Supplementary material 2a). The 70/30
split results for MLP and C-SVC shown in Table 3 and
Fig. 9-10 are more representative, since this split includes
more data in the validation set and preserves cluster ratios.

Confusion matrices (Fig. 9) show improved performance
of all ensemble classifiers (RF, XGBoost, LightGBM)
when considering the cluster ratios within the capsules of
each type, though RF and LightGBM are still overfitted
(Table S7 (Supplementary material 1)). LR performs well
with non-target data but fails in classification of PTC and
FTC capsules. Although it successfully separates non-target
data from capsular collagen, it makes many false positives.
MLP classifies PTC better than FTC (Fig. 9), while C-SVC
outperforms other classifiers achieving 84.73% accuracy on
the validation set (Fig. 9, Table 3).

The C-SVC classifier performs better on the unknown
test set compared to the all tissue and capsule-related
approaches without feature selection (Fig. 10a), but worse
than the capsule-related approach with feature selection
(Fig. 6f). On the contrary, the performance of the MLP has
deteriorated.

Feature selection in a multi-class label correction approach
resulted in removal of few features and had little impact on
the classification performance of practically all classifiers
(Table S7, Supplementary Material 1; Fig. S3b-1 — S3b-18,
Supplementary Material 2b). However, C-SVC generaliza-
tion performance was significantly improved and correct
predictions increased up to 68.65 % and 55.26 % for FTC
and PTC, respectively (Fig. 10b).
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TABLE 3. Numerical estimation of the optimized model performance (based on maximized accuracy) obtained for data split training/validation 70/30 for
datasets considering the ratio of clusters in PTC and FTC samples for MLP and C-SVC models.

ML Accuracy Accuracy Precision Recall F1 Accuracy (FTC Accuracy (PTC Comment
model (validation), % (train), % (macro) (micro) (weighted) test), % test), %

MLP 81.76 83.16 0.816 0.817 0.811 42.98 63.73 ++
MLP* 81.32 83.98 0.810 0.813 0.814 65.12 50.22 +++
C-SVC 84.73 89.30 0.843 0.847 0.847 63.70 52.23 ++

C-SVC* 84.80 89.50 0.844 0.848 0.847 68.65 51.66 ++

Footnote: * — indicates that feature selection was performed prior to the optimization of the hyperparameter configurations of the used classifiers; ++ good
accuracy validation/training, good Recall/Precision/F1/AUC, poor for real test set; +++ good accuracy validation/training, “classified” for real test set.

g C-SVC: FTC63.70%
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FIGURE 10. Performance of C-SVC classifier optimized for datasets considering the ratio of clusters in PTC and FTC samples: (a) classification of a global
test set based on the complete set of features; (b) classification of a global test set based on the reduced set of features; (c) permutation importance
analysis. Blue colored pixels in (a) and (b) mark images classified as PTC, yellow - classified as FTC. White circles and arrows mark the areas of

calcifications. Training/validation data split was 70/30.

Areas of calcification are still misclassified as FTC, as their
texture and intensity features resemble those of FTC capsules
rather than PTC capsules. To address this, a “calcifications”
class could be added, but due to limited data, this isn’t feasible
at this stage.

PIA shows that C-SVC (Fig. 10c) relies on the full feature
set, with high | and o (FOS) contributions distinguishing
non-target class from PTC and FTC capsules. Low PI
scores for 1 and o in the capsule-related approach and
higher PI scores in other approaches support this conclusion.
PI analyses performed for the best C-SVC classifiers in all
three approaches, suggest that SOS parameters calculated
based on GLCM with steps d = 3-12 px cover the main
differences between the PTC and FTC capsules, although
they are not completely discriminative.

VOLUME 13, 2025

While multi-class classification did not significantly
improve test accuracy for the global test data, unsupervised
ML segmentation highlighted differences in PTC and FTC
capsules and adjacent tissue, explaining classifier perfor-
mance variations. Adjacent tissue lacks detectable signatures
of PTC or FTC progression and can either be removed from
the analysis by binary k-means (II approach) or considered
as a separate class in multi-class classification (IIT approach).
Similar heterogenous collagen patterns in PTC and FTC
capsules complicate classification, while calcifications in
PTC, which differ in texture features from the PTC capsule
are misclassified as FTC by all classifiers. The lower
heterogeneity of FTC as compared to PTC capsules allows
C-SVC to distinguish between PTC and FTC, while other
classifiers struggle with overfitting or data size reduction
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(MLP). PI analysis shows PTC and FTC capsule differences
are mainly described by SOS (GLCM, d = 3-12 px) and
HOS (excluding LRE), while FOS features only distinguish
capsules from adjacent tissue.

IV. CONCLUSION

Automated diagnosis of papillary and follicular thyroid
carcinomas is challenging, but supervised machine learning
classification can improve the diagnosis. Wide-field SHG
imaging allows intensity and texture feature extraction for
supervised classification to differentiate between PTC and
FTC, though feature redundancy and mislabeling affect
datasets. Mislabeling sources include: (i) adjacent tissue
irrelevant to PTC or FTC, (ii) calcifications in PTC, and
(iii) heterogeneity and similarity between PTC and FTC
capsules. Two unsupervised ML segmentation approaches
were proposed to automatically remove adjacent tissue from
the analysis. Additionally, feature selection and consideration
of the different heterogeneity in PTC and FTC capsules
improved C-SVC accuracy on the validation data to 84.73%.
The classification of the unknown data was also satisfactory,
despite the limited training data. However, other classifiers
(LR, RF, XGBoost, LightGBM, MLP) were more affected
by label and feature noise. The strong performance of the
C-SVC suggests that ML-based classification is a valuable
tool for differential diagnosis of PTC and FTC. However,
despite the apparent success of label noise reduction methods,
errors related to the peculiarities of collagen networks in
calcifications remain and reduce the accuracy of the models.
Further improvements can be achieved by incorporating
additional features from CARS, fluorescence and bright-field
images, or clinical data.
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