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Abstract

In this work, stock market data is modelled using linear regression and multilayer perceptron
models. Using these models, stock market prices are predicted. For each stock multilayer percep-
tron with different activation functions, size of the hidden and input layer are trained. Experiments
show that, no model predicts best for all of the cases.

Prediction results are associated with nonlinear analysis measures, such as largest Lyapunov
exponent and correlation dimension. Automatic systems for computing these measures are pre-
sented. The systems estimation accuracy is then checked with known chaotic maps and equations.
Moreover, systems are validated with noisy time series.

Lastly, time series classification based on nonlinear measures is introduced. Classification
is then used with stock market data. Only classification using largest Lyapunov exponent gives
promising results, this is due to errors in computing correlation dimension. Results show that this
type of classification could be used for filtering out stocks that are harder to predict.

4



Santrauka

Finansinės kilmės duomenų prognozavimas

Darbe prognozuojami akcijų biržų duomenys naudojantis tiesinės regresijos bei daugiasluok-
snio perceptrono modeliais. Kiekvienai akcijai yra parenkama daugiasluoksnio perceptrono akty-
vacijos funkcija, vidinio sluoksnio dirbtinių neuronų skaičius, įvesties taškų skaičius bei palygi-
nami modelių rezultatai prognozuojant akcijų biržų kryptį.

Gauti prognozavimo rezultatai yra susiejami su netiesinės duomenų analizės rodikliais - didži-
ausia Liapunovo eksponente bei koreliacine dimensija. Liapunovo rodiklis yra panaudojamas klasi-
fikuoti finansinės kilmės duomenims. Gauti rezultatai rodo, kad šią klasifikavimo sistemą galima
taikyti norint atrinkti prognozuojamas akcijas.
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Introduction

Accurate forecasting of market returns is a difficult problem. So far, experimental studies have
shown that market returns data is very non-stationary, time-varying [47] and has nonlinear be-
haviour [32], [2], [45]. Also, there is some debate whether financial data may be chaotic or not
[50].

McKenzie using close returns test showed that major national stock market indexes: S&P 100,
S&P 500, Nikkei Dow, Straits Times, Swiss & Hang Seng indexes are chaotic [32]. Yousefpoor et
al. using BDS test, largest Lyapunov exponent (LLE) method & close returns test showed that five
stocks from Tehran stock exchange have sensitive dependence on initial conditions, but the data is
not chaotic [50]. Das et al. used LLE method to investigate foreign exchange data during 2008
to 2009 recession and found that the data also exhibits sensitive dependence on initial conditions
[10].

Efficient market hypothesis states that all available information in market is reflected in stocks
price so that it is not possible to predict stock prices using the historical price date. But there are
empirical evidence that markets often do not follow efficient market hypothesis. Fama and French,
Ferson showed that financial variables could be forecasted using time series of financial data [13],
[14]. Many technical analysts believe that most information about the stocks are reflected in historic
prices and it’s trends.

There are several approaches to modelling stock market return data. In the past statistical mod-
els have been used such as autoregressive integrated moving average, linear regression, multiple
linear regression, Kalman filter (linear quadratic estimation). But the problem with these models is
that they can only model linear relationship between input and output variables. So recently, more
research has been developed to predict stock market data using artificial neural networks (ANN).

ANNs gained popularity because these methods can capture nonlinear relations between fea-
tures and response variables; methods are data driven, no prior explicit assumptions about data
are needed [36]. Atsalakis and Valavanis survey shows that soft computing methods outperform
conventional methods in most cases [2]. Qiu et al. has used feed forward neural networks to predict
returns of Japanese Nikkei 255 index [40]. Bernal et al. implemented echo state network to predict
S&P 500 index and obtained better results than using Kalman Filter [5]. Guresen et al. has success-
fully used multilayer perceptron model to predict NASDAQ Stock Exchange index and compared
results with other ANN models [19]. Although many papers have shown that ANN models achieve
better performance than conventional methods, the financial time series prediction problem is still
unsolved.

Combining nonlinear analysis techniques with flexible prediction methods can provide useful
information about the problem. Using measures like correlation dimension that measures how
complex is the system, which generated the time series data, or largest Lyapunov exponent that
measures exponential divergence of close by trajectories, should help group similar complexity
or predictability signals. This grouping should help to choose, which of the time series could be
predicted or even select model’s parameters.

In this work, predictive modelling is described in 1 section with linear regression model in 1.1
subsection, artificial neural networks and multilayer perceptron model in 1.2 subsection. Modelled
financial time series and experiments on the series are described in 2, 3 sections. Experiments
show, that no single model performs best on the stock market data. Also, that different historic
price windows should be used in the input layer of multilayer perceptron model, as it turns out, that
using only one day’s before price is not enough for model to generalize well.
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Nonlinear methods are presented in 4 section and used in automatic correlation dimension
estimantion and automatic largest Lyapunov exponent estimation, which are in 5 section. These
sections and 7.1 subsection are taken from scientific research project done before [48]. Automatic
estimation systems accuracies are evaluated with known chaotic maps and equations. Additionally,
systems are tested with noisy time series data. Automatic largest Lyapunov exponent estimation
method shows quite good results even for noisy data, while presented automatic correlation di-
mension estimation method is sensitive to noise. Using these systems, classification system based
on data binning (histogram) approach is described in section 7. The classification system is then
evaluated on stock market data. The experiments in 7.2, 7.3 subsections show promising results,
when using LLE measure. Grouping provided by data binning, helps to filter out stocks that are
harder to predict.
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1 Predictive modelling

Predictive modelling assumes that there is a relationship between some observed quantitative re-
sponse y and x = (x1, x2, xn) different variables, which can be written in general form:

y = f(x) + ε, (1.1)

where f is some unknown function of x, and ε is a random error term, which is independent of
x and has a zero mean [20]. The goal of predictive modelling is to estimate function f , which
represents the systematic information that x provides about y. In this setting, we assume that input
variables x are available, but the output y cannot be easily obtained. Since the error term average
to zero, we can predict y using

ŷ = f̂(x), (1.2)

where f̂ represents our estimate for unknown function f , and ŷ is the resulting prediction values
for y.

Usually, f̂ will not be a perfect estimate for f , and this inaccuracy will result in some error. This
error can be divided into reducible error and irreducible error. Reducible error is the error that can
be improved, for example by using different machine learning models to estimate f . Meanwhile, y
is also a function of ε, which, cannot be predicted using x. Therefore, variability associated with
ε also affects the accuracy of our predictions. This is known as the irreducible error, because no
matter how well we estimate f , we cannot reduce the error introduced by ε. The ε may contain
unmeasured variables that would be useful for predicting y or the measurement errors, which
accumulate while measuring the data. Generally, given an estimated function f̂ and input variables
x, it is possible to show that the prediction error is equal to:

E(y − ŷ)2 = E(f(x) + ε− f̂(x))2 = (f(x)− f̂(x))2 + var(ε), (1.3)

where (f(x) − f̂(x))2 is the reducible error, which represents the expected value, of the squared
difference between the predicted and actual values of y and var(ε) is the irreducible error, which
represents the variance of ε. It is important to understand that the irreducible error exists and it
will always provide an upper bound on the accuracy of prediction.

Generally, predictive methods try to learn important characteristics from the data. Before using
predictive model, data of (x1, y1), (x2, y2), ..., (xn, yn) values needs to be collected and prepared.
After that dataset is divided into training and test sets. Training set is used for "training" the model,
while test set is for assessing the resulting model. Test set must only be used after model’s training
phase, so that model is assessed correctly. Usually, most of the dataset samples are in the training
set. One common way of dividing dataset is to use 80% of data points for training and 20% for
testing.

One of the big problems in predictive modelling is overfitting. This happens when model learns
to mimic behaviour of training set, which does not generalize for test set. When model is overfit,
it has a poor predictive power and it fails to capture dataset trends. Usually models, that have too
many parameters, relative to the number of observations, have this problem. Techniques such as
regularisation, cross-validation, early stopping may reduce the problem. Regularisation penalizes
over-complex models by adding a weighted term, which depends on model parameters and does
not allow model to completely fit the training data. Early stopping idea is to stop model’s training
phase before model’s loss function’s error minimum has been found. This can be done by limiting
the number of iterations model is allowed to do over the training sample.
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1.1 Linear regression

Linear regression is a simple statistical model used for regression type problems. This model can
be used not only for prediction, but also for regression analysis, which is a method to discover
the relationship between response variable y and input variables x1, x2, ..., xn. For example, it
could help to uncover causal relationship between y and x1, x2, ..., xn, or find which of the input
variables are more important to explain the response variable. Also, hypothesis testing could be
used in order to statistically prove that there is no relationship between some input variable and
resulting response.

There are many different variations of this model, but usually multiple linear regression is used.
Multiple linear regression models function f̂ as a linear combination of input variables and model’s
coefficients:

f̂(x) = β0 + β1 ∗ x1 + ...+ βn ∗ xn, (1.4)

where β0, β1, ..., βn are regression coefficients, x = (x1, ..., xn) are the input variables. In the
simplest case with n = 1, linear regression can be seen as a line with slope equal to β1 and
intercept equal to β0, as seen in figure 1.

40 20 0 20 40 60 80 100
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Figure 1. Linear regression model trained on a generated dataset. Red line shows the trained
model, which is desribed by f̂(x1) = 0.148 + 6.09x1.

In order to find corresponding parameters method of least squares is used. The method mini-
mizes overall solution based on the sum of squared errors:

Etotal =
m∑
i=1

(yi − f̂(xi))
2, (1.5)

where m is the number of elements in the training sample, yi is the actual value, f̂(xi) is the
predicted value. Squared error Etotal just accumulates models f̂ error on each data point. Finding
the correct β0, β1, ..., βn is just minimizing Etotal. It is possible to solve this problem analytically
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using normal equations method. Normal equations describe a solution if x1, x2, .., xn are linearly
independent. In that case parameters can be found using:

β = (XTX)−1XTY, (1.6)

whereX is a n bym+1 matrix with first column of all ones and then all the x values, Y is a vector
of y values. Resulting vector β contains the β0, β1, ..., βn parameter values.

One of the key drawbacks of linear regression model, that it can only model linear relationship
between input variables and y. This problem may be avoided by transforming the input variables,
for example by raising x to different degrees of polynomials: f̂ = β0 + β1x1 + β2x

2
1 + β3x

3
1 + ...,

which is also known as polynomial regression. Although it may solve this drawback, it makes the
model more complex by needing to choose degrees of a polynomials for input variables.

Another problem is modelling interactions between the input variables. Linear regression
model assumes that x1, x2, ..., xn are independent. If input variables are correlated, then model
should also add terms to account for it, e.g. f̂ = β0 + β2x1 + β2x2 + β3x1x2 + ... .

Generally, there are many more problems associated with this model and there are many vari-
ations to alleviate these problems. But the basic model defined by equation 1.4 gives a lot of
information about the dataset and it serves as a good, understandable reference model.

1.2 Artificial neural networks

1.2.1 Introduction

Artificial neural networks are flexible computing methods that have the ability to capture complex
patterns among different input variables. These methods have characteristics (mentioned in in-
troduction section) that make them useful for classification and regression problems. ANNs were
inspired by the biological understanding of the brain. Like in human brain ANNs are composed of
many neurons, which take some input signal and resolve it into output signal.

Artificial neuron is a single computational unit, which takes some input variables and outputs
a local decision based on its parameters. Artificial neuron computation can be defined as:

h(x) = g(b+ w1x1 + w2x2 + ...+ wnxn), (1.7)

where g - activation function, wi - ith connection weight, xi - ith input object’s attribute, b - bias
unit. The computation is described by its parameters - weights, bias unit values and its activation
function. If linear activation function is used such as g(x) = x, the resulting computation is a
linear regression model. Usually artificial neurons are used with nonlinear activation function such
as sigmoid function (shown in figure 2) or hyperbolic tangent, which allows multiple combined
artificial neurons to learn complex functions.

When composing networks of artificial neurons, neurons are separated into layers. First layer
is called the input layer, which does not do any computation, it just sends the input data values to
the next layer. Last layer is called output, it is the predicted value of the model. All layers between
input and output layer are hidden layers.

In order to use NNs for a particular problem, one should decide on the network topology,
number of network layers, number of artifical neurons in each layer, activation function of the
neurons and finally the learning algorithm.

Based on topology there are two types of NN methods: feed-forward, which only allows arti-
ficial neurons from one layer to be connected to the next without any loops, and recurrent, which

10
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Figure 2. Sigmoid function, S(t) =
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allows neurons to have looping connections in the network. Unlike other networks, RNN can better
learn temporal dependencies on input variables, because these methods are capable of represent-
ing and encoding hidden states, in which a network’s output depends on an arbitrary number of
previous inputs. But these types of networks are known to be difficult to train [5]. Although RNNs
have advantage in learning temporal dependencies, in financial time series forecasting, most of the
researchers have used feed-forward networks [2, 31].

The number of hidden network layers and number of neurons depends on the complexity of
problem. When predicting financial time series, most often researchers have used networks that
have one or two hidden layers [2]. This is due to that there is no theoretical proof that suggest more
hidden layer produces better forecasting [24].

Several researchers have proposed rules to choose number of hidden layers and number of
artificial neurons . Azoff [3] in his work suggests that one hidden layer and 2N + 1 hidden neurons
is sufficient for N inputs. Gatley [17] purposes setting the number of hidden neurons to be equal to
the total number of inputs and outputs. Martinez et al. [31] have set the number of neurons in the
hidden layer equal to the square root of the product between the number of neurons in the input and
output layers. Other researchers use trial and error; in their experiments they train a great number
of neural networks with different configurations, and choose the best performing model. It is worth
to note that none of these methods guarantee that the resulting model will be optimal.

Parameters such as learning algorithm and activation functions also need to be chosen for
successful neural network prediction. Sigmoid and hyperbolic tangent functions have been widely
used as activations for NNs [19]. Principe et al. [38] suggest using hyperbolic tangent over sigmoid
functions.
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1.2.2 Multilayer Perceptron

Multilayer perceptron (MLP) is a feed-forward neural network model, where artificial neurons
from one layer are fully connected to the next layer. The key principle of the model is that MLP
neurons use nonlinear activation functions. When using sigmoid activation functions and three
or more layers MLP model is capable of approximating arbitrary functions [22], [9]. Due to this
characteristic MLP are one of the most widely used artificial neural networks.

Figure 3. Multilayer Perceptron computation. xi - ith input vector’s attribute, w(h)
ij - weight value

from input i to artificial neuron j in layer h; b(h)j - bias value of artificial neuron j in layer h.

Figure 3 describes MLP computation. The model output value f̂(x) is described by input vector
x, weight values w(h)

ij and bias b(h). In order to make model have a predictive power, weights and
biases must be chosen accordingly. The task of finding correct parameters is turn into optimisation
problem.

General idea is to calculate model’s loss function, which calculates the error (or distance)
between the output f̂(x) and the desired value y. For regression problems, one of these loss
functions are used:

• sum of squared errors: Etotal =
∑n

i=1(yi − f̂(xi))
2

• mean squared error: Etotal =
1

n

∑n
i=1(yi − f̂(xi))

2

• mean absolute error: Etotal =
1

n

∑n
i=1(|yi − f̂(xi)|)

• root mean squared error: Etotal =

√
1

n

∑n
i=1(yi − f̂(xi))2

The method then modifies its internal adjustable parameters (weights and biases) to reduce this
error.

To properly adjust these parameters, the learning algorithm computes gradient vector that in-
dicates by what amount the error would increase or decrease if the weights were changed by a tiny
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amount. Weights are then adjusted in the opposite direction of the gradient. In practice, mini-
mization of loss function is usually done using the steepest descent algorithm. Steepest descent
algorithm is an iterative optimization method, which solves general optimization problem. For ar-
bitrary function f(x1, x2, ..., xn), optimization methods search for parameters x1, x2, ..., xn, which
minimizes function f . The only requirement for this type of optimization methods is that function
f must be differentiable. Although steepest descent is known to not find the global minimum,
usually it produces quite good results and practically it should not be a problem [27].

Training MLP consists of showing the input layer few examples, computing the output value
and the errors, computing the average gradient for those examples, and adjusting the weights and
biases accordingly. The process is repeated for many small sets of examples from the training set
with some number of iterations, or until the average of loss function stops decreasing.

MLP model’s gradient – partial derivatives of loss function with respect to weights and biases
are usually calculated using backpropagation rule (BP). The BP rule propagates prediction errors

from the last layer to one before. For each artificial neuron partial derivatives
∂Etotal

∂w
(h)
ij

,
∂Etotal

∂b
(h)
i

are

calculated. This is done using chain rule for derivatives.
For example, output layer’s w(2)

11 partial derivative is:

∂Etotal

∂w
(2)
11

=
∂Etotal

∂f̂(x)
∗ ∂f̂(x)

∂net(2)
∗ ∂net

(2)

∂w
(2)
11

, (1.8)

where f̂(x) - model’s output, net(2) = b
(2)
1 + w

(2)
11 h(x)1 + w

(2)
12 h(x)2 + ...+ w

(2)
1n h(x)n.

Solving this partial derivative for w(2)
11 using Etotal =

n∑
i=1

1

2

(
yi − f̂(xi)

)2
loss function, would

result in:

∂Etotal

∂f̂(x)
= 2 ∗ 1

2

(
yi − f̂(xi)

)2−1
∗ −1 = −

(
yi − f̂(xi)

)
f̂(x) =

(
1

1 + e−net(2)

)
∂f̂(x)

∂net(2)
= f̂(x) ∗ (1− f̂(x))

∂net(2)

∂w
(2)
11

= h(x)1

Overall solution for this partial derivative is:

∂Etotal

∂w
(2)
11

= −
(
yi − f̂(xi)

)
∗ f̂(x) ∗ (1− f̂(x)) ∗ h(x)1 (1.9)

Similarly, other partial derivatives can be found.
Usually loss function is modified with regularisation parameter, in order to avoid overfitting as

described in 1 section. In this work, 1
1000

(w
(h)
ij )2 regularisation is used. This does not allow MLP

to mimic training set, as it penalizes network for too small parameter values.
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2 Financial time series

2.1 Introduction

Market analysis is the study of financial market features and attributes that influence prices of finan-
cial assets. The main goal of market analysis is to understand financial stock trends in order to help
in the decision making process. Two main widely used approaches for analysing financial markets
are fundamental and technical analysis. Both approaches have the primary goal of understanding
the price movements and predict their future directions. However, the major difference between
these two strategies is the choice of market attributes, which are considered. Fundamental analysts
believe that the stock value is reflected by several political and economical factors which are both
internal and external to the company. Several quantitative tools and indicators were developed to
assist in studying the fundamentals of a company, such as marketing strategy, product innovation
and management policy [26].

Technical analysis assumes that all attributes that influence the market movements are imme-
diately reflected in the price [35]. Based on this strategy, technical analysts avoid the analysis of
subjective economic factors. Key idea is to identify patterns in price, volume and trading activity,
believing that this information is enough to determine the future value. Technical indicators, which
are mathematical formulas applied to price or volume data, are built and used in order to model
some aspect of financial market data.

2.2 Data

In this work, technical analysis variables are used with stock market data. Table 1 shows used
financial assets. Data columns are explained in table 2. Different technological and bigger compa-
nies stocks with known exchange traded funds and indexes are used due to their high volatility and
unpredictability. Financial data are gathered from finance.yahoo.com historic price section. Time
series sampled once per day, all ending at 2016-03-24.

Listing 1 shows data sample used in experiments:

Date , Open , High , Low , Close , Volume , Adj Close
2016−03−08 ,199 .320007 ,199 .919998 ,198 .210007 ,198 .399994 ,121391000 ,198 .399
2016−03−07 ,199 .339996 ,201 .070007 ,199 .25 ,200 .589996 ,95869500 ,200 .589996

Listing 1. First 3 lines of SPY time series data file.
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description abbrevation start date number of rows

Standard & Poor’s 500 index ^GSPC 1950-01-03 16664
NASDAQ Composite stocks ^IXIC 1971-02-05 11383
Russell 2000 stock market index ^RUT 1987-09-10 7194
BOE Interest Rate 10 Year T No options ^TNX 1962-01-02 13561
Volatility S&P 500 exchange traded fund ^VIX 1990-01-02 6610
Apple Inc. stocks AAPL 1980-12-12 8897
Bank of America Corporation stocks BAC 1986-05-29 7519
Direxion Daily Gold Miners Bear 3X ETF DUST 2010-12-08 1332
Freeport-McMoRan Inc. stocks FCX 1995-07-10 5215
MasterCard Inc. stocks MA 2006-05-25 2475
Microsoft Corporation stocks MSFT 1986-03-13 7572
CIGNA Corporation stocks NYSE.CI 1965-12-31 12671
Opera Software ASA stocks OPERA.OL 2004-03-11 3082
Oracle Corporation stocks ORCL 1986-03-12 7573
China Petroleum & Chemical Corp SNP 2000-10-18 3881
Standard & Poor’s 500 exchange traded fund SPY 1993-01-29 5831
SunEdison, Inc. stocks SUNE 1995-07-13 5212
Tesla Motors, Inc. stocks TSLA 2010-06-29 1445
Path S&P 500 VIX ST Futures ETN VXX 2009-01-30 1800

Table 1. Description of time series used in experiments.

column name type description

Date date Date when stock’s information was captured.
Open numeric Price, when market was opening.
High numeric Highest price of the day.
Low numeric Lowest price of the day.
Close numeric Price, when market was closing.
Volume numeric Total number of stocks available.
Adj Close numeric Price adjusted to stock’s increase in volume and dividend payment.

Table 2. Data column description.
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2.3 Data preprocessing

Data preprocessing may impact forecasting performance. In many cases input data has a large
range of values reducing effectiveness of training procedures. This may be overcome by data
normalization. In this work, z-score normalization is used. z-score normalization is described by
equation:

f(x) =
x− X̄
std(X)

, (2.1)

where each data point x ∈ X is normalized using std(X) - standard deviation of time series X , X̄
- mean of X . Mean and standard deviation is calculated only for training set. When normalizing
test set, standard deviation and mean values are used from the test set normalization.

2.4 Evaluation

In order to evaluate the performance of the developed stock market predication models classifica-
tion accuracy is used. True and predicted prices are converted into positive and negative classes:
positive if current days value is greater or equal than the previous value, negative otherwise. So
models are trained to predict stock’s direction, not its exact price.
Financial data is split into training and test datasets, with 80% of data points used for training and
20% for testing. Datasets are not shuffled when splitting the data, so that models are not allowed
to query data points that are in the future.
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3 Experiments

3.1 Single input experiment

3.1.1 Description

Multilayer perceptron and linear regression models are trained to predict next day’s adjusted closing
price direction from current day’s adjusted closing price.
MLPs are trained using following configurations:

• MLP using 3 hidden sigmoid artificial neurons,

• MLP using 3 hidden hyperbolic tangent neurons.

Number of hidden layer neurons are computed using 2N + 1 rule described in section 1.2. Each
model is trained once per each financial time series. Models are also compared with f(x) = x

model (next day’s price is equal to current price).

3.1.2 Results

Table 3 shows results of the experiment. Results indicate that all models have same classification
accuracy score. MLPs fail to extract information from single input variable. All models learn a
mapping that is close to f(x) = x, in linear regression case slope coefficient β1 is close 1.
Figures 4, 5 show the predictions and error differences for MLP with sigmoid activation function
on S&P 500 and MLP with hyperbolic tangent activation function for Direxion Daily Gold Miners
Bear 3X ETF. It can be seen that for some financial data, such as Direxion Daily Gold Miners
Bear 3X ETF, rule f(x) = x provides satisfactory results. In other cases the predicted and actual
differences are quite big and volatile, such as in figure 4.
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name
Sigm
class.

Tanh
class.

LR
class.

f(x) = x

class.

AAPL 48.85 48.85 48.85 48.85
BAC 52.96 52.96 52.96 52.96
DUST 55.26 55.26 55.26 55.26
FCX 46.35 46.35 46.35 46.35
MA 54.05 54.05 54.05 54.05
MSFT 50.86 50.86 50.86 50.86
NYSE.CI 52.33 52.33 52.33 52.33
OPERA.OL 50.16 50.16 50.16 50.16
ORCL 51.92 51.92 51.92 51.92
SNP 53.22 53.22 53.22 53.22
SPY 50.26 50.26 50.26 50.26
SUNE 48.08 48.08 48.08 48.08
TSLA 52.78 52.78 52.78 52.78
VXX 49.03 49.03 49.03 49.03
^GSPC 52.79 52.79 52.79 52.79
^IXIC 49.78 49.78 49.78 49.78
^RUT 51.74 51.74 51.74 51.74
^TNX 50.96 50.96 50.96 50.96
^VIX 51.10 51.10 51.10 51.10

Table 3. Multilayer perceptron with sigmoid activation function and 3 hidden units, multilayer
perceptron with hyperbolic tangent activation function and 3 hidden units, logistic regression and
f(x) = x are compared when trying to predict stock’s direction. t− 1 day’s price values are used
to predict future (t) price. Classification accuracy is presented for the testing dataset.
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Figure 4. Above: Multilayer perceptron with sigmoid activation function prediction values and ac-
tual values for Direxion Daily Gold Miners Bear 3X ETF on testing set; Below: Relative difference
between predicted and actual values for the figure above.

0
5

10
15
20
25
30
35
40
45

C
lo

si
ng

 p
ric

e

Direxion Daily Gold Miners Bear 3X ETF

predicted
actual

2015-03-05 2015-05-15 2015-07-28 2015-10-07 2015-12-17 2016-03-02
Date

0.5

1.0

1.5

2.0

2.5

3.0

A
ct

ua
l p

ric
e 

/ P
re

di
ct

ed
 p

ric
e

Figure 5. Above: Multilayer perceptron with hyperbolic tangent activation function prediction
values and actual values for S&P 500 on testing set; Below: Relative difference between predicted
and actual values for the figure above.
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3.2 Multiple input experiment

3.2.1 Description

Multilayer Perceptron and Linear regression models are trained to predict next day adjusted closing
price direction from t− 1, t− 2, t− 3 day’s adjusted closing prices.
MLPs are trained using following configurations:

• MLP using 7 hidden sigmoid artificial neurons,

• MLP using 7 hidden hyperbolic tangent neurons.

Number of hidden layer neurons are computed using 2N + 1 rule described in section 1.2. Each
model is trained once per each financial time series. Models are also compared with f(x) = x

model (next day’s price is equal to current price).

3.2.2 Results

Table 4 shows results of the experiment. When predicting direction MLP with sigmoid activation
results has produced better results than linear regression for FCX, AAPL, OPERA.OL, SUNE,
^VIX, ^IXIC series; model with hyperbolic tangent produced better results for FCX, SUNE, TSLA,
^IXIC, AAPL. Maximum classification accuracy difference between MLP models & linear regres-
sion is 2.88% for FCX. Figure 6 shows the stock for which maximum positive difference was
achieved. This shows how hard is to predict direction and only a little improvement over random
prediction can be made.
For other stocks linear model has performed better than used neural network models, with maxi-
mum difference being 4.88%. Figure 7 shows the stock for which maximum negative difference
was achieved.
Overall, results suggest that no single configuration can produce best results. In order to achive
better prediction results, specific to financial stock neural network configuration should be chosen.
Also, this experiment shows better results than experiment in section 3.1. This suggest using more
input variables with MLP models.
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name
Sigm
class.

Tanh
class.

LR
class.

f(x) = x

class.

AAPL 51.04 48.79 48.73 48.85
BAC 49.57 51.50 53.10 52.96
DUST 50.38 54.92 56.44 55.26
FCX 49.23 48.65 46.35 46.35
MA 53.25 52.24 53.86 54.05
MSFT 49.60 50.07 50.53 50.86
NYSE.CI 52.05 51.54 52.53 52.33
OPERA.OL 51.30 49.84 50.81 50.16
ORCL 50.07 51.72 52.45 51.92
SNP 49.22 48.97 54.13 53.22
SPY 49.23 49.57 50.17 50.26
SUNE 48.94 50.10 48.46 48.08
TSLA 51.05 53.50 52.10 52.78
VXX 46.50 45.94 48.18 49.03
^GSPC 51.80 51.89 53.06 52.79
^IXIC 50.26 49.96 49.96 49.78
^RUT 49.86 50.07 52.23 51.74
^TNX 50.55 50.96 51.11 50.96
^VIX 51.78 50.95 50.80 51.10

Table 4. Multilayer perceptron with sigmoid activation function and 7 hidden units, multilayer
perceptron with hyperbolic tangent activation function and 7 hidden units, logistic regression and
f(x) = x are compared when trying to predict stock’s direction. t−1, t−2, t−3 day’s price values
are used to predict future (t) price. Classification accuracy is presented for the testing dataset.
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Figure 6. Above: Multilayer perceptron with sigmoid activation function prediction values and ac-
tual values for Freeport-McMoRan Inc. stock on testing set; Below: Difference between predicted
and actual values for the figure above.
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Figure 7. Above: Multilayer perceptron with sigmoid activation function prediction values and
actual values for Direxion Daily Gold Miners Bear 3X ETF on testing set; Below: Difference
between predicted and actual values for the figure above.
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3.3 Number of input experiment

3.3.1 Description

This experiment, checks whether more input variables should be provided to MLP and linear re-
gression models, so that better classification accuracy is achieved. All models are trained 10 times
with inputs ranging from 1 to 10 day’s adjusted closing prices.
MLPs are trained using following configurations:

• MLP using 2N + 1 hidden sigmoid artificial neurons,

• MLP using 2N + 1 hidden hyperbolic tangent neurons,

where N is the number of inputs. Each model is trained once per each financial time series. Also,
models are compared with linear regression model.

3.3.2 Results

Table 5 shows results of the experiment. The results indicate that for each stock and model different
number of inputs should be chosen.
Predicting direction with MLP model using sigmoid activation function produced better results
than linear regression for FCX, ^VIX, AAPL, OPERA.OL, DUST, TSLA, ^TNX, SNP series;
model with hyperbolic tangent produced better results for VXX, OPERA.OL, SUNE, SPY, MSFT,
BAC, ^IXIC. Maximum classification accuracy difference between MLP models and linear regres-
sion is 6.55% for VXX stock, with classification accuracy being 55.81%. For other 3 stocks linear
model has performed better than used neural network models, with maximum difference being
0.42%.
Also, table 5 shows the difference between the worst case scenario for that model against the best.
This shows, what percentage of improvement potentially could be lost if number of input variables
are not chosen according to stock/model. Average improvement is 4.28% for MLP with sigmoid
activation function, 4.36% for MLP with hyperbolic tangent activation function and 1.08% for
linear regression.
Overall, results suggest that no single number of input variables can produce best results & that spe-
cific neural network configurations should be chosen so that good prediction results are achieved.
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name
Sigm
class.

improv-
ement %

number
of

inputs

Tanh
class.

improv-
ement

number
of

inputs

LR
class.

improv-
ement %

number
of

inputs

AAPL 51.58 3.83 10 50.73 2.59 10 49.41 0.76 5
BAC 53.57 4.27 5 53.64 4.51 5 53.10 0.33 3
DUST 57.59 10.69 10 56.06 12.00 3 56.44 2.18 3
FCX 52.37 6.13 8 49.66 4.11 4 47.16 0.81 6
MA 54.05 1.02 1 54.05 1.34 1 54.05 1.68 1
MSFT 51.49 2.19 8 52.12 3.98 7 50.86 0.56 1
NYSE 52.47 4.07 2 52.33 2.66 1 52.89 0.56 7
OPERA 52.44 4.50 3 52.44 5.79 3 50.81 2.46 3
ORCL 51.92 2.88 1 53.55 5.30 6 52.45 0.95 3
SNP 54.97 5.95 2 54.78 5.43 3 54.58 1.40 2
SPY 51.47 2.81 7 51.55 4.28 9 50.65 0.60 8
SUNE 50.29 3.57 7 51.74 4.63 9 49.18 1.24 10
TSLA 55.05 5.94 2 54.55 4.90 3 54.45 2.52 8
VXX 53.56 7.36 9 55.81 8.04 7 49.16 1.30 2
^GSPC 52.79 3.05 1 52.84 3.08 2 53.25 0.48 9
^IXIC 50.44 1.78 5 50.99 2.22 8 50.04 0.53 9
^RUT 51.95 4.12 5 51.81 2.34 5 52.23 1.04 3
^TNX 52.01 2.55 2 51.52 2.14 9 51.42 0.52 6
^VIX 53.95 4.74 4 52.92 3.57 5 51.21 0.72 2

Table 5. Multilayer perceptron with sigmoid activation function, multilayer perceptron with hy-
perbolic tangent activation function and linear regression are compared when trying to predict
stock’s direction. Best classification score is shown with it’s number of inputs. Classification score
is shown for the testing dataset. Also percentage improvement that potentially could be lost if
number of input variables are not chosen according to stock/model is shown.
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4 Nonlinear analysis

4.1 Phase space reconstruction

4.1.1 Introduction

Most nonlinear dynamics methods from chaos theory use multi-dimensional phase space, rather
than time or frequency domain [21]. Usually phase space is reconstructed using method of delays
[37]. For time series x1, x2, ..., xN , method of delays creates matrix X:

X = [X1,X2, ...XM]T , (4.1)

where Xi is a row vector which represent system’s state at time i and is defined by:

Xi = [xi, xi+L, ...xi+(m−1)L], (4.2)

where L is reconstruction delay (lag), m is embedding dimension, and M = N − (m − 1)L.
Nonlinear algorithms are then calculated on the m-dimensional state vectors from the matrix X.
For example, figure 8 shows time series generated by logistic map as a function of time and it’s
reconstructed phase space.
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Figure 8. On the left: time series generated by logistic map (N = 75, r = 4, x[0] = 0.51). On the
right: method of delays phase space reconstruction (m = 1, L = 1) on the data.

Theoretical foundation of method of delays is the Takens-Mañé embedding theorem [44, 29].
Takens-Mañé theorem assumes that time series x1, x2, ..., xN are generated by a dynamical system
with ω variables. Dynamical system is acting on the state space P ⊆ Rω and it’s behaviour is
defined by a continuous map Ψ : P → P , which for given state y finds the next state Ψ(y). The
idea of this theorem is that it is possible to infer properties of Ψ from delay vectors written in 4.2
equation. Even though dynamical system has ω variables, it is possible to reconstruct phase space
using only one quantity, as showed by Packard et al. [37].
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General difficulty in method of delays is determiningm andL. Incorrect values of these parameters
may lead to false results [8]. The choice may depend on data, e.g. choosing embedding parameters
when studying low dimensional chaotic time series would not be optimal for a highly chaotic signal.
Often it is not even possible to compute nonlinear measures from reconstructed phase space matrix
X. Delay matrix may be too small or won’t approximate Ψ correctly.
There are many methods to estimate embedding dimension m [11, 16, 6, 25]. Cellucci et al. [8]
have shown experimentally that reconstructing phase space using global false nearest neighbour
(GFNN) method gave better results than Gao-Zheng, Schuster, characteristic length embedding
methods for noisy time series.
To estimate reconstruction delay L generally only two methods are used. Most widely used method
is finding time step t when value of autocorrelation function drops below certain threshold, such as
0, 2√

N
, 1 − 1

e
[8, 42, 34]. Some authors doubt this method, because it may produce wrong results

when relationships in the data are not linear [1].
Mutual information function is a nonlinear analog to autocorrelation function. To find appropriate
delay value one has to locate first minima of average mutual information function [15]. When
estimating delay on noisy data this method needs filtering, because delay may be due to small
fluctuations in the data [30].
Celluci et al. [8] showed that estimating reconstruction lag using mutual information produced
better results. Although findings do not generally conclude that other methods are worse, but the
global false nearest neighbour method with mutual information function can be used as a guideline.

4.1.2 Global false nearest neighbour method

Global false nearest neighbour method [25] is used to find minimum embedding dimension. Algo-
rithm idea is to identify false nearest neighbours, points which are neighbours due to embedding
dimension m being too small. Starting from d dimension, square Euclidean distance between state
space point x(n) and it’s rth nearest neighbour x(r)(n) is defined by:

R2
d(n, r) =

d−1∑
k=0

(x(n+ kL)− x(r)(n+ kL))2, (4.3)

where L is reconstruction delay, n - point’s index, r - closest neighbour’s index. The distance after
increasing embedding dimension by 1 is:

R2
d+1(n, r) = R2

d(n, r) + (x(n+ dL)− x(r)(n+ dL))2. (4.4)

Simple metric to quantify how distance between the nearest neighbours increased after addition of
a dimension would be:(

R2
d+1(n, r)−R2

d(n, r)

R2
d(n, r)

)1/2

=

( |x(n+ dL)− x(r)(n+ dL)|
R2
d(n, r)

)1/2

> Rtol, (4.5)

where Rtol is a threshold. When the distance grows more than Rtol, the neighbour is marked
as false. Numerically Rtol = 15 has been found to be a good choice [1]. It is enough to look
for only one nearest neighbour point (r = 1) and go through all of the points in the state space
n = 1, 2, ...,M to find good embedding dimension [25]. When estimating embedded dimension
on noisy signals, additional criterion to quantify false neighbours is needed. Kennel et al. purposed
using:

Rd+1(n)

RA

> Atol, (4.6)
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Figure 9. Global false nearest neighbour algorithm applied on S&P 500 stock market index. d = 5

is a good approximation of embedded dimension.

where Atol is threshold, which in their work is used as a constant equal to 2, RA is defined as:

R2
A =

1

M

M∑
n=1

(x(n)− x̄), (4.7)

where x̄ = 1
M

∑M
n=1 x(n). Authors suggest to use these criteria together, if nearest neighbour sat-

isfies both 4.5 and 4.6 criteria, it is flagged as false. Finally, computing the embedding dimension
is just finding first dimension d for which number of false nearest neighbours is lowest (computing
first minima).
For example, figure 9 shows fraction of false nearest neighbours as function of embeddding di-
mension for financial data (S&P 500 stock market index). It is seen that d = 5 would be a good
approximation of embedding dimension.

4.1.3 Autocorrelation

Autocorrelation computes correlation coefficient between x(t) and x(t + d), that is correlation
between signal and signal after d time steps. This can be seen as a measure of how "present"
remembers "past" and how fast memory disappears increasing depth of memory d [34].
Autocorrelation for time series x(t) is defined as:

r(d) =

N−d∑
t=0

(x(t)− x̄)(x(d+ t)− X̄)√
N−d∑
t=0

(x(t)− x̄)2
N−d∑
t=0

(x(d+ t)− X̄)2

, d = 0, 1, ..., [N/2], (4.8)

whereN is time series length, d is the lag, x̄ =
1

N − d+ 1

N−d∑
t=0

x(t), X̄ =
1

N − d+ 1

N−d∑
t=0

x(t+d).
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4.1.4 Mutual information

Given two discrete sets of messages S = {s1, s2, ..., sn}, Q = {q1, q2, ..., qn} and their probabilities
{PS(s1), PS(s2), ..., PS(sn)}, {PQ(q1), PQ(q2), ..., PQ(qn)}mutual information of S and Q systems
is number of bits on average of information is learned about qj from si:

I(Q,S) =
∑
i

∑
j

PSQ(si, qj) log2

(
PSQ(si, qj)

PS(si)PQ(qj)

)
, (4.9)

where PSQ is joint PQ and PS probability distribution.
In order to estimate reconstruction delay for time series x(t) using mutual information S needs
to be set as a time series measurement at time t: S = x(t); Q is set as a measurement after ∆T

time Q = x(t + ∆T ). Then ∆T needs to be chosen so that the value x(t + ∆T ) is unpredictable
from x(t). Reconstruction lag is ∆T , which minimizes I(S,Q). Figure 10 shows an example of
computation of mutual information on financial market data.
Using this method with experimental data one needs to estimate PQS . This can be done with
Fraser-Swinney algorithm [15].
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Figure 10. Mutual information measure applied on S&P 500 stock market index. L = 300 is a
good approximation of reconstruction delay.
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4.2 Correlation dimension

4.2.1 Introduction

Correlation dimension is one of the generalized fractal dimensions, which shows how many active
modes there are in the deterministic dynamical system. Grassberger and Proccacia [18] proposed
an algorithm to quantify correlation dimension using correlation integral. The general idea behind
the algorithm is that if random points are put on a d-dimensional object, then number of points in
the hypersphere of radius r should behave like rd. So correlation integral C(r) counts on average
how many phase space vectors are close by (not further than distance r):

C(r) =
1

M(M + 1)

M∑
i,j=0,i 6=j

H(r − ‖Xi −Xj‖), (4.10)

where H(n) =

{
0 , n < 0

1 , n ≥ 0
is heaviside step function, Xi, Xj reconstructed phase space vectors,

||.|| - euclidean distance metric. In the limit M → ∞. On sufficiently small scales correlation
dimension D2 relates to correlation integral by:

C(r) ∝ rD2 . (4.11)

Thus correlation dimension is equal to:

D2 = lim
r→0

logC(r)

log r
. (4.12)

In order to compute D2 on finite length time series one starts by reconstructing the phase space.
Phase space is reconstructed with embedding dimension as some starting constant, e.g. 1. Re-
construction delay approximated by first minima of mutual information function or autocorrelation
drop. There is no need to use embedding dimension algorithms such as false nearest neighbours,
because this algorithm can estimate embedding dimension by itself.
Then correlation integral is computed using 4.10. From logC(r) vs log r plot one locates linearly
scaling region and estimates region’s slope with small enough r values. The slope with embedding
dimension m is denoted as D̄2

(m). An example of logC(r) vs log r plot is shown in figure 11. If
D̄2

(m) plotted as a function of m appear to reach a plateau for some large enough m values then
D2 is approximated by D̄2

(m).

4.2.2 Correlation dimension estimation on experimental data

There are problems when using this algorithm with experimental data. Experimental data is usually
noisy, has finite resolution and length. To solve these issues there are proposals of minimal length
of time series, such as Tsonis criterion, which determines minimal time series length to be N >

102+0.4D2 . Other researchers provide some rules for correct dimension estimation. For example
Martinerie et al. [30] purposed following rules:

• The plateu must be flat. The degree of varation of the derivative in the scaling region must
not exceed specified standard.

• The scaling region must meet minimum-length requirement.
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Figure 11. logC(r) vs log r plot of embedding dimensions m = 1, 2, 3 for time series generated
from Henon map (a = 1.4, b = 0.3, N = 1500). Dashed lines indicate slope of scaling region
which approximates correlation dimension.

• The estimated value of D2 must be stable as embedding dimension increases.

Theiler [46] has suggested a minor change for Grassberger-Proccacia algorithm that estimates cor-
relation dimension better for over-sampled time series or data with highly correlated noise. Au-
tocorrelated noise produces "shoulder" like structure in logC(r) vs log r plot, which leads to bad
estimation of dimension. Theiler proposed a change in correlation integral:

C(r) =
1

M(M + 1)

M∑
n=W

M−n∑
i=0

H(r − ||Xi+n −Xi||), (4.13)

where Xi,M,H(x) are same as in equation 4.10 and W is Theiler window. When W = 1 the
correlation integral 4.13 is equivalent to equation 4.10. Theiler in his work recommends minimum
W to be chosen so that W > τ(2/N)2/m, where τ is autocorrelation time of time series, m is
embedding dimension. Also W should be w � N . The change ensures that correlation integral
counts only close state space vectors by accident, so that dimension estimate is not biased by pairs
of vectors which are close in space because they are close in time.
Provenzale et al. [39] has suggested to use space-time separation plot to estimate correct Theiler
window W . Space-time separation plots lines of constant probability P (|x(t + ∆t) − x(t)| < r),
that is fraction of points closer than a distance r at a given time separation ∆t. An example of
space-time separation plot is shown in figure 12. Theiler window can be retrieved by value ∆t

corresponding to the first maximum joint of all the lines.
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Figure 12. Space-time separation plot for time series generated from Henon map (a = 1.4, b =

0.3, N = 1500). From bottom to the top probability increases by 0.1 (starting with line of proba-
bility 0.1 up to 1.0).
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4.3 Lyapunov exponent

4.3.1 Introduction

Lyapunov exponent quantifies systems exponential divergence rate of nearby trajectories in the
phase space. In other words, this measure shows how system amplifies small errors. Systems which
amplify errors exhibit property which is called sensitive dependence on initial conditions. For
example if two nearby orbits after some number of iterations diverge, then the system is sensitive
and largest Lyapunov exponent (LLE) is equal to the average exponential rate of divergence [12]:

|∆x(t)| ≈ |∆x(0)|eλt (4.14)

where ∆x(0) is the difference between initial condition x(0) and initial condition perturbed with
small error ε; ∆x(t) is the difference after t iterations; λ is largest Lyapunov exponent. If λ value
is positive then system has sensitive dependence on initial conditions, so infinitesimal errors tend
to be magnified, if it is negative, then system shows stability, therefore, it tends to reduce small
errors. When λ value is zero the system is between sensitivity and stability.
Dynamical systems can have move then one Lyapunov exponent and this concept is generalized in
Lyapunov exponent spectrum. The number of elements in spectrum equals to the size of system’s
phase space. In the spectrum largest Lyapunov exponent is used quantify system’s predictability,
since exponential divergence (4.14) means that system where initial difference was infinitesimally
small start to behave completely differently - predictability is rapidly lost [49]. The LLE magnitude
shows how system process creates or destroys information and is expressed in bits/iteration or
information/s. For example, if system has LLE value of 4.00 bit/iteration and initial conditions

were specified by 20 bits of information, after about
20

4.00
= 5 iterations systems value could not

be predicted. After this time, small initial errors will dominate the systems values.
It is possible to compute LLE for systems which have equations of motion [4], but there are prob-
lems when trying to estimate it from the time series data. Experimental data has errors, is finite
length, usually contains external noise and is bound to experimental resolution. Several methods
which estimate LLE from experimental time series have been created [49, 43, 42, 23]. Rosenstein
and Kantz method have shown promising results when estimating LLE from noisy data. Since the
creation of these algorithms, they have been widely used [50, 28, 41, 7]. Therefore, in this work
these methods are used.

4.3.2 Rosenstein et al. algorithm

Firstly Rosenstein et al. algorithm [42] uses phase space reconstruction to approximate the attractor
dynamics. In their work they use method of delays as explained in 4.1.1 section. Algorithm then
precedes searching in the state space for nearest neighbour Xĵ for particular reference point Xj:

dj(0) = min
|j−ĵ|>mean period

‖Xj −Xĵ‖, (4.15)

where ‖ · ‖ denotes the Euclidean norm, mean period is estimated as the reciprocal of the mean
frequency of the power spectrum. Given that distance between j-th pair of the nearest neighbours
diverge approximately at a rate given by the largest Lyapunov exponent:

ln dj(i) ≈ λ(i ·∆t) + lnCj, (4.16)
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where dj(i) is distance defined in 4.15 equation after i time steps, Cj is initial separation of neigh-
bours. Largest Lyapunov exponents value can be found by using the least squares fit to linear
region:

y(i) =
1

∆t

1

M

M∑
j=1

ln dj(i). (4.17)

Slope of the linearly increasing region is LLE.
For example, calculating LLE on logistic map time series produces 13 figure. Logistic map’s
Lyapunov characteristic exponent value is known to be λ = 0.693 [12].
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Figure 13. Rosenstein et al. algorithm used on logistic map time series (N = 500, r = 4,
x[0] = 0.51). Phase space is reconstructed using m = 1 and L = 1. Slope of dashed line is
λ ≈ 0.7076.

4.3.3 Kantz algorithm

The general idea behind this algorithm, is that LLE can be found using:

λ = lim
t→∞

lim
ε→∞

1

t
ln

( |x(t)− xε(t)|
ε

)
,

|x(0)− xε(0)| = ε,

(4.18)

for almost all x(0) − xε(0), where x(t) is the evolution of some initial condition x(0) in the
state space. To find LLE on experimental data, using 4.18 equation, phase space needs to be
reconstructed as explained in 4.1.1 section. Kantz uses slightly different definition of state space
vector:

Xi = [xi−(m−1), xi−(m−2), ..., xi]. (4.19)
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Algorithm searches for particular reference vector Xt all neighbourhood trajectories in Ut. Neigh-
bour vectors Ut, are all state space points that fall into ε neighbourhood. After that method calcu-
lates distance between Xj trajectory and a neighbouring Xi trajectory after relative time τ :

dist(Xj,Xi; τ) = |xj+τ − xi+τ |, (4.20)

that is the absolute difference between τ th scalar component of two trajectories.
For some intermediate range of τ , LLE can be found using:

S(τ) =
1

N

N∑
τ=1

ln

(
1

|Ut|
∑
i∈Ut

dist(Xj,Xi; τ)

)
. (4.21)

LLE is a least squares line to linearly increasing S(τ) region.
The benefit of this algorithm, that it can be used without explicit knowledge of embedded dimen-
sion m, i.e. you can start searching for neighbours in 2 dimensions, accumulate the distances
dist(Xj,Xi; τ) and repeat by adding dimension. At the beginning slope will strongly increase due
to false nearest neighbours, but at some large enough τ it will start behaving as true Lyapunov ex-
ponent. For this algorithm to work correctly, "good" range of embedding dimension values should
be chosen.
Also, there is parameter ε which denotes the size of neighbourhood. The ε parameter depends
on a noise level of the signal. For a noisy signal the typical distance between two neighbouring
trajectories is in the order of ε. If ε is smaller than the noise amplitude, it will be hard to locate
neighbours. Typically, when using this algorithm one should try different values of ε to adapt to
noise.
For example, calculating LLE with Kantz algorithm with two different values of ε produces 14
figure. r
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Figure 14. Kantz algorithm used on logistic map time series (N = 500, r = 4, x[0] = 0.51).
Phase space is reconstructed using m = 1 and L = 1. Slope of dashed lines are λ ≈ 0.6771 &
λ ≈ 0.6331.
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5 Automatic estimation

5.1 Introduction

Usually estimation of correlation dimension and LLE is done manually. Researchers examine lin-
early increasing regions in Grassber-Procaccia, Rosenstein et al. or Kantz algorithm calculations.
This is done because there may be spurious effects which would appear in the plots, for example
"shoulder" like structure in logC(r) vs log r plot.
Manually examining large amounts of time series data can take a lot of time and resources. Au-
tomating this task can help researchers to do nonlinear analysis faster. Also, automatic estimation
would allow to quickly check whether system has some nonlinear properties and then manually
inspect the plots for spurious estimation.
Systems purposed in this project, allows automatically to calculate correlation dimension and
largest Lyapunov exponent. In this work, popular TISEAN [21] project is used. This project imple-
ments many nonlinear analysis algorithms such as false nearest neighbours, mutual information,
autocorrelation, Grassberger-Procaccia.

5.2 Estimation of correlation dimension

In this work automatic estimation of correlation dimension is done in the following way:

1. Reconstruction delay L can be estimated from autocorrelation or filtered mutual information
function.

(a) When estimating using autocorrelation, first d is found which satisfies r(d) < 1− 1

e
. d

is the estimated reconstruction delay.

(b) When estimating using filtered mutual information function, before calculation of mu-
tual information x(t) is filtered using simple moving average with chosen window size
w. Then first local minima of computed filtered mutual information function is found
and resulting ∆T is used as reconstruction delay.

2. Embedding dimensionm is estimated using global false nearest neighbours method. Method
is used with estimated delay value L and some chosen value mmax, which is maximum
embedding dimension.

3. Theiler window W is found from space-time separation plot using estimated delay value
L. First local maxima is computed for every line in space-time separation plot. The most
common ∆T is used as Theiler window W .

4. (a) Correlation dimension is computed using L and W . Starting from embedding dimen-
sion m = 1 correlation integrals are computed and m is increased by 1 until D̄2

(m) no
longer increases (Stopping criteria is satisfied).

(b) The scaling region is found using Ramer–Douglas–Peucker (RDP) algorithm. Line is
chosen with biggest ∆y from the lines found using RDP. The distance dimension in
RDP is approximated by standard deviation of time series divided by some constant.
The default value for distance dimension is standard deviation devided by 2. Such value
is chosen to account for variation in time series.
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(c) Stopping criteria is computed using percentage difference between D̄2
(m−1) and D̄2

(m),
D̄2

(m+1) and D̄2
(m). If these two differences are smaller than ε, calculation is stopped

and D2 is estimated using D̄2
(m). We use ε = 0.05 as default value.

5.3 Experimental results

The system defined in 5.2 is tested using time series generated from: Ikeda map using a = 0.4, b =

6.0, c = 0.9, logistic map using r = 4, Henon map using a = 1.4, b = 0.3, Lorenz equations

using r = 28, σ = 10, b =
8

3
, taking 100 sample points per unit time, Rössler system using

a = 0.1, b = 0.2, c = 5.7, integrating with first order forward Euler method. For all generated
time series only x coordinate is used. Published estimated correlation dimension values for these
systems are presented in 6 table.

series D2

Henon 1.21± 0.01

Ikeda 1.67

logistic 0.98

Lorenz 2.05± 0.01

Rössler 1.986

Table 6. Published correlation dimension values.

Correlation dimension is calculated with two types of delay reconstruction methods: autocorrela-
tion, filtered mutual information using window size w = 10 and time series of lengths 1000, 5000,
10000, 50000. The results of this experiment are shown in 7, 8 tables.
Mostly autocorrelation and filtered mutual information delay estimation show similar results for
generated time series. The exception is for Lorenz & Rössler systems data, where filtered mutual
information function produced wrong estimates of delay value. This suggests that different type of
filters or different filter parameters should be used, when filtering mutual information function.
When choosing length of time series it is seen that best results are for time series from 5000 up
to 10000 length. Too small time series could show about 20% − 35% errors in D2 estimates, e.g.
Lorenz & Rössler systems. Too large (or oversampled) time series produce 1%− 10% errors. This
suggest that length and oversampling of experimental data should be considered before applying
this automated system.
Another important aspect is noise. Experimental data is usually noisy, so how does system estimate
correlation dimension when estimating on noisy data? To account for this effect, Gaussian noise
of 1% and 5% is added to generated time series. Resulting computations are in 9, 10, 11, 12 tables.
Results show, that presented system is sensitive to noise, even for 1% Gaussian noise errors are
from 1% up to 107%. Comparing filtered mutual information and autocorrelation reconstruction
delay methods, filtered mutual information function produces better results for Lorenz & Rössler
systems. These results are due to filtering, which removed some noise and allowed to approximate
delay time better. 5% level noise produces even worse results, the errors are up to 205%.
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series length D2 % error

Henon 1000 1.21 -0.3
Henon 5000 1.20 0.5
Henon 10000 1.21 -0.1
Henon 50000 1.22 -0.5
Ikeda 1000 1.82 -8.9
Ikeda 5000 1.78 -6.4
Ikeda 10000 1.81 -8.2
Ikeda 50000 1.80 -7.6
logistic 1000 1.03 -5.5
logistic 5000 1.09 -11.2
logistic 10000 1.10 -11.8
logistic 50000 1.09 -11.3
Lorenz 1000 2.60 -26.9
Lorenz 5000 2.20 -7.2
Lorenz 10000 2.18 -6.4
Lorenz 50000 2.02 1.3
Rössler 1000 1.55 22.1
Rössler 5000 1.96 1.5
Rössler 10000 1.96 1.4
Rössler 50000 1.76 11.2

Table 7. Results of applying system de-
fined in 5.2 using autocorrelation estimation
method on generated time series.

series length D2 % error

Henon 1000 1.21 -0.3
Henon 5000 1.20 0.5
Henon 10000 1.21 -0.1
Henon 50000 1.22 -0.5
Ikeda 1000 1.82 -8.9
Ikeda 5000 1.78 -6.4
Ikeda 10000 1.81 -8.2
Ikeda 50000 1.80 -7.6
logistic 1000 1.03 -5.5
logistic 5000 1.09 -11.2
logistic 10000 1.10 -11.8
logistic 50000 1.09 -11.3
Lorenz 1000 1.46 28.6
Lorenz 5000 1.42 30.9
Lorenz 10000 1.39 32.4
Lorenz 50000 1.37 33.0
Rössler 1000 1.52 23.7
Rössler 5000 1.02 48.4
Rössler 10000 0.87 56.2
Rössler 50000 0.88 55.6

Table 8. Results of applying system defined
in 5.2 using filtered mutual information esti-
mation method on generated time series.

series length D2 % error

Henon 5000 2.06 -70.3
Henon 10000 2.10 -73.5
Ikeda 5000 2.20 -31.5
Ikeda 10000 2.37 -42.1
logistic 5000 1.84 -88.2
logistic 10000 2.02 -106.2
Lorenz 5000 2.41 -17.3
Lorenz 10000 2.52 -23.2
Rössler 5000 2.18 -9.8
Rössler 10000 2.61 -31.5

Table 9. Experimental results with 1%

added gaussian noise of system defined
in 5.2 using autocorrelation estimation
method.

series length D2 % error

Henon 5000 2.06 -70.3
Henon 10000 2.10 -73.5
Ikeda 5000 2.20 -31.5
Ikeda 10000 2.37 -42.1
logistic 5000 1.84 -88.2
logistic 10000 2.02 -106.2
Lorenz 5000 2.18 -6.2
Lorenz 10000 2.22 -8.5
Rössler 5000 1.96 1.1
Rössler 10000 1.93 2.9

Table 10. Experimental results with 1%

added gaussian noise of system defined in
5.2 using filtered mutual information estima-
tion method.
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series length D2 % error

Henon 5000 2.72 -125.0
Henon 10000 2.81 -132.3
Ikeda 5000 3.00 -79.8
Ikeda 10000 3.36 -101.5
logistic 5000 2.81 -186.9
logistic 10000 2.98 -204.4
Lorenz 5000 2.84 -38.7
Lorenz 10000 3.18 -55.1
Rössler 5000 2.64 -32.9
Rössler 10000 2.89 -45.3

Table 11. Experimental results with 5%

added gaussian noise of system defined
in 5.2 using autocorrelation estimation
method.

series length D2 % error

Henon 5000 2.72 -125.0
Henon 10000 2.81 -132.3
Ikeda 5000 3.00 -79.8
Ikeda 10000 3.36 -101.5
logistic 5000 2.81 -186.9
logistic 10000 2.98 -204.4
Lorenz 5000 2.56 -24.9
Lorenz 10000 2.99 -45.6
Rössler 5000 2.48 -25.1
Rössler 10000 2.63 -32.7

Table 12. Experimental results with 5%

added gaussian noise of system defined in
5.2 using filtered mutual information estima-
tion method.

5.4 Estimation of largest Lyapunov exponent

Estimation of largest Lyapunov exponent is done in the following way:

1. 1, 2, 3 steps are computed from section 5.2.

2. (a) Largest Lyapunov exponent λ can be estimated using Rosenstein or Kantz method.

(b) When estimating using Rosenstein method, the LLE is found on a phase space recon-
structed using m embedding dimension and L reconstruction delay. The scaling region
is found using RDP (procedure is the same as in 5.2 section, 4B step). Slope of the
scaling region is the resulting LLE.

(c) When estimating using Kantz method, only reconstruction L is used for phase space
reconstruction. Theiler window value is used as a minimum neighbour separation in
time. From m = 2 up to some maximum constant mmax, plots are computed with

different ε sizes of neighbourhoods (from
|data interval|

1000
up to

|data interval|
100

). For
each plot, scaling regions are found using RDP (procedure is the same as in 5.2 section,
4B step). Median of the computed slope values is the resulting LLE.

5.5 Experimental results

The system defined in 5.4 is tested using time series generated from: Ikeda map using a = 0.4, b =

6.0, c = 0.9, logistic map using r = 4, Henon map using a = 1.4, b = 0.3, Lorenz equations using
r = 45.92, σ = 16, b = 4, taking 100 sample points per unit time. For all generated time series
only x coordinate is used. Published estimated LLE values for these systems are presented in 13
table.
LLE is calculated with two types of delay reconstruction methods: autocorrelation, filtered mutual
information using window size w = 10; time series of lengths 1000, 5000, 10000, 50000 and LLE
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series LLE

Henon 0.418
Ikeda 0.505
logistic 0.693
Lorenz 1.500

Table 13. Published largest Lyapunov exponent values.

approximation methods: Rosenstein et al., Kantz. The results of this experiment are shown in 14,
15, 16, 17 tables.
Both Kantz and Rosenstein et al. has failed to identify LLE for Lorenz system. Algorithms did
not found linearly increasing region in their plots, the spurious results are due to "bump" in the
corresponding plots. Figure 15 shows "bump" in the plot, when calculating LLE using Rosenstein
et al. method. Results from Lorenz system are excluded from further consideration.
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Figure 15. Rosenstein et al. algorithm used on Lorenz equation time series. Phase space is recon-
structed using m = 3, L = 12. Slope of dashed line is λ ≈ 0.05. There is no linearly increasing
region, so LLE value is not correctly identified.

Filtered mutual information delay estimation method show better results than comparing with au-
tocorrelation for both LLE estimation methods.
Autocorrelation method produce errors from 0.3% up to 25.2%, on average error is 6.28%, while
filtered mutual information method produce errors from 0.3% up to 49.7%, on average error is
6.19%.
When choosing length of time series it is seen that best results are for time series from 5000 up to
10000 length. Too small time series could show about 6%−25% errors in LLE estimates. Too large
(or oversampled) time series produce 1%− 14% errors. This suggest that length and oversampling
of experimental data should be considered before applying this automated system.
Kantz method show smaller errors from 0.3% to 7.7% for intermediate length time series, while
Rosenstein et al. method produces errors from 0.4% to 14.4%. These results are gathered using
filtered mutual information function reconstruction delay estimation method.
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series length LLE % error

Henon 1000 0.39 6.1
Henon 5000 0.40 4.3
Henon 10000 0.41 2.7
Henon 50000 0.37 10.3
Ikeda 1000 0.38 25.2
Ikeda 5000 0.43 14.3
Ikeda 10000 0.44 12.8
Ikeda 50000 0.46 8.5
logistic 1000 0.68 1.5
logistic 5000 0.69 0.7
logistic 10000 0.66 4.5
logistic 50000 0.66 5.2
lorenz 1000 0.04 97.2
lorenz 5000 0.03 97.8
lorenz 10000 0.01 99.1
lorenz 50000 0.02 98.3

Table 14. Results of applying system de-
fined in 5.4 using autocorrelation delay re-
construction method and Rosenstein et al.
LLE estimation method.

series length LLE % error

Henon 1000 0.41 2.6
Henon 5000 0.41 1.4
Henon 10000 0.41 1.3
Henon 50000 0.38 10.1
Ikeda 1000 0.44 13.5
Ikeda 5000 0.44 12.6
Ikeda 10000 0.46 9.6
Ikeda 50000 0.43 14.4
logistic 1000 0.68 1.5
logistic 5000 0.69 0.7
logistic 10000 0.66 4.5
logistic 50000 0.69 0.4
lorenz 1000 0.39 74.0
lorenz 5000 0.36 75.8
lorenz 10000 0.39 73.7
lorenz 50000 0.21 86.1

Table 15. Results of applying system defined
in 5.4 using filtered mutual information de-
lay reconstruction method and Rosenstein et
al. LLE estimation method.

series length LLE % error

Henon 1000 0.36 13.5
Henon 5000 0.39 6.7
Henon 10000 0.39 5.8
Henon 50000 0.40 3.5
Ikeda 1000 0.51 -1.2
Ikeda 5000 0.50 1.3
Ikeda 10000 0.47 7.7
Ikeda 50000 0.45 10.3
logistic 1000 0.72 -3.3
logistic 5000 0.69 -0.3
logistic 10000 0.70 -0.9
logistic 50000 0.70 -0.3
lorenz 1000 0.09 93.9
lorenz 5000 0.03 98.1
lorenz 10000 0.03 97.9
lorenz 50000 0.01 99.0

Table 16. Results of applying system de-
fined in 5.4 using autocorrelation delay re-
construction method and Kantz LLE estima-
tion method.

series length LLE % error

Henon 1000 0.43 -2.9
Henon 5000 0.41 1.0
Henon 10000 0.40 3.6
Henon 50000 - -
Ikeda 1000 0.76 -49.7
Ikeda 5000 0.49 2.0
Ikeda 10000 0.48 4.7
Ikeda 50000 0.47 7.7
logistic 1000 0.72 -3.3
logistic 5000 0.69 -0.3
logistic 10000 0.70 -0.5
logistic 50000 0.70 -0.3
lorenz 1000 0.08 94.6
lorenz 5000 0.05 96.4
lorenz 10000 0.07 95.3
lorenz 50000 0.70 53.2

Table 17. Results of applying system defined
in 5.4 using filtered mutual information de-
lay reconstruction method and Kantz LLE
estimation method.
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Figure 16. Kantz algorithm used on Lorenz equation time series. Phase space is reconstructed
using m = 6, L = 6. Slope of dashed lines are λ ≈ 2.84. Linearly increasing region has many
fluctuations (region between 1 and 12 timesteps).

To model noisy experimental data, Gaussian noise of 1% and 5% is added to generated time series.
Resulting computations are in 18, 19, 20, 21 tables.
For small data perturbation Kantz method produces smaller errors, which ranges from 0.8% to
14.5%, while Rosenstein et al. method produces errors from 15.9% to 19.6%. These results are
gathered using filtered mutual information function reconstruction delay estimation method. Sys-
tems behave totally differently, than used with 5% Gaussian noise. Rosenstein et al. method pro-
duced errors between 18.4% to 36.6%, while Kantz methods results there from 68.5% to 369.1%.
Spurious results produced using Kantz method are due to wrong linearly increasing region detec-
tion. When time series are noisy, there are many flucations in the scaling region as shown in figure
16.
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series lle method length LLE % error

Henon Kantz 5000 0.37 12.2
Henon Kantz 10000 0.37 12.4
Ikeda Kantz 5000 0.47 7.8
Ikeda Kantz 10000 0.41 19.6
logistic Kantz 5000 0.62 9.9
logistic Kantz 10000 0.66 4.3
Henon Rosenstein 5000 0.35 15.3
Henon Rosenstein 10000 0.34 17.9
Ikeda Rosenstein 5000 0.39 22.3
Ikeda Rosenstein 10000 0.40 20.2
logistic Rosenstein 5000 0.56 19.6
logistic Rosenstein 10000 0.56 19.3

Table 18. Experimental results with 1%

added Gaussian noise of system defined
in 5.4 using autocorrelation estimation
method.

series lle method length LLE % error

Henon Kantz 5000 0.36 14.5
Henon Kantz 10000 0.37 10.3
Ikeda Kantz 5000 0.50 0.8
Ikeda Kantz 10000 0.49 3.7
logistic Kantz 5000 0.62 9.9
logistic Kantz 10000 0.66 4.3
Henon Rosenstein 5000 0.35 15.9
Henon Rosenstein 10000 0.35 17.3
Ikeda Rosenstein 5000 0.41 18.2
Ikeda Rosenstein 10000 0.41 19.1
logistic Rosenstein 5000 0.56 19.6
logistic Rosenstein 10000 0.56 19.3

Table 19. Experimental results with 1%

added Gaussian noise of system defined in
5.4 using filtered mutual information estima-
tion method.

series lle method length LLE % error

Henon Kantz 5000 1.09 -160.0
Henon Kantz 10000 0.70 -68.5
Ikeda Kantz 5000 2.18 -331.9
Ikeda Kantz 10000 2.37 -369.1
logistic Kantz 5000 1.79 -158.2
logistic Kantz 10000 2.12 -206.4
Henon Rosenstein 5000 0.34 18.4
Henon Rosenstein 10000 0.32 24.5
Ikeda Rosenstein 5000 0.32 36.6
Ikeda Rosenstein 10000 0.33 35.2
logistic Rosenstein 5000 0.50 28.3
logistic Rosenstein 10000 0.48 31.0

Table 20. Experimental results with
5% added Gaussian noise of system de-
fined in 5.4 using autocorrelation estimation
method.

series lle method length LLE % error

Henon Kantz 5000 1.51 -260.7
Henon Kantz 10000 1.49 -256.3
Ikeda Kantz 5000 2.31 -357.9
Ikeda Kantz 10000 1.32 -161.5
logistic Kantz 5000 1.79 -158.2
logistic Kantz 10000 - -
Henon Rosenstein 5000 0.34 19.4
Henon Rosenstein 10000 0.33 21.9
Ikeda Rosenstein 5000 0.32 36.6
Ikeda Rosenstein 10000 0.33 34.0
logistic Rosenstein 5000 0.50 28.3
logistic Rosenstein 10000 0.48 31.0

Table 21. Experimental results with 5%

added Gaussian noise of system defined in
5.4 using filtered mutual information estima-
tion method.
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6 Implementation details

Linear regression (sec. 1.1), multilayer perceptron (sec. 1.2), automatic estimation systems (sec.
5.2, 5.4) were implemented in Python programming language. Project relies on scientific comput-
ing package NumPy (http://www.numpy.org) & SciPy (https://www.scipy.org) for linear algebra
support (vectors, matrices, matrix manipulations), matplotlib (http://matplotlib.org) and seaborn
(http://seaborn.pydata.org) for plotting support, pandas (http://pandas.pydata.org) for financial data
loading into data frames.
Multilayer perceptron with sigmoid and hyperbolic tangent activation functions were implemented.
The correctness of backpropagation rule (partial derivative computation) was validated with
derivatives computed numerically. Small errors from 10−10 to 10−12 where achieved comparing
with leap frog gradient.
Automatic estimation systems are built into seperate python package. This package builds on top
of TISEAN package [21]. The code is written to be reusable, some TISEAN low level details are
abstracted away. Moreover, more chaotic time series such as henon map or ikeda map and methods
such as Ramer–Douglas–Peucker algorithm is added. In the future, this python package is going
to be open sourced.
Around 2100 lines of code are written for prediction methods and experiments with financial data
and 2300 lines of code for automatic estimation system package.
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7 Classification

7.1 Introduction

Unsupervised classification based on LLE and correlation dimension is presented here. Automatic
calculation of LLE or correlation dimension measures are done according to 5.2, 5.4 sections.
Reconstruction delay is computed using filtered mutual information. Automatic LLE estimation is
done using Rosenstein method.
Classification is done using data binning (histogram) approach. When computed measure value
falls into given interval it is considered to be a part of that group. All values for which measure
could not be computed are grouped into a single group.
The number of groups (bins) is a parameter of this method, which may be different for particu-
lar problem. For example, if using this system with data intensive prediction methods one could
use equal density binning, so that training data would be split equally; or when trying to evaluate
difference of signals visually one could try choosing values manually. The benefit of this classi-
fication method is that groups have labels (intervals of LLE values or D2 values). LLE groups
suggest how far signals may be predicted and correlation dimension groups by the complexity of
the signals.

7.2 Experiment on 2 section data

The classification system is applied on financial data described in 2.2 section. Computed correla-
tion dimension and LLE values are in tables 23, 24. The approximation of correlation dimension is
incorrect, this is due to high noise or volatility of the data. This problem was described in section
5.2.
Different results are seen for classification using LLE values. Table 22 shows how sigmoid MLP,
hyperbolic tangent MLP, linear regression classification accuracy and improvement relates to LLE
values. This relationship is quantified using Pearson correlation coefficient, which shows the linear
dependence between two variables. For a sample, correlation coefficient is computed using:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
. (7.1)

The computed absolute values of Pearson correlation coefficient are expressed in percentage. Re-
sults show that LLE values correlate with classification accuracy and improvement of analysed
models.

LLE

Sigm class. 64.42
Sigm improvement % 45.18
Tanh class. 33.32
Tanh improvement % 45.67
LR class. 33.66
Linear improvement % 64.72

Table 22. Absolute values of Pearson correlation coefficient for time series. Coefficient values are
expressed in percentage
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Manually choosing to classify time series into 4 groups, produces one group with empty values
(^IXIC,SUNE stocks) and others with LLE:

• 0.02 to 0.18 - ^TNX, ORCL, AAPL, NYSE.CI, VXX, ^GSPC, MSFT;

• 0.38 to 0.82 - TSLA, FCX, SNP, SPY, BAC, ^RUT;

• 1.24 to 2.17 - DUST, ^VIX, OPERA.OL, MA.

This grouping could provide useful information, when trying to predict the time series.
Using these classes with prediction results from 3.3 section shows that first group on average has
an increase of 2.7% classification rate for MLP with sigmoid and 3.4% with hyperbolic tangent
activation function. 0.02 to 0.18 LLE group on average has an increase of 3.7% for MLP with
sigmoid and 3.97% with hyperbolic tangent activation function. 0.38 to 0.82 LLE group on average
has an increase of 4.87% for MLP with sigmoid and 4.26% with hyperbolic tangent activation
function. Last group’s increase varied from 1.02% to 10.69% for sigmoid MLP and 1.64% to 12%

for hyperbolic tangent MLP.
These results suggest that 0.02 to 0.18 LLE group could be classified using MLP with hyperbolic
tangent activation function and 0.38 to 0.82 group with sigmoid activation function. First group
has a low improvement rate so these time series should be discarded, while last group has a big
improvement variability, this making them hard to predict.

name D2

DUST 0.99
^VIX 0.98
SUNE 0.98
TSLA 0.92
^GSPC 0.91
MA 0.87
^RUT 0.86
^TNX 0.86
SPY 0.85
FCX 0.84
SNP 0.84
OPERA.OL 0.81
^IXIC 0.68
AAPL 0.67
MSFT 0.67
ORCL 0.57
VXX 0.55
NYSE.CI 0.53
BAC -

Table 23. Automatic correlation dimension
estimation system applied to financial time
series.

name LLE

DUST 2.17
^VIX 1.75
OPERA.OL 1.74
MA 1.24
TSLA 0.82
FCX 0.61
SNP 0.57
SPY 0.56
BAC 0.39
^RUT 0.38
^TNX 0.18
ORCL 0.15
AAPL 0.14
NYSE.CI 0.14
VXX 0.13
^GSPC 0.06
MSFT 0.02
^IXIC -
SUNE -

Table 24. Automatic largest Lyapunov expo-
nent estimation system applied to financial
time series.
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7.3 Experiment on 4026 stocks

The classification system using LLE value is applied on 4026 stocks from finance.yahoo.com. The
results are shown in figure 17 . It can be seen that LLE values are largely distributed with values
ranging from 0.004 to 13.759. Only 1669 out of 4026 stocks are shown, because for all the other
stocks LLE could not be computed.
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Figure 17. Classification of financial time series based on LLE(λ) value. LLE values are from
0.004 to 13.759.

Same experiment as in 3.3 section is applied on the 4026 stocks. MLP and linear regression
models are trained 10 times with inputs ranging from 1 to 10 day’s adjusted closing prices. MLPs
are trained using following configurations:

• MLP using 2N + 1 hidden sigmoid artificial neurons,

• MLP using 2N + 1 hidden hyperbolic tangent neurons,

where N is the number of inputs.
Pearson correlation was computed using equation 7.1 on results from models classification accu-
racy, improvement and computed LLE values. Table 25 shows the absolute values of Pearson
correlation coefficient, which are expressed in percentage. It can be seen that LLE values weakly
correlate with classification accuracy and improvement of analysed models. This result is expected
as Pearson correlation quantifies only linear dependence of two variables, so LLE with model’s
prediction accuracy and improvement could relate in nonlinear way.
Manually time series are grouped into 4 groups with LLE:

• non computed - 2357 stocks;

• 0 to 0.5 - 350 stocks;

• 0.5 to 1 - 238 stocks;

• more than 1 - 1081 stocks.

46



LLE

Sigm class 24.16
Sigm improvement % 20.25
Tanh class 25.67
Tanh improvement % 17.14
LR class 20.18
LR improvement % 29.05

Table 25. Absolute values of Pearson correlation coefficient for time series. Coefficient values are
expressed in percentage.

Suggested classes are relatively close to grouping described in 7.2 section.
Most of the stocks fall into non computed category. This happens when automatic LLE system
fails to compute LLE value due to embedding dimension or reconstruction delay being too large,
so that not enough points are available in the phase space to correctly compute nonlinear measure.
Interestingly stocks which could not be computed also have very low mean classification accuracy
of 36.36% − 37.21% as seen in 29 table. This grouping, allows discarding stocks for which LLE
could not be computed, because these stocks are too complex to predict.
Tables 26, 27, 28 show prediction performance of stocks for which LLE was computed success-
fully. Stocks that are in LLE range 0 to 0.5 have low classification accuracy of 45.25% − 46.05%

and quite large standard deviation of 14.30− 14.36. Also, the improvement, when choosing num-
ber of input variables for stocks is quite big (11.26%−13.60%), statistics suggest that maybe some
other model or different parameters could be used with these stocks to get better prediction results.
MLP model seem to excel when trying to predict stocks for which LLE values are in 0.5 to 1

range. Mean classification accuracy is 53.77% to 53.84% for MLP models with quite low standard
deviation (5.35).
Stocks, which fall into last category, MLP models can produce predictions slightly better than
random guess (50.71% − 50.81%). For these stocks Lyapunov exponent is larger than one and
small changes in the surrounding environment can hugely affect the price direction. So, trying to
predict these stocks should be done with caution.
Generally, from 4026 only 588 stocks could be potentially predicted (2nd and 3rd groups), with
MLP models predicting stocks from 3rd group. Classification based on nonlinear methods in
financial time series prediction seem to provide useful information. Groupings provided by classi-
fication system described in section 7 are very useful when trying to filter out unpredictable time
series.

Sigm class. Sigm increase % Tanh class. Tanh increase % LR class. LR increase % LLE

mean 46.05 13.60 46.05 13.59 45.25 11.26 0.18
std 14.30 6.78 14.29 6.91 14.46 8.07 0.14
min 0.00 0.00 0.00 0.00 0.00 0.00 0.01
max 62.87 33.87 67.37 30.99 63.27 28.51 0.50

Table 26. Prediction statistics for stocks, which LLE lies between 0 and 0.5. Totally 350 stocks fall
into this category.
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Sigm class. Sigm increase % Tanh class. Tanh increase % LR class. LR increase % LLE

mean 53.77 9.41 53.84 9.61 51.94 4.33 0.78
std 5.35 4.37 5.35 4.56 6.15 5.25 0.15
min 0.00 0.00 0.00 0.00 0.00 0.00 0.50
max 68.00 35.24 69.79 36.76 100.00 100.00 1.00

Table 27. Prediction statistics for stocks, which LLE lies between 0.5 and 1. Totally 238 stocks fall
into this category.

Sigm class. Sigm increase % Tanh class. Tanh increase % LR class. LR increase % LLE

mean 50.81 11.48 50.71 11.41 49.22 8.04 2.00
std 10.13 5.86 10.00 5.91 10.14 6.86 0.66
min 0.00 0.00 0.00 0.00 0.00 0.00 1.00
max 61.86 27.58 59.55 29.70 62.04 28.24 13.76

Table 28. Prediction statistics for stocks, which LLE measure is bigger than 1. Totally 1081 stocks
fall into this category.

Sigm class. Sigm increase % Tanh class. Tanh increase % LR class. LR increase %

mean 37.21 15.62 37.16 15.73 36.36 13.85
std 19.22 9.35 19.12 9.56 19.03 9.26
min 0.00 0.00 0.00 0.00 0.00 0.00
max 80.00 71.43 90.00 90.00 81.82 66.67

Table 29. Prediction statistics for stocks, which LLE was not calculated. Totally 2357 stocks fall
into this category.
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Conclusions and Recommendations

Multilayer perceptron and linear regression models are presented in 1 section. MLP models show
promising results when trying to predict stock market data, although these models do not perform
better for all of the stocks. Also experiments show that different historic price windows should be
used in the input layer of multilayer perceptron model, as it turns out, that using only one day’s
before price is not enough for model to generalize well.
Automatic correlation dimension estimation system presented in 5.2 section is suitable for non-
noisy and non-oversampled time series data. When using this estimation method with experimental
time series data one should be aware of possibility of spurious results.
Automatic Largest Lyapunov exponent estimation method presented in 5.4 section is suitable for
experimental time series data with some level of noise. When testing with time series with Gaus-
sian noise from 1% to 5%, system showed relatively small errors.
Altough, automatic estimation systems presented here show quite good results, resulting measures
should not be used as accurate estimations. The purpose of these methods are for applying on large
datasets, where manual work would take a lot of time and for use cases where errors are acceptable.
Classification based on nonlinear measures is presented in 7 section. Applying this system using
largest Lyapunov exponent on financial data results in interesting observations about the data. This
grouping allows to filter out time series that are too complex to be predicted. Also, experimental
results show that MLP models perform well predicting financial time series for which Lyapunov
exponent lies between 0.5 and 1.
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Future work guidelines

Forecasting stock market prices is going to continue be actively researched by many scientists
and investors that try to outperform the market. Models such as neural networks will continue to
improve as machine learning and artificial intelligence are getting more popular every day. Using
different neural networks to forecast stock market prices, such as recurrent neural networks could
give better performance than multilayer perceptron model used in this work.
Also, improving nonlinear measures automatic estimation is very important. Nonlinear measures
are used in many domains such as medicine, meteorology, physics and are still computed manually.
Improving automatic estimation described in this work could be done in many ways. One of the
ways is improving phase space reconstruction methods which could improve nonlinear measures
accuracy. Recently, false strands method was introduced, which improves global false nearest
neighbour method and approximates embedding dimension better for noisy and autocorrelated
data.
Automatic correlation dimension system could be estimated with Gausian kernel estimator or
Takens-Theiler estimator, which should produce more accurate results for noisy time series. Auto-
matic correlation dimension estimation could be compared with recently published systems, such
as [33]. Also, estimation methods reliability could be improved by using surrogate data methods,
which should help distinguish low dimensional chaos from stochastic processes.
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