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ABSTRACT

Cybersecurity in critical infrastructure requires advanced authentica-
tion systems to effectively address the issues of unauthorized access
and insider threats. This thesis proposes a novel approach based on
the GAFMAT method, which transforms keystroke dynamics data into
detailed image representations and thus significantly enhances the abil-
ity to distinguish human typing patterns. A Siamese neural network
architecture, incorporating convolutional neural network branches, is
utilized for the purpose of trustworthy user authentication, thereby
enabling the effective distinction between legitimate and illegitimate
access attempts. To enhance the accuracy of the authentication pro-
cess and adapt the methodology to all password lengths, data fusion
techniques are employed to standardize the input data from different
datasets with different password lengths. Experimental evaluation has
shown that the proposed GAFMAT method achieved an equal error
rate of 0.04545 in the CMU dataset, indicating that it is considerably
outperforming other non-image to image transformation methods. In
addition, advanced multidimensional visualization techniques provide
support for cybersecurity decision making. The results underscore the
effectiveness and practical applicability of the presented approach in
enhancing cybersecurity for critical infrastructure.
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GLOSSARY

Keystroke dynamics Distinctive typing patterns exhibited by
individuals during password entry

Keystroke behavior Specifically related to the way users inter-
act with the keyboard, characterized by
timing and rhythm

Typing pattern Refers to the distinctive behavioral charac-
teristics exhibited by an individual dur-
ing typing, including factors such as
keystroke timing, key hold durations, and
inter-key intervals, forming a unique bio-
metric signature

Anomaly detection Methods used to detect deviations from es-
tablished typing patterns, indicating pos-
sible unauthorized access

Insider threat The potential for an insider to use their
authorized access or knowledge of an or-
ganization to cause harm

Siamese Neural Net-
work (SNN)

A neural network architecture consisting
of two or more identical subnetworks shar-
ing parameters and weights, designed to
compare input pairs and measure similar-
ity or difference

Equal Error Rate (EER) A performance metric in biometric and
authentication systems, representing the
point where false acceptance and false re-
jection rates are equal

Convolutional Neural
Network (CNN)

A class of deep learning models designed
to process data such as images by apply-
ing convolutional operations to extract hi-
erarchical features for tasks like classifica-
tion, detection, and segmentation
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lizavimo eksperimentai ir rezultatai . . . . . . . . 160
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duomenų rinkiniui, naudojant GADF, GASF, RP, MTF ir
GAFMAT metodus. . . . . . . . . . . . . . . . . . . . . . . 157
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INTRODUCTION

Today’s cyber environment provides cybercriminals and intruders with
many opportunities to attack national networks and critical infrastruc-
ture, demand ransom for data, engage in large-scale fraud schemes, and
threaten national security. The consequences of these threats can be
severe and result in significant financial loss, reputational damage, and
loss of customer trust. Cybersecurity threats are evolving at such a pace
that traditional password-based methods are not keeping up with the
competition. Although passwords remain the most common form of
authentication, they are often subject to phishing, brute force, social en-
gineering, or insider misuse attacks, resulting in massive data breaches
and financial losses. These problems are particularly relevant to critical
infrastructure systems, which include industries such as power grids,
transportation, healthcare, finance, and defense. When insiders gain
unauthorized access to critical facilities, the consequences go far be-
yond financial loss; they can disrupt essential services and pose serious
national security risks [36, 84].

Stolen credentials account for 80% of the financial losses attributed
to cybercrime [105]. Phishing is a form of cyberattack that uses fraudu-
lent emails, text messages, and phone calls, masquerading as messages
from a trusted institution, to steal personal, financial, or credential
information from an unwary recipient [12, 51]. Multi-factor authentica-
tion has become a recommended cybersecurity practice to combat these
threats. However, even multi-factor authentication can be undermined if
passwords are weak, reused, or stolen. Recent research shows that weak
or compromised passwords account for a significant percentage of leaks,
reinforcing the need for additional layers of protection [37, 105]. Behav-
ioral biometrics offers a powerful second line of defense. In particular,
keystroke dynamics allow users to be authenticated by analyzing subtle
aspects of their input, such as rhythm, timing, and pressure, without
the need for specialized hardware. The keystroke dynamics approach
captures various aspects of typing behavior, including the timing of key
presses and releases, the typing speed and rhythm. These are then ana-
lyzed to create a unique biometric profile for each user. This profile can
be employed to continuously monitor and verify user identity, thereby
providing an effective means to detect and prevent unauthorized ac-
cess to critical systems and data. Despite these advantages, keystroke
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authentication faces serious problems. High variability as a result of
fluctuating typing behavior due to factors such as stress, user posture,
or environmental conditions. Methods must consider different pass-
words, user populations, and real-time conditions without excessive
false positives or false negatives. Recent advances in deep learning have
greatly improved the ability to learn complex user characteristics from
keystroke data. Unlike traditional machine learning methods, which
often rely on manually created features or may have difficulty detecting
complex patterns, deep learning architectures can automatically extract
subtle temporal and spatial features.

This thesis focuses on static authentication, which requires users
to enter passwords in a characteristic manner, rather than continuous
authentication. While continuous methods have their merits, static
approaches remain the baseline for many systems in critical infrastruc-
ture, facilitating direct comparison with previous literature using certain
quality assessment metrics such as equal error rate [56]. By combining
advanced deep learning models with image-based data transformation
and robust data fusion, this thesis aims to demonstrate how an authenti-
cation system can accommodate different passwords and users, thereby
strengthening the security of critical infrastructure.

Research Problem

Protecting critical infrastructure systems such as power grids, transporta-
tion networks, and communications services is critical to public safety,
economic stability, and national security. These systems increasingly
face cyberattacks that exploit weaknesses in authentication mechanisms
[36]. While passwords are common access control methods, they are
inadequate against advanced threats like credential theft. Insider attacks
pose significant dangers, as insiders with legitimate access can abuse
their privileges. Current password-based systems depend on static
information, which attackers can often obtain, necessitating dynamic
behavior-based authentication.

The primary research problem in this dissertation is the limitations
of traditional authentication methods. For instance, passwords can be
easily stolen, captured by keyloggers, or compromised through social
engineering attacks, making them very vulnerable. These methods
fail to effectively prevent unauthorized access and insider threats in
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high-security environments.
Keystroke dynamics is a form of behavioral biometrics, offers a

promising alternative by analyzing unique typing patterns for continu-
ous identity verification. However, several challenges prevent its direct
application in critical infrastructure. First, natural typing behavior de-
pends on physical, environmental, and situational factors, making it
difficult to develop accurate models. Second, insider threats, where
legitimate users intentionally abuse their privileges, are particularly
difficult to detect when relying only on static credentials or traditional
security measures. Finally, critical infrastructure systems often have
multiple password lengths, making it difficult to train and deploy mod-
els. Models must adapt to different users, password complexity, and
real-time operation without affecting accuracy.

This thesis addresses these challenges by investigating how deep
learning, in particular Siamese Neural Networks (SNNs) combined
with Convolutional Neural Networks (CNNs), can transform numerical
keystroke patterns into image formats, thereby reducing the equal error
rate and enhancing authentication. The system must remain robust
to different users, password lengths, and operating conditions, ensur-
ing practical use in high-security environments. By addressing these
challenges, we aim to develop a secure keystroke-based authentication
system that protects against external cyberattacks and internal threats
in critical infrastructure environments.

Actuality

National and international cybersecurity efforts are increasingly focused
on protecting critical infrastructure, such as energy, transportation, and
communications systems, from insider threats and cyber attacks [22].
In the Baltic states, exercises such as Locked Shields, organized by
NATO’s Cooperative Cyber Defence Center of Excellence, underscore
the importance of being prepared to confront sophisticated adversaries.
Similarly, Lithuanian cybersecurity institutions, including the National
Cyber Security Center (NCSC) under the Ministry of National Defense,
emphasize that the resilience of critical infrastructure is important not
only for national security, but also for sustainable development and
public welfare [19]. In this context, keystroke dynamics has become
a particularly relevant form of behavioral biometrics to protect high-
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value systems. By analyzing individual typing patterns such as timing,
speed, and rhythm, methods based on keystroke dynamics allow for
continuous verification of a user’s identity without requiring special-
ized hardware. This approach is cost-effective and affordable, enabling
real-time detection of unauthorized access. Moreover, machine learning,
especially deep learning, has significantly improved keystroke analytics
using SNN with CNNs branches are excellent at detecting nuances in
large keystroke datasets [29, 52, 117]. Branches are identical convolu-
tional neural network nodes in the Siamese neural network architecture,
used to simultaneously process and extract meaningful features from the
input data for efficient comparison of similarities. Thus, these models
can improve both the authentication accuracy and the insider threat
detection performance.

Research Object

The research object of the study is as follows:

• User-generated keystroke biometric data, methods for identifying
insider threats and preventing unauthorized activities to improve
end-to-end cybersecurity.

• A deep learning-based user authentication system for critical in-
frastructure, utilizing keystroke dynamics and Siamese neural
networks with a triplet loss function.

• Methods for transforming keystroke data into visual representa-
tions.

Research Aim and Objectives

The aim of this thesis is to develop and evaluate an advanced deep
learning-based methodology to detect insider threats within critical in-
frastructure systems based on keystroke dynamics. This methodology
aims to improve the detection of insider threats and unauthorized access
by transforming non-image or tabular keystroke data into image repre-
sentations and standardizing multiple passwords of different lengths
by interpolation-based data fusion. It also presents a novel approach to
user authentication based on keystroke dynamics, leveraging an SNN
architecture with CNNs branches.
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In order to achieve the aim of this thesis, the following objectives
must be accomplished:

1. Conduct a comprehensive analytical review of user authentication
methods used in critical infrastructures, with a particular focus on
behavioral biometrics, especially keystroke dynamics.

2. To evaluate deep learning techniques and performance metrics
for insider threat detection by analyzing users’ keystroke typing
behavior when entering passwords, and to assess their impact on
improving user authentication accuracy.

3. To propose a novel user authentication methodology based on
keystroke dynamics, utilizing insights from behavioral biometrics
and deep learning techniques, and fusing multiple passwords of
different lengths to enhance threat detection in critical infrastruc-
ture systems.

4. To evaluate the effectiveness of the proposed methodology using
publicly available keystroke dynamics datasets.

Research Methods

This thesis employs literature review, data transformation techniques,
and advanced machine learning models, with a particular focus on
keystroke dynamics authentication for enhancing cybersecurity in criti-
cal infrastructure systems. The research methods adopted in this thesis
are outlined below:

1. Literature review. A comprehensive literature review was con-
ducted to identify existing methods for anomaly detection and
insider threat prevention in critical infrastructure, specifically in
user authentication through behavioral biometrics. The review
focused on deep-learning based techniques, keystroke dynamics,
and the challenges of applying these methods in high-security
environments.

2. Development non-image to image methods. To ensure consis-
tency in model training and enhance data compatibility with
deep-learning based methods, keystroke data were transformed
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from non-image/tabular formats into image representations using
methods such as Gramian Angular Summation Field (GASF), the
Gramian Angular Difference Field (GADF), the Markov Transition
Field (MTF), and the Recurrence Plot (RP) methods, GAbor Filter
MAtrix Transformation (GAFMAT).

3. Deep-learning based model development. The core of this research
involves the development of a deep learning-based model for user
authentication. An SNN architecture, consisting of two or more
identical sub-networks, was chosen for its ability to compare two
inputs and learn to distinguish legitimate users from potential
intruders based on their typing patterns.

4. Applications of dimensionality reduction methods. Principal Com-
ponent Analysis (PCA), t-distributed Stochastic Neighbor Embed-
ding (t-SNE), and Uniform Manifold Approximation and Projec-
tion (UMAP).

5. Data standardization. To accommodate the varying lengths of
passwords and their corresponding keystroke dynamics data, the
GAFMAT method was applied to standardize the data. This trans-
formation not only transforms the keystroke time series into im-
ages but also ensures consistency across datasets of varying dimen-
sions. Linear interpolation was used to resize and normalize im-
ages, which facilitated the training of SNNs with CNNs branches
by providing uniform input dimensions.

6. Experimental design and evaluation. The developed methodology
was evaluated through a series of experimental studies on publicly
available datasets. The model’s performance was measured using
key performance indicators such as Equal Error Rate (EER), accu-
racy, and Area Under the Curve (AUC) to assess the effectiveness
of the authentication system.

7. Comparative analysis. A comparative analysis was conducted
to benchmark the performance of the proposed system against
other state-of-the-art methodologies. This analysis focused on
evaluating the system’s adaptability to varying password lengths,
real-time detection of anomalies, and its ability to differentiate
between legitimate users and potential attackers. The findings of
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these experiments were used to fine-tune the system and improve
its generalizability across different security contexts.

Scientific Novelty

This thesis presents several novel contributions to the field of user au-
thentication and cybersecurity, with a specific focus on detecting insider
threats in critical infrastructure systems using keystroke dynamics and
advanced deep learning techniques. The main contribution of this thesis
is the development and evaluation of a deep learning methodology for
detecting insider threats in critical infrastructure systems. This method-
ology is based on transforming non-image keystroke dynamics data into
image representations using the novel GAFMAT. This transformation
allows the application of CNN in an SNN architecture. As well, the
methodology integrates a solution to standardize keystroke dynamics
data for different password lengths and datasets using interpolation
and image resizing techniques. Using data fusion techniques to stan-
dardize keystroke data across different password lengths and datasets
improves the model’s ability to generalize across different inputs. Thus,
the methodology introduces an image-based approach to user authenti-
cation using behavioral biometrics to better detect insider threats and
unauthorized access.

The key novelties of this research are as follows:

1. A novel non-image to image data transformation method, GAFMAT,
is introduced to enhance feature extraction of keystroke dynamics
and improve the performance of user authentication using SNN
with CNNs branches.

2. A solution for standardizing keystroke dynamics is developed, ad-
dressing variability in datasets by using data fusion, interpolation
and image resizing techniques.

3. A comprehensive methodology integrating GAFMAT with deep
learning methods is proposed, aimed at insider threat detection
within critical infrastructure using fused behavioral biometric data
analysis.
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Practical Value of the Research

The thesis proposes an enhancement to critical infrastructure security
by introducing a more reliable user authentication method based on
keystroke dynamics. In contrast to conventional password-based sys-
tems, which are susceptible to security breaches, this methodology
employs deep learning to analyze distinctive typing patterns, thereby
enhancing accuracy and resilience to insider threats. Its practical appli-
cability has been demonstrated through extensive experiments, and the
solution can be adapted to real-world scenarios without significantly
affecting user experience or system resources.

Utilizing sophisticated models, such as SNN with CNNs branches,
the system adeptly differentiates between legitimate users and attackers,
while exhibiting adaptability to diverse user behaviors and password
lengths. The system’s scalability ensures its applicability across a wide
range of sectors, including government, military, healthcare, and energy.

The proposed data fusion strategies based on interpolation methods
address some of the shortcomings of commonly used keystroke authenti-
cation. The proposed methodology does not require specialized sensors
or hardware, handles variable password lengths accurately, and adapts
to insider threats more effectively than approaches with a fixed length
of one particular password. Experimental validation on public datasets
confirms the practical effectiveness of the approach, achieving minimal
error rates while maintaining usability. This research provides valuable
insights for organizations seeking adaptive biometric authentication to
strengthen their cybersecurity resilience.

Statements to be Defended

The thesis defends the following statements:

1. Transformation of keystroke dynamics data into image representa-
tions, utilizing the new method GAFMAT, enhances the efficacy of
the deep learning model in user authentication. By standardizing
keystroke data and applying advanced transformation technique,
the system is better able to distinguish legitimate users from im-
posters.
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2. The research, which utilized two types of data fusion strategies,
time series interpolation and image post-resizing with interpola-
tion, reveals that linear interpolation offers a balanced approach,
providing the lowest average equal error rate and demonstrating
stable performance across different datasets.

3. The proposed user authentication methodology is intended to be
practically applicable in a real critical infrastructure environment.
It has been evaluated through experimental studies using publicly
available datasets, which demonstrate applicability, versatility,
and enhanced security in user authentication in various scenarios.

Approbation of the Research Results

The results obtained in this thesis were disseminated through publica-
tions and conference presentations. The research findings have been
published in 5 research papers: 3 papers in periodic scientific journals
indexed by Clarivate Web of Science (WoS); 2 papers in peer-reviewed
scientific conference proceedings. The results were presented at 2 inter-
national and 4 national scientific conferences.

Articles published in international research journals with a citation
index in the Clarivate WoS database:

1. Budžys, Arnoldas; Kurasova, Olga; Medvedev, Viktor. Deep
Learning-Based Authentication for Insider Threat Detection in
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Springer Nature B.V. ISSN 0269-2821. eISSN 1573-7462. 2024, vol.
57, iss. 10, art. no. 272, p. 1–35. DOI: 10.1007/s10462-024-10893-1.

2. Budžys, Arnoldas; Medvedev, Viktor; Kurasova, Olga. Integrating
Deep Learning and Data Fusion for Advanced Keystroke Dynam-
ics Authentication // Computer Standards & Interfaces. Amsterdam
: Elsevier B.V. ISSN 0920-5489. 2025, vol. 92, art. no. 103931, p.
1–14. DOI: 10.1016/j.csi.2024.103931.

3. Kurasova, Olga; Budžys, Arnoldas; Medvedev, Viktor. Explor-
ing Multidimensional Embeddings for Decision Support Using
Advanced Visualization Techniques // Informatics. Basel : MDPI.
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Papers in peer-reviewed scientific conference proceedings:

1. Medvedev, Viktor; Budžys, Arnoldas; Kurasova, Olga. Enhanc-
ing Keystroke Biometric Authentication Using Deep Learning
Techniques // 2023 18th Iberian Conference on Information Sys-
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international conference, HCII 2023. Copenhagen, Denmark, July 23–28,
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Learning-Based Prevention of Insider Threats Using User Behav-
ioral Keystroke Biometrics // EURO 2022: [32nd European Confer-
ence on Operational Research (EURO XXXII)], Espoo, Finland, July
3–6, 2022 : abstract book. Espoo : Aalto university, 2022. ISBN
9789519525419. p. 144. Prieiga per internetą: <https://www.euro-
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: Vilnius University Press, 2022. ISBN 9786090707944. eISBN
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4. Budžys, Arnoldas; Kurasova, Olga; Medvedev, Viktor. Insider
Threat Detection: A New Keystroke Dynamics-Based Approach
to User Authentication in Critical Infrastructure // DAMSS: 14th
conference on data analysis methods for software systems, Druskininkai,
Lithuania, November 30–December 2, 2023. Vilnius. Vilnius : Vil-
niaus universiteto leidykla, 2023. eISBN 9786090709856. p. 16.
(Vilnius University Proceedings, eISSN 2669-0233 ; vol. 39). DOI:
10.15388/DAMSS.14.2023.

5. Budžys, Arnoldas; Medvedev, Viktor; Kurasova, Olga. Enhanc-
ing Cybersecurity Using Keystroke Dynamics and Data Fusion
Techniques // DAMSS: 15th conference on data analysis methods for
software systems, Druskininkai, Lithuania, November 28–30, 2024. Vil-
nius : Vilniaus universiteto leidykla, 2024. eISBN 9786090711125.
p. 14. (Vilnius University Proceedings, eISSN 2669-0233 ; vol. 52).
DOI: 10.15388/DAMSS.15.2024.

Presentations in international scientific conferences:

1. Budžys, Arnoldas. Deep Learning-Based Prevention of Insider
Threats Using User Behavioral Keystroke Biometrics. EURO 2022:
32nd European Conference on Operational Research (EURO XXXII),
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2. Budžys, Arnoldas. Behavioral Biometrics Authentication in Criti-
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Presentations in national scientific conferences:

1. Budžys, Arnoldas. User Behavior Analysis Based on Similarity
Measures to Detect Anomalies. DAMSS: 12th conference on data
analysis methods for software systems, Druskininkai, Lithuania,
December 2–4, 2021.

2. Budžys, Arnoldas. Intrusion Detection Based on Keystroke Biomet-
rics and Siamese Neural Networks. DAMSS: 13th conference on
data analysis methods for software systems, Druskininkai, Lithua-
nia, December 1–3, 2022.

3. Budžys, Arnoldas. Insider Threat Detection: A New Keystroke
Dynamics-Based Approach to User Authentication in Critical In-
frastructure. DAMSS: 14th conference on data analysis methods
for software systems, Druskininkai, Lithuania, November 30–De-
cember 2, 2023.

4. Budžys, Arnoldas. Enhancing Cybersecurity Using Keystroke Dy-
namics and Data Fusion Techniques. DAMSS: 15th conference on
data analysis methods for software systems, Druskininkai, Lithua-
nia, November 28–30, 2024.

Outline of the Thesis

This dissertation is organized into three main chapters, followed by
general conclusions and a bibliography.

• Chapter 1 provides a detailed literature review, focusing on ma-
chine learning techniques in keystroke dynamics, including SNNs,
data standardization, and visualization methods. This chapter sets
the foundation for the research and explores the state-of-the-art
methods relevant to user authentication using keystroke dynam-
ics.

• Chapter 2 introduces the proposed methodology for user authenti-
cation, with an emphasis on the architecture of SNNs, the transfor-
mation of tabular keystroke data to image-based time series, and
the application of GAFMAT. This chapter also covers the proposed
data visualization and data fusion techniques used for decision
support in user authentication.
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• Chapter 3 presents the experiments and results obtained from
the application of the proposed methodology. This includes the
evaluation of keystroke dynamics using performance metrics and
the experiments conducted on different datasets (CMU, GREYC-
NISLAB, KeyRecs), along with data visualization and data fusion
experiments for user authentication. A detailed discussion of the
findings and validation of the data fusion results is also provided.

• Finally, the key findings of the research are summarized in the
general conclusions section, followed by a comprehensive bibliog-
raphy.

The thesis consists of 165 pages, with the summary in Lithuanian
starting from page 140. It includes 24 figures, 15 tables, and 2 algorithms.
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1. LITERATURE REVIEW

Ensuring the security of critical infrastructure systems, including power
grids, transport networks, and communications systems, is essential to
maintain stability and continuity of society. There is publicly available
historical evidence that cyberattacks on critical infrastructure can have
extremely negative consequences [36]. These systems are increasingly
being targeted by cyberthreats that attempt to exploit weaknesses in au-
thentication mechanisms [67]. The safety and availability of these vital
services depend on robust security protocols in which authentication
plays a critical role in distinguishing legitimate access from unautho-
rized intrusion. Traditional password-based authentication systems
are often vulnerable to various types of attacks, including brute-force
attacks, phishing, and credential overloading. Although the complex-
ity and length of the password can improve security, they also pose
challenges in terms of user experience and system performance. In
addition, the variability in password length and related keystroke dy-
namics poses additional challenges in training machine learning models,
which are effective at identifying nuances in data for authentication pur-
poses. Keystroke Dynamics analyses individual typing behavior, such
as speed, rhythm, and keystroke intervals, to authenticate users. This
method captures subtle differences in typing behavior and allows user
identity verification without the need for special equipment. Credential
dumping [78] is a cyberattack in which fraudsters steal or otherwise
obtain account credentials to gain access to user accounts in various
applications.

Insiders are adversaries, individuals, groups, or organizations that
attempt to compromise the security of critical infrastructures and pos-
sibly disrupt their operations. Insiders can cause damage to systems
by exploiting their access. They are often disgruntled employees who
have access to both the facility and the network. They basically use their
knowledge and access level as a tool to perform their actions. Detect-
ing insiders is challenging because attackers have specific knowledge,
capabilities, and authorized access to systems. The insider threat is
considered one of the biggest threats to information security, but is often
overlooked [108].

Recent research highlights keystroke dynamics as a promising
method of enhancing authentication, since attackers cannot easily repli-
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Figure 1.1: Illustrative example of a user authentication scenario in a
critical infrastructure environment using keystroke dynamics

cate an individual’s typing behavior, even if they have obtained the
password. The authentication process, as illustrated in Figure 1.1, starts
with the user entering a password, which the system transmits to a
trained deep learning model for inference. The trained model, based
on keystroke data, classifies users according to their keystroke typing
characteristics and outputs an embedding that can be compared against
reference embeddings of known authorized users. When the input
aligns with the behavior of a legitimate user, the system grants access
to critical infrastructure; otherwise, it detects the attempt as a spoof
and denies entry, thus safeguarding these systems against unauthorized
intrusion.
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1.1. Insights Into Cybersecurity and Keystroke Dynamics
Research in Lithuania

Cybersecurity research in Lithuania has gained particular interest in
recent years, with a focus on behavioral biometrics and critical infrastruc-
ture protection. Keystroke dynamics, as a form of behavioral biometrics,
offers a promising approach to improving the cybersecurity of critical
systems by identifying users by their unique typing. However, recent
research shows that even advanced biometric authentication methods
face growing challenges from sophisticated attacks such as keystroke
injection payloads [45], which use deep learning models to replicate
legitimate user behavior and bypass security systems. The research
carried out by Augutis et al. [9] focused on assessing the criticality of the
energy infrastructure, especially in the heat and electricity sectors. These
researchers emphasized the importance of assessing the “interdepen-
dencies” between infrastructure sectors to determine their vulnerability.
This helps to understand how breaches in one sector can lead to broader
problems, which emphasizes the importance of developing robust cy-
bersecurity solutions for critical systems [81].

Various exercises are conducted to test the protection of critical
infrastructure in the Baltic States, the best known of which is the Locked
Shields cyber defense exercise organized by the NATO Cooperative
Cyber Defence Centre of Excellence every year since 2010 [22]. Amber
Mist is an international cyber defense exercise organized annually by the
Lithuanian Armed Forces since 2013. The exercise plays an important
role in strengthening Lithuania’s cybersecurity capabilities and promot-
ing international cooperation in this area. The Amber Mist exercise uses
a complex structure that simulates real-life cyberthreats, including at
critical infrastructure targets. The red team acts as the “bad guys”, de-
veloping and executing cyberattack scenarios. The blue team represents
the defenders, tasked with identifying, analyzing and preventing cyber
incidents. The exercise tests a variety of scenarios, including disrupting
communications, insider attacks, installing malicious code, and hacking
into a physical network. These scenarios are designed to assess the
ability of the military, government agencies, and private companies to
effectively respond to cyberthreats. The research by Bukauskas et al. [16]
focused on remapping cybersecurity competences in Lithuania. They
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examined the evolving needs of the cybersecurity workforce and pro-
posed updates to educational programs and professional development
frameworks.

The growing cyber threats in the Baltic Sea region pose a significant
risk to critical infrastructure, potentially disrupting essential services
and economic activity. The State Security Department of the Republic of
Lithuania and the Second Investigation Department under the Ministry
of National Defence of the Republic of Lithuania in the annual Threats
to National Security Report state that Lithuania constantly faces various
types of cyber incidents aimed at compromising the country’s informa-
tion resources, critical infrastructure of national security significance
[54]. As the National Cyber Security Center (NCSC) under the Min-
istry of National Defense, the main Lithuanian cybersecurity institution
responsible for unified management of cyber incidents, notes [19], the re-
silience of critical infrastructure is not only a matter of national security,
but also a foundation for sustainable development and public welfare.
The NCSC Regional Cyber Defense Center’s 2024 report also points out
that behavioral analytics, machine learning and artificial intelligence can
help identify anomalies and suspicious activity indicative of zero-day
exploits. For example, analyzing network traffic can identify unusual
patterns that may indicate an ongoing zero-day attack, enabling rapid
response and remedial action.

1.2. Enhancing User Authentication with Keystroke Biometrics

The origins of keystroke biometrics can be traced back to telegraph
operators in the 1880s, who were able to recognize each other based on
their unique tapping patterns [59]. Traditional authentication systems
rely on the use of a password or PIN, known only to the user. The
system does not store the password itself, but only the cryptographic
hash of the password, and verifies the user’s identity by comparing the
hash of the entered password with the stored hash. In such systems,
security depends on the shared secret remaining confidential; however,
if the password is leaked, it becomes relatively easy for an attacker to
impersonate the legitimate user.

Passwords are something you "know" making them easy to remem-
ber but difficult for insiders to guess. However, in practice, users often
share passwords, reuse them on multiple platforms, or choose weak
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credentials that are easily guessed or extracted. Exploiting these vulner-
abilities, threat vectors such as masquerading and identity theft attacks
have become widespread. As cyberattacks and cyberfraud continue
to impact our daily lives, the FBI’s Internet Crime Complaint Center
(IC3) plays an essential role in dealing with cyberthreats. IC3 serves
as a public resource for reporting cyberattacks and incidents, allowing
them to collect data, identify trends, and address threats at hand. In
2022, IC3 received 800,944 complaints, a 5% decrease from 2021. How-
ever, the potential total loss increased from $6.9 billion in 2021 to more
than $10.2 billion in 2022 [37]. The latest data from cybersecurity Ven-
tures indicates that cybercrime is expected to cost the global economy
around $8 trillion in 2023. This represents a significant increase in global
cybercrime costs, which have been growing annually at around 15%.
The growing cyberthreats impact various sectors, from small businesses
to critical infrastructure like utilities and hospitals [104]. The Verizon
2023 Data Breach Investigations Report [105] emphasizes that stolen
credentials remain one of the top attack vectors for gaining unautho-
rized access to systems. According to the report, 44.7% of attackers use
stolen credentials, marking a slight increase from previous years. These
credentials are often exploited in combination with other methods, such
as ransomware and social engineering, to breach systems. In the last
two years, such attacks have tripled. These facts show that the tradi-
tional password-based authentication scheme is insecure, expensive,
and inconvenient.

In the field of cybersecurity, the deployment of security informa-
tion and event management systems is essential for organizations to
proactively detect and address security threats to protect their business
operations. Network-based Intrusion Detection Systems (NIDS) and
host-based Intrusion Detection Systems (HIDS) play key roles in ensur-
ing robust cybersecurity. NIDS monitors network traffic for anomalies,
while HIDS focuses on individual systems, detecting unusual activity or
policy violations, including insider threats. A major problem for IDS is
data imbalance, especially when detecting rare attacks such as zero-day
attacks. The paper [7] introduced a new process to refine density-based
spatial clustering of applications with noise by incorporating novel clus-
ter distance measurements. In addition, [11] explored the use of machine
learning techniques to improve the performance of NIDS in detecting
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anomalous network flows. By carefully analyzing system activity and
user behavior, HIDS can identify potential security breaches within an
organization, including those committed by insiders [6].

To fight back with these attacks additional layer of security con-
trols must be developed to distinguish between a legitimate user and
an imposter without negatively impacting the user’s experience. This
approach aims to increase security by integrating multi-factor authen-
tication based on physiological or behavioral biometrics, such as fin-
gerprint scanners, voice authentication, iris recognition or keystroke
dynamics, mouse movement dynamics, voice recognition, signature
analysis. These solutions provide a high level of security. However, de-
ploying physiological biometrics authentication solutions often requires
the purchase and installation of new, potentially costly hardware and
has several disadvantages. Facial recognition can be affected by hats,
glasses, and changes in hairstyle. Iris recognition can be deceived by
photographs. Furthermore, fingerprints can be replicated to imperson-
ate another person [2]. In today’s wars, phones are accessed using the
physiological biometric data of the deceased person to take their money
or cause damage to their social networks [43, 101].

Conversely, behavioral biometrics offers a pragmatic solution by
monitoring the distinctive manner in which users interact with the key-
board, providing a seamless and continuous layer of authentication.
Additionally, user identification methods such as keystroke dynamics,
mouse movement dynamics, voice recognition are becoming increas-
ingly accurate over time in identifying the actual user and do not require
additional hardware to implement such authentication methods. These
advancements in behavioral biometrics contribute to more precise and
reliable authentication, enhancing overall security without compromis-
ing the user experience [47, 61].

Keystroke dynamics is a form of behavioral biometrics that analyses
the way users interact with the keyboard [66]. This analysis focuses on
a number of variables, including typing speed, key hold duration, and
keystroke intervals. This method represents a distinctive approach to
user authentication, based on the analysis of their typical typing pat-
terns. Keystroke dynamics can be classified into two categories: static
authentication keystroke dynamics, where typing patterns are analyzed
at the time of logging in by entering a password, and continuous authen-
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tication keystroke dynamics, where typing patterns are continuously
analyzed throughout the session after logging in [23]. The relative merits
and drawbacks of each method vary depending on the specific context
and the desired level of security. Static authentication is typically em-
ployed during the initial login phase, where the user is prompted to
enter a known password or phrase. The system compares the user’s
typing behavior to previously recorded patterns, making this method
straightforward and computationally efficient. The principal advantage
of this method is its simplicity, in that the system is only required to
verify the user during the login process. However, a significant limi-
tation of this approach is that it does not provide continuous security,
making the system susceptible to attack after initial authentication. An
adversary who gains access after authentication may remain undetected,
as no further monitoring of the user’s behavior occurs throughout the
session.

In contrast, dynamic authentication provides an additional layer
of security by continuously monitoring user’s typing patterns through-
out the session. This method holds significant value in high-security
environments, where the threat of account breaches remains a critical
concern even after initial authentication. Continuous authentication
systems are capable of detecting anomalous behavior that may indicate
the presence of an unauthorized user, thereby providing real-time re-
sponses to potential threats. However, the implementation of dynamic
systems is more complex and resource-intensive. Such systems require
continuous aggregation and real-time examination of data, which can
result in performance bottlenecks and difficulties in maintaining a lower
Equal Error Rate (EER) [23]. EER is a performance metric in biometric
authentication systems that represents the point where the False Accep-
tance Rate (FAR) and the False Rejection Rate (FRR) are equal. A lower
EER indicates a better balance between security and usability, making
it a critical measure for evaluating the effectiveness of authentication
methods.

In assessing the efficacy of these methodologies, the precision of
static authentication is of paramount importance. In the event that
static authentication does not produce a high level of accuracy or a low
EER [40, 41, 56, 93, 98, 113], there is minimal value in pursuing more
complex continuous authentication, as the foundation for distinguishing
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legitimate users from imposters is already flawed.
The efficacy of continuous authentication depends on the reliability

of the initial static authentication. It is therefore imperative to achieve
optimal accuracy in static authentication before implementing more
advanced continuous systems. In the absence of this, the additional
complexity of continuous authentication may not yield meaningful
security benefits, as any gaps in the initial verification process would
compromise the overall system. Therefore, it is imperative that research
efforts prioritize the refinement of static authentication methods before
progressing to more sophisticated dynamic approaches. Table 1.1 offers
a comprehensive comparison of keystroke dynamics approaches and
authentication technologies in cybersecurity.

Despite the ubiquity of password-based authentication, the efficacy
of this method is undermined by the prevalence of weak or frequently
reused credentials. This assertion is substantiated by the escalating re-
ports of stolen credentials in cyberattacks. In response, organizations
have been working to strengthen security by deploying additional pro-
tection mechanisms such as intrusion detection systems and multifactor
authentication. However, these systems face their own operational chal-
lenges, including complexity, resource intensity, and occasional false
alarms. A promising alternative that does not require additional hard-
ware is keystroke biometrics, a behavioral approach analyzing typing
speed and rhythm [99]. When used in the login stage, keystroke-based
static authentication must achieve a low EER to ensure an effective
balance between security and user convenience. This emphasizes the
importance of refining these foundational methods before implementing
more advanced authentication strategies.

1.3. Machine Learning in Keystroke Dynamics

In static authentication keystroke dynamics, an individual’s identity is
authenticated through the examination of their typing patterns when en-
tering a predefined password or passphrase. Several publicly available
datasets have been extensively used for the development and evalu-
ation of keystroke dynamics-based authentication systems, including
the CMU dataset [56], GREYC-NISLAB [41], and KeyRecs [26] (Subsec-
tion 2.2.1). The CMU dataset has become a foundational resource in
this research area due to its comprehensive collection of samples per
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individual.
Different machine learning methods with different approaches and

their respective performance in the CMU dataset are summarized in
Table 1.2. These results demonstrate how the choice of algorithm and
different network training strategies significantly affect authentication
accuracy [C.1]. Notably, the CMU dataset’s baseline evaluation reported
an EER of 9.6% [56].

Table 1.2: Average EER of different approaches for different machine
learning methods.

Methods Average EER
Strategie 1 Strategie 2 Strategie 3

Nearest Neighbour 0.3795 0.4548 0.5013
Euclidean 0.1693 0.1863 0.2346
Manhattan 0.1503 0.1622 0.2032
Manhattan (Scaled) 0.0945 0.0986 0.1291
Manhattan (Filtered) 0.1253 0.1399 0.1886
Mahalanobis 0.1596 0.1987 0.2338
Euclidean (Normed) 0.2107 0.2308 0.2483
Mahalanobis (Normed) 0.1996 0.2686 0.3083
Outlier (Counting) 0.1031 0.1060 0.1687
k Means 0.1533 0.1721 0.2238
SVM 0.1205 0.1077 0.1478
Original paper [56] 0.0960

In the DeepSecure study [66], researchers achieved an EER of 3% us-
ing a 4-layer Multi-Layer Perceptron (MLP) that was trained separately
for each user. The model was trained using 200 legitimate samples and
five imposter samples per user. For instance Çeker and Upadhyaya [18]
utilized a convolutional neural network model, achieving a markedly
lower EER of 2.3% by augmenting the dataset with synthetic samples.
Without augmentation, the EER was 6.5%, highlighting the importance
of data processing techniques in improving model performance. Other
researchers have used accuracy rates instead of EERs when evaluating
user classification models based on keystroke dynamics. For example,
XGBoost methods have been shown to achieve user authentication ac-
curacies in excess of 93% [98]. Another noteworthy approach involved
using a feed-forward multilayer neural network, employing resilient
backpropagation, which resulted in an accuracy of 94.7% [40]. Despite
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these advancements, one key limitation of static authentication methods
is their susceptibility to cyberattacks, as an attacker could potentially
learn the specific typing rhythm associated with a password and exploit
this to bypass the system [90, 100]. Zhong et al. [116] also explored
static keystroke dynamics authentication and proposed a combination
of distance metrics, in particular the Mahalanobis and Manhattan dis-
tances, to improve classification accuracy, achieving an EER of 8.4%
after removing outliers. Similarly, [73] utilized an inductive transfer
encoder approach and achieved an EER of 6.3%, demonstrating the
ongoing advancements in mitigating the weaknesses of static methods.
Furthermore, methods such as dependency clustering with Manhattan
distance [49] and scaled Manhattan distance combined with standard
deviation [87] have shown EERs of 7.7% and 9.16%, respectively, indi-
cating that these improvements can bring static authentication closer
to the practical deployment level. Nevertheless, the results achieved
on the CMU dataset are often based on validation data or rely on the
removal of outliers, which may not be representative of real-world us-
age where user emotions, physical state, and varying environments can
significantly affect typing patterns.

Beyond the CMU dataset, other datasets such as GREYC-NISLAB
[41] and KeyRecs [26] have also been extensively analyzed. These
datasets offer additional resources for researchers aiming to improve
the robustness and scalability of static keystroke dynamics systems. For
instance, Hazan et al. [47] and Dias et al. [26] evaluated the performance
of authentication systems across different behavioral datasets, under-
scoring the importance of dataset diversity in developing more resilient
systems. A detailed comparison of keystroke dynamics methodologies
and authentication technologies across various studies, including those
focused on different datasets can be found in Table 1.1.

While static keystroke dynamics remains a popular and effective
method for user authentication based on behavioral biometrics, it still
has its challenges. Machine learning techniques, particularly deep learn-
ing models such as CNNs and MLPs, have significantly improved user
authentication performance, with EER values dropping to as low as 2.3%
for the CMU dataset. However, the potential for cyberattacks and the
variability of typing behavior across different sessions remain concerns.
Thus, the development of more advanced static models, alongside fur-
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ther exploration of continuous authentication methods, will be crucial
to enhancing the security and usability of keystroke dynamics-based
systems.

1.4. Deep Learning-Based Methods in Keystroke Dynamics

Recently biometric authentication, especially in keystroke dynamics,
has been directed towards enhancing the adaptability of deep learning-
based models to accommodate the evolving and diverse user interac-
tions with the keyboard. A particularly promising development in
this area is the use of SNNs [61, 63, 83]. These networks are specifi-
cally designed to measure the similarity between two input samples,
making them ideal for tasks such as biometric authentication, where
verifying whether two sets of data (e.g., two typing sessions) corre-
spond to the same user is critical. SNNs process inputs through iden-
tical sub-networks that share weights and architecture, allowing the
model to compare the outputs and assess the similarity between the
inputs [80, 117]. This makes SNNs highly effective in recognizing subtle
variations in biometric patterns and improving the accuracy of authenti-
cation systems based on keystroke dynamics.

Several studies have leveraged SNNs to enhance the performance of
keystroke dynamics-based authentication systems. For instance, Hadsell
et al. [46] explored the use of contrastive loss functions in SNNs to learn
representations that bring similar inputs closer together while pushing
dissimilar ones apart. This technique is particularly beneficial for bio-
metric authentication, where a system needs to learn subtle differences
between legitimate users and impostors. Furthermore, the introduction
of triplet loss functions, as used in models like FaceNet [89], has allowed
SNNs to distinguish even finer differences between similar and dissim-
ilar data. The triplet loss function is a metric learning approach used
to ensure that embeddings of similar samples are closer together while
embeddings of dissimilar samples are farther apart in the feature space.

In keystroke dynamics research, the use of SNNs has gained trac-
tion due to their ability to handle imbalanced datasets, a common is-
sue in intrusion detection systems (IDS). SNNs have been successfully
applied to this domain to address the class imbalance problem, with
promising results in both anomaly detection and multi-class classifi-
cation tasks [13, 52, 75]. For example, Bedi et al. [13] demonstrated
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that SNNs could effectively classify attack types while also identifying
normal user behavior in network intrusion scenarios. These studies
emphasize the robustness of SNNs in real-time cybersecurity appli-
cations, especially in detecting insider threats or unauthorized access
using behavioral biometrics like keystroke dynamics. While SNNs are
a powerful architecture for comparing two inputs and are particularly
well suited for handling imbalanced datasets, they rely on additional
neural networks, such as CNNs, to process complex data types effec-
tively. CNNs are particularly effective in the recognition of patterns
within images, making them ideal for the extraction of features from
visual data. To fully leverage the potential of CNNs in keystroke dynam-
ics research, raw time series data must be transformed into image-like
representations. This transformation allows CNNs to extract complex
patterns that are often difficult to detect in traditional data formats. This
transformation highlights the complementary roles of SNN and CNN
and explains the need to convert keystroke data into images.

Keystroke dynamics research involves transforming time series
data into image representations, which can be fed into CNN for further
processing. Techniques such as the Gramian Angular Summation/D-
ifference Field (GASF/GADF), Markov Transition Field (MTF), and
Recurrence Plots (RP) have been employed to convert keystroke data
into a visual format, enabling CNNs to extract patterns that are difficult
to capture using traditional tabular data formats [24, 35]. This method
leverages the strength of CNNs in image classification tasks, allowing
for more accurate feature extraction from the transformed keystroke
dynamics data.

In the context of cybersecurity, where malicious actors increasingly
target user credentials, behavioral biometrics such as keystroke dynam-
ics offer a non-intrusive and effective means of authentication [43]. As
traditional password-based systems become vulnerable to phishing and
brute-force attacks, integrating keystroke dynamics with deep learning
techniques such as SNNs provides an additional layer of security. The
ability of SNNs to continuously monitor and adapt to user behavior
makes them particularly suitable for IDS, especially in high-risk envi-
ronments like critical infrastructure protection.

Deep learning-based techniques, and in particular SNNs, have be-
come a powerful tool in biometric authentication, leveraging their ability
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to learn and distinguish subtle differences between user actions [61, 117].
These neural networks are particularly good at processing and authenti-
cating based on dynamic features, such as keystroke dynamics, which
contain unique temporal patterns for each individual. However, the
performance of these networks is significantly dependent on the consis-
tency and quality of the input data. Given the variability in password
lengths and keystroke dynamics, it is necessary to standardize input
data to optimize the training and performance of SNNs. Various inter-
polation methods have been proposed to address this challenge [60].
While these methods are mainly used to fill in missing values in the time
series, they can also be used to efficiently adapt the length of the time
series to a uniform scale [17]. Such standardization involves converting
passwords of different lengths into a uniform format, which not only
facilitates better training of the model but also improves its general-
ization ability under different user inputs and scenarios. Importantly,
this method plays an important role in detecting insider threats. By
standardizing and analyzing keystroke dynamics, SNNs can effectively
detect anomalies in user behavior that may indicate malicious activity
within an organization. This capability is important for maintaining the
security integrity of critical systems where the potential damage from
insider threats can be significant.

In summary, the use of deep learning techniques, in particular
SNNs, has significantly improved the field of keystroke dynamics au-
thentication. By utilising the ability of SNNs to learn similarity metrics
for input samples, researchers have significantly improved the reliabil-
ity and security of biometric authentication systems. The combination
of SNN with CNN and image transformation techniques has opened
up new opportunities for improving user authentication in the field
of cybersecurity, providing a reliable and scalable solution to protect
sensitive information from unauthorized access.

1.5. Methods for Visualization of Keystroke Dynamics Data

To illustrate the challenges and potential solutions for high-dimensional
data, consider a dataset characterized by n features. Let’s denote the data
samples as Xi = (xi1, . . . , xin), i = 1, . . . ,m, where each n-dimensional
data point Xi ∈ Rn, n ⩾ 3, and m is the number of data samples.
The dimensionality reduction aims to find the points Yi = (yi1, . . . , yid),
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i = 1, . . . ,m, in a lower-dimensional space (d < n), Yi ∈ Rd, so that
certain properties (such as distances or other proximities between the
points) of the dataset are preserved as faithfully as possible. This di-
mensionality reduction is very important for interpreting data because
it transforms the data into a more convenient form. If d ⩽ 3 is cho-
sen, the dimensionality reduction allows us to visualize the obtained
points in 2D or 3D space. Furthermore, data visualization is crucial
for understanding data in decision support systems. By transforming
multidimensional data into a more comprehensible and manageable
form, dimensionality reduction techniques enable decision-makers to
uncover hidden patterns and relationships, leading to more informed
decisions. Dimensionality reduction methods can assist in identifying
and understanding the unique characteristics of different data clusters,
which is crucial for making informed decisions in a decision support
system [27, 39].

Visualization is a necessity often not only for analyzing raw data,
but also for embeddings generated by deep neural networks such as
CNN. Visualization allows researchers and practitioners to gain insight
into the learned representations (embeddings), contributing to a deeper
understanding of model behavior. This understanding plays a key role
in decision making, especially in sensitive applications such as user
authentication, medical diagnosis, and autonomous driving, where fast
and accurate decisions are of crucial importance. Furthermore, visualiza-
tion of CNN embeddings helps to identify patterns and anomalies that
may not be obvious in high-dimensional space. It allows us to explore
the relationships and clusters formed by the embeddings, providing a
qualitative assessment of the effectiveness of the model. For example,
in user authentication using keystroke dynamics [33], visualization of
the embeddings can show how well the model discriminates between
different users, which is important for assessing the reliability of an
authentication system.

Dimensionality reduction and data visualization techniques are
important in machine learning, especially when analyzing complex data
[77, 85, 118]. These methods are particularly valuable in exploratory
analysis, offering insights into similarity relations in multidimensional
data, which is essential for understanding and interpreting neural net-
work embeddings.
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Classical methods such as Principal Component Analysis (PCA) [53,
68] and Multidimensional Scaling (MDS) [14, 31, 68] have traditionally
been used to reduce dimensionality in data visualization. PCA reduces
the dimensionality of the data by identifying orthogonal linear combi-
nations of the original variables (features) that have maximum variance
[50]. However, the linear PCA approach may not fully capture the com-
plexity of the nonlinear structures present in the data, which has led to
the development of local distance preserving methods such as Local Lin-
ear Embedding (LLE) [86] and Isomap [34, 106]. More recent methods
such as t-Distributed Stochastic Neighbor Embedding (t-SNE) [103] and
Uniform Manifold Approximation and Projection (UMAP) [70] have
gained popularity due to their ability to preserve the local structure of
high-dimensional data, making them particularly suitable for visualiz-
ing embeddings obtained by deep neural networks. These techniques
transform multidimensional data into a lower-dimensional space, which
not only simplifies data visualization [30, 58, 110], but also improves the
computational efficiency of tasks.

As deep learning models, particularly those used in user authen-
tication, generate multidimensional embeddings that are challenging
for humans to interpret, the application of dimensionality reduction
techniques, such as PCA, t-SNE, and UMAP, becomes crucial. These
methods facilitate a more intelligible representation of data, thereby en-
abling more informed decision-making by preserving salient structures
within the dataset while reducing the computational burden. Further-
more, the utilization of visualization techniques serves to enhance the
interpretability of deep neural network models, offering insights into
the patterns and relationships that exist within the data. The application
of these techniques enables researchers to more effectively assess model
performance, identify anomalies, and optimize systems in a range of
critical applications, including cybersecurity and user authentication.

1.6. Conclusions of the Chapter

The findings from the literature emphasize the urgent need for stronger
authentication mechanisms to protect critical infrastructure from sophis-
ticated cyber threats. Traditional password-based authentication is in-
herently vulnerable, necessitating more advanced solutions. Keystroke
dynamics, as a behavioral biometric, offer a viable alternative by leverag-
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ing users unique typing patterns without additional hardware require-
ments.

The integration of deep learning, particularly the combination of
SNNs and CNNs, has significantly improved the accuracy and reliability
of keystroke-based authentication. These architectures enable effective
feature extraction and anomaly detection by transforming keystroke
data into more structured representations. However, challenges remain
in optimizing these models to minimize false acceptance and rejection
rates while ensuring adaptability across diverse real-world conditions.

To fully exploit the potential of keystroke dynamics for cybersecu-
rity in critical infrastructure, future research must address key limita-
tions, including data variability and generalization across different user
environments. Furthermore, improving the robustness of the model and
validating its performance in large-scale data sets will be essential to
establish keystroke-based authentication as a reliable defense against
evolving cyber threats. However, keyboard typing patterns can poten-
tially be captured by malicious software, posing significant security risks.
To mitigate this threat, specialized informatics engineering approaches
should be adopted.
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2. USER AUTHENTICATION METHODOLOGY

In the emerging field of cybersecurity, especially in times of war [43],
there is an increasing demand for advanced Intrusion Prevention Sys-
tems (IPS) that take advantage of behavioral biometrics through deep
neural networks. This includes protecting critical infrastructure, where
a breach has catastrophic consequences for national stability. Given that
malicious insider threats are identifiable [11], incorporating keystroke
biometrics in user authentication serves as an essential first line of de-
fense against the unauthorized use of other’s passwords. Developing
user authentication methods is essential to protect critical infrastructure
systems from increasingly sophisticated cyberthreats. Keystroke dynam-
ics, a form of behavioral biometrics, is a reliable mechanism to verify
the identity of users by analyzing unique typing patterns.

This chapter presents a complex methodology for enhancing user
authentication in critical infrastructure systems using keystroke dynam-
ics and advanced deep learning techniques. The proposed approach
addresses the growing need for trusted cybersecurity measures that can
effectively detect and prevent unauthorized access, including insider
threats.

The methodology introduced in this chapter comprises several key
components:

• A novel technique for transforming keystroke dynamics data into
image representations, called Gabor Filter Matrix Transformation
(GAFMAT) (Section 2.2).

• The application of SNN with CNNs branches for processing the
transformed keystroke data (Section 2.3).

• Advanced visualization techniques for analyzing high-dimensional
embeddings generated by the neural network (Section 2.4).

• A data fusion approach to standardize keystroke dynamics across
different password lengths and datasets (Section 2.5).

This integrated approach aims to improve the accuracy and strength
of user authentication by utilizing the unique typing patterns of individ-
uals. The methodology is designed to be adaptable to various critical
infrastructure environments and capable of continuous monitoring for
anomalous behavior.
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The research findings and components of this methodology have
been published in several peer-reviewed articles [A.1, A.2, A.3].

2.1. Static Keystroke Dynamics Authentication

The static authentication, based on keystroke dynamics, uses the unique
typing patterns (see Subsection 2.2.1) of users when entering a password
to verify their identity [117]. This approach improves security by pro-
viding an additional layer of verification beyond traditional password-
based systems, making them more resistant to unauthorized access, even
when passwords are vulnerable. In addition, static keystroke authentica-
tion does not require additional hardware, making it cost-effective and
seamlessly integrated into existing authentication systems. However,
to achieve high accuracy, robust feature extraction and efficient deep
learning-based models are required to reduce the false acceptance and
rejection rates.

The proposed static authentication in this thesis (see Figure 2.1)
utilizes keystroke dynamics to verify the user’s identity by analyzing
unique typing patterns when entering a password. The system captures
timestamps of each keystroke’s press and release actions, generating
detailed time-series data. These data are then transformed into image
representations, enabling efficient comparison of the user’s typing be-
havior against a predefined database. This image is then compared
against a pre-established database to ascertain the presence of a similar,
previously entered password linked with the username. Access to the
system is granted if a corresponding match is identified. Conversely,
when no matching password is identified, the IDS generates an infor-
mational log, prompting the user to re-enter the password. If the user
fails to enter the password correctly after a certain number of attempts
defined by group policy, the user’s account becomes locked out. This
action triggers the IPS, which then generates a critical log. Subsequently,
the security operations center specialists are alerted. Hence, even in
scenarios where a password within the critical infrastructure is compro-
mised or illegally acquired by an unauthorized person, the system is
capable of detecting inconsistencies in the input pattern. This process
effectively shows that the current user is not the legitimate owner of
the password. Such a mechanism significantly increases the system’s
resilience to potential security breaches, as demonstrated in [A.2].
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Figure 2.1: Schematic representation of the user authentication process
using an intrusion detection system and an intrusion prevention system
based on user typing behavior

This approach introduces a significant opportunity to integrate
password authentication techniques into critical infrastructure. The
challenge lies in discerning the similarity of keystroke dynamics to
determine whether the password input was executed by a legitimate
user or an insider.

2.2. Non-Image to Image Transformation

Building on the methodology for user authentication described in Sec-
tion 2.1, this section introduces the extraction of features from keystroke
dynamics, discusses existing methods for transforming data into images,
and describes a new method proposed in this chapter.

2.2.1. Keystroke Dynamics Datasets

Keystroke biometric models are developed by capturing the time of
keystrokes, where the time between each keystroke and the release of
the key is recorded. By analyzing these timing information, various
features can be extracted. Keystroke biometric models capture temporal
characteristics of typing patterns, including:

• Hold time: duration a key is pressed,
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• Press-Release time: time between pressing and releasing a key,

• Press-Press time: time between consecutive key presses,

• Release-Release time: time between consecutive key releases.

These features provide very important insights into the typing habits of
users, forming the basis for authentication (see Figure 2.2). This method
of collecting time series data forms the basis of a comprehensive analysis.
Using a machine learning approach, it is possible to extract features of
keystroke dynamics. This process provides valuable information on the
unique typing patterns of users.

Figure 2.2: Visualizing keystroke dynamics capturing model

These processes have allowed researchers to obtain consistent writ-
ing patterns across multiple sessions, creating publicly available fixed-
text datasets that are widely used as benchmarks. In this thesis, these
datasets will be utilized:

• The CMU dataset [56] consists of 51 participants, each of whom
was instructed to enter the password ".tie5Roanl" over eight ses-
sions. The number of timestamps (features) is equal to 31. During
each session, participants were required to enter the password 50
times, resulting in a complete dataset of 20,400 password records.
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• The KeyRecs dataset [26] consists of 99 participants from all over
the world, each performing the "vpwjkeurkb" password task struc-
tured dataset into 19,773 samples. The number of timestamps
(features) is equal to 46. This dataset not only reflects the diverse
keyboard typing patterns of the participants themselves, but also
includes demographic information such as age, gender, hand type,
and nationality, providing a rich source for analysis.

• The GREYC-NISLAB dataset [41] includes five different passwords
entered by 110 users. The passwords are as follows: "leonardo
dicaprio", "the rolling stones", "michael schumacher", "red hot
chilli peppers", and "united states of america", with the spellings
preserved as in the original dataset. In the following text, subsets of
data are referred to using the notations LDC, TRS, MS, RHCP, and
USA to denote the data corresponding to each specific password.
The number of timestamps (features) ranges from 64 to 92. Each
participant entered these passwords ten times with both hands and
ten times with the dominant hand, yielding 20 samples per user
for each password. Thus, the dataset for each password included
2,200 instances, totaling 11,000 data samples for the entire study.

Keystroke biometric models derive key temporal characteristics
(e.g. hold times and keystroke intervals) from each keystroke to build
a unique profile of user behavior. These features allow the capture of
consistent typing patterns over multiple sessions, resulting in publicly
available datasets such as CMU, KeyRecs, and GREYC-NISLAB, which
are widely used for the research and development of keystroke-based au-
thentication systems. These datasets will be used further in the thesis to
evaluate the proposed methodology and user authentication solutions.

2.2.2. Image-Based Time Series Data

In some applications, it is necessary to transform numerical data into
images so that CNNs can effectively extract and analyze features from
these images. This transformation allows CNNs to leverage their full
mathematical potential by utilizing their powerful feature extraction
capabilities, which are inherently designed for image data [24, 35, 119].
By arranging features in a two-dimensional space, the relationships
between them can be emphasized, allowing CNN-based models to
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extract features that are often outperforming traditional methods that
rely only on tabular or numerical inputs. Taking advantage of these
feature relationships, CNNs can improve prediction or classification
performance compared to models trained solely on tabular data [119]. In
the transformation process, each sample of tabular data is converted into
an image. In these images, the features and their values are represented
by pixels and pixel intensities, respectively.

A number of methods exist for transforming (or encoding) numeri-
cal or non-image data into images, such as GASF, GADF, MTF, and the
RP methods [25, 107]. These methods are used in various applications,
including biometrics for user authentication. The purpose of these trans-
formations is to extract meaningful features from the data, enabling
further analysis using deep learning techniques. Each method under
review emphasizes specific data characteristics such as frequency, dis-
tribution, similarity, amplitude fluctuations, periodicity, or underlying
patterns.

Techniques such as GASF, GADF, MTF, and RP can be used to
improve the performance of deep learning-based methods for user au-
thentication from biometric data [25, 107]. GASF and GADF, like MTF
and RP, are able to capture important time series features, including pe-
riodicity, trend, and irregularity. The GASF and GADF methods, which
are based on the Gramian Angular Field (GAF) technique, transform
time series signals into images by transferring them into polar coordi-
nate space [107]. The GASF method considers the sum of the angles,
whereas GADF emphasizes the difference, thereby highlighting distinct
aspects of the data. RP is a method for analyzing dynamical systems
and time series data. It facilitates the uncovering of the overall structure,
non-stationarity, and hidden recurrent elements of a time series. In
addition, RP provides a graphical representation of recurrent dynamics.
It characterizes the proximity of states in the state space of a dynami-
cal system reconstructed with a time delay [20]. RP is less effective at
encoding very long sequences. For very long sequences, the resulting
RP images become so large that their discretization is relatively small
[114]. In contrast, MTF transforms time series into visual representa-
tions. This approach captures significant dynamics and facilitates the
use of CNNs to extract and analyze features in various domains [115].
Employing transformation methods in CMU datasets such as GASF,
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(a) MTF (b) RP

(c) GASF (d) GADF

Figure 2.3: Example of a typed password of the same user obtained
by different methods: a) Markov transition field, b) Recurrence plot, c)
Gramian angular summation field, d) Gramian angular difference field

GADF, MTF, and RP, as described in [35], allows the transformation of
these individual keystroke dynamics into images. Consequently, this
process yields four different images for each method, all representing
the same password, as illustrated in Figure 2.3.

These methods represent only a few of the ways in which time
series or non-image data can be transformed into images for analysis
using deep learning techniques. They demonstrate diverse approaches
for transforming time series or non-image data into images suitable for
deep learning analysis. The choice of an appropriate method largely
depends on the features of the data and the specific problem to be solved.
Experimental results comparing and demonstrating the effectiveness of
these techniques have been published in [B.2].
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2.2.3. GAbor Filter MAtrix Transformation

In the context of behavioral data, such as keystroke dynamics, conven-
tional non-image-to-image transformation methods, including GASF,
GADF, MTF, and RP, have been demonstrated to be valuable tools for fa-
cilitating CNN-based feature extraction. Nevertheless, these methodolo-
gies are not without their limitations, which may impede their efficacy
in fully capturing the distinctive typing characteristics that are impera-
tive for user authentication. For instance, GASF and GADF primarily
rely on summation and difference of angular values in time series data,
which may overlook subtle patterns crucial for distinguishing users. Ad-
ditionally, RP encounters challenges in effectively encoding very long
sequences due to its diminishing resolution as the sequence lengthens.
These limitations underscore the necessity for a novel transformation
technique that is tailored to behavioral data, one that emphasizes typing
patterns in a more comprehensive manner while maintaining compat-
ibility with CNNs for robust feature extraction. The development of
such a method could provide more precise and reliable insights into
keystroke dynamics, enhancing authentication systems.

Drawing upon insights gained from the analysis of the literature and
the transformation of non-image data into images (see Subsection 2.2.2),
a new method called GAFMAT (GAbor Filter MAtrix Transformation)
was developed by the author of this thesis. This approach is grounded
in the principles of the Gabor filter [55]. Keystroke dynamics, which
include timing and rhythm variations, are crucial for identifying indi-
vidual typing patterns. The Gabor filter has high performance in both
frequency and time localization, enabling it to capture these variations
effectively. It has the capability to isolate specific frequencies while
simultaneously retaining information about the timing of events in the
signal. The keystroke dynamics data may contain noise due to varia-
tions in typing speed, keyboard differences, or environmental factors.
The specificity of the Gabor filter provides a natural robustness to such
noise:

gabor = exp

(
−0.5 · x′2

σ2

)
· cos

(
2π · x

′

λ
+ ψ

)
, (2.1)

x′ = x · cos θ,

where
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• σ: Parameter defining the filter width. A larger σ results in a wider
filter.

• θ: Orientation of the filter. In the 1D case, it effectively scales the
values of x.

• λ: The wavelength of the sinusoidal factor that determines the
frequency of the filter. A larger λ results in a lower frequency filter.

• ψ: This is the phase offset of the sinusoidal factor, which can be
used to create bandpass or band-reject Gabor filters.

• x: the numerical value of timestamp of keystroke dynamics.

It filters out irrelevant fluctuations while preserving the essen-
tial characteristics of keystroke dynamics [48]. The proposed method,
GAFMAT, transforms time series data into image representations. This
novel approach shows promising potential for improving the analysis
and interpretation of keystroke dynamics in authentication systems. The
Gabor filter has been chosen for its specific design for feature extraction
in two-dimensional images. The process involves adapting and apply-
ing the Gabor filter to one-dimensional time series or discrete signals
(2.1), thus emphasizing features of keystroke dynamics (see Figure 2.4).
In the figure, there are two curves: the original discrete signal is depicted
as a blue line, while the dashed orange line represents the values of the
discrete signal after applying the Gabor filter. It is important to note that
the Gabor filter, by its nature, highlights features of the discrete signal.
As shown in the figure, the filter particularly emphasizes the peaks of
the signal. Using the distinctive properties of the Gabor filter, the goal is
to improve the representation and visualization of keystroke dynamics.
This improvement facilitates more effective discrimination and analysis
of key features within time series data.

The GaborFilter function (see Algorithm 1) is used to apply a Gabor
filter to the timestamps generated by password input. This function
takes a discrete signal, representing the timestamps of entered pass-
words, and several parameters, including σ, θ, λ, and ψ, which define
the characteristics of the Gabor filter. The function determines the value
of the discrete signal and generates a range of values based on the pa-
rameter σ. These values are then transformed using the θ parameter.
The Gabor filter is calculated by combining the exponential and cosine
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Figure 2.4: Emphasizing the time series features of keystroke dynamics
using the Gabor filter: blue for the discrete signal and dashed orange
for the discrete signal after applying the Gabor filter

functions based on the provided parameters. The resulting filter is then
normalized. Finally, the signal is convolved with the Gabor filter, and
the output is returned as a filtered signal (see Algorithm 1).

Algorithm 1 Gabor filter algorithm

1: function GABORFILTER(discrete_signal, σ, θ, λ, ψ)
2: length← length of discrete_signal
3: Initialize x as an array of size length generating evenly-spaced

values in an interval (−3σ, 3σ)
4: x′ ← x · cos θ
5: Initialize gabor as an empty array of size length

6: gabor ← exp

(
−0.5 ·

(
x′

σ

)2
)
· cos

(
2π · x′

λ + ψ
)

7: gabor ← gabor√∑length−1
i=0 gabor[i]2

8: gabor ← Convolution(discrete_signal, gabor)
9: return gabor

10: end function

The GAFMAT algorithm (see Algorithm 2) is specifically designed
to create an image representation of a given discrete signal by apply-
ing the Gabor filter (see Algorithm 1). The GaborFilter function uses a
discrete signal and a list of parameters (σ, θ, λ, ψ) (see Table 2.1). The
algorithm begins by initializing an empty image array that matches the
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Table 2.1: List of parameters used for the GAFMAT algorithm

Parameter Values
σ 2, 4, 8, 16
θ 0, π

2 , π, 3π
2

λ 16, 8, 4, 2
ψ 0, π

4 , π
2 , 3π

4

shape of the input signal. Then iterates through various combinations
of the parameter, applying the GaborFilter function to the discrete signal
with each iteration. Finally, the algorithm returns the resulting image,
which represents the combination of multiple Gabor-filtered versions
of the original discrete signal (see Algorithm 2). The outer product of
two arrays is computed, producing a new array where each element is
the product of the corresponding elements from the input arrays. This
computation involves all possible pairwise products of the original time
series array and the values obtained by the GAFMAT, which are then
systematically arranged in a matrix structure (2.2). The resulting matrix
image2D represents the pairwise products of each element in arrays a
and b. The matrix image2D is finally visually represented as an image
offering a comprehensive visual representation. Such a visualization
provides a clear and intuitive understanding of the data, enabling effi-
cient interpretation and analysis of key patterns and relationships (see
Figure 2.6).

Algorithm 2 GAFMAT algorithm

Require: discrete_signal, σ_list, θ_list, λ_list, ψ_list
1: length← length of discrete_signal
2: image2D ← create zero array of size length× length
3: combinations← CartesianProduct(σ_list, θ_list,
λ_list, ψ_list) ▷ The set of all possible parameters (see Table 2.1)

4: for each (σ, θ, λ, ψ) in combinations do
5: gabortemp← GaborF ilter(discrete_signal, σ, θ, λ, ψ) ▷ see

Algorithm 1
6: gabor ← transpose(gabortemp)
7: image2D ← image2D +OuterProduct(discrete_signal, gabor)
8: end for
9: return image2D
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image2D =


a1b1 a1b2 · · · a1bn

a2b1 a2b2 · · · a2bn
...

...
. . .

...
anb1 anb2 · · · anbn

 (2.2)

Figure 2.5: The result of transforming the time series features of
keystroke dynamics into an image using the GAFMAT algorithm

The newly proposed GAFMAT method enhances the user’s keystroke
dynamics by scaling up significant values. This scaling results in larger
numerical values that are accentuated with a variety of colors. Its ro-
bustness to common noise and interference also distinguishes it from
traditional approaches.

To summarize the core concept of this method, it can be effectively
illustrated using the visual representation in Figure 2.6. When entering a
password or passphrase, a sequential dataset is generated that captures
each keystroke dynamics timestamp such as hold time, release-press
time, press-press time, and release-release time. This time series forms
a discrete signal a (as shown in the upper left corner of Figure 2.6),
representing the unique rhythm and speed of the user’s typing behavior.
The next step applies the Gabor filter, which is mathematically expressed
and graphically illustrated in the central part of Figure 2.6, and is tuned
appropriately to highlight significant features in keystroke data. The
idea behind this method, shown in Figure 2.6, is to apply a Gabor
filter to the discrete signal obtained from the keystroke dynamics. The
Gabor filters, whose parameters are the filter width (σ), orientation
(θ), wavelength (λ), and phase offset (ψ), are taken from given values
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Figure 2.6: The GAFMAT approach for transforming keystroke dynam-
ics time series into two-dimensional images. The process illustrates the
application of Gabor filters to emphasize significant features in the data,
followed by transforming the filtered data into a two-dimensional image
that represents typing behavior. A visual element in the top-left corner
is adapted from [32]

to emphasize key features in the data, resulting in the a signal being
transformed to a b signal. Tuning the Gabor filter involves a sequence
of operations in which the filter is applied repeatedly, each time with
a different set of unique parameters. The Gabor filter extracts certain
characteristics from keystroke signals, thus improving the dynamic
analysis of keystrokes. As a result of the filters, the b signal becomes
a transformed series enriched with distinctive features emphasized by
applying the Gabor filter.

Subsequently, this filtered time series, together with the original
time series of keystroke dynamics, is used to create a two-dimensional
image (image2D in Figure 2.6) using an outer product operation. This
converts a sequence of discrete signals as a time series into a two-
dimensional format that can be visually represented. In this case, the
variations and patterns in the timing of keystrokes (which are captured
sequentially as they occur over time) are translated into an image, where
these temporal patterns are represented as variations in color or intensity
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patterns over the entire image.
The proposed framework, which is described in this section, the

Gabor Filter MAtrix Transformation (GAFMAT) algorithm, as well as
the methods and algorithms related to the content of the following
section, have been published in [A.2, B.1, B.2] (see the list of author’s
publication). The result is an image that represents typing behaviors in a
visually interpretable format (as shown at the bottom of Figure 2.6). This
two-dimensional image not only depicts the complexity of keystroke
dynamics as a visual pattern, but also provides a basis for subsequent
pattern recognition and deep learning analysis. The framework demon-
strates a novel approach to transform keystroke dynamics into a visual
representation.

2.3. Siamese Neural Networks Architecture for User
Authentication

In 1993, Bromley and colleagues introduced Siamese Neural Networks
(SNNs) as a method of solving signature verification tasks. The method
involves comparing two input samples to determine their similarity [15].
The network architecture was designed to address problems involv-
ing pairwise comparisons, such as verification and authentication, by
learning a similarity metric between input pairs. Over time, SNNs have
gained significant traction in various fields, including facial recognition,
image matching, and biometric authentication, due to their ability to
efficiently handle tasks that require comparison between two inputs.

SNN are effective at recognizing and distinguishing between differ-
ent typing patterns. Transforming keystroke dynamics data into images
(see Section 2.2) takes advantage of the proven mathematical ability of
CNNs to extract sophisticated features. This network effectively uses
filters of varying sizes to capture and analyze data at different spatial
resolutions, thereby enhancing the system’s ability to learn and recog-
nize typing patterns efficiently. This approach exploits the strengths of
CNNs, allowing the development of more accurate and reliable user
authentication systems based on unique typing behavior.

The SNN architecture uses three CNNs branches and a triplet loss
function at the output layer. This setup estimates the distance between
the images as detailed in [15, 89] (see Figure 2.7). More recently, train-
ing SNN frequently involves using triplets composed of an anchor, a
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positive, and a negative sample:

• anchor (A) – a reference sample against which other items are
compared,

• positive (P) – a sample that is similar or related to the anchor,

• negative (N) – a sample that is not similar or related to the anchor.

Figure 2.7: Schematic representation of the proposed framework for
time series transformation from keystroke biometric data features into
images and the training process of SNN with CNNs branches

During the network training process, triplets are formed. These
triplets consist of an anchor image, a positive image from the same
user, and a negative image from another user. After training, SNN
creates corresponding embeddings for all triplets. These embeddings
are vectors in a multidimensional latent space that represent the input
data or images. The idea is that similar images will produce embeddings
located close to each other in this space, while dissimilar images result
in embeddings that are more distant (see Figure 2.8). To determine the
similarity between two images, the distance between their embeddings
can be computed using metrics such as the Euclidean distance or cosine
similarity.

In the context of triplets, the distance between the anchor and the
positive sample in a multidimensional latent space should be small,
indicating high similarity. The distance between the anchor and the
negative sample should be significant, indicating low similarity. By
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Figure 2.8: Triplet example before and after training SNNs: the triplet
loss function minimises and maximises the corresponding distances
during network training

exploring these distances, decisions can be made about the similarity
or dissimilarity of new, unidentified images (or samples) compared to
known anchors.

SNN training process involves looking for similarities between the
positive and anchor images while promoting dissimilarities between the
anchor and negative samples. The triplet loss function (2.3) is designed
to minimize the distance between the anchor and the positive image (as
they belong to the same class) while maximizing the distance between
the anchor and the negative image (as they belong to different classes)
depending on the margin size (see Figure 2.8).

L(A,P,N) = max
(
||f(A)− f(P )||2 − ||f(A)− f(N)||2 + α, 0

)
, (2.3)

where

• ||f(A) − f(P )||2 is the squared Euclidean distance between the
embeddings of the anchor and positive samples computed in a
multidimensional latent space,

• ||f(A) − f(N)||2 is the squared Euclidean distance between the
embeddings of the anchor and negative samples computed in a
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multidimensional latent space,

• f is the embedding function that maps an input to its embedding,

• α is the margin that is enforced between positive and negative
pairs.

Numerous researchers have previously used a triplet loss function
to train their models, considering it a suitable option for user authen-
tication [21, 28, 29, 88, 111]. The triplet loss function includes a margin
that sets the desired separation between positive and negative samples
relative to the anchor. The margin size within the triplet loss function
was selected based on findings from previous author’s publications [B.1,
B.2].

The margin within the triplet loss function allows a clear distinction
between similar and dissimilar samples, ensuring that the distance or
dissimilarity between the anchor and the negative sample is greater than
the distance between the anchor and the positive sample by at least a
predefined threshold value. During SNN training, enlarging the margin
size can affect the Euclidean distance between the anchor and positive
images and the anchor and negative images. Nevertheless, a larger
margin provides the network with more room to distinguish between
positive and negative images relative to the anchor, which can result
in improved accuracy. Increasing the margin makes it easier for the
network to differentiate between image samples, but it also means that
the network has to learn fewer subtle differences, potentially leading
to decreased accuracy [B.1, B.2]. Accuracy in this context refers to the
ability of SNN to correctly predict the outcome of the validation data. It
measures the proportion of correct predictions made by the model and
provides an indication of how well the network is able to distinguish
between positive and negative images. It is determined by dividing the
number of correct predictions made by the model by the total number
of predictions.

The choice of the optimal margin is therefore a balance between
the dissimilarity of the negative and anchor images and the similarity
of the positive and anchor images, and the accuracy of the network.
Experimentation may be necessary to find the optimal margin value for
a given dataset and task.
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Increasing the size of the margin increases the difference between
the Euclidean distance between the negative and anchor images and the
Euclidean distance of the positive and anchor images, so the network
would be more stringent in determining the relationship between the in-
puts. Thus, the network’s ability to accurately recognize the connections
between inputs may be hindered, resulting in a decrease in its accuracy.

While SNNs with CNNs branches perform well in image compari-
son tasks [71, 102, 109], their direct applicability for password keystroke
patterns can be challenging due to inherent differences in data struc-
tures. By transforming keystroke dynamics into images for CNN train-
ing, which is a branch of SNN, this approach takes advantage of the
strengths of these networks [92, 119]. This transformation enhances the
network’s ability to distinguish certain behavioral biometric differences
between authentic users and insider typing patterns.

Table 2.2: Summary of CNN used in SNN architecture

Layer (Type) Output Shape Number of Parameters

InputLayer (None, 31, 31, 3) 0
Conv2D (None, 31, 31, 128) 24,704
BatchNormalization (None, 31, 31, 128) 512
MaxPooling2D (None, 15, 15, 128) 0
Conv2D (None, 15, 15, 128) 589,952
BatchNormalization (None, 15, 15, 128) 512
MaxPooling2D (None, 7, 7, 128) 0
Conv2D (None, 7, 7, 128) 262,272
BatchNormalization (None, 7, 7, 128) 512
MaxPooling2D (None, 3, 3, 128) 0
Flatten (None, 1152) 0
Dense (None, 512) 590,336
Dense (None, 256) 131,328
Lambda (None, 256) 0

The choice of SNN combined with CNNs branches was based on
their effectiveness in image recognition tasks, as they are able to learn
similarity measures between input data [A.2, A.3, B.2]. Traditional clas-
sification networks may struggle with significant class imbalance, while
SNNs may be more robust in such scenarios. Instead of classifying
a large number of classes, they measure the similarity to a reference

65



(anchor). SNNs generalize well to new data. Once trained, they can
compare any new sample to a known reference without the need for
retraining. The parameters of SNN with CNNs branches were deter-
mined by an extensive grid search, evaluating different configurations
to achieve the best authentication. A summary of CNN used for SNNs,
with an input image size of 31x31, is provided in Table 2.2. The size
was determined on the basis of the features of the CMU dataset. Each
convolutional layer is followed by batch normalization and max pooling
operations. This is followed by a flattened layer, the output of which is
used as the input to the dense layer. The last layer of the network has
256 outputs that have been normalized using L2 normalization. The
network output can be considered as an embedding of the original input.
The network, which has a depth of 12 layers, covers a total of 1,600,128
parameters.

Using SNN architecture [15, 89], the effectiveness of IDS and IPS
can be improved by better identifying the user by their unique password
input patterns. Consider a given scenario where each password entry is
transformed into an image and stored in a database associated with the
corresponding username. The system, based on an SNN, is designed to
analyze and capture the unique typing characteristics of a user as he or
she interacts with the system using a keyboard. This network processes
input data to identify and differentiate individual typing patterns. The
behavioral data are then aggregated using complex algorithms to cre-
ate a multidimensional representation in the latent space. This results
in individual clusters, each corresponding to a different user. These
clusters allow for a detailed study of each user’s typing behavior. Each
individual possesses a distinct typing style, which makes us unique
in the way we interact with the keyboard. If unauthorized access oc-
curs or credentials are compromised, the proposed methodology can
identify and prevent unauthorized individuals from exploiting stolen
or purchased passwords to gain access to the system. By leveraging the
inherent uniqueness of typing patterns, this approach can effectively
detect and mitigate unauthorized login attempts. This increases the
security and protection of user credentials in the system [A.2, A.3, B.2].
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2.4. Data Visualization Techniques for Keystroke Dynamics

In the rapidly growing field of artificial intelligence, deep learning mod-
els, widely used in pattern recognition tasks, are excellent at extracting
multidimensional features from raw data and transforming them into
embeddings that reflect the complex patterns and relationships inherent
in the dataset. However, the multidimensional nature of these embed-
dings presents a major challenge: they cannot be easily interpreted
by humans without additional analysis. This comprehensibility gap
requires effective dimensionality reduction and data visualization strate-
gies, which are important for several reasons. Dimensionality reduction
is crucial to overcome the "curse of dimensionality", a phenomenon in
which a high-dimensional feature space leads to a sparse data distri-
bution. As the dimension increases, the volume of the space increases
exponentially, making the available data too sparse to produce reliable
results. This sparsity makes it difficult for algorithms to detect patterns
or make predictions with high accuracy. Dimensionality reduction tech-
niques help to overcome this curse and improve the performance and
accuracy of machine learning models.

In the context of keystroke dynamics for user authentication, it is
often necessary to deal with multidimensional data. Each keystroke
event generates multiple features such as keystroke duration, delay
between keystrokes, and typing rhythm. To analyze this complex data,
this thesis uses SNN with a triplet loss function. This network processes
keystroke data and creates multidimensional embeddings that reflect
unique characteristics of the user’s typing behavior. However, these
embeddings, typically located in a space of 256 or more dimensions,
are not directly interpretable. This is where visualization techniques
can provide invaluable assistance. This visualization not only validates
the network’s ability to distinguish between users, but also provides an
intuitive way to evaluate system performance and reliability. Combin-
ing neural network architectures with known visualization techniques
allows for a visual representation of the information obtained and im-
proves interpretability.

Visualization techniques are crucial in cybersecurity, particularly
for Security Operations Centers (SOC), as they enable analysts to quickly
identify and respond to security threats by transforming complex data
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into clear and actionable insights. This subsection presents a proposed
dimensionality reduction-based visualization framework for multidi-
mensional embeddings derived from deep neural networks to improve
decision-making for better data comprehension in solving complex prob-
lems where similarities and dissimilarities between data samples need to
be revealed. The transformation of non-image into images is described.
Dimensionality reduction-based visualization of the multidimensional
embeddings obtained by a Siamese neural network with triplet loss
function is discussed.

During the training process, triplet samples are formed, consisting
of an anchor image, a positive image from the same user, and a nega-
tive image from a different user. After training, the network generates
embeddings that map these samples to a multidimensional latent space.
In this space, the proximity of embeddings signifies similarity, where
similar samples (anchor and positive) are clustered closely, while dis-
similar samples (anchor and negative) are farther apart. Visualization
of these embeddings is crucial as it allows for a deeper understanding
of the network’s ability to differentiate between users. By visualizing
the spatial relationships between embeddings, researchers can assess
how well the model distinguishes similar from dissimilar inputs, aiding
in the assessment of authentication accuracy. This is often achieved us-
ing distance metrics like Euclidean distance or cosine similarity, which
quantify the relative closeness of the embeddings. Through such vi-
sual representations, it is possible to evaluate and refine the model’s
performance in identifying patterns in user behavior.

In solving the dimensionality reduction problem, a final transfor-
mation is sought that maps multidimensional embeddings Ei ∈ Rp to
a set of points Yi = (yi1, . . . , yid), where i = 1, . . . ,m and d < p, in a
lower-dimensional space. This process is very important for interpreting
embeddings, as it transforms complex keystroke patterns into a more
convenient and visually interpretable format. By setting d ⩽ 3, a graphi-
cal representation of the data becomes possible, which is very important
for decision support, in this case, for user authentication. Visualizing
these reduced embeddings in two or three dimensions provides an in-
tuitive view of the underlying structures and variations in keystroke
dynamics, thus helping to identify genuine users and potentially illegiti-
mate users.
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This section introduce exploration of visualization techniques tai-
lored for cybersecurity, particularly focusing on their utility within secu-
rity operations centers. By implementing a dimensionality reduction-
based framework, the thesis enhances the interpretability of complex,
multidimensional embeddings derived from SNN with CNNs branches,
facilitating improved decision-making processes. The core of this metho-
dology is the transformation of keystroke dynamics into visually inter-
pretable formats. This approach not only simplifies the visualization
of embeddings to highlight similarities and differences effectively but
also supports the authentication accuracy through precise visual analy-
sis of data relationships using common distance metrics. The detailed
visualization framework outlined demonstrates each step from data
preprocessing to the final decision support, emphasizing the enhance-
ment of data comprehension in cybersecurity operations and providing
a robust platform for security analysts to detect and respond to threats
efficiently.

2.5. Keystroke Dynamics Data Fusion-Based Methodology for
User Authentication

Behavioral biometrics, especially keystroke dynamics, collects time se-
ries data, and each password or passphrase entered has a unique set of
features. In the case of time series analysis, fusing different datasets into
a single dataset is a challenging task that can be addressed by a variety
of approaches. Interpolation techniques are particularly effective in
standardizing datasets of different lengths to make them more uniform
for analysis.

2.5.1. Data Fusion-Based Authentication

Statistical or machine learning-based methods, such as cubic, linear [42],
nearest neighbor [96], resampling, Dynamic Time Warping (DTW) [74],
and Fourier transform, can be used to unify time series of different
lengths. These methods can be used to standardize datasets and thus
facilitate the application of complex analytical models. When a network
is trained on the fused dataset, its generalizability is enhanced, allowing
it to perform more effectively across different types of data in real-
world scenarios. DTW is an efficient method for aligning sequences that
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differ in speed or time; it requires significant computational resources
and is less appropriate for larger datasets. This is because the process
of determining the alignment of two time series is complex (typically
O(lenght1× length2), where length1 and length2 are the lengths of the
two sequences being compared). The Fourier transform is less efficient
than simpler interpolation methods, especially for large datasets or
applications that require real-time processing. In contrast, interpolation
methods such as linear, cubic, and nearest neighbor methods are much
less computationally intensive. Each interpolation method has its own
advantages and limitations, so the choice of method depends on the
specific characteristics of the data to be analyzed and the desired result
of the interpolation process.

The author’s publications [A.2, A.3] proposes a new keystroke
dynamics-based authentication approach, focusing on data fusion from
multiple datasets to improve existing methodologies. Previous studies
(see Section 1.3 and 1.4) have predominantly relied on a single dataset
for training and evaluation, which restricts the model’s ability to general-
ize across diverse user populations and typing behaviors. This research
addresses that limitation by utilizing data fusion techniques, allowing
the deep learning model to process more varied input patterns and
better adapt to the variability present in real-world authentication sce-
narios. By combining multiple datasets, the system can learn a more
generalized and robust representation of keystroke patterns, enhanc-
ing its performance in practical applications. This method, involving
the selection of appropriate interpolation techniques and the fusion
of complex keystroke dynamics data, advances the existing body of
work on keystroke biometrics by increasing the model’s resilience to
environmental and behavioral inconsistencies.

It is imperative to incorporate an effective user authentication
methodology into critical infrastructure systems, which necessitates
accounting for the considerable variability in the length of passwords
utilized by individuals. Instead of training a distinct neural network for
each user, an optimal solution would entail the development of a single
neural network capable of recognizing and distinguishing between the
passwords of all users. This would facilitate the process by enabling
the model to generalize across diverse user inputs, thereby providing
scalability and reducing the necessity for repetitive training. By training
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the network on a single password, the system could be extended to
accommodate multiple users, thereby providing a flexible cybersecurity
solution. Furthermore, a significant advancement in this methodology is
the fusion of multiple datasets, which enhances the learning capability
of the deep learning model. The process of data fusion enables the
model to more effectively adapt to the inherent variability present in
real-world scenarios, thereby ensuring its resilience against the emer-
gence of diverse and evolving authentication patterns. This approach
enhances the model’s generalization ability, rendering it well-suited
for the dynamic and complex requirements of cybersecurity in critical
infrastructures.

The data fusion-based authentication framework utilizing complex
keystroke dynamics involves two steps: determining a suitable inter-
polation method (see Figure 2.9) and implementing data fusion-based
authentication using complex keystroke dynamics (see Figure 2.10).

The flowchart in Figure 2.9 illustrates the methodology for selecting
the most appropriate interpolation method to unify keystroke dynamics
data from different datasets. Three interpolation methods (linear, cubic,
and nearest neighbor) are first applied to the original time series to
standardize the number of features of each password (see the left side of
Figure 2.9). After these interpolation processes, the GAFMAT approach
(see Subsection 2.2.3) is used to transform the output into images, effec-
tively converting passwords of different lengths into images of the same
dimensions. Another possible way to unify the dimensions of the data
is to first transform the time series corresponding to the passwords into
images using the GAFMAT method, and then unify the size of the result-
ing images using interpolation techniques such as bilinear, bicubic, and
nearest neighbor methods (see the right side of Figure 2.9). Regardless
of which data standardization solution is used, the resulting images are
used to form triplets—groups consisting of an anchor, a positive sample
from the same user, and a negative sample from another user. These
triplets are used to train an SNN to distinguish the typing behavior of
the keystroke dynamics of the users.

The trained network embeds the data in a multidimensional space,
where the distances between anchor-positive and anchor-negative pairs
are analyzed. The goal of the model is to minimize the distance between
similar pairs (anchor and positive) and maximize the distance between
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Figure 2.9: Flowchart for selecting the most appropriate interpolation
method for data fusion to unify keystroke dynamics data from multi-
ple datasets: the decision-making process for applying interpolation
methods to either original time series data or images transformed using
the GAFMAT approach, resulting in a unified data format for Siamese
neural network training

dissimilar pairs (anchor and negative). After training, the model is
evaluated by examining the accuracy and EER. Therefore, based on
accuracy and EER, the best interpolation method is determined that best
standardizes the keystroke dynamics data for the deep learning model.
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Figure 2.10: A solution for data fusion-based authentication using com-
plex keystroke dynamics analysis. It includes steps for standardizing
datasets through interpolation, transforming password samples into
images, and using a trained SNN to compare embeddings of new inputs
with stored records for user authentication

The methodology presented in Figure 2.10 is designed to authenti-
cate users by analyzing the unique characteristics of keystroke dynamics.
It establishes a systematic approach for fusing all passwords for user
identification. Initially, the CMU, KeyRecs, and GREYC-NISLAB (LDC,
MS, RHCP, TRS, USA) datasets, which vary in the number of users
and features, are standardized by interpolating to a single number of
features to ensure uniformity before further processing. Details on the
datasets are provided in Subsection 2.2.1. By fusing data from multiple
datasets into a unified size, the approach ensures consistent input data
for an SNN, allowing the model to be trained on a diverse set of user
input patterns. In the inference phase, the user provides a sample of
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his/her password, which is then transformed into an image. The trained
network processes this image and generates an embedding, the vector
representation of the image in multidimensional space. The embedding
is then compared to the embeddings of previously stored password
images of the same user. The distance between the embeddings in
multidimensional space is computed for this comparison. A very im-
portant part of this methodology is the establishment of a threshold to
distinguish between genuine and insider attempts. This threshold is
initially determined from the historical data of legitimate logins, taking
into account the distance range found in the embeddings of real pass-
word records. An attempt is considered genuine if the distance does not
exceed a specified threshold; otherwise, it is considered an insider.

2.5.2. Interpolation-Based Data Fusion

Commonly, SNNs, like other neural networks, are trained on a single
dataset, which is limited by the unique feature size. In the context of
user authentication based on keystroke dynamics, passwords collected
from different datasets may exhibit different lengths. When combining
password datasets of different lengths, a method is needed to ensure
that the format of the data fed into SNN is uniform. In this thesis
on keystroke dynamics for user authentication, the analyzed data are
time series in which each point is a timestamp. These timestamps
reflect the unique rhythm and timing of typing, which are key factors in
authenticating a user’s identity. In this analysis, "features" specifically
refer to the timestamps associated with each keystroke, providing a
detailed temporal pattern of password entry. These detailed temporal
features are essential for distinguishing between individual users, which
improves the accuracy of the authentication process.

Given that an SNN requires a constant size of input data, it is
essential to standardize the length of the time series (the number of
features) across different datasets. For interpolating time series data,
three common interpolation methods can be applied:

• In linear interpolation, new data points in a discrete set of known
data points (timestamps) are generated by assuming a straight-line
progression between points. This method calculates intermediate
values by connecting each pair of adjacent data points with a
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straight line, effectively standardizing the length of the time series
by filling in or expanding the data to a uniform scale.

• In cubic interpolation, a smoother and more continuous curve
is constructed through known data points using the values of
neighboring points. This approach, in which a cubic polynomial is
placed between each pair of data points, provides a greater degree
of smoothness and accuracy than linear interpolation, resulting in
a more accurate representation of the original time series.

• Nearest neighbor interpolation assigns the value of the nearest
data point to any new data point, effectively preserving the char-
acteristics of the original dataset.

An alternative approach for standardizing data dimensions involves
resizing images using various interpolation methods:

• The bilinear method, which is a two-dimensional extension of lin-
ear interpolation, averages the nearest 2x2 grid of pixels, balancing
efficiency and image quality with moderate scaling.

• The bicubic method, a more complex method, uses a 4x4 near-
est pixel grid and cubic polynomials for a smoother transition,
resulting in higher quality images that are ideal for significant
resizing.

• The nearest neighbor method, which is the simplest and fastest,
directly assigns the nearest pixel value to each new pixel and
preserves the original characteristics of the images.

The National Institute of Standards and Technology (NIST) guide-
lines [44], the leading standard for password security, emphasize that
password length contributes more to security than does complexity. The
NIST recommends a minimum of eight characters but emphasizes the
benefits of longer passwords for increased security. According to the
National Cyber Security Centre (NCSC) cyber essentials requirements
for IT infrastructure [79], effective password management should in-
clude implementing multi-factor authentication or setting a minimum
password length. In particular, a minimum password length of at least
12 characters is recommended without a maximum limit.
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The keystroke dynamics analyzes not only the characters them-
selves but also detailed temporal data to provide multiple features for
each character. In this thesis, seven different passwords were analyzed,
each with an initial number of features ranging from 31 to 92. Consistent
with cybersecurity recommendations for a minimum password length
of 12 characters, the number of features was standardized to 37 for
all data by interpolation. The number of features consists of the hold
time, release-press time, press-press time, and release-release time of the
keystrokes (for more details, see Subsection 2.2.1). This standardization
involved adjusting the number of features of each password, increasing
for some and decreasing for others, to a consistent value of 37, thus
organizing the data for processing by the same neural network model.

The creation of a comprehensive and resilient user authentication
strategy for mission-critical infrastructure systems requires a comprehen-
sive analysis of password length variability and user behavior patterns.
Instead of training individual neural networks for each user, a more
efficient approach would be to develop a single neural network capa-
ble of recognizing passwords for all users. Such an approach would
enhance scalability by allowing the model to generalize across various
user inputs without the necessity for repetitive training. A significant
advancement in this methodology is the incorporation of data fusion
techniques, which integrate multiple datasets to create a more com-
prehensive learning environment for the deep learning model. Data
fusion enables the model to better accommodate the variability and
unpredictability inherent to authentications in the real world, thereby
enhancing its resilience and efficacy in distinguishing between legiti-
mate users and potential threats. By focusing on keystroke dynamics
and unifying the data through interpolation techniques, this methodol-
ogy enhances the overall precision and robustness of the authentication
process, particularly in high-security environments.

2.6. Conclusions of the Chapter

The authentication methodology presented in this chapter establishes
keystroke dynamics as a viable and hardware-independent solution for
securing critical infrastructure systems. SNN with CNNs branches is
used to effectively extract keystroke pattern features from time-series
data transformed into an image. This transformation allows the model
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to exploit the structure of time series data. In particular, the integration
of GAFMAT significantly enhances the feature extraction capabilities
and overcomes the limitations of existing transformation methods such
as GASF, GADF, MTF and RP.

In addition, the use of data fusion and interpolation techniques
ensures adaptability to different dataset lengths, facilitating model gen-
eralization to different password lengths. The proposed framework
demonstrates the need to combine behavioral biometrics, data transfor-
mation, and deep learning architecture to create a scalable authentication
system that adapts to any length of password for real-world applica-
tions.
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3. EXPERIMENTS AND RESULTS

This chapter presents a comprehensive evaluation of the proposed user
authentication methodology through extensive experimental studies on
several datasets. The experiments aim to verify the effectiveness and
capabilities of GAFMAT compared to traditional methods. A section
utilizing fixed-text datasets from CMU, GREYC-NISLAB, and KeyRecs
will demonstrate methodological advancements in user authentication
through the approach of SNN with CNNs branches, using the GAFMAT
method for data transformation. The main experimental results that are
further discussed in this chapter have been published in peer-reviewed
journals and conference proceedings (see [A.1, A.2, A.3, B.2]).

The chapter is structured as follows:

• The experimental setup involved training and evaluating the pro-
posed methodology (Section 3.1)

• Performance metrics for keystroke dynamics evaluation (Section 3.2).
The key performance metrics used to evaluate keystroke dynamics-
based authentication results are presented, focusing on EER.

• CMU dataset experiments (Section 3.3). This section presents
detailed results of applying GAFMAT and other transformation
methods (GADF, GASF, RP, MTF) to the CMU dataset. The perfor-
mance of SNN with CNNs branches using these different image
representations is analysed.

• GREYC-NISLAB dataset experiments (Section 3.4). An extended
evaluation on the GREYC-NISLAB dataset is conducted, demon-
strating the adaptability of the GAFMAT method for transforming
data into images to different password lengths and complexities.

• Overview of results from CMU and GREYC-NISLAB datasets
(Section 3.5). A comparison of the results obtained using the
GAFMAT method with traditional methods on both datasets is
discussed.

• Keystroke dynamics data visualization (Section 3.6). This section
discusses the use of dimensionality reduction techniques to visual-
ize the high dimensional embeddings created by the SNN model
used, providing insight into the decision making process.

78



• Keystroke dynamics data fusion-based experiments (Section 3.7).
The results obtained from the application of the proposed method-
ology using data fusion are presented, demonstrating the gener-
alization of the models using different datasets (CMU, KeyRecs,
GREYC-NISLAB).

3.1. Experimental Setup

Table 3.1: Experimental platform technical specifications and system
configuration

Platform Details
Model Apple MacBook Pro 14-inch
Processor Model Apple M1 Pro
CPU 10-core
GPU 16-core
RAM 32 GB unified
Disk Space 512 GB SSD
Operating System macOS Sonoma
Python Framework TensorFlow 2.9.1,

Matplotlib 3.7.0,
Numpy 1.22.4,
Pandas 1.5.3.

To demonstrate the distinctive features and effectiveness of the
methodology, experiments were conducted using two publicly available
fixed-text datasets: the CMU dataset and the GREYC-NISLAB dataset.
The experiments for this thesis were conducted on an Apple MacBook
Pro with an M1 Pro chip, featuring a 10-core CPU and a 16-core GPU.
Each core is split into 16 execution units (EUs), and each EU consists of
8 arithmetic logic units (ALUs), for a total of 256 EUs and 2,048 ALUs
across the GPU. This powerful setup, equipped with 32 GB of unified
RAM, ensures the efficient handling of complex computational processes
essential for deep learning-based networks, as detailed in Table 3.1. The
software environment included TensorFlow [1], a widely used library
for machine learning, which allows for optimized CPU/GPU utilization
for scalable training and evaluation.

Keystroke dynamics data were transformed into image formats
using GAFMAT alongside other comparative methods such as GASF,
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GADF, MTF, and RP (see Subsection 2.2.2). These transformations were
computed for each dataset to assess their contribution to model perfor-
mance.

To evaluate the proposed methodology, experiments utilized three
publicly available fixed-text datasets (see Subsection 2.2.1): CMU dataset,
comprising 51 participants who entered the password ".tie5Roanl" over
eight sessions, totaling 20,400 password records; GREYC-NISLAB dataset,
characterized by 5 unique passwords typed by 110 users, resulting in
11,000 samples across all passwords; KeyRecs dataset, including 99 par-
ticipants and 19,773 samples with diverse demographic information
such as age, gender, and dominant hand.

3.2. Performance Metrics for Keystroke Dynamics Evaluation

Choosing the right metric is critical to evaluate the performance of
SNN-based models. These metrics assess the accuracy of the model
in distinguishing between legitimate and unauthorized users, which
is very important to ensure system performance in a dynamic cyber-
security environment. For the analysis, each metric was calculated for
each batch. The validation dataset represents 30% of the total dataset.
Subsequently, each metric was evaluated for each individual batch, and
the average value across all batches was reported as the final result. This
approach ensured that the metrics were representative of the overall
performance of the validation dataset while considering the inherent
variability between batches. A comprehensive set of metrics was em-
ployed to assess the performance of the trained models, including the
following:

• EER, the most commonly used accuracy metric in biometric au-
thentication systems (see Table 1.1) (3.2)

• Area Under the ROC Curve (AUC) (3.3)

• Euclidean distance:

– Between the embeddings of the anchor and positive samples
in a multidimensional latent space (AP_ED)

– Between the embeddings of the anchor and negative samples
in a multidimensional latent space (AN_ED)
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• Standard deviation of Euclidean distances:

– Between the embeddings of the anchor and positive samples
in a multidimensional latent space (AP_STD)

– Between the embeddings of the anchor and negative samples
in a multidimensional latent space (AN_STD)

• Cosine similarity (3.4):

– Between the embeddings of the anchor and positive samples
in a multidimensional latent space (AP_CS)

– Between the embeddings of the anchor and negative samples
in a multidimensional latent space (AN_CS)

• Accuracy (3.5)

In evaluating the performance of the proposed methodology, special
attention was focused on EER (3.2) as the main metric. EER was chosen
due to its wide acceptance and use in biometric authentication systems
as a balanced measure of accuracy. EER is a specific point on the ROC
curve. It is a rate at which FAR and FRR are equal, offering a simple and
effective measure of a system’s performance in distinguishing between
authorized users and impostors. In the experiments conducted, the
accuracy metric for both the validation and test datasets is adapted for
the classification task using SNN. This metric determines the fraction
of cases where a positive score outperforms a negative score, as shown
in (3.5). The positive score represents the Euclidean distance between
the anchor embeddings and positive samples in a multidimensional
latent space. The negative score corresponds to the Euclidean distance
between the embeddings of the anchor and negative samples in the
same multidimensional latent space.

thr∗ = argmin
thr

∣∣FAR(thr) − FRR(thr)
∣∣, (3.1)

EER =


FAR(thr∗), if FAR(thr∗) = FRR(thr∗),

FAR(thr∗) + FRR(thr∗)

2
, otherwise.

(3.2)
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• EER: EER — a single scalar value that quantifies the crossover
point where FAR and FRR are either equal or as close as possible.
If FAR(thr∗) = FRR(thr∗) exactly, then EER = FAR(thr∗) =

FRR(thr∗). Otherwise, a common convention is to average the
two values at thr∗.

• FAR(thr) is the False Acceptance Rate at a given threshold thr,
indicating the fraction of impostors incorrectly accepted.

• FRR(thr) is the False Rejection Rate at a given threshold thr, indi-
cating the fraction of genuine incorrectly rejected.

• thr is the decision boundary at which FAR and FRR are computed.
A real-valued decision threshold used to distinguish between gen-
uine and impostor samples.

• thr∗ is the optimal threshold that minimizes the absolute difference
between FAR(thr) and FRR(thr).

AUC =
1

Npos ·Nneg

Npos∑
i=1

Nneg∑
j=1

I(scorepos,i > scoreneg,j), (3.3)

where

• Npos is the number of positive samples,

• Nneg is the number of negative samples,

• scorepos,i represents the score assigned to the i-th positive sample,

• scoreneg,j represents the score assigned to the j-th negative sample,

• I(scorepos,i > scoreneg,j) is an indicator function that returns 1 if
scorepos,i > scoreneg,j , and 0 otherwise,

•
∑Npos

i=1

∑Nneg
j=1 I(scorepos,i > scoreneg,j) counts the number of cor-

rectly ranked pairs of positive and negative samples,

• AUC measures the probability that a randomly chosen positive
sample is ranked higher than a randomly chosen negative sample.
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CosineSimilarity(x, y) =
∑n

i=1 xiyi√∑n
i=1 x

2
i ·

√∑n
i=1 y

2
i

, (3.4)

where

• x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are two vectors in an
n-dimensional space,

• CosineSimilarity(x, y) measures the cosine of the angle between
the two vectors, indicating their similarity, with values ranging
from −1 (opposite directions) to 1 (identical directions).

Accuracy =
1

N

N∑
i=1

I(pos_scoresi < neg_scoresi), (3.5)

where

• N is the total number of samples,

• pos_scoresi represents the positive score for the i-th sample,

• neg_scoresi represents the negative score for the i-th sample,

• I(pos_scoresi < neg_scoresi) is an indicator function that returns
1 if the condition pos_scoresi < neg_scoresi is true, and 0 other-
wise,

•
∑N

i=1 I(pos_scoresi < neg_scoresi) counts the number of times
the positive score is less than the negative score.

The choice of evaluation indicators is crucial to assess the effec-
tiveness of SNN-based models in user authentication tasks. This thesis
focuses on metrics focusing on indicators such as EER and accuracy, thus
ensuring a balanced assessment of the model’s ability to distinguish
legitimate users from imposters. By highlighting EER as a key indica-
tor, its importance in biometric authentication systems is highlighted
in Table 1.1, as it is a comprehensive measure of the reliability of the
system.
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3.3. Experiments and Results Using CMU Dataset

The experiments in this section evaluate the proposed methodology for
user authentication using the Carnegie Mellon University [56] dataset,
which is a widely accepted benchmark in the field of keystroke dynamics
research.

Figure 3.1: The process of preparing CMU data for model training/vali-
dation and testing

Figure 3.2: Splitting CMU data into the anchor and positive samples
for each transformed dataset using the GASF, GADF, MTF, RP, and
GAFMAT methods for triplet preparation
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Before starting data analysis, a random selection was made to ex-
clude the data of five users (see Figure 3.1), resulting in a data set
comprising 46 individuals with 18,400 samples. The data excluded from
those five users, consisting of 2,000 samples, were placed in a separate
folder for testing purposes. This segregation was intended to ensure that
the network would not be exposed to any of this data during the network
training phase. Password samples from both the training/validation
folder (18,400 samples) and the testing folder (five users with 2,000
samples) were transformed into image representations. This process
yielded five datasets for network training/validation, each processed
using different conversion methods (GASF, GADF, MTF, RP, GAFMAT).
Additionally, five folders were created, each containing samples (im-
ages) of five users for network testing using the same transformation
methods. In each dataset, each user entered the password 400 times,
which were then split into two equal parts of 200 attempts each. The
system alternated trials to classify the user’s password entry behavior.
Specifically, every second trial was considered an anchor sample of the
user’s password behavior, and the trials immediately following it were
considered positive samples (see Figure 3.2). This division was based
on the observation that users who become familiar with the password
improve their typing speed over time and develop a more stable typing
pattern. Therefore, when comparing anchor samples with positive sam-
ples, one should compare those which, over time and with the learning
of the password, would not have drifted apart between trials. As a
result, each dataset consisted of 9,200 positive samples (images) and
9,200 anchor samples (images). 70% of created triplets were used for
training and the remaining 30% for validation. Additionally, for testing
purposes, 1,000 positive images and 1,000 anchor images were extracted
for the test datasets. To create training triplets for SNN, the anchor and
positive samples were taken from the same user, while the negative
sample was randomly selected from a different user. This procedure
was repeated for each dataset with different conversion methods.

In the experiment, triplets were fed as input to SNN, and a margin
size of 0.5 (m = 0.5, see (2.3)) was used. This decision was based
on previous studies carried out to determine the optimal margin for
different experimental configurations [B.1, B.2].

SNN was trained using the Adam optimizer over 100 epochs. To
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prevent overfitting, an early stopping function was enabled, which
stopped training if the model’s performance on the validation dataset
did not improve. In addition, a batch size of 128 was chosen for effi-
cient computation and optimization. The batch size was determined
after a series of experiments to find the balance between computational
efficiency and model performance. The validation dataset was used to
monitor the performance of the model, and the best weights were saved
based on the validation loss. Following training, the optimal weights
from each training epoch were saved, resulting in the storage of five
sets of different network weights related to GADF, GASF, MTF, RP, and
GAFMAT.

Table 3.2 summarizes the results obtained by each of the different
transformation methods applied to the validation dataset. The results
are evaluated according to the metrics described in Section 3.2. The
data in the table indicate that the most accurate methods were GADF,
with an accuracy of 0.99077, and GAFMAT, with an accuracy of 0.98935.
Using RP and GASF, the values obtained were 0.98331 and 0.98473,
respectively. In contrast, the MTF showed a noticeably lower accuracy
of 0.94744.

Table 3.2: Results of image transformation methods on keystroke dy-
namics data from the CMU dataset using the GADF, GASF, RP, MTF,
and GAFMAT algorithms: Metrics-based evaluation on validation data

Non-Image to Image Transformation Methods

Metrics GADF GASF RP MTF GAFMAT

Accuracy↑ 0.99077 0.98473 0.98331 0.94744 0.98935
EER↓ 0.04794 0.05540 0.05327 0.12074 0.04545
AUC↑ 0.98612 0.98290 0.98394 0.94862 0.98668
AP_ED↓ 0.44127 0.47255 0.43633 0.56487 0.48600
AN_ED↑ 1.72784 1.71689 1.68884 1.59469 1.76378
AP_STD↓ 0.27487 0.29295 0.28245 0.36906 0.31383
AN_STD↓ 0.32888 0.34455 0.34881 0.40005 0.31295
AN_CS↓ 0.45772 0.45264 0.46871 0.46011 0.43755
AP_CS↑ 0.77936 0.76373 0.78183 0.71756 0.75700

The results in Table 3.2 suggest that GADF outperforms the other
methods in terms of AP_STD and accuracy, yielding slightly better re-
sults than the others. This implies that the positive images are positioned
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closer to the anchor. However, the higher AN_ED values for GADF in-
dicate that the method struggles to distinguish negative images from
the anchor, in contrast to the superior performance of GAFMAT, which
achieved an AN_ED value of 1.76378. A higher AN_ED value suggests
that the other methods possess the ability to better discriminate negative
images relative to the anchor. In summary, although GADF excels in
proximity to the anchor with its lower AP_ED, and its comparative
weakness in distinguishing negative images is evident from the higher
AN_ED values. GADF exhibited the lowest AP_STD value of 0.27487,
indicating less variability within the anchor and positive samples. Simi-
larly, GADF had the highest AN_STD value of 0.32888, indicating more
variability within the anchor and negative samples. This trend was also
observed for the other methods. It should be acknowledged that explicit
tests of statistical significance for these metrics were not performed in
this thesis. Although there are notable differences in the results, for
example, GAFMAT achieved a slightly better EER of 0.04545 compared
to GADF 0.04794. It is unlikely that this small numerical improvement
represents a statistically significant advantage. However, the author em-
phasizes that in a large number of repeated experiments with different
batches, the GAFMAT method consistently showed the smallest range
of variation in EER values, indicating greater stability and reliability of
its performance.

The GADF has the highest AP_CS value of 0.77936, indicating a
high cosine similarity between the anchor and positive samples. On
the other hand, GADF also had the highest AN_CS value of 0.45772,
indicating a relatively high cosine similarity between the anchor and
negative samples. The other methods showed similar patterns, where
GADF generally had higher AP_CS and AN_CS values. In the context of
cosine similarity, a higher value is generally considered better. When the
cosine similarity between two vectors (anchor and positive or anchor
and negative) is closer to 1, the vectors point in a similar direction and
have a higher degree of similarity. This is beneficial in many applications
where similarity or correlation between vectors is important, and can be
useful in a variety of tasks, such as document similarity, recommender
systems, and pattern recognition.

From Table 3.2, it can be observed that the lowest EER value of
0.04545 was obtained using GAFMAT. This indicates a lower threshold
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at which the trade-off between FAR and FRR is achieved. Other methods
also showed relatively low EER values, except for the MTF, which had a
higher EER of 0.12074. The highest AUC value (0.98668) was obtained
using the GAFMAT method. The GADF method yielded results close
to those of GAFMAT, with a value of 0.98612. The use of GASF and RP
resulted in AUC values of 0.9829 and 0.98394, respectively. The MTF
had a slightly lower AUC value of 0.94862.

In a comprehensive evaluation, the use of the GAFMAT and GADF
methods showed promising results in several metrics, such as accuracy,
distance measure, cosine similarity, EER and AUC. The empirical results
highlight the potential effectiveness of GAFMAT and GADF as trans-
formation methods for dataset analysis compared to the other methods
considered.

In the following research, a comparative analysis was performed to
evaluate the effectiveness of different transformation methods in a test
dataset. The test dataset consists of previously unseen data samples that
were processed using the same transformation method. By evaluating
the results obtained from each method, the aim was to gain insights into
their effectiveness and identify possible variations in performance (see
Table 3.3).

Table 3.3: Results of image transformation methods on keystroke dy-
namics data from the CMU dataset using the GADF, GASF, RP, MTF,
and GAFMAT algorithms: Metrics-based evaluation on test data

Non-Image to Image Transformation Methods

Metrics GADF GASF RP MTF GAFMAT

Accuracy↑ 0.86800 0.8540 0.82900 0.85400 0.86600
EER↓ 0.21000 0.24500 0.23900 0.24500 0.21500
AUC↑ 0.85928 0.83398 0.83937 0.83398 0.85951
AP_ED↓ 0.73164 0.86555 0.84481 0.86555 0.83616
AN_ED↑ 1.41323 1.50249 1.50904 1.50249 1.52453
AP_STD↓ 0.41727 0.45697 0.47537 0.45697 0.44798
AN_STD↓ 0.43871 0.44504 0.44953 0.44504 0.42488
AN_CS↓ 0.46378 0.40799 0.41154 0.40799 0.40983
AP_CS↑ 0.63418 0.56723 0.57760 0.56723 0.58192

The results of the validation data provided in Table 3.2 indicate
clear variations in the performance of the different methods, with some
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methods demonstrating better performance than others. However, it is
important to highlight that the results obtained from the test data (see
Table 3.3) are significantly lower than those obtained on the validation
data. These differences are consistent across the test dataset, indicating
that the performance differences observed in the validation dataset are
also valid for the test data. The accuracy of the models decreased by ap-
proximately 10% to 0.86, and EER increased from 0.05 to approximately
0.20. This outcome suggests that SNN incorrectly classifies one out of
every five negative samples as positive, highlighting a significant rate of
false positives. However, the analysis shows the promise of using the
GAFMAT and GADF methods over other methods in the analysis of the
test data set.

3.4. Experiments and Results Using GREYC-NISLAB Dataset

In the initial phase of the experiments using the CMU dataset, it was
empirically determined that the proposed GAFMAT method achieved
the lowest EER value. Therefore, to further validate the effectiveness
of the proposed methodology, the analysis was extended to include an
additional dataset of fixed-text passwords. These additional experiments
allowed us to evaluate the effectiveness of the GAFMAT method on
different datasets and to perform validation comparisons with results
reported in related works.

The GREYC-NISLAB dataset described in Subsection 2.2.1 was
collected in 2013 and includes five passwords entered by 110 users. The
passwords are as follows: a) "leonardo dicaprio", b) "the rolling stones",
c) "michael schumacher", d) "red hot chilli peppers", e) "united states of
america" (note: the spelling is as provided in the original data file). Each
user entered five different passwords ten times with both hands and
ten times with one hand, depending on whether the user was left- or
right-handed. The dataset of a single password consists of 2,200 samples.
In total, the dataset comprises 11,000 data samples corresponding to 110
users, with 20 samples per user. Each password has different keystroke
patterns, so the number of keystroke dynamics features ranges from 64
to 92. Using the GAFMAT method, each password was transformed
into the corresponding graphical representations, resulting in password
images (see Figure 3.3).

The experiments were carried out according to the procedures de-
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(a) leonardo dicaprio (b) the rolling stones (c) michael schumacher

(d) red hot chilli peppers (e) united states of amer-
ica

Figure 3.3: Image-based representations of distinct passwords of the
same user, generated using the GAFMAT algorithm. Password data
source: GREYC-NISLAB dataset

scribed in Section 3.3. The last five users from each password set were
selected for testing. The final 2,100 samples from each password dataset
were split at a 70:30 ratio into training and validation sets. The results
obtained from the validation data were very similar to those from the
CMU dataset and are presented in Table 3.4. The results were evaluated
according to the metrics described in Section 3.2.

As shown in Table 3.4, the network could classify each password
with an average accuracy of 0.98. Notably, the highest accuracy was
achieved for the passwords "united states of america" and "michael
schumacher", both with a high accuracy of 0.99. Using the Euclidean
distances between the anchor and the positive sample (AP_ED), as
well as between the anchor and the negative sample (AN_ED), the
network was able to effectively detect differences between the positive
and negative samples with respect to the anchor. As a result, the triplet
loss function resulted in a decrease in the distance between the anchor
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Table 3.4: Results using different accuracy metrics for passwords from
GREYC-NISLAB on a validation dataset when transforming time se-
ries features of keystroke dynamics into an image using the GAFMAT
algorithm

Passwords (GREYC-NISLAB)

Metrics leonardo
dicaprio

the
rolling
stones

michael
schu-
macher

red hot
chilli
peppers

united
states of
america

Accuracy↑ 0.97656 0.98698 0.99219 0.97778 0.99220
EER↓ 0.07552 0.04688 0.06510 0.04444 0.04688
AUC↑ 0.97824 0.98667 0.98771 0.98272 0.98847
AP_ED↓ 0.44736 0.43986 0.39958 0.45165 0.39566
AN_ED↑ 1.55644 1.61202 1.48864 1.63478 1.61275
AP_STD↓ 0.24318 0.21992 0.20467 0.21505 0.19676
AN_STD↓ 0.40601 0.37381 0.38351 0.38917 0.38013
AN_CS↓ 0.49905 0.48703 0.52795 0.47839 0.49790
AP_CS↑ 0.77632 0.78007 0.80021 0.77417 0.80217

and the positive samples to a range of 0.39 to 0.45 and an increase in
the distance between the anchor and the negative samples to a range
of 1.48 to 1.63. These metrics highlight the crucial difference between
positive and negative samples in metric space. These empirical results
underscore the effectiveness of the choice of a 0.5 margin based on the
experimental results presented in [B.1, B.2].

The standard deviation of the distance between the anchor and
the positive samples is approximately 0.2, and that between the anchor
and the negative samples is approximately 0.39. This indicates that the
network tended to admit more positive samples than negative samples,
as the positive samples were twice as dispersed compared to the mean.

Another metric for quality evaluation, cosine similarity, was effec-
tive in distinguishing between positive and negative samples in relation
to the anchor. The cosine similarity indicates that the positive sample
is oriented in one direction relative to the anchor, with a value of ap-
proximately 0.78. In contrast, the negative samples are oriented in the
opposite direction and have a value close to 0.5 relative to the anchor
sample.

The most important indicator for validating the proposed GAFMAT
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Table 3.5: Results using different accuracy metrics for passwords from
GREYC-NISLAB on a test dataset when transforming time series fea-
tures of keystroke dynamics into an image using the GAFMAT algorithm

Passwords (GREYC-NISLAB)

Metrics leonardo
dicaprio

the
rolling
stones

michael
schu-
macher

red hot
chilli
peppers

united
states of
america

Accuracy↑ 0.84000 0.86000 0.86000 0.84000 0.92000
EER↓ 0.16000 0.20000 0.22000 0.22000 0.14000
AUC↑ 0.90320 0.85920 0.85400 0.86680 0.89240
AP_ED↓ 0.78894 0.86642 0.67407 0.87670 0.75085
AN_ED↑ 1.55808 1.49985 1.33055 1.55131 1.50073
AP_STD↓ 0.41371 0.40861 0.31141 0.44201 0.43587
AN_STD↓ 0.40956 0.41111 0.49554 0.40963 0.42794
AN_CS↓ 0.41324 0.40843 0.49884 0.39300 0.43711
AP_CS↑ 0.60553 0.56679 0.66297 0.56165 0.62458

method is EER. For three specific passwords ("the rolling stones", "red
hot chilli peppers", "united states of america"), the EER value varied by
approximately 0.045. Moreover, for the "leonardo dicaprio" and "michael
schumacher" passwords, the EER values are 0.07552 and 0.0651, respec-
tively. Obviously, for the three passwords, the proposed methodology
and approach provided an almost similar EER to the CMU dataset.
However, it is important to note that the sample sizes of the datasets
are different. The CMU dataset contains 400 instances of the same pass-
word for each user, while the GREYC-NISLAB dataset contains only 20
samples for each user.

After obtaining the validation results, an experiment was conducted
on the test dataset to determine whether the password length would
yield better results on unseen data. Before the training phase, a sub-
set of five users was selected from each password dataset, allowing
100 samples to be analyzed for each individual password. After the
training process, during which the optimal weights values were stored,
the network was initialized with these parameters. The results of the
evaluation using the unseen test data corresponding to the five users
mentioned above are summarized in Table 3.5. The analysis shows that
the results for the test data have a similar tendency to those for the
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validation data, although their values have decreased. As shown in
Table 3.5, the accuracy decreased to approximately 0.85. The Euclidean
distances between the anchor and the positive samples increased, rang-
ing from 0.67 to 0.87. In contrast, the distances between the anchor and
negative samples remained almost the same as those in the validation
data (see Table 3.4). Such observations suggest that even when assessing
the quality using test data, the network retains the ability to distinguish
between positive and negative samples compared to the anchor. This
trend is also observed for the standard deviation. Although AN_STD
remains the same as that for the validation dataset, remaining in the
range of 0.4 to 0.49, AP_STD decreases by almost half compared to the
Euclidean anchor-positive distance (AP_ED).

Since the objective in this case is to minimize EER, this indicator
is treated as a baseline, which in the analysis of the GREYC-NISLAB
dataset ranges between 0.14 and 0.22 for the test data, as shown in Ta-
ble 3.5. The user authentication paradigm of the network is formulated
in such a way that it can compare a newly entered password, trans-
formed according to the GAFMAT technique, with previous entries,
aiming to achieve an EER close to zero. Currently, an EER of approxi-
mately 0.2 is observed, which indicates that improvements are necessary.
To summarize, the SNN with a triplet loss function is able to distinguish
between positive and negative samples in the test data. However, the ac-
curacy values obtained are definitely lower than those of the validation
data.

3.5. Overview of Results from CMU and GREYC-NISLAB
Datasets

The observed EER values indicate that the accuracy of this metric is
affected by the length of the password. This is supported by the fact that
the CMU dataset contains 31 features and the GREYC-NISLAB dataset
contains 64 to 92 password features. In particular, EER for the password
"united states of america", which is the longest in the set with 92 features,
was 0.14 (see Table 3.5). EER of the next longest password, "red hot chilli
peppers", with 84 characteristics, was 0.22. These observations suggest
that EER is influenced mostly by the password’s inherent features rather
than its length.

The empirical findings from the experiments conducted on the CMU
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and GREYC-NISLAB datasets were used to assess the performance of the
newly proposed GAFMAT algorithm. The EER results of the validation
phase of the CMU dataset were compared with the results of previous
studies and showed a better performance of the GAFMAT method (see
Table 3.6). This analysis highlights the effectiveness of GAFMAT in
improving biometric authentication through improved accuracy and
feature mapping. It should be noted that many published papers report
results based mainly on validation data. Therefore, comparative analysis
with other studies is performed using EER results on the validation data
from the CMU dataset. EER results on the test data of the GREYC-
NISLAB dataset are used for comparative analysis with a recent study
on user authentication [82].

Table 3.6: Performance evaluation for CMU dataset passwords on vali-
dation data: a comparison of results in terms of EER values

References Method EER

Section 3.3 GAFMAT 0.04545
[56] (original) Manhattan distance (scaled) 0.09600
[116] Nearest neighbor (new distance

metric) + outlier removal
0.08400

[116] Nearest neighbor (new distance
metric)

0.08700

[73] Inductive transfer encoder (Manhat-
tan distance)

0.06300

[18] CNN 0.06500
[49] Dependence clustering with Man-

hattan distance
0.07700

[87] Manhattan distance (scaled with
standard deviation)

0.09160

Table 3.6 presents a focused performance evaluation of EER of dif-
ferent methods using the CMU dataset. It aims to emphasize advances
in EER reduction on CMU data. The method based on the Manhattan
distance (scaled) reported by [56] showed EER of 0.096, indicating less
efficiency in balancing false acceptances and false rejections. In contrast,
the nearest-neighbor method with a new distance metric, as explored
by [116], showed EER of 0.084 with outlier removal and 0.087 without
it. Similarly, the inductive transfer encoder approach, applied by [73],
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resulted in an EER of 0.063, which, although closer to the result of the
GAFMAT method, remains less optimal. CNN used by [18] achieved an
EER of 0.065, indicating fairly good performance. In addition, methods
such as dependency clustering with Manhattan distance [49] and Man-
hattan distance (with standard deviation scaling) [87] showed EERs of
0.077 and 0.0916, respectively, indicating lower and insufficient authen-
tication accuracy. This comparative analysis clearly indicates that the
GAFMAT method significantly outperforms existing methods in terms
of authentication accuracy, as evidenced by its significantly lower EER
in the context of the CMU dataset. The results highlight the potential of
the GAFMAT method for more accurate and reliable user authentication
in cybersecurity applications. The performance of the proposed method
was specifically compared to that of studies that used the complete sam-
ple set of the CMU dataset without excluding outliers, in contrast to a
previous study [73] in which outliers were removed, resulting in EER
of 0.047, but an overall EER of 0.063. In the paper [87], the highest EER
of 0.045 was obtained, but these results are only for "good" users. The
authors of the paper set the FAR threshold and calculated what EER
would be for "good", "average", and "bad" users. Despite these results,
the average EER of 0.0916 of all users was taken and compared with the
results obtained by the methods presented in this paper [87].

The results obtained on the CMU dataset indicate that transform-
ing the numerical values into images using techniques such as GADF,
GASF, and RP resulted in EER values of 0.04794, 0.0554, and 0.05327,
respectively (see Table 3.4). These findings highlight the effectiveness
of the proposed approach for transforming passwords into images to
train SNN, which improved the performance over previous state-of-the-
art methods. Significantly, proposed method for converting numerical
data into images, called GAFMAT, achieved an improved EER value of
0.04545 (see Table 3.6).

A comparative analysis of the validation and test results of the
GREYC-NISLAB dataset was carried out, with particular regard to the
evaluation of their performance in terms of EER and accuracy. This
choice was made because recent research on this user authentication
task dataset has focused on improving accuracy and achieving better
EER values [82]. This thesis, therefore, aimed to compare the results
with these established benchmarks.
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The information in Table 3.5 allows comparison of this thesis results
with those of other authors [82]. As indicated in this study, the best
results for EER using the GoogleNet model were 0.1843 for "leonardo
dicaprio", 0.1423 for "michael schumacher", and 0.148 for "united states
of america". Meanwhile, this thesis proposed methodology with the
implemented GAFMAT method achieved EER values of 0.16, 0.22, and
0.14, respectively. Notably, the implementation of a 12-layer CNN, while
not as deep as the 22-layer deep neural network (GoogleNet), yielded
results on the test dataset that are comparable to or slightly better than
the network containing almost twice as many layers.

The results obtained on CMU data clearly demonstrate that the pro-
posed GAFMAT method combined with SNN achieves slightly lower
EER than do existing methods such as GADF, GASF, MTF and RP. The
GAFMAT method also demonstrated a high stability across all experi-
ments, producing reliable results regardless of changes in the data set or
experimental conditions. The method achieved EER of 0.04545 on the
CMU dataset. In addition, the method achieved a high level of accuracy
for the GREYC-NISLAB dataset, with EERs ranging from 0.04444 to
0.07552. The findings emphasize the remarkable performance of the
proposed solution in distinguishing genuine users from impostors.

3.6. Keystroke Dynamics Data Visualization Experiments and
Results

Data visualization is essential in data analysis because it helps transform
complex, high-volume information into an intuitive and understand-
able form. This process helps uncover patterns, trends, and anomalies
that may remain hidden in raw data, facilitating more informative and
effective decision making. Visualizing keystroke dynamics data is impor-
tant for enhancing user authentication systems and detecting potential
insider threats in critical infrastructure. This section presents a visual-
ization framework that combines SNNs with dimensionality reduction
techniques to analyze and interpret complex keystroke patterns.

In this thesis, the visualization process comprises several stages
(see Figure 3.4), each with a specific purpose, to ensure that the data
are accurately represented in a lower-dimensional space, facilitating
analysis and decision-making. An expanded and detailed description of
the process follows:
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Figure 3.4: The visualization framework based on dimensionality reduc-
tion for multidimensional embedding analysis in decision support
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• Data pre-processing. The raw keystroke time data from the anal-
ysed datasets (e.g. CMU) are cleaned, normalized, and balanced
to prepare the raw data for subsequent steps.

• GAFMAT transformation. The preprocessed keystroke data are
transformed into image representations using GAFMAT, as de-
tailed in Subsection 2.2.3. This transformation enhances the ability
of CNNs to extract relevant features from typing patterns.

• SNN training. The transformed keystroke images are processed
through an SNN with CNNs branches, using the triplet loss func-
tion. This network learns to generate embeddings that effec-
tively distinguish between legitimate users and potential impos-
tors based on their typing patterns. These embeddings represent
the similarities and dissimilarities between the data samples. In
this way, each data sample is converted to a point in the embed-
ding space.

• Dimensionality reduction. The high-dimensional embeddings pro-
duced by SNN are projected into a two-dimensional space using
techniques such as PCA, t-SNE, LLE, and UMAP. Each technique
offers a different perspective on the keystroke data structure, po-
tentially revealing unique insights into user typing behaviors.

• Authentication decision support. The resulting visualizations en-
able the identification of patterns, anomalies, and potential insider
threats in keystroke dynamics. This visual analysis supports more
informed decision-making in user authentication for critical infras-
tructure protection.

This visualization framework addresses several key aspects of the
thesis. It demonstrates how SNNs with CNNs branches can learn dis-
criminative features from keystroke dynamics transformed to the visual
representations to authenticate users. A mean to visually detect potential
insider threats by identifying anomalous typing patterns is proposed. By
integrating deep learning with visualization techniques, this framework
enhances the interpretability of complex keystroke dynamics data.
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3.6.1. Use Case Analysis of Keystroke Dynamics for User
Authentication

This subsection demonstrates the effectiveness of the proposed visualiza-
tion framework for analyzing keystroke dynamics in user authentication.
The experiments utilize the CMU dataset, which contains multidimen-
sional data representing keystroke patterns from different users.

(a) PCA (b) LLE

(c) UMAP (d) t-SNE

Figure 3.5: Multidimensional data visualizations using different dimen-
sionality reduction techniques: (a) PCA, (b) LLE, (c) UMAP, (d) t-SNE.
Each color corresponds to a different user in the CMU dataset

Figure 3.5 shows the results of applying various dimensionality
reduction techniques (PCA, LLE, UMAP, and t-SNE) to the raw CMU
dataset. These visualizations reveal that conventional methods struggle
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(a) PCA (b) LLE

(c) UMAP (d) t-SNE

Figure 3.6: Visualization of multidimensional embeddings obtained by
SNN using different dimensionality reduction techniques (p = 256): (a)
PCA, (b) LLE, (c) UMAP, (d) t-SNE. Each color corresponds to a different
user in the CMU dataset

to clearly separate users based on their typing patterns, highlighting the
need for more advanced approaches. Labels and units for both axes are
omitted when presenting the visualization results in this and the follow-
ing figures. This approach is driven by the focus on observing the inter-
locations of points in 2D space. The proposed framework uses SNN with
CNNs branches to generate multidimensional embeddings from the
GAFMAT-transformed keystroke data. As a result of processing the raw
data on keystroke dynamics transformed into images using SNN with
triplet loss function, multidimensional embeddings are extracted. These

100



Figure 3.7: Visualization of two-dimensional embeddings (p = 2) ob-
tained by Siamese neural network

embeddings, denoted as Ei = (ei1, . . . , eip), i = 1, . . . ,m, represent the
keystroke patterns of each user in p-dimensional space, where p ⩾ 2.
Each embedding Ei includes distinctive characteristics of keystroke dy-
namics, embedding the typing behavior in the p-dimensional feature
space. Figure 3.6 presents the visualizations of these embeddings using
the same dimensionality reduction techniques. Each color corresponds
to a different user in the CMU dataset and represents individual be-
havioral profiles. The results show significantly improved separation
between users, especially when using t-SNE. PCA shows a wide spread
of points, but does not provide a clear view of the discrete clusters. LLE
reveals some structure, but with a high degree of distortion. In the case
of UMAP, it is possible to observe certain clusters, but the distinction
between them is not sufficiently clear and obvious, which complicates
the decision-making and does not allow for making appropriate and re-
liable decisions. In contrast, t-SNE allows for a clear distinction between
clusters and specifies the unique typing patterns of different users.
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The results obtained with the proposed framework (see Figure 3.4)
and depicted in Figure 3.6 demonstrate the visualization results for
embeddings with an initial dimensionality of 256. In order to test the
hypothesis that the generation of multidimensional embeddings makes
sense when their dimensionality is significantly higher than two (p≫ 2),
it was decided to visualize the two-dimensional embeddings without
applying any dimensionality reduction technique and to compare the re-
sulting visualizations. The number of dimensions represents the number
of outputs of SNN. The results can be seen in Figure 3.7. Here, the points
corresponding to the users are scattered widely, and there are no distinct
clusters. A comparison of Figures 3.6 and 3.7 justifies that embedding
the data in a higher dimensional space using Siamese networks and
visualizing the embeddings by dimensionality reduction techniques is
meaningful.

To illustrate the performance of the proposed framework (see Sec-
tion 3.4) it is meaningful to compare the visualization results of the
raw multidimensional data (see Figure 3.5) and the multidimensional
embeddings obtained by SNN (see Figure 3.6). The comparison results
illustrate that multidimensional embedding visualization is more suit-
able for decision-making, as clusters corresponding to user’s keystroke
dynamics patterns are better separated and more clearly visible (see Fig-
ure 3.6). As demonstrated previously, the use of the t-SNE technique
better reveals the structure of the patterns analyzed. Figure 3.5 (d) repre-
sents the visualization of the raw keystroke dynamics data using t-SNE.
The clusters appear to be slightly more diffused, with some overlapping
between different colors, indicating that while distinct user patterns can
be observed, the separation is not as clear-cut. This poses a challenge
for decision-making in user authentication, as the decision boundary be-
tween different users is not clear. As a result, a decision support system
may have a higher rate of misclassification, leading to potential security
vulnerabilities. Figure 3.6 (d) shows the visualization of multidimen-
sional embeddings extracted by SNN using t-SNE. The clusters in this
visualization are generally more distinct and separated from each other,
with less overlap between colors. This suggests that the embeddings
from SNN provide a more refined and discriminative representation of
keystroke dynamics and improve the separation between different users.
Such visualization results contribute to more confident authentication
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Figure 3.8: Silhouette scores before and after applying t-SNE on raw
multidimensional data and their embeddings

decisions.
Furthermore, it is important to quantitatively evaluate how well the

data in the lower-dimensional space represent the original data structure
and relationships. After dimensionality reduction, the data points are
often clustered. Figure 3.8 presents silhouette scores [94] for different
stages of the visualization process, quantitatively demonstrating the
improvement in cluster separation achieved by the proposed framework.
The silhouette score helps determine how cohesive the clusters are
internally and externally separated the clusters are.

As seen in Figure 3.8, the lowest silhouette score of 0.01 is obtained
for the raw multidimensional data. It suggests that raw data do not
naturally form well-defined clusters. This could be due to high dimen-
sionality or inherent noise and variability in the data. Applying t-SNE
to the raw data results in a higher silhouette score of 0.064. This im-
provement indicates that t-SNE helps in revealing some underlying
structure of the data, making the clusters more distinct than in the raw
data. When the raw data are transformed into images and the resulting
images are used to train a SNN, the silhouette score for the multidimen-
sional embeddings obtained at the network outputs is 0.153, which is
a significant improvement over the raw data. This suggests that the
embedding process effectively captures the essential features, leading to
better clustering. The highest silhouette score is observed when t-SNE
is applied to the multidimensional embeddings, reaching 0.190. This
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(a) (b)

Figure 3.9: Examples of visualizations that show password typing pat-
terns of the same user and the other randomly selected users

indicates that the combination of embedding techniques with t-SNE
results in the most distinct and well-separated clusters of all analyzed
data.

Figure 3.9 presents two examples of distinguishing a single user’s
typing patterns from those of other users. The application of this vi-
sualization process is demonstrated with two different examples, each
representing a different user from the CMU dataset. Each case presents
all samples of one user’s keystroke data and compares them to 400 ran-
domly selected samples of other users. These visualizations demonstrate
the framework’s ability to clearly separate legitimate users from poten-
tial impostors, which is crucial for enhancing authentication accuracy
in critical infrastructure systems. However, in some cases, the writing
behavior of other users is very similar to a legitimate user’s, but still
outside that user’s cluster. This suggests that writing behavior may be
replicated in some cases, underlining the importance of robust models to
handle such a delicate correspondence. In Figure 3.9, the clusters of blue
points represent the multiple password attempts of the selected user,
while the multicolored points represent the randomly selected attempts
of other users. This separation shows the similar password behavior
of the selected user, whose pattern is clearly different from the other
users. The same visualization approach is applied to the second example
(the green cluster). In Figure 3.9, the user’s data samples also form a
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separate cluster that is distinguishable from the other user’s samples.
The consistency of the results in both examples confirms the validity of
the multidimensional data visualization process. The silhouette scores
of 0.690 (Figure 3.9, a) and 0.645 (Figure 3.9, b) justify the effectiveness of
the visualization framework to distinguish between legitimate and ille-
gitimate users based on their typing patterns using the CMU keystroke
dynamics dataset.

This visualization framework complements the GAFMAT transfor-
mation and SNN-based authentication method described in previous
sections by providing visual mean to analyze and validate the effective-
ness of the proposed approach. It offers valuable insights for security
analysts to detect anomalies and potential insider threats in critical in-
frastructure environments. The visualization process is of particular
importance in the context of cybersecurity applications, as it allows SOC
analysts to monitor and analyze triggered anomalies visually, thus en-
hancing their ability to detect and respond to potential threats in critical
infrastructure. The ability to distinguish between user behavior patterns
through visual means has the potential to markedly enhance decision-
making processes in both anomaly detection and user authentication
systems.

3.7. Keystroke Dynamics Data Fusion-Based Experiments and
Results

Keystroke dynamics standardization is the key for developing deep
learning-based models that can accommodate passwords of varying
lengths, thereby creating a more accurate and universal user authen-
tication system. This section details a series of experiments aimed at
demonstrating the effectiveness of the proposed data fusion approach
(Section 2.5) in handling keystroke dynamics data from different lengths,
emphasizing its capability to enhance user authentication. In a series of
experiments, the aim was to demonstrate the effectiveness of the data
fusion approach when dealing with passwords of different lengths and,
consequently, with different numbers of timestamps. These experiments
were designed not only to validate the feasibility of proposed method,
but also to identify the most effective strategies for fusing keystroke
dynamics datasets. In this way, the thesis aims to demonstrate the
enhanced capabilities of the proposed approach in distinguishing gen-
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uine user actions from potential security threats or insiders, thereby
improving the quality of user authentication processes.

CNN architecture used for SNN, which was designed to process
37x37 input images, is presented in Table 3.7. Each convolutional layer is
followed by batch normalization, dropout, and max pooling operations.
This sequence is followed by a flattened layer, whose output is used
as input to the dense layer. The final dense layer has 256 outputs. The
network output can be considered as an embedding of the original input.
Each layer utilizes the Rectified Linear Unit (ReLU) activation function
to introduce nonlinearity, which enhances the learning ability of the
network. The network, which has a depth of 13 layers, covers a total of
2,806,496 parameters.

When separating the dataset for training, validation, and testing
a neural network, the goal is to estimate the model’s performance as
realistically as possible. However, separating data from the same user
into training and validation sets can introduce bias and result in overly
optimistic performance measures. This is because the model may sim-
ply recognize a particular user rather than generalizing the obtained
performance. To ensure that the generalization capabilities of the model
are accurately estimated, it is important to have different users in the
training, validation, and test sets. This separation ensures that the evalu-
ation is based on the model’s ability to learn and apply patterns to new,
unseen data, which is a more accurate measure of its effectiveness in
the real world. In this thesis, experiments adopted a 70/15/15 split for
training, validation, and testing, respectively. A subset of users from
each dataset (15%) was used for validation to observe the performance
of the network during training. The other 15% of users were allocated
for testing and stored separately to evaluate the network’s performance
on previously unseen data. This separation of data allows us to better
simulate real-world conditions when the model encounters data that it
did not encounter during training.

3.7.1. Keystroke Dynamics Data Fusion Result Validation

In this thesis, ANOVA [38] was used to assess the statistical significance
of the differences in the means of EERs obtained by the different in-
terpolation methods. This method allows us to determine whether the
differences in EER means obtained are statistically significant or whether
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Table 3.7: Summary of the convolutional neural network architecture
used in the Siamese neural network for keystroke dynamics authentica-
tion

Layers Output Shape Number of Parameters

InputLayer (None, 37, 37, 3) 0
Conv2D (None, 37, 37, 32) 1,568
BatchNormalization (None, 37, 37, 32) 128
Dropout (None, 37, 37, 32) 0
MaxPooling2D (None, 18, 18, 32) 0
Conv2D (None, 18, 18, 64) 18,496
BatchNormalization (None, 18, 18, 64) 256
Dropout (None, 18, 18, 64) 0
MaxPooling2D (None, 9, 9, 64) 0
Flatten (None, 5,184) 0
Dense (None, 512) 2,654,720
Dropout (None, 512) 0
Dense (None, 256) 131,328

they can be explained by chance. The analysis of the differences between
the mean EERs obtained by the cubic, linear, and nearest-neighbor in-
terpolation methods for the CMU dataset showed a p-value of 0.2916
for the time series data interpolation. Additionally, EERs for image
post-resizing using interpolation techniques such as bicubic, bilinear,
and nearest-neighbor methods, which yielded a p-value of 0.1472. Ex-
amining the variance of the mean EERs of the KeyRecs dataset obtained
by the cubic, linear, and nearest neighbor interpolation methods, it was
found that the p-value was 0.1016 for the time series interpolation and
0.0889 for post-resizing with interpolation. These results (see Table 3.8),
above the usual alpha level of 0.05, indicate that there are no statistically
significant differences in the efficiency of the interpolation methods at
the significance level 5%. This finding suggests that the observed differ-
ences in EER between the interpolation methods can be explained by
random variation rather than by a definite difference in performance.

Boxplots are commonly used to visually compare the performance
of interpolation methods for different data sets. This section presents
the performance measures for the test datasets. Figures 3.10 and 3.11
show EERs for different interpolation methods (linear, cubic, nearest
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Table 3.8: Statistical significance (p-values) of different interpolation
methods and post-resizing image interpolation methods applied to the
CMU and KeyRecs datasets. A p-value derived from ANOVA tests
greater than 0.05 indicates no statistically significant difference between
the methods

Dataset Interpolation Methods p-value

CMU Time series interpolation (Linear, Cubic, Nearest
Neighbor)

0.2916

Post-resizing with interpolation (Bicubic, Bilinear,
Nearest Neighbor)

0.1472

KeyRecs Time series interpolation (Linear, Cubic, Nearest
Neighbor)

0.1016

Post-resizing with interpolation (Bicubic, Bilinear,
Nearest Neighbor)

0.0889

neighbor) applied to time series and for image post-resizing with in-
terpolation (bilinear, bicubic, nearest neighbor) using the CMU and
KeyRecs datasets, respectively. Boxplots are often used because they
summarize the distribution of data points in a concise way, showing
the median, mean, quartiles, and outliers, thus illustrating the tendency
and variability of the data. In the boxplot, the center line indicates the
median EER for each method. The boundary extends from the first to
the third quartile, showing the middle of the data range. The whiskers
extend to the farthest points that are not considered outliers. Outliers are
shown as individual points outside the whiskers. The triangle indicates
the mean EER for each method.

Figure 3.10 shows a comparison of how different interpolation meth-
ods affect EER for both time series and post-resizing images. Boxplots
for the CMU dataset show the distributions of EERs for all interpolation
methods. Linear interpolation proves to be the most effective method
on the CMU dataset, with a mean EER of 0.16462, indicating the high
accuracy of this method. On the other hand, the nearest neighbor inter-
polation method on the post-resizing shows a slightly higher mean EER
of 0.17187, and the corresponding cubic interpolation is approximately
0.17634. In particular, linear interpolation maintains not only the lowest
mean EER but also the most concentrated interquartile range, indicating
a high level of stability of the dataset. In contrast, the cubic and nearest-
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neighbor methods show a larger variation in EER values, indicating
less stability in performance. The implications of these findings are also
emphasized by the bilinear post-resizing method, which demonstrates a
mean EER comparable to that of linear interpolation but with marginally
more variation. The smaller range of resizing with the bilinear interpola-
tion method compared to resizing with the bicubic interpolation method
suggests that it may be an intermediate option in terms of stability and
accuracy. Table 3.9 supplements these observations by detailing the
best, mean, and standard deviation (std) values for accuracy and EER,
which provides a more complete understanding of the performance of
each method. Lower EER values correlate with higher performance;
thus, the low variability of the linear interpolation method confirms its
suitability for the task at hand. Although nearest-neighbor interpolation
competes with resizing using nearest-neighbor interpolation, its wider
variability indicates its dependence on data specificity. In conclusion,
linear interpolation is the most stable and potentially accurate method
for the fusion of datasets, whereas bilinear interpolation can serve as
an alternative if moderate variability is acceptable. The key point of the
experiments was the best EER value achieved using linear interpolation,
which was 0.13672. This value emphasizes the potential of linear inter-
polation not only for obtaining the most stable mean EER but also for
achieving the lowest number of errors in specific cases.

Table 3.9: Performance metrics for the CMU dataset using different
interpolation methods for time series standardization and image post-
resizing

Time series interpolation Post-resizing with interpolation
Metrics Cubic Nearest

Neighbor
Linear Bicubic Nearest

Neighbor
Bilinear

Accuracy (best) 0.94141 0.92969 0.91797 0.91406 0.94141 0.92578
Accuracy (mean) 0.91685 0.91574 0.90737 0.90234 0.91016 0.91016
Accuracy (std) 0.01282 0.01062 0.00828 0.00835 0.01235 0.01772
EER (best) 0.15625 0.15625 0.13672 0.15234 0.16016 0.16016
EER (mean) 0.17634 0.17913 0.16462 0.18025 0.17187 0.17188
EER (std) 0.01423 0.02007 0.01423 0.01376 0.01023 0.02738

After thoroughly evaluating the interpolation methods applied to
the CMU dataset using both the original time series and post-resizing
with interpolation, it was concluded that linear interpolation is the most
appropriate approach for the efficient fusion of datasets. To further
validate this conclusion, the thesis was extended to the KeyRecs dataset.
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Figure 3.10: Comparison of equal error rates for the CMU dataset using
different interpolation methods for data standardization: interpolation
methods are used to standardize the length of the time series (top);
images are post-resized using different interpolation methods (bottom)
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Figure 3.11: Comparison of EERs for the KeyRecs dataset using different
interpolation methods for data standardization: interpolation methods
are used to standardize the length of the time series (top); images are
post-resized using different interpolation methods (bottom)
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Table 3.10: Performance metrics for the KeyRecs dataset using different
interpolation techniques for data fusion

Time series interpolation Post-resizing with interpolation
Metrics Cubic Nearest

Neighbor
Linear Bicubic Nearest

Neighbor
Bilinear

Accuracy (best) 0.91406 0.90625 0.91406 0.89844 0.91016 0.90625
Accuracy (mean) 0.87956 0.89388 0.89779 0.88346 0.89388 0.89388
Accuracy (std) 0.01648 0.01264 0.01569 0.01159 0.01137 0.00941
EER (best) 0.21484 0.18359 0.15625 0.18750 0.15625 0.17188
EER (mean) 0.21940 0.20833 0.19401 0.20443 0.18424 0.19141
EER (std) 0.00417 0.01909 0.02296 0.01120 0.01633 0.01256

This set was chosen because of the similarity in password length to
the CMU dataset but with a larger feature size. The results of applying
different interpolation strategies to the KeyRecs dataset are shown in Fig-
ure 3.11, and the detailed results are presented in Table 3.10. Analyzing
the post-resizing interpolation results using the KeyRecs dataset shows
that the mean EER tends to be slightly lower than in the case of time
series interpolation analysis. In particular, the mean EER for the bilinear
and bicubic interpolation methods was slightly greater than 0.19, while
the nearest neighbor interpolation method showed a mean EER value of
0.18424, although with significant variability. In time series interpola-
tion, the linear interpolation method has consistently lower mean EER
values, which is consistent with its performance on the CMU dataset.
The bilinear image resizing method shows commendable results. Al-
though its mean EER is slightly greater than that of its nearest-neighbor
method, its more compact interquartile range indicates reduced variabil-
ity, which provides more stable performance across different samples.
The prominent result of this evaluation was the achievement of the best
EER value of 0.15625 using linear interpolation on the KeyRecs dataset,
which is an indication of the method’s potential to provide strong user
authentication on different datasets.

A comparative evaluation of the CMU and KeyRecs datasets re-
vealed a definite relationship between the different interpolation strate-
gies and the characteristics of each dataset, particularly in terms of
accuracy and EER. This analysis shows that although the performance
of the interpolation methods varies depending on the specifics of the
dataset, linear interpolation consistently maintains high stability in all
cases. This stable EER across different datasets emphasizes the effec-
tiveness of linear interpolation and makes it the preferred data fusion
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method for training neural network models. This is particularly relevant
in scenarios requiring improved accuracy and reduced EER in different
data contexts.

The analysis of the GREYC-NISLAB dataset presented in Figure 3.12
and Table 3.11 shows that the linear interpolation method applied to
keystroke dynamics data with different initial feature lengths is quite
promising. The GREYC-NISLAB dataset consisted of five different pass-
words, each corresponding to a significant person or phrase: "leonardo
di caprio" (LDC), "michael shumacher" (MS), "red hot chilli pepper"
(RHCP), "the rolling stones" (TRS) and "united states of america" (USA).
This uniform feature transformation to 37 for a wide range of passwords
demonstrates the potential of a generalized authentication solution capa-
ble of handling passwords of different lengths with significant efficiency.
Notably, the obtained EERs for different passphrases indicate that the
linear interpolation method performs well even after reducing the fea-
ture sizes, providing stable authentication performance. For example,
the passwords associated with LDC and MS yielded mean EER values
of 0.19792 and 0.18750, respectively, with relatively small standard de-
viations. This consistency indicates the ability of the method to retain
the distinctive features of the set after feature compression, which is
important for accurate user authentication. The highest variability of the
password corresponding to the USA, which also had the longest initial
feature length, raises the question of the scalability of the method when
dealing with significantly long passwords. However, even in this case,
the mean EER did not exceed 0.22396, which is relatively moderate and
indicates some robustness of the method. Moreover, the better accuracy
rates, especially for LDC and MS, confirm the potential of this approach.
These performances indicate that even when the size of the feature is
compressed, the important dynamics of individual keystrokes is largely
preserved, which is promising for real-world applications where the
password length can vary significantly. The most compelling aspect of
this analysis is the best EER values achieved for the different passwords.
In particular, the passwords associated with LDC, MS, RHCP, and USA
achieved the best EER value of 0.15625, which is exceptionally low. This
low EER is indicative of the high accuracy of the system, where false
accepts and false rejects are minimized, thus providing a high degree
of confidence in the authentication process. For TRS, the best EER is
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Figure 3.12: Comparison of EERs for all passwords in the GREYC-
NISLAB dataset using linear interpolation, demonstrating the effective-
ness of the proposed methodology when dealing with passwords of
different lengths for user authentication

even lower at 0.1250, further emphasizing the potential of this approach.
These best EERs are particularly important because they demonstrate
the capabilities of the model. When considering such a system for criti-
cal infrastructure security, where accuracy is extremely important, these
best EER values provide strong evidence that the method is capable of
meeting stringent security requirements.

The effectiveness of this approach in handling passwords of differ-
ent lengths and maintaining a relatively low and stable EER for different
passwords is significant. This suggests that such a methodology can
be applied to develop a versatile authentication system that is not only
secure but also adaptable to natural changes in password lengths that
occur in real-world cybersecurity scenarios.

For further experiments aimed at improving the performance of
data fusion for training a single neural network for passwords of any
length, three different experiments were designed, taking into account
previous insights into the variability of performance with passphrase
length:

• In the first experiment, the passphrases from the KeyRecs, CMU,
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Figure 3.13: Comparison of EERs for fused keystroke dynamics datasets
using different data fusion strategies, showing the impact on model
accuracy and generalization to unseen data

Table 3.11: Performance metrics using the GREYC-NISLAB datasets
using linear interpolation. The best, mean and standard deviations of
EERs and accuracy values by specific passwords (“leonardo dicaprio”,
“michael schumacher”, “red hot chilli peppers”, “the rolling stones” and
“united states of america”) are presented, demonstrating the effective-
ness of linear interpolation when dealing with passwords of different
lengths

Datasets

Metrics LDC MS RHCP TRS USA

Accuracy (best) 0.93750 0.96875 1.00000 0.96875 0.90625
Accuracy (mean) 0.87500 0.93229 0.87500 0.89583 0.83854
Accuracy (std) 0.03608 0.04199 0.06250 0.03898 0.04199
EER (best) 0.15625 0.15625 0.15625 0.1250 0.15625
EER (mean) 0.19792 0.18750 0.21354 0.17708 0.22396
EER (std) 0.02329 0.02552 0.04199 0.02946 0.03335
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and GREYC-NISLAB datasets were fused into a single dataset to
train SNN model. The trained model was then evaluated on an
unseen subset of samples consisting of 15% of the users from each
of these datasets. This combined dataset is referred to as "Fused
data 1".

• The second experiment was designed to address the observed
performance problems associated with longer passphrases. Here,
the KeyRecs and GREYC-NISLAB datasets were fused, explicitly
excluding the longer passphrases of RHCP and USA, as it was
acknowledged that they had underperformed in previous analyses.
The network was subsequently tested on the full CMU dataset.
This combined dataset is referred to as "Fused data 2".

• In the third experiment, the fusion of the KeyRecs, CMU, and
GREYC-NISLAB datasets also excluded the RHCP and USA pass-
phrases, on the assumption that removing the longer passphrases
might improve overall performance. This newly trained network
was then tested with an unseen subset of 15% of the users from
the CMU dataset, providing a reliable assessment of the model’s
generalizability. This combined dataset is referred to as "Fused
data 3".

When analyzing "Fused data 1", which consists of passwords of
various lengths, the best EER is 0.1875 (see Figure 3.13). Using "Fused
data 2", there is a noticeable improvement in EER, suggesting that the
elimination of long passwords may have had a positive impact on the
model’s performance. The use of "Fused data 3" achieves a lower mean
EER and a narrower interquartile range. In particular, "Fused data 3" has
the best EER value of 0.13281, demonstrating a remarkable level of accu-
racy in authenticating users. This shows robust and stable performance
under different user data and indicates a successful improvement in the
neural network’s ability to generalize on unseen data.

This Section introduced a new authentication methodology that
integrates keystroke dynamics with data fusion and deep learning tech-
niques. In particular, it implements a standardized password length
across multiple datasets for the first time, while leveraging a data fusion
strategy to enhance the robustness of authentication systems. Given the
unique objectives and experimental framework used, direct comparison
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with previous studies is inherently limited, highlighting the uniqueness
of the proposed approach. These results differ from those of other au-
thors (see [5, 8, 56, 82, 91, 97]) because the aim was to standardize the
number of password features to a commonly used length and train a
single network suitable for all passwords. Although this approach is
promising, especially in improving the generalizability of authentication
systems for different user groups and is not dependent on password
length, it is essential to consider how these results relate to existing
research in this area.

3.7.2. Keystroke Dynamics Data Fusion Result Comparison with
Previous Studies

The performance of keystroke biometrics is affected by variables such
as emotional state, body posture, keyboard type, and other situational
factors [72]. For some physiological biometrics, such as fingerprints or
iris recognition, EER can range from 0.001 to 0.0077 [112]. However,
for behavioral biometrics, EER can range from 0.1 to 0.2, which is often
considered appropriate to ensure a balance between user experience
and security measures [5, 8, 97]. This study and experiments present
a methodology for user authentication based on keystroke dynamics,
which differs in that the testing phase uses only data from new, unseen
users. Unlike previous studies [56, 82, 91] in which the separation of
training and test samples based on the same users could introduce bias
and overestimate the results of performance evaluation, in the proposed
model, performance was evaluated only on new, unseen users. By choos-
ing different sets of users for training and testing, the results reflect the
model’s ability to generalize across different behaviors and typing pat-
terns, which is important for real-world applications. This achievement
is noteworthy given the inherent variability and complexity of biometric
datasets, which often pose significant challenges for pattern recognition
and anomaly detection systems. The methodology developed in this
research provides a solid basis for improving neural network training to
enhance the security and accuracy of biometric authentication systems.

Several studies have reported lower EERs than those observed in
this thesis, requiring further discussion of the methodological differ-
ences and their implications for real-world applications. For example,
in the study [82], using a CNN-based approach on the GREYC-NISLAB
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dataset, the best obtained EER was approximately 0.05. However, it is
important to note the methodological differences on which the obtained
result depends. In this thesis, combining multiple passwords into a sin-
gle long password consisting of 99 characters and 376 attributes makes it
possible to obtain an extended set of features that affect the performance
of the model. However, this approach cannot always be directly applied
to real-world scenarios, where users typically enter shorter and fixed
passwords. Conversely, this thesis employs a standardized approach,
wherein the length of the password is set to 37 features. While this
restricts the scope of the feature set, it enables a more pragmatic solution
to user authentication.

Similar studies such as [33, 64] have demonstrated the effectiveness
of random forest and support vector machine algorithms in keystroke
dynamics, especially in scenarios with free-text input or long password
phrases. These cases utilize a broader set of features available in free-
text scenarios, improving the performance of the models. This work, by
contrast, focuses on fixed-text authentication, where the feature set is
restricted to a standard password length. This limitation, while chal-
lenging, is crucial for developing a generalized model that can handle a
variety of user inputs without requiring significant customization for
each use case.

3.7.3. Justification for Data Fusion

The use of data fusion in this thesis is motivated by the effort to create a
single unified model capable of handling different types of passwords
across a wide user database. Training separate models for each user or
dataset is not only resource intensive, but also impractical for large-scale
applications, especially in critical infrastructure where efficiency and
scalability are crucial.

Data fusion approach, which combines multiple datasets into a
standardized format, addresses these challenges by creating a more
flexible model. This model can be generalized to different user profiles,
making it applicable in real-world applications where users may have
different typing behaviors. The slightly higher EER observed in this
thesis reflects the rigorous testing conditions under which the model
was evaluated on unseen data from new users, in contrast to some
previous studies in which the testing was performed on validation data
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from known users, potentially leading to lower EER due to overfitting.
The efficacy of the data fusion methodology on keystroke dynamics

was subjected to rigorous examination through a series of experiments.
The experiments demonstrate that the proposed system is capable of han-
dling passwords of varying lengths by combining multiple datasets and
standardizing the features through interpolation. The results demon-
strate the significance of time series standardization and image resizing
techniques in enhancing the precision and dependability of user authen-
tication. A comparative analysis of EERs of the various merged datasets
revealed a notable enhancement in the model’s performance, particu-
larly when longer passphrases were excluded, leading to a substantial
reduction in EERs. This approach allows the development of a more
generalizable model capable of authenticating users from diverse and
previously unseen data, and demonstrates its potential in real-world
applications where variability in password length and typing behavior
can affect system reliability. Ultimately, the fusion-based methodology
has demonstrated efficacy in addressing the challenges associated with
keystroke dynamics, offering a more robust, scalable, and customizable
authentication solution.

3.8. Conclusions of the Chapter

The chapter provides a comprehensive evaluation of the keystroke dy-
namics authentication system methodology, demonstrating its effec-
tiveness through extensive experimentation on datasets such as CMU,
GREYC-NISLAB, and KeyRecs. Transforming raw keystroke data into
visual representations improves feature extraction and classification ac-
curacy when integrated with SNN and CNN architectures. The method
consistently achieves low EER, validating its robustness in real-world
authentication scenarios.

GAFMAT outperforms conventional transformation techniques,
including GADF, GASF, RP and MTF. Multidimensional embedding
visualization further enhances the interpretability of the system, facilitat-
ing user behavior analysis and anomaly detection. The implementation
of data fusion ensures adaptability to passwords of different lengths,
confirming the scalability of the method.

Despite minor performance variations between password sets, the
results demonstrate the ability of the proposed methodology to pro-
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vide secure and reliable authentication in critical infrastructure envi-
ronments. The thesis provides a foundation for further advances in
biometric authentication, particularly in the refinement of data fusion
and visualization strategies to improve system scalability and detection
accuracy.

All results related to the testing of the proposed user authentica-
tion methodology, including the GAFMAT method, the design of the
experiments, and the results described in this Chapter 2, have been
previously presented at scientific conferences and published in peer-
reviewed papers. The core user authentication methodology and the
GAFMAT method were presented in [A.2]. The visualization methods
used to evaluate and interpret the results are described in detail in [A.1].
In addition, data standardization and fusion methods have been pub-
lished in [A.3], which have significantly improved the reliability of the
authentication system. In addition, results related to the selection of
the margin size in a Siamese neural network with a triplet loss function
were presented and discussed in conference proceedings [B.2] and [B.1].
These publications generally confirm and validate the methodology and
conclusions presented in this thesis.
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GENERAL CONCLUSIONS

This thesis proposes and validates a deep learning-based user authenti-
cation framework using keystroke dynamics, focusing on the detection
of insider threats in critical infrastructure. The proposed methodol-
ogy integrates non-image to image data transformation, data fusion
strategies, and dimensionality reduction techniques to improve model
performance, interpretability, and practical applicability.

The following conclusions summarize the key findings and contri-
butions of this thesis:

• The proposed keystroke dynamics-based user authentication metho-
dology was integrated with a deep learning approach, specifi-
cally Siamese neural networks with triplet loss, to differentiate
between legitimate users and unauthorized access. The efficacy
of the methodology in addressing insider threats within critical
infrastructure systems was demonstrated using publicly available
datasets.

• Transforming keystroke dynamics into images using GAFMAT
improved feature extraction and model accuracy. Empirical results
showed that GAFMAT-based image representations performed
better than existing non-image to image methods (GASF, GADF,
MTF, RP). On the CMU dataset, this method achieved an EER
of 0.04545. In addition, in the GREYC-NISLAB dataset the EER
ranged from 0.04444 to 0.07552. These results show that GAFMAT
is effective in highlighting users’ writing behavior, helping to
distinguish users based on their writing styles.

• By utilizing specific interpolation-based data fusion strategies,
as well as a Siamese neural network with a triplet loss function,
the best equal error rate of 0.13281 was achieved for the unseen
fused data from various publicly available data. This indicates
that the proposed methodology can extend the capabilities of user
authentication systems, thereby providing more robust security
measures for critical infrastructures and insider detection.

• Dimensionality reduction methods for assessing SNN embeddings
showed that SNN embeddings significantly improved the distin-
guishability of the users clusters compared to the raw data, with sil-
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houette scores increasing from 0.23 to 0.52. This demonstrates that
SNN with CNN branches effectively captures distinctive writing
patterns, improving user distinction for authentication purposes.
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[80] M. Ondrašovič and P. Tarábek. Siamese visual object tracking: A
survey. IEEE Access, 9:110149–110172, 2021. doi: 10.1109/ACCE
SS.2021.3101988.

[81] J. Orols, N. Kunicina, and R. Bruzgiene. Acquisition and pro-
cessing of intelligent system control data for the analysis of the
interdependence between critical infrastructures. In 2022 IEEE
63th International Scientific Conference on Power and Electrical En-
gineering of Riga Technical University (RTUCON), pages 1–6, 2022.
doi: 10.1109/RTUCON56726.2022.9978775.

[82] Y. B. W. Piugie, J. Di Manno, C. Rosenberger, and C. Charrier.
Keystroke dynamics based user authentication using deep learn-
ing neural networks. In 2022 International Conference on Cyberworlds
(CW), pages 220–227. IEEE, 2022. doi: 10.1109/CW55638.2022.000
52.

[83] A. Rahman, M. E. Chowdhury, A. Khandakar, A. M. Tahir, N. Ibte-
haz, M. S. Hossain, S. Kiranyaz, J. Malik, H. Monawwar, and M. A.
Kadir. Robust biometric system using session invariant multi-
modal eeg and keystroke dynamics by the ensemble of self-onns.
Computers in Biology and Medicine, 142:105238, 2022.

131
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SUMMARY IN LITHUANIAN

Šiuolaikinė skaitmeninė aplinka suteikia kibernetiniams nusikaltėliams
plačias galimybes atakuoti nacionalinius tinklus ir ypatingos svarbos
infrastruktūrą, pavyzdžiui, reikalauti išpirkos už duomenis, vykdyti
plataus masto sukčiavimą ar kelti grėsmę nacionaliniam saugumui. Šių
grėsmių pasekmės gali būti skaudžios – nuo didelių finansinių nuostolių
iki reputacijos žalos ir klientų pasitikėjimo praradimo. Kibernetinio sau-
gumo iššūkiai vystosi taip greitai, kad tradiciniai, slaptažodžiais grįsti
autentifikavimo metodai tampa vis mažiau veiksmingi. Nors slaptažo-
džiai vis dar plačiausiai naudojami, jie dažnai tampa „phishing“, „brute
force“, socialinės inžinerijos ar vidinių grėsmių taikiniais, sukeliančiais
duomenų saugumo pažeidimus ir finansinius nuostolius. Šios proble-
mos aktualios ypatingos svarbos infrastruktūros sektoriams, tokiems
kaip energetika, transportas, sveikatos priežiūra, finansai ir gynyba.
Kai nusikaltėliai įgyja neteisėtą prieigą prie tokių sistemų, pasekmės
gali būti kur kas rimtesnės nei vien finansiniai nuostoliai – gali sutrikti
esminių paslaugų teikimas ir kilti grėsmė valstybės saugumui [36, 84].

Pavogti prisijungimo duomenys sudaro net 80 % finansinių nuostolių,
susijusių su kibernetiniais nusikaltimais [105]. „Phishing“ – tai kiber-
netinės atakos forma, kai naudojantis apgaulingais el. laiškais, SMS
žinutėmis ar telefono skambučiais, apsimetant patikima institucija, iš
neatsargių gavėjų išgaunama asmeninė informacija [12, 51]. Siekiant ap-
sisaugoti nuo tokių grėsmių, rekomenduojama naudoti daugiafaktorinį
autentifikavimą. Tačiau net ir jis gali būti pažeidžiamas tuo atveju, kai
slaptažodžiai yra silpni, pakartotinai naudojami ar jau nutekėję. Nese-
niai paskelbta ataskaita rodo, kad silpni ar pažeisti slaptažodžiai sudaro
didelę dalį nutekėjusių duomenų, o tai dar kartą pabrėžia papildomų
apsaugos priemonių svarbą [37, 105].

Elgsenos biometrija yra veiksminga antroji gynybos linija. Vienas iš
jos pavyzdžių – klavišų paspaudimo dinamika, kuri leidžia nustatyti
naudotojo tapatybę analizuojant subtilius įvesties aspektus, tokius kaip
spausdinimo ritmas, laiko intervalai ir paspaudimo stiprumas, nerei-
kalaujant papildomos techninės įrangos. Šis metodas fiksuoja įvairius
naudotojo spausdinimo elgsenos bruožus – klavišų paspaudimo ir atlei-
dimo laiką, spausdinimo greitį bei ritmą. Analizuojant šiuos duomenis,
sukuriamas unikalus biometrinis profilis, kuris gali būti naudojamas
nuolatiniam naudotojo autentifikavimui. Tai leidžia efektyviai aptikti ir
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užkirsti kelią neteisėtai prieigai prie svarbių sistemų ir duomenų.
Nepaisant akivaizdžių privalumų, klavišų paspaudimo dinamika

susiduria ir su iššūkiais. Vienas pagrindinių – didelis duomenų kin-
tamumas, kylantis dėl rašymo stiliaus svyravimų, kuriuos gali lemti
stresas, naudotojo laikysena ar aplinkos sąlygos. Be to, taikant šį metodą
būtina atsižvelgti į skirtingus slaptažodžius, įvairias naudotojų grupes ir
realaus laiko autentifikavimo sąlygas, išvengiant perteklinio klaidingai
teigiamų ar klaidingai neigiamų atvejų skaičiaus.

Naujausi giliojo mokymosi pasiekimai gerokai išplėtė galimybes ana-
lizuoti sudėtingas naudotojų savybes klavišų paspaudimų duomenyse.
Skirtingai nei tradiciniai mašininio mokymosi metodai, kurie dažnai
remiasi rankiniu būdu išgautais požymiais ir sunkiai aptinka sudėtingus
raštus, giliojo mokymosi architektūros geba automatiškai identifikuoti
subtilius laiko ir erdvės požymius.

Disertacijoje daugiausia dėmesio skiriama statiniam autentifikavi-
mui, kai naudotojai turi įvesti slaptažodžius jiems būdingu rašymo
stiliumi. Nors nuolatinio autentifikavimo metodai turi savų privalumų,
statiniai metodai vis dar plačiai taikomi kritinėse sistemose. Be to, jie
leidžia tiesiogiai lyginti rezultatus su ankstesniais tyrimais naudojant
standartinius kokybės rodiklius, tokius kaip vienodas klaidų santykis
(angl. Equal Error Rate, toliau EER) [56].

Sujungus giliojo mokymosi modelius, duomenų transformaciją į
vaizdus ir patikimas suliejimo strategijas, šiame darbe siekiama paro-
dyti, kaip autentifikavimo sistema efektyviai prisitaiko prie skirtingų
naudotojų ir slaptažodžių, taip stiprinant ypatingos svarbos infrastruktūros
saugumą.

Šio darbo tikslas – sukurti ir įvertinti giliuoju mokymusi pagrįstą
metodiką, skirtą vidinėms grėsmėms ypatingos svarbos infrastruktūros
sistemose aptikti. Šia metodika siekiama pagerinti vidinių grėsmių ir
neleistinos prieigos aptikimą, transformuojant nevaizdinius arba len-
telėse pateiktus klavišų paspaudimų duomenis į vaizdinius atvaizdus.
Joje taip pat pateikiamas naujas požiūris į naudotojo autentifikavimą,
grindžiamą klavišų paspaudimų dinamika, naudojant Siamo neuroninio
tinklo architektūrą su konvoliucinio neuroninio tinklo atšakomis.

Norint pasiekti šio darbo tikslus, reikia įgyvendinti šiuos uždavi-
nius:

1. Atlikti išsamią literatūros apžvalgą apie ypatingos svarbos inf-
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rastruktūrose naudojamus naudotojų autentiškumo patvirtinimo
metodus, ypatingą dėmesį skiriant elgsenos biometrijai, ypač
klavišų paspaudimo dinamikai.

2. Įvertinti giliojo mokymosi metodus ir kokybės vertinimo met-
rikas, skirtas vidinėms grėsmėms aptikti analizuojant klavišų
paspaudimų elgseną, ir nustatyti jų poveikį naudotojo autentišku-
mo nustatymo tikslumui didinti.

3. Pasiūlyti naują naudotojo autentiškumo nustatymo metodiką,
pagrįstą klavišų paspaudimų dinamika, naudojant elgsenos bio-
metrijos ir giliojo mokymosi metodų įžvalgas ir sujungiant kelis
skirtingo ilgio slaptažodžius, siekiant pagerinti grėsmių aptikimą.

4. Įvertinti siūlomos metodikos veiksmingumą naudojant viešai pri-
einamus klavišų paspaudimų dinamikos duomenų rinkinius.

Mokslinis darbo naujumas

Šioje disertacijoje pristatomi keli nauji indėliai į naudotojų autentifikavi-
mo ir kibernetinio saugumo sritis. Ypatingas dėmesys skiriamas vidinių
grėsmių aptikimui ypatingos svarbos infrastruktūros sistemose, pasitel-
kiant klavišų paspaudimų dinamiką ir giliojo mokymosi metodus.

Pagrindinis šio darbo privalumas – sukurta ir įvertinta giliojo moky-
mosi metodika, skirta vidinių grėsmių identifikavimui ypatingos svar-
bos infrastruktūros sistemose. Metodika pagrįsta nevaizdinių klavišų
paspaudimų dinamikos duomenų transformacija į vaizdus, pasitelkiant
naują Gaboro filtro matricos transformacijos metodą (angl. GAbor Filter
MAtrix Transformation, toliau GAFMAT). Ši transformacija leidžia išnau-
doti Siamo neuroninių tinklų (angl. Siamese Neural Network, toliau SNN)
architektūrą, kurioje integruoti konvoliuciniai neuroniniai tinklai (angl.
Convolutional Neural Network, toliau CNN).

Be to, metodikoje pateiktas sprendimas, kaip standartizuoti klavišų
paspaudimų dinamikos duomenis skirtingo ilgio slaptažodžiams, tai-
kant interpoliacijos ir vaizdo dydžio keitimo metodus. Duomenų sulieji-
mo strategijų taikymas padeda modeliams geriau apibendrinti įvesties
duomenis, nepriklausomai nuo slaptažodžio ilgio.

Taigi, ši metodika siūlo vaizdais grįstą naudotojų autentifikavimo
sprendimą, paremtą elgsenos biometrija, kuris leidžia efektyviau aptikti
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vidines grėsmes bei neteisėtą prieigą prie svarbių sistemų.
Pagrindinis tyrimo naujumas:

1. Pristatomas naujas duomenų transformacijos metodas GAFMAT,
skirtas klavišų paspaudimo dinamikos požymių išskyrimui pa-
gerinti ir naudotojo autentiškumo nustatymui naudojant SNN su
CNN atšakomis.

2. Sukurtas klavišų paspaudimų dinamikos standartizavimo sprendi-
mas, kuriuo siekiama pašalinti duomenų rinkinių įvairovę naudo-
jant duomenų sujungimo, interpoliavimo ir vaizdo dydžio keitimo
metodus.

3. Siūloma kompleksinė naudotojo autentifikavimo sistema, kurioje
GAFMAT integruojamas su giliojo mokymosi metodais, skirta
vidinėms grėsmėms aptikti ypatingos svarbos infrastruktūroje,
naudojant biometrinių duomenų elgsenos analizę.

Ginamieji teiginiai

Šios disertacijos ginamieji teiginiai:

1. Klavišų paspaudimo dinamikos duomenų transformavimas į vaiz-
dus, pasitelkiant naują metodą GAFMAT, padidina giliojo mo-
kymosi modelio efektyvumą naudotojų autentifikavime. Stan-
dartizavus klavišų paspaudimo duomenis ir taikant šį transfor-
mavimo metodą, sistema geriau atskiria teisėtus naudotojus nuo
apsimetėlių.

2. Tyrimas, kurio metu buvo taikytos dvi duomenų standartizavi-
mo strategijos – laiko eilučių interpoliacija ir vaizdų dydžio keiti-
mas su interpoliacija, atskleidė, kad tiesinė interpoliacija užtikrina
mažiausią vidutinį vienodą klaidų santykį bei stabilų veikimą
įvairiuose duomenų rinkiniuose.

3. Siūloma naudotojų autentifikavimo metodika skirta praktiniam
taikymui realioje kritinės infrastruktūros aplinkoje. Ji buvo įvertin-
ta eksperimentiniais tyrimais, naudojant viešai prieinamus duome-
nų rinkinius, kurie parodė šio metodo pritaikomumą, universalu-
mą ir veiksmingumą naudotojų autentifikavimui.
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Mokslinių rezultatų aprobavimas
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konferencijose.

Straipsniai WoS duomenų bazės leidiniuose:
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Disertacijos struktūra

Šią disertaciją sudaro trys pagrindiniai skyriai, po kurių pateikiamos
bendrosios išvados ir literatūros sąrašas.

• Pirmame skyriuje pateikiama išsami literatūros apžvalga, kurioje
daugiausia dėmesio skiriama mašininio mokymosi metodams,
susijusiems su klavišų paspaudimų dinamika, įskaitant SNN,
duomenų standartizavimą ir daugiamačių duomenų vizualiza-
vimo metodus.

• Antrame skyriuje pateikiama naudotojo autentiškumo nustatymo
metodika, daugiausia dėmesio skiriant SNN architektūrai, klavišų
paspaudimų skaitinių duomenų transformacijai į vaizdus taikant
GAFMAT.

• Trečiame skyriuje pateikiami eksperimentai ir jų rezultatai, gauti
taikant pasiūlytą metodiką.

• Galiausiai, bendrųjų išvadų skyriuje apibendrinamos pagrindinės
tyrimo išvados, po kurių pateikiama išsami bibliografija.

Lietuvišką santrauką sudaro 25 puslapiai, kurioje yra 5 paveikslai ir
6 lentelės.
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S.1. LITERATŪROS APŽVALGA

Svarbiausių infrastruktūrų, tokių kaip elektros tinklai, transporto ir
ryšių sistemos, saugumas yra gyvybiškai svarbus visuomenės stabilu-
mui užtikrinti. Dėl to augančios kibernetinės grėsmės gali turėti itin
neigiamų pasekmių. Tradicinės slaptažodžiais grindžiamos autentifi-
kavimo priemonės dažnai yra pažeidžiamos kibernetinių atakų, kurių
metu pasisavinami prisijungimo duomenys [78]. Ypatingos svarbos inf-
rastruktūros sistemoms taip pat kyla didelė rizika dėl vidinių grėsmių,
kai autorizuoti naudotojai, neteisėtai pasinaudoję kitų prisijungimo
duomenimis, sukelia įvairius saugumo pažeidimus [67, 108].

Vidinės grėsmės dažnai siejamos su asmenimis, turinčiais teisėtą
prieigą prie sistemų ir gerai išmanančiais jų vidinius procesus [108].
Lietuvoje taip pat vykdomi aktyvūs tyrimai, susiję su ypatingos svarbos
infrastruktūros apsauga [9, 45, 81]. Įvairios kibernetinio saugumo pra-
tybos, tokios kaip „Locked Shields“, rodo vis didėjantį poreikį taikyti
sudėtingesnius saugumo sprendimus [19, 22].

Nesankcionuoti prisijungimai, naudojant pavogtus prisijungimo
duomenis, jau ilgą laiką išlieka vienu pagrindinių būdų įsilaužti į infor-
macines sistemas [37, 104, 105]. Siekiant sumažinti tokių grėsmių riziką,
kuriamos stebėjimo ir reagavimo sistemos, skirtos tinklų ir sistemų
veiklai analizuoti [6, 7, 11]. Tačiau, didėjant atakų sudėtingumui, vis
dažniau diegiami daugiafaktoriniai autentifikavimo sprendimai, į ku-
riuos įtraukiami fiziologiniai arba elgsenos biometrijos duomenys [2,
43, 101]. Tyrimai rodo, kad klaviatūros dinamikos analizė gali sustiprin-
ti naudotojo autentifikavimą, nes remiasi individualiais spausdinimo
įpročiais, kuriuos yra sudėtinga atkartoti [59].

Klaviatūros dinamika gali būti taikoma tiek statiniam, tiek nuola-
tiniam naudotojo autentiškumo nustatymui [23]. Vienas pagrindinių
šio metodo efektyvumo rodiklių yra vienodas klaidų santykis (EER).
Siekiant patikimumo, EER reikšmė turėtų būti kuo artimesnė nuliui [40,
41, 56, 93, 98, 113]. Kaip pabrėžia [99] autoriai, diegiant tokius sprendi-
mus praktikoje, svarbu išlaikyti tinkamą pusiausvyrą tarp naudotojo
patogumo ir sistemos saugumo.

Lietuvoje daug dėmesio skiriama tiek kritinės infrastruktūros ap-
saugai, tiek elgsenos biometrijos sprendimų plėtrai [9, 45, 81]. Didėjant
kibernetinių atakų sudėtingumui, tampa vis svarbiau kurti priemones,
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padedančias atpažinti klaviatūros injekcijas ir kitus įsilaužimo būdus,
kurie imituoja teisėto naudotojo veiksmus [19, 45]. Nacionalinio kiber-
netinio saugumo centro ataskaitose pažymima, kad elgsenos analizė
kartu su dirbtiniu intelektu gali padėti operatyviai reaguoti į grėsmes ir
prireikus automatiškai jas neutralizuoti [19].

Apibendrinant galima teigti, kad statinės klaviatūros biometrijos
metodai, taikomi naudotojo prisijungimo metu įvedant autentifikavimo
duomenis, turi pasižymėti mažu EER, siekiant užtikrinti patikimą ir
patogų tapatybės nustatymo procesą. Tik pasiekus pakankamą statinio
autentifikavimo tikslumą galima svarstyti nuolatinio autentifikavimo
sprendimų diegimą. Priešingu atveju papildomos saugumo priemonės
gali būti neveiksmingos, jei pradinis autentifikavimo etapas išliks pažei-
džiamas ir sudarys galimybes neautorizuotai prieigai.

S.1.1. Mašininis mokymasis klaviatūros paspaudimų dinamikoje

Tyrimai rodo, kad EER galima sumažinti pritaikius skirtingus atstumo
skaičiavimo metodus [49, 73, 87, 116]. Tačiau realiose situacijose naudo-
tojo rašymui įtakos turi fizinė būklė, emocijos, todėl kai kurie tyrimai
gali būti pernelyg optimistiški. Dažniausiai naudojami viešai prieinami
duomenų rinkiniai yra CMU [56], GREYC-NISLAB [41] ir KeyRecs [26].

Šie duomenų rinkiniai naudojami statinio autentifikavimo modelių
tikslumui įvertinti, o jų išsamesnis palyginimas pateiktas S.1 lentelėje.

Pastaraisiais metais klaviatūros biometrijos srityje vis daugiau dėme-
sio skiriama giliojo mokymosi modelių taikymui, siekiant pritaikyti
autentifikavimo sistemas prie skirtingų naudotojų rašymo ypatybių.
Vienas iš perspektyviausių sprendimų yra SNN taikymas [80, 117]. Šie
tinklai, sudaryti iš dviejų identiškų potinklių, vertina dviejų įvesties
pavyzdžių panašumą, todėl tinka tapatybės nustatymo užduotims.

Siamo tinklai leidžia identifikuoti subtilius skirtumus tarp teisėtų
naudotojų ir galimų užpuolikų, o tai itin reikšminga kibernetinio sau-
gumo kontekste. Tyrimai rodo, kad SNN efektyvumą pagerina trejetų
nuostolių funkcija (angl. triplet loss function), kuri priartina panašias
įvestis ir atitolina nepanašias [46, 89]. Tokios funkcijos itin svarbios sie-
kiant tiksliai atskirti rašymo modelius, esant reikšmingiems duomenų
skirtumams, būdingiems įsilaužimų aptikimo sistemoms [13, 52, 75].

Kai kuriose srityse skaitmeninius duomenis būtina paversti vaizdais,
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dinam

ika
statinis

EER

[116]
atstum

o
funkcijos

C
M

U
klaviatūros

dinam
ika

statinis
EER

[73]
ind

ukcinis
perd

avim
o

en-
koderis

C
M

U
klaviatūros
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dinam

ika
statinis

FA
R

,Tikslum
as

[10]
egzem

plioriais
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d

u
om

enų
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kad CNN galėtų efektyviai išgauti ir analizuoti šių vaizdų požymius.
Tokia transformacija leidžia CNN išnaudoti visą savo matematinį po-
tencialą, panaudojant galingas požymių išskyrimo galimybes, būdingas
vaizdo duomenims [24, 35, 119]. Rekomenduojama klaviatūros laiko
eilučių duomenis transformuoti į vaizdus, naudojant Gramiano kampinį
sumos/skirtumo lauką (angl. Gramian Angular Summation/Difference
Field, toliau GASF/GADF), Markovo perėjimų lauką (angl. Markov Tran-
sition Field, toliau MTF), pasikartojimo diagrama (angl. Recurrence Plot,
toliau RP) ir panašias metodikas [24, 35]. SNN su CNN atšakomis ir lai-
ko eilučių transformacija į vaizdus, gali tapti tvirtu patikimo naudotojo
autentiškumo nustatymo pagrindu. Tai aktualu kibernetinėje aplinkoje,
kur svarbu greitai nustatyti ir blokuoti neautorizuotus prisijungimus,
kartu išlaikant patogią naudotojo sąveiką.

Skyriaus išvados

Apžvelgtoje literatūroje pabrėžiama, kad nors slaptažodžių sistemos vis
dar plačiai naudojamos, jų trūkumai – tokie kaip silpni prisijungimo
duomenys ir pažeidžiamumas atakoms – rodo aiškų poreikį patikimes-
niems sprendimams. Viena iš perspektyviausių alternatyvų yra elgsenos
biometrija, klavišų paspaudimo dinamika, kuri leidžia patikrinti nau-
dotojo tapatybę nenaudojant papildomos techninės įrangos. Giliojo
mokymosi metodų, SNN ir CNN tinklų, naudojimas gerokai padidina
autentiškumo nustatymo sistemos tikslumą ir patikimumą. Nepaisant
šių privalumų, reikia dar labiau sumažinti EER ir užtikrinti, kad siūlomi
metodai būtų praktiškai pritaikomi realioje aplinkoje. Ateities tyrimuose
svarbu sutelkti dėmesį į duomenų kintamumo valdymą ir testavimą su
įvairiais duomenų rinkiniais, siekiant efektyviau pritaikyti klaviatūros
dinamiką kibernetiniam saugumui stiprinti.

S.2. NAUDOTOJO AUTENTIŠKUMO NUSTATYMO
METODIKA

Siekiant apsaugoti ypatingos svarbos infrastruktūrą, labai svarbus veiks-
mingas naudotojų autentiškumo patvirtinimas. Šiame skyriuje pristato-
ma, kaip klavišų paspaudimų dinamiką galima integruoti į statinį prisi-
jungimą ir nuolatinę sesijos stebėseną. Taip pat aptariamas neuroninių
tinklų, tokių kaip SNN ir CNN panaudojimas, bei duomenų transforma-
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cija į vaizdinius atvaizdus. Panašūs sprendimai leidžia aptikti vidines
grėsmes, net jei neįgaliotas asmuo žino slaptažodį [11, 43].

Statinis autentifikavimas tikrina naudotojo unikalų spausdinimo
stilių tuo metu, kai jis įveda slaptažodį. S.1 paveiksle parodytas kla-
viatūros sugeneruotų laiko žymų (angl. timestamps) transformacija į
vaizdus ir jų palyginimo su atitinkama duomenų baze procesas. Jei
nerandama atitikmenų, sistema įspėja apie galimą nesankcionuotą ban-
dymą prisijungti.

S.1 pav.: Įsilaužimo aptikimo ir prevencijos sistema, identifikuojanti
naudotoją pagal dinaminius klaviatūros požymius.

Šis sprendimas suteikia galimybę integruoti slaptažodžių autentišku-
mo nustatymo metodus į ypatingos svarbos infrastruktūrą. Sudėtingiau-
sia nustatyti klavišų paspaudimų dinamikos panašumą, norint nustatyti,
ar slaptažodį įvedė teisėtas naudotojas, ar įsilaužėlis.

S.2.1. Duomenų transformacija į vaizdus

Taikant kai kurias programas, būtina skaitmeninius duomenis paversti
vaizdais, kad CNN galėtų veiksmingai išgauti ir analizuoti šių vaizdų
požymius. Tokia transformacija leidžia CNN išnaudoti visą jų matemati-
nį potencialą, pasitelkiant požymių išskyrimo funkcijas, kurios iš esmės
skirtos vaizdų duomenims [24, 35, 119]. Išdėstant požymius dvimatėje
erdvėje, galima išryškinti jų tarpusavio ryšius, todėl CNN pagrįsti mode-
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liai gali išskirti požymius, kurie dažnai pranoksta tradicinius metodus,
besiremiančius tik skaitiniais įvesties duomenimis. Pasinaudodami
šiais požymių ryšiais, CNN gali pagerinti prognozavimo ar klasifikavi-
mo rezultatus, palyginti su modeliais, apmokytais skaitiniais duome-
nimis [119]. Remiantis įžvalgomis, gautomis analizuojant literatūrą ir
nagrinėjant skaitinių duomenų transformacijos į vaizdus naudą, šio dar-
bo autorius sukūrė naują skaitinių duomenų transformacijos į vaizdus
metodą – GAFMAT (žr. S.2 paveikslą).

S.2 pav.: GAFMAT metodas, skirtas klavišų paspaudimo dinamikos lai-
ko eilutėms transformuoti į dvimačius vaizdus. Viršutiniame kairiajame
kampe esantis vaizdinis elementas pritaikytas iš [32].

Kai įvedamas slaptažodis, sukuriamas nuoseklus duomenų rinkinys,
kuriame fiksuojamos kiekvieno klavišo paspaudimo dinamikos laiko žy-
mos. Laiko žymos sudaromos iš klavišo laikymo trukmės, klavišų atlei-
dimo ir paspaudimo trukmės, paspaudimo ir paspaudimo trukmės bei
atleidimo ir atleidimo trukmės. Ši laiko seka sudaro diskrečią reikšmių
seką a (parodyta S.2 paveikslo viršuje), kuri atspindi unikalų naudotojo
rašymo ritmą ir greitį.

Sekantis žingsnis yra Gaboro filtro taikymas, kuris matematiškai
aprašytas ir vizualiai pavaizduotas centrinėje S.2 paveikslo dalyje. Šis
filtras pritaikomas taip, kad išryškintų klavišų paspaudimų dinamikos
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savybes. Metodo esmė yra taikyti Gaboro filtrą diskrečiam signalui,
kuris atspindi klavišų paspaudimų duomenis.

Gaboro filtrai, kurių parametrai yra filtro plotis (σ), orientacija (θ),
bangos ilgis (λ) ir fazės poslinkis (ψ), parenkami iš reikšmių rinkinio,
kad išryškintų svarbiausius duomenų požymius. Dėl šios priežas-
ties a signalas paverčiamas b signalu. Gaboro filtro nustatymą sudaro
operacijų seka, kai filtras kiekvieną kartą iš naujo taikomas su skirtin-
gais unikalių parametrų rinkiniais. Po to, kai Gaboro filtras pritaikomas
klavišų paspaudimų signalui ir iš pradinių duomenų a sukuriamas
transformuotas signalas b, šie duomenys naudojami vaizdo formavimui.
Transformuotas signalas kartu su pradine klavišų paspaudimų dinami-
ka yra apdorojamas taikant išorinės sandaugos operaciją. Šios operacijos
rezultatas yra dvimatis vaizdas, kuriame pradiniai laiko eilučių duo-
menys paverčiami vizualiai interpretuojamu formatu. Tai reiškia, kad
klavišų paspaudimų laiko pokyčiai ir jų pasikartojantys modeliai yra
išreiškiami kaip vizualūs elementai – spalvų ar intensyvumo pasiskirs-
tymas vaizde.

S.2.2. Siamo neuroninių tinklų architektūros taikymas naudotojų
autentifikavimui

1993 m. buvo pristatytas Siamo neuroninio tinklo pagrindu sukurtas
parašų tikrinimo uždavinių sprendimo metodas [15]. Šis metodas apima
dviejų įvesties pavyzdžių palyginimą, siekiant nustatyti jų panašumą.
Tinklo architektūra buvo sukurta spręsti uždavinius, susijusius su po-
riniais palyginimais. Laikui bėgant SNN dėl savo gebėjimo efektyviai
spręsti užduotis, sulaukė didelio populiarumo įvairiose srityse, įskaitant
veido atpažinimą, vaizdų palyginimą ir biometrinį autentifikavimą.

Šioje disertacijoje SNN architektūra naudoja tris CNN atšakas ir
trejetų nuostolių funkciją išvesties sluoksnyje [15, 89]. Tokia konfigūracija
leidžia efektyviai įvertinti atstumą tarp vaizdų [21, 28, 29, 88, 111] (žr.
S.3 paveikslą tinklo mokymo dalyje). Mokant SNN dažnai naudojami
trejetai (angl. triplets), sudaryti iš inkaro, teigiamo ir neigiamo pavyz-
džio:

• inkaras (angl. Anchor, toliau A) – elementas su kuriuo lyginami
kiti elementai,

• teigiamas (angl. Positive, toliau P) elementas – panašus arba susijęs
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su inkaru,

• neigiamas (angl. Negative, toliau N) elementas – nėra panašus ar
susijęs su inkaru.

Po mokymo SNN sukuria atitinkamus visų trejetų įterpinius. Šie
įterpiniai yra daugiamatės latentinės erdvės vektoriai, atspindintys
įvesties duomenis arba šiuo atveju vaizdus. Pagrindinė idėja yra ta, kad
panašūs vaizdai šioje erdvėje sukuria arti vienas kito esančius įterpinius,
o nepanašūs vaizdai sukuria įterpinius, kurie yra labiau nutolę vienas
nuo kito.

S.2.3. Duomenų vizualizavimas ir duomenų standartizavimo metodai

Naudotojo autentiškumo patvirtinimo klavišų paspaudimų dinamikos
kontekste dažnai tenka susidurti su daugiamačiais duomenimis. Kiek-
vienas klavišo paspaudimo įvykis sukuria daugybę požymių, pavyz-
džiui, klavišo paspaudimo trukmę, trukmę tarp klavišų paspaudimų ir
rašymo ritmą. Šiems sudėtingiems duomenims analizuoti šiame dar-
be naudojama SNN su trejetų nuostolių funkcija. Šis tinklas apdoroja
klavišų paspaudimų duomenis ir sukuria daugiamatį įterpinį. Tačiau šių
įterpinių, paprastai esančių 256 ar daugiau matmenų erdvėje, negalima
tiesiogiai interpretuoti. Dimensijų mažinimo ir duomenų vizualiza-
vimo metodai yra svarbūs mašininio mokymosi srityje, analizuojant
sudėtingus duomenis [14, 31, 53, 68, 77, 85, 118]. Vizualizavimas ne tik
patvirtina tinklo gebėjimą atskirti naudotojus, bet ir suteikia intuityvų
būdą įvertinti sistemos veikimą ir patikimumą.

Šie metodai vertingi atliekant tiriamąją analizę, nes suteikia galimybę
įžvelgti panašumo ryšius daugiamatėje duomenų sistemoje. Neuroninių
tinklų architektūrų derinimas su žinomais vizualizavimo metodais lei-
džia vizualiai atvaizduoti gautą informaciją ir pagerina interpretavimo
galimybes.

Vienas iš svarbių iššūkių slaptažodžiais grįstose autentifikavimo
sistemose yra skirtingas slaptažodžių ilgis tarp naudotojų. Siekiant
sukurti universalią metodiką, leidžiančią neuroninį tinklą pritaikyti
prie įvairaus ilgio slaptažodžių, būtina iš anksto standartizuoti įvesties
duomenų ilgį. Tai leidžia naudoti vieną apmokytą modelį, nereika-
laujant kurti atskirų modelių kiekvienam naujam slaptažodžiui. SNN
atveju, kai reikalingas pastovus įvesties dydis, laiko eilučių ilgio stan-
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dartizavimas tampa itin svarbus. Šiai problemai spręsti taikomi įvairūs
interpoliavimo metodai [60], kurie, nors ir sukurti trūkstamoms laiko
eilučių reikšmėms atkurti, taip pat veiksmingai pritaikomi įvesties ilgiui
suvienodinti [17]. Tokiu būdu užtikrinamas duomenų nuoseklumas ir
galimybė tinklui tiksliai apdoroti skirtingo ilgio slaptažodžius.

S.3 paveiksle pateikta metodika skirta naudotojų autentiškumui
nustatyti analizuojant unikalias klavišų paspaudimų dinamikos cha-
rakteristikas. Joje pateikiamas sistemingas visų slaptažodžių suvieno-
dinimo metodas naudotojo tapatybei nustatyti. Iš pradžių CMU, Key-
Recs ir GREYC-NISLAB duomenų rinkiniai, kurie skiriasi naudotojų ir
požymių skaičiumi, prieš tolesnį apdorojimą standartizuojami interpo-
liuojant iki vienodo požymių skaičiaus, kad būtų užtikrintas vienodu-
mas. CMU duomenų rinkinį [56] sudaro 51 dalyvis, iš kurių kiekvienas
turėjo įvesti slaptažodį „.tie5Roanl“ 50 kartų per sesiją, atliekant aštuonis
seansus. Požymių skaičius CMU yra 31. KeyRecs duomenų rinkinį [26]
sudaro 99 dalyviai iš viso pasaulio, kurių kiekvienas įvesdavo „vpwjke-
urkb“ slaptažodį, sudarydami iš viso 19 773 įvestis. Požymių skaičius
KeyRecs yra 46. GREYC-NISLAB duomenų rinkinyje [41] yra penki
skirtingi slaptažodžiai, kuriuos įvedė 110 naudotojų. Požymių skaičius
varijuoja nuo 64 iki 92. Slaptažodžiai yra tokie: „leonardo dicaprio“,
„the rolling stones“, „michael schumacher“, „red hot chilli peppers“ ir
„united states of america“. Toliau tekste GREYC-NISLAB duomenų
rinkinio slaptažodžiai vadinami LDC, TRS, MS, RHCP ir USA, atitinkan-
tys kiekvieną konkretų slaptažodį. Taikant šią metodiką pavaizduotą
S.3 paveiksle keli duomenų rinkiniai integruojami į standartizuotą for-
matą, kad būtų užtikrintas nuoseklus SNN mokymas. Išvados etape
naudotojo slaptažodžio pavyzdys paverčiamas vaizdu ir apdorojamas
apmokytu SNN, siekiant sukurti įterpinį. Jis lyginamas su ankstesniais
įterpiniais, o atstumas tarp jų vertinamas pagal nustatytą ribą, grįstą
istorinių prisijungimų duomenimis, siekiant nustatyti autentiškumą.

Skyriaus išvados

Aprašytas autentifikavimo metodas, pagrįstas klavišų paspaudimo di-
namika, suteikia patikimą būdą apsaugoti kritinę infrastruktūrą. Nau-
dojant SNN ir CNN tinklus bei GAFMAT transformacijos metodą, kuris
klavišų paspaudimų duomenis transformuoja į vaizdus, sistema efek-
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S.3 pav.: Duomenų suvienodinimu grindžiamo autentiškumo nustaty-
mo sprendimas naudojant klavišų paspaudimų dinamikos analizę.

tyviai išgauna požymius ir prisitaiko prie įvairaus ilgio slaptažodžių.
Duomenų vizualizavimo ir standartizavimo metodai užtikrina daugiama-
čių duomenų interpretavimą bei apdorojimą, suteikdami universalią ir
lanksčią autentifikavimo sistemą, pritaikytą realioms sąlygoms.

S.3. EKSPERIMENTAI IR REZULTATAI

Prieš pradedant duomenų analizę, atsitiktine tvarka buvo atrinkti pen-
ki CMU duomenų rinkinio naudotojai, kurių duomenys (iš viso 2 000
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pavyzdžių) buvo atskirti ir patalpinti į atskirą aplanką. Šis atskyrimas
buvo atliktas siekiant užtikrinti, kad dirbtinio neuroninio tinklo mo-
kymo metu šie duomenys nedarytų jokios įtakos modeliui. Likusių 46
individų duomenys, sudarantys 18 400 pavyzdžių, buvo naudojami tink-
lo mokymui. Tiek mokymo ir validavimo duomenys (18 400 pavyzdžių),
tiek testavimo duomenys (2 000 pavyzdžių iš penkių naudotojų) buvo
paversti vaizdais. Šiame etape buvo sukurti penki atskiri duomenų rinki-
niai, kiekvienas skirtas tinklo mokymui ir testavimui, kuriuose tie patys
duomenys buvo apdoroti taikant skirtingus transformacijos metodus:
GASF, GADF, MTF, RP ir GAFMAT. Kas antras slaptažodžio pavyzdys
buvo laikomas naudotojo slaptažodžio įvedimo elgsenos inkaru, o iš-
kart po jo einantys bandymai – teigiamais pavyzdžiais. Toks skirstymas
buvo pagrįstas pastebėjimu, kad su slaptažodžiu susipažinę naudotojai
laikui bėgant pagerina rašymo greitį ir išvysto stabilesnį rašymo stilių.
Todėl lyginant inkarinius pavyzdžius su teigiamais pavyzdžiais reikėtų
lyginti tuos, kurie laikui bėgant ir išmokus slaptažodį, tarp bandymų
nebūtų nutolę vienas nuo kito. Todėl kiekvieną duomenų rinkinį sudarė
9 200 teigiamų pavyzdžių (paveikslėlių) ir 9 200 inkarinių pavyzdžių
(paveikslėlių). 70 % sukurtų trejetų buvo naudojami mokymui, o liku-
sieji 30 % – validavimui. Be to, testavimo tikslais testavimo duomenų
rinkiniams buvo išskirta 1 000 teigiamų vaizdų ir 1 000 inkaro vaizdų.
Norint sukurti SNN mokymo trejetus, inkaro ir teigiami pavyzdžiai bu-
vo paimti iš to paties naudotojo, o neigiamas pavyzdys buvo atsitiktinai
parinktas iš kito naudotojo. Ši procedūra buvo pakartota kiekvienam
duomenų rinkiniui naudojant skirtingus transformacijos metodus.

S.2 lentelėje pateikti skirtingų transformacijos metodų rezultatai
validavimo duomenų rinkiniui.

Atliekant visapusišką vertinimą, naudojant GAFMAT ir kitus trans-
formacijos metodus buvo gauti daug žadantys rezultatai pagal kelis
rodiklius:

• EER, biometrinėse autentiškumo nustatymo sistemose dažniausiai
naudojamas tikslumo rodiklis (žr. S.1 lentelę),

• Plotas po kreive (angl. Area Under Curve, toliau AUC),

• Euklidinis atstumas (angl. Euclidean Distance, toliau ED) tarp A ir
P įterpinių daugiamatėje latentinėje erdvėje (angl. Anchor-Positive
Euclidean Distance, toliau AP_ED),
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S.2 lentelė: Vaizdų transformacijos metodų rezultatai, gauti CMU
duomenų rinkiniui, naudojant GADF, GASF, RP, MTF ir GAFMAT me-
todus.

Transformacijos į vaizdus metodai

Metrikos GADF GASF RP MTF GAFMAT

Accuracy↑ 0,99077 0,98473 0,98331 0,94744 0,98935
EER↓ 0,04794 0,05540 0,05327 0,12074 0,04545
AUC↑ 0,98612 0,98290 0,98394 0,94862 0,98668
AP_ED↓ 0,44127 0,47255 0,43633 0,56487 0,48600
AN_ED↑ 1,72784 1,71689 1,68884 1,59469 1,76378
AP_STD↓ 0,27487 0,29295 0,28245 0,36906 0,31383
AN_STD↓ 0,32888 0,34455 0,34881 0,40005 0,31295
AN_CS↓ 0,45772 0,45264 0,46871 0,46011 0,43755
AP_CS↑ 0,77936 0,76373 0,78183 0,71756 0,75700

• ED tarp A ir N įterpinių daugiamatėje latentinėje erdvėje (angl.
Anchor-Negative Euclidean Distance, toliau AN_ED),

• ED standartinis nuokrypis tarp A ir P įterpinių daugiamatėje la-
tentinėje erdvėje (angl. Anchor-Positive Standard Deviation, toliau
AP_STD),

• ED standartinis nuokrypis tarp A ir N įterpinių daugiamatėje
latentinėje erdvėje (angl. Anchor-Negative Standard Deviation, toliau
AN_STD),

• Kosinuso panašumas tarp A ir P įterpinių daugiamatėje latentinėje
erdvėje (angl. Anchor-Positive Cosine Similarity, toliau AP_CS),

• Kosinuso panašumas tarp A ir N įterpinių daugiamatėje latentinėje
erdvėje (angl. Anchor-Negative Cosine Similarity, toliau AN_CS),

• Tikslumas (angl. Accuracy).

Eksperimentų rezultatai parodė, kad taikant GAFMAT metodą pa-
siekiami stabilesni rezultatai, kuriems būdingi mažesni svyravimai nei
naudojant kitus transformacijos metodus. Nors EER reikšmės statistiškai
reikšmingai nesiskyrė, GAFMAT dažnai pasižymėjo šiek tiek geresniais
rodikliais. Tai rodo šio metodo veiksmingumą transformuojant skai-
tinius duomenis į vaizdus. Pradiniuose eksperimentuose pastebėta,
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kad vaizdais paversti klavišų paspaudimų duomenys užtikrino geres-
nius tinklo mokymo rezultatus, palyginti su neapdorotais duomenimis
(žr. S.3 lentelę). Manoma, kad tokia transformacija pagerina duomenų
interpretaciją ir naudotojo atpažinimą.

Svarbu pažymėti, kad testavimo duomenų rezultatai (žr. S.4 lentelę)
buvo ženkliai prastesni nei validavimo. SNN dažnai klaidingai klasifi-
kuodavo vieną iš penkių neigiamų pavyzdžių kaip teigiamą, kas rodo
padidėjusį klaidingų teigiamų atvejų skaičių. Vis dėlto analizė atsklei-
džia, kad GAFMAT ir kiti transformacijos metodai išlieka perspektyvūs
taikant juos testavimo rinkiniams.

S.3 lentelė: CMU rezultatų palyginimas.

Šaltiniai Metodai EER

Skyrius S.3 GAFMAT 0,04545
[56] (originalus) Manheteno atstumas (normuotas) 0,09600
[116] Artimiausio kaimyno (nauja atstu-

mo metrika) + išskirčių šalinimas
0,08400

[116] Artimiausio kaimyno (nauja atstu-
mo metrika)

0,08700

[73] Indukcinis perdavimo enkoderis
(Manheteno atstumas)

0,06300

[18] CNN 0,06500
[49] Hierarchinis klasterizavimas naudo-

jant Manheteno atstumą
0,07700

[87] Manheteno atstumas (pagal
standartinį nuokrypį)

0,09160

Analogiški eksperimentai atlikti su CMU duomenų rinkiniu buvo
pakartoti su GREYC-NISLAB duomenų rinkiniu. Duomenys buvo su-
skirstyti pagal tą pačią struktūrą, kaip ir CMU atveju, tačiau šį kartą
visi slaptažodžiai buvo konvertuoti naudojant tik GAFMAT metodą. To-
lesnėse lentelėse pateikiami rezultatai, gauti įvertinus validavimo (žr. S.5
lentelę) ir testavimo (žr. S.6 lentelę) duomenis, siekiant įvertinti bendrą
metodo efektyvumą ir palyginti jį su ankstesniais eksperimentais.

Rezultatai, gauti naudojant CMU duomenų rinkinį, rodo, kad skaiti-
nes vertes transformuojant į vaizdus tokiais metodais kaip GADF, GASF
ir RP, EER reikšmės buvo atitinkamai 0,04794, 0,0554 ir 0,05327. Svarbu
pažymėti, kad pasiūlytasis skaitinių duomenų transformacijos į vaizdus
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S.4 lentelė: Vaizdų transformacijos metodų rezultatai, gauti naudojant
CMU testavimo duomenų rinkinio klavišų paspaudimų dinamikos duo-
menis, naudojant GADF, GASF, RP, MTF ir GAFMAT.

Transformacijos į vaizdus metodai

Metrikos GADF GASF RP MTF GAFMAT

Accuracy↑ 0,86800 0,8540 0,82900 0,85400 0,86600
EER↓ 0,21000 0,24500 0,23900 0,24500 0,21500
AUC↑ 0,85928 0,83398 0,83937 0,83398 0,85951
AP_ED↓ 0,73164 0,86555 0,84481 0,86555 0,83616
AN_ED↑ 1,41323 1,50249 1,50904 1,50249 1,52453
AP_STD↓ 0,41727 0,45697 0,47537 0,45697 0,44798
AN_STD↓ 0,43871 0,44504 0,44953 0,44504 0,42488
AN_CS↓ 0,46378 0,40799 0,41154 0,40799 0,40983
AP_CS↑ 0,63418 0,56723 0,57760 0,56723 0,58192

S.5 lentelė: Rezultatai, gauti naudojant GREYC-NISLAB validavimo
duomenų rinkiniams, kai klavišų paspaudimų dinamikos laiko eilučių
požymiai transformuojami į vaizdą naudojant GAFMAT metodą.

Slaptažodžiai (GREYC-NISLAB)

Metrikos leonardo
dicaprio

the
rolling
stones

michael
schu-
macher

red hot
chilli pe-
ppers

united
states of
america

Accuracy↑ 0,97656 0,98698 0,99219 0,97778 0,99220
EER↓ 0,07552 0,04688 0,0651 0,04444 0,04688
AUC↑ 0,97824 0,98667 0,98771 0,98272 0,98847
AP_ED↓ 0,44736 0,43986 0,39958 0,45165 0,39566
AN_ED↑ 1,55644 1,61202 1,48864 1,63478 1,61275
AP_STD↓ 0,24318 0,21992 0,20467 0,21505 0,19676
AN_STD↓ 0,40601 0,37381 0,38351 0,38917 0,38013
AN_CS↓ 0,49905 0,48703 0,52795 0,47839 0,49790
AP_CS↑ 0,77632 0,78007 0,80021 0,77417 0,80217

metodas GAFMAT pasiekė žemiausią EER 0,04545. Naudojant GREYC-
NISLAB duomenų rinkinį, GAFMAT metodas pasiekė EER reikšmes,
svyruojančias nuo 0,04444 iki 0,07552.
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S.6 lentelė: Rezultatai, gauti naudojant GREYC-NISLAB testavimo
duomenų rinkiniams, kai klavišų paspaudimų dinamikos laiko eilučių
požymiai transformuojami į vaizdą naudojant GAFMAT metodą.

Slaptažodžiai (GREYC-NISLAB)

Metrikos leonardo
dicaprio

the
rolling
stones

michael
schu-
macher

red hot
chilli pe-
ppers

united
states of
america

Accuracy↑ 0,84000 0,86000 0,86000 0,84000 0,92000
EER↓ 0,16000 0,20000 0,22000 0,22000 0,14000
AUC↑ 0,90320 0,85920 0,85400 0,86680 0,89240
AP_ED↓ 0,78894 0,86642 0,67407 0,87670 0,75085
AN_ED↑ 1,55808 1,49985 1,33055 1,55131 1,50073
AP_STD↓ 0,41371 0,40861 0,31141 0,44201 0,43587
AN_STD↓ 0,40956 0,41111 0,49554 0,40963 0,42794
AN_CS↓ 0,41324 0,40843 0,49884 0,39300 0,43711
AP_CS↑ 0,60553 0,56679 0,66297 0,56165 0,62458

S.3.1. Klavišų paspaudimų dinamikos duomenų vizualizavimo
eksperimentai ir rezultatai

Šiame poskyryje demonstruojamos vizualizavimo sistemos, analizuoja-
nčios naudotojo klavišų paspaudimų dinamiką. S.4 paveiksle pateikiami
rezultatai, gauti taikant įvairius dimensijos mažinimo metodus (PCA,
LLE, UMAP ir t-SNE) neapdorotam CMU duomenų rinkiniui.

Pritaikius siūlomą naudotojo autentifikavimo metodiką, kurioje skai-
tiniai duomenys transformuojami į GAFMAT ir paduodami SNN su
CNN atšakomis, buvo atvaizduoti kiekvieno įvesto CMU slaptažodžio
įterpiniai (žr. S.5 paveikslą).

Vizualizavimo metodų dėka galima aiškiai pamatyti, kaip GAFMAT
transformacija ir SNN pagrįstas autentiškumo nustatymo metodas lei-
džia efektyviau atskirti naudotojo duomenų įterpinius, palyginti su
originaliais skaitiniais duomenimis. Dėl to galima aiškiau atskirti skir-
tingus naudotojus ir saugumo analitikai gali veiksmingiau aptikti poten-
cialias anomalijas ir vidines grėsmes ypatingos svarbos infrastruktūros
aplinkoje.
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(a) PCA (b) LLE

(c) UMAP (d) t-SNE

S.4 pav.: Daugiamatės duomenų vizualizacijos naudojant skirtingus
dimensijų mažinimo metodus: a) PCA, b) LLE, c) UMAP, d) t-SNE.
Kiekviena spalva atitinka skirtingą CMU duomenų rinkinio naudotoją.

S.3.2. Klavišų paspaudimo dinamikos duomenų standartizavimu
pagrįsti eksperimentai ir rezultatai

Šiame skyriuje išsamiai aprašoma eksperimentų serija, kuria siekiama
pademonstruoti siūlomo duomenų standartizavimo metodo (žr. S.2.3
poskyrį) veiksmingumą tvarkant skirtingo ilgio klavišų paspaudimų
dinamikos duomenis, pabrėžiant jo galimybes patobulinti naudotojo
autentifikavimą. Aptariami klavišų dinamikos duomenų sujungimo
eksperimentų rezultatai ir jų palyginimas su ankstesniais tyrimais. Ty-
rime buvo naudojama ANOVA analizė, siekiant nustatyti, ar skirtingų
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(a) PCA (b) LLE

(c) UMAP (d) t-SNE

S.5 pav.: Daugiamačių įterpinių, gautų naudojant SNN, vizualizavimas
taikant skirtingus dimensijos mažinimo metodus (p = 256): (a) PCA,
(b) LLE, (c) UMAP, (d) t-SNE. Kiekviena spalva atitinka skirtingą CMU
duomenų rinkinio naudotoją.

interpoliacijos metodų taikymas turi statistiškai reikšmingą poveikį EER.
Rezultatai rodo, kad interpoliacijos metodų skirtumai nėra statistiškai
reikšmingi, nes p-reikšmės viršijo 0,05 slenkstį. Tai reiškia, kad pastebėti
skirtumai gali būti paaiškinami atsitiktiniais svyravimais, o ne realiais
metodų efektyvumo skirtumais.

Naudojant CMU duomenų rinkinį nustatyta, kad tiesinė interpolia-
cija buvo efektyviausia, kuri užtikrino mažiausią EER, aukščiausią tiks-
lumą ir rezultatų pastovumą. Priešingai, kubinė ir artimiausio kaimyno
interpoliacijos metodai pasižymėjo didesniais rezultatų svyravimais.
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Atlikti panašūs eksperimentai su KeyRecs duomenų rinkiniu, kuriam
būdingas didesnis požymių skaičius. Rezultatai parodė, kad artimiausio
kaimyno interpoliacija pasižymėjo šiek tiek mažesniu vidutiniu EER nei
bitiesinė (angl. bilinear) ar kubinė interpoliacija. Nors bitiesinis meto-
das kai kuriais atvejais užtikrino didesnį tikslumą, jo stabilumas buvo
mažesnis, palyginti su tiesine interpoliacija.

Pirmieji eksperimentai parodė, kad tiesinė interpoliacija yra tinka-
miausias metodas klavišų paspaudimų duomenims standartizuoti. Atsi-
žvelgus į šiuos rezultatus, GREYC-NISLAB duomenų rinkinio standarti-
zavimui taip pat pasirinkta tiesinė interpoliacija. Šiame eksperimente
slaptažodžiai buvo konvertuojami į fiksuoto ilgio 37 požymius, siekiant
standartizuoti duomenis ir sukurti bendrą modelį tinkamą skirtingo
ilgio slaptažodžiams. Analizė parodė, kad net ir esant skirtingiems
slaptažodžių ilgiams, jų standartizavimas į vieną ilgį ir tiesinės interpo-
liacijos metodo taikymas padėjo pasiekti žemus EER rodiklius. Atlikti
papildomi eksperimentai, sujungiant skirtingus klavišų paspaudimų
dinamikos duomenų rinkinius į vieną, sistemos efektyvumui įvertinti.
Buvo siekiama nustatyti, ar vienas modelis gali tiksliai atpažinti naudo-
tojus, nepaisant jų naudojamų slaptažodžių ilgio. Eksperimentų rezulta-
tai parodė, kad didžiausias tikslumas pasiektas tada, kai iš duomenų
buvo pašalinti itin ilgi slaptažodžiai, nes jie dažnai lėmė didesnę klaidų
variaciją.

S.3.3. Skyriaus išvados

Eksperimentų rezultatai parodė, kad GAFMAT metodas veiksmingai
transformuoja klavišų paspaudimų dinamikos duomenis į vaizdus, lei-
džiančius taikyti giliuosius neuroninius tinklus naudotojų autentifikavi-
mui. Tiesinė interpoliacija pasirodė tinkamiausia skirtingo ilgio slaptažo-
džiams standartizuoti, užtikrindama mažesnį EER ir modelio stabilumą.
Fiksuoto ilgio požymių standartizavimas leidžia kurti universalią au-
tentifikavimo sistemą, pritaikomą įvairiems duomenų rinkiniams. Be
to, duomenų vizualizavimas padeda geriau interpretuoti modelio vei-
kimą ir analizuoti naudotojų elgsenos ypatumus. Siūloma metodika
pranoksta tradicinius sprendimus ir gali būti lengvai pritaikyta įvairiose
autentifikavimo sistemose, neprarandant tikslumo ir stabilumo.
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BENDROSIOS IŠVADOS

Šioje disertacijoje siūloma ir validuojama giliuoju mokymusi pagrįsta
naudotojo autentifikavimo metodika, naudojanti klavišų paspaudimų
dinamiką, skirta vidinių grėsmių aptikimui ypatingos svarbos infrastruk-
tūroje. Pasiūlytoje metodikoje integruojami duomenų transformavimo
iš nevaizdinių į vaizdinius metodai, duomenų suliejimo strategijos bei
dimensijų mažinimo technikos, siekiant pagerinti modelio tikslumą,
interpretavimą ir praktinį pritaikomumą.

Pagrindinės šio darbo išvados ir rezultatai:

• Pasiūlyta naudotojų autentifikavimo metodika, pagrįsta klaviatū-
ros dinamika ir integruota SNN architektūra su CNN atšakomis,
veiksmingai atskiria teisėtus naudotojus nuo neautorizuotos pri-
eigos. Metodikos efektyvumas buvo patvirtintas taikant ją viešai
prieinamiems duomenų rinkiniams.

• Transformuojant klaviatūros dinamikos duomenis į vaizdus nau-
dojant GAFMAT, pagerino požymių išskyrimą ir modelio tikslu-
mą, lyginant su kitais esamais metodais. CMU duomenų rinkinyje
metodas pasiekė 0,04545 EER reikšmę. GREYC-NISLAB duomenų
rinkinyje EER svyravo nuo 0,04444 iki 0,07552. Šie rezultatai rodo,
kad GAFMAT efektyviai išryškina naudotojų rašymo elgseną ir
padeda juos atskirti pagal rašymo stilių.

• Interpoliacija pagrįstomis duomenų suliejimo strategijomis, nau-
dojant SNN architektūrą su CNN atšakomis, testavimo duome-
nyse iš sujungtų duomenų rinkinių buvo pasiekta 0,13281 EER
reikšmė.

• SNN įterpinių vertinimui taikyti dimensijų mažinimo metodai pa-
rodė, kad šie įterpiniai reikšmingai pagerina naudotojų klasterių
atskirtinumą, lyginant su neapdorotais duomenimis, silueto koefi-
cientas padidėjo nuo 0,23 iki 0,52. Tai patvirtina, kad SNN efek-
tyviai fiksuoja išskirtinius rašymo bruožus ir pagerina naudotojų
atskyrimą autentifikavimo tikslais.
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