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ABSTRACT
This paper addresses the use of nonparametric kernel density estimation (KDE) to estimate point-based data density in spatial 
modeling using Geographic Information Systems (GIS). The paper highlights challenges in selecting the appropriate settings 
for generating the best fitting KDE surfaces and validating their accuracy, as many GIS packages lack sufficient tools for this 
purpose. The paper focuses on providing guidelines for choosing the best bivariate KDE surface to approximate point patterns, 
using principles of machine learning for evaluation of the accuracy of KDE using internal and external metrics. Performance 
evaluation is based on the mass-preservation property of spatial point processes with the introduction of metrics such as residu-
als, cross-validation errors, and out-of-sample errors. These approaches are demonstrated on statistical data for violent crime in 
Lithuania but can be applied to other datasets with spatial point patterns.

1   |   Introduction

Kernel density estimation (KDE) is a multipurpose nonpara-
metric technique. It is used to estimate the probability den-
sity function (PDF) and probability mass function (PMF) of a 
random variable, intensity function of a point process, relative 
risk function, spatial regression function, and other quantita-
tive measures. It can be used for exploratory and confirmatory 
analysis of spatial and temporal data, as well as cartographic 
visualization.

While the statistical distribution of a dataset can be assumed, 
in most cases, there is no parametric estimation of dataset pa-
rameters, so the KDE employs different nonparametric func-
tions (estimators) to estimate the PDF/PMF directly from the 
source data. Kernel smoothing with continuous PDF is a well-
known approach for estimation of surface density and intensity 
for spatially distributed point-like sampled datasets (Davies 
et al. 2018). The work of Davies et al. (2018) offers a comprehen-
sive and practical guide to using kernel estimation techniques 

for analyzing spatial point patterns, with a case study in the field 
of epidemiology. In the context of KDE, density (the number of 
registered events per area) and intensity are closely related con-
cepts and are discussed in detail in Section 3.2.2. Discrete kernel 
estimations of PMF have been far less investigated, especially 
for bivariate spatial surfaces (Kiessé  2017). Kiessé  (2017) pro-
vides a thorough examination of the finite sample properties of 
nonparametric discrete asymmetric kernel estimators.

While there is no universal classification of KD estimators, they 
can be grouped by the type of the kernel function (Gaussian, 
Uniform, Epanechnikov, etc.), the function used to generate the 
multidimensional KDE (spherical multivariate kernel or product 
kernel), the type of a vector norm used in the spherical kernel, 
the size of the KDE bandwidth, which is its free tunable parame-
ter that controls the degree to which density/intensity variations 
are smoothed out, bandwidth variability (fixed or adaptive/vari-
able), the parameterization class of the multivariate bandwidth 
matrix (constrained (fixed or diagonal) or unconstrained (full)), 
and the edge correction factor.
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Due to the large number of proposed KD estimators, choosing one 
KD estimator over another is far from a trivial task, and it is almost 
impossible to design a universal estimator that generates the best 
kernel density estimation (Gramacki 2017). There is no single best 
rule of thumb for choosing the optimal bandwidth, which is a pri-
mary driver in the accuracy of KDE. At first, this task may seem 
trivial, but it turns out to be extremely challenging. As illustrated 
below, it is not uncommon that different variants, extensions, and 
modifications of bandwidth selectors produce different sizes of 
bandwidth, and they can all be considered “optimal” according to 
the data-driven criteria defined for each selector.

The primary objective of this study is the testing of kernel es-
timates, including comparison, checking, and selection of the 
optimal estimator. The selection of the appropriate kernel den-
sity estimator is a critical issue in spatial analysis, as it directly 
affects the accuracy and effectiveness of spatial analyses in 
various real-world applications, including crime analysis, as 
demonstrated in this paper. The main aspects and innovations 
of the study are:

•	 A machine learning framework is applied to test and com-
pare KD estimators for a set of points using two method-
ologies: the mass preservation property of spatial point 
processes governed by intensity, and a cross-validation (CV) 
approach, which is part of empirical risk minimization 
and model selection techniques within statistical learning 
theory.

•	 Spatial point process residuals are proposed as internal met-
rics for comparing bivariate KDE surfaces. These residuals 
have previously been used primarily to validate parametric 
models of point processes (Baddeley et al. 2016).

•	 Cross-validation errors, along with several modification 
techniques, are proposed as internal metrics for estimating 
and selecting bivariate KDE surfaces. Modifications in-
clude spatial cross-validation using space-filling curves and 
Delaunay triangulation, which group observation points 
into local neighborhoods forming contiguous blocks for 
cross-validation folds.

•	 A point-based deviance residual using cross-validation 
is proposed as an internal metric for testing and selecting 
KDE surfaces.

•	 Inverse lambda point-based residuals are proposed as ex-
ternal extra-sample errors for testing and selecting KDE 
surfaces.

•	 Several different KD estimators were tested on a large 
real-world dataset. The results show that the proposed 
non-model-based approaches, which use both internal and 
external error measures of a point process, provide a legiti-
mate way to select the most accurate KDE surface.

The rest of the paper is organized as follows. Section 2 briefly 
discusses various KD estimators, including the categoriza-
tion by kernel functions, parameterizations, and variability of 
bandwidths. The main purpose of the review is to show the 
diversity of KD estimators and the difficulties associated with 
the selection of the most suitable one for a particular applica-
tion. Discussions on the edge correction techniques and joint 

bandwidth estimation for relative risk functions are limited. 
Section 3 elaborates on validation measures in the context of sta-
tistical learning, and approaches to using internal and external 
measures to evaluate KDE surfaces. In a case study in Section 4, 
the most common kernel density estimators and bandwidth 
selectors were tested on violent crime data for Lithuania. The 
training dataset, structured as spatial point data, is very large, 
which introduces computational challenges but also provides 
a better statistical representation of the studied phenomena. A 
final discussion and conclusions are presented in Section 5.

2   |   Brief Review of Kernel Density Estimators

While the literature about KDE is extensive and a complete list 
of past and recent developments on the subject cannot be listed 
even roughly, below is an attempt to give a brief overview of the 
subject. The most significant foundational principles for band-
width selection and various kernel functions are derived from 
Silverman  (1986). Multivariate KDE and adaptive KDE tech-
niques are covered in Scott (1992, 2015). Wand and Jones (1995) 
discuss various KDE methods, including boundary corrections 
and adaptive bandwidth selection. Chacón and Duong  (2018) 
provide a detailed examination of multivariate and directional 
KDE techniques.

Univariate KDE, known as the Rosenblatt-Parzen window 
method, estimates the underlying PDF of a sample dataset 
with no assumptions on the underlying parametric distribu-
tion of the dataset (Silverman  1986; Wand and Jones  1995). 
KDE considers the contribution of each data point to the den-
sity function and can be applied to data drawn from a com-
plex distribution. It has been demonstrated that univariate 
KDE works well for observation data with inhomogeneous 
dispersion and can be applied to spatial and spatiotemporal 
point pattern datasets with high heterogeneity and anisotropy 
(Davies et  al.  2018). Univariate KDE has been extended to 
estimate multivariate densities based on the same principle: 
compute an average of densities centered at the events or grid 
points.

There are several characteristics, or features, of kernel density esti-
mators. The first feature is what type of function is used as a kernel. 
A multivariate kernel can be obtained by two common techniques: 
by a derivation of univariate kernels or by using spherical or 
radially-symmetric kernels with l2 Euclidean vector norm (length 
of the vector) (Wand and Jones  1995; Härdle and Müller  2000; 
Scott 2015). In the first case, kernels over multi-dimensional in-
puts can be constructed by multiplying or averaging different uni-
variate kernels (Li and Racine 2007; Gramacki 2017). For bounded 
or partially bounded distributions without correlation between 
the components, a more suitable approach is to use the product 
of kernels (Kokonendji and Somé 2015). In the second case, radi-
ally symmetric kernels are constructed from data within a sphere 
around an event or a grid point (Silverman 1986). In the general 
case, a multivariate kernel of the second type can be constructed 
with other types of vector norms (l1, l2, l3, … , l∞), and not only 
with the sphere Euclidean l2 norm.

The source data used to construct KDE can be partially bounded 
(e.g., all data are positive), completely bounded (e.g., data in the 
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unit interval), or discrete (e.g., counts). Count data can be or-
dered or unordered. The classical symmetric PDF estimators 
(such as Epanechnikov or Gaussian kernel functions) presume 
that the underlying data is naturally continuous, which is often 
not the case. Thus, symmetric kernels may not be suitable for 
discrete bounded datasets; instead, other types of kernel func-
tions should be used (Li and Racine  2007; Shimazaki and 
Shinomoto 2010; Kiessé 2017).

The Aitchison and Aitken's (1976) kernel can be used for unor-
dered discrete or categorical variables, while the kernel proposed 
by Wang and van Ryzin (1981) can be used for ordered discrete 
variables (Li and Racine 2007). Several studies (Kokonendji and 
Kiessé 2011; Kiessé 2017) explore the use of asymmetric kernel 
functions where discrete kernels have been constructed from 
known discrete PMFs such as Poisson, binomial, and negative 
binomial.

In a multivariate setting, the joint density function can be de-
fined as a combination of discrete (unordered and ordered) and 
continuous variables for both quantitative and qualitative data. 
The joint PDF/PMF estimation method has been extended using 
generalized product kernels (Li and Racine 2007), assuming no 
correlation in its multivariate components. Spherical joint ker-
nel estimators are proposed by Kokonendji and Somé (2015) to 
estimate PDF/PMF on partially or fully bounded data with a 
correlation structure.

The second feature of KD estimators is the bandwidth. Most 
researchers agree that the most important component of ker-
nel density estimation is the size of bandwidth h, and not the 
type of the kernel function itself (Silverman  1986; Wand and 
Jones 1995). There is a considerable amount of literature on se-
lecting the optimal bandwidth, with many proposed selection 
rules; however, no single rule consistently outperforms the oth-
ers. The choice of the optimal bandwidth largely depends on the 
true shape of the density being estimated and the criteria used to 
evaluate estimation quality.

In the case of spatial kernel, the third feature of KD estimators 
is the parametrization class of bivariate bandwidth matrix H, 
which controls the extent, shape, and orientation of smoothing. 

A constrained fixed matrix H is a diagonal or identity matrix 
scaled by a fixed scalar h, resulting in circular, isotropic kernel 
shapes. A constrained diagonal matrix allows for arbitrary ellip-
soidal shapes but without rotation. An unconstrained full ma-
trix H permits kernel functions with arbitrary orientation and 
ellipsoidal shapes, providing greater flexibility in smoothing 
anisotropic patterns.

The fourth feature of KD estimators is the method of edge 
correction, which minimizes the boundary bias due to the 
asymmetry of the weights. Compared to univariate KDE, the 
boundary problem in multivariate KDE can be much more prob-
lematic because the dimensionality increases the boundary re-
gion (Bouezmarni and Rombouts 2010). For more information 
on this aspect of KDE, refer to Section 4 of this paper (and also 
see Jones 1993; Diggle 1985; Davies et al. 2018).

Another useful approach to designing KD estimators is the use of 
an adaptive or variable bandwidth determined by the local den-
sity. There are two categories of adaptive KD estimators: balloon 
estimators (Breiman et al. 1977; Scott 2015), where bandwidths 
are determined at each evaluation location, and sample-point 
estimators (Abramson 1982; Davies and Baddeley 2018), where 
bandwidths are determined at each observation. Sample-point 
adaptive estimators result in densities that conserve mass and 
integrate to 1 over the study domain.

Figure 1 illustrates the variety of KD estimator forms, empha-
sizing the challenges in selecting the most suitable estimator for 
a specific application.

2.1   |   Choosing the Kernel Function

For a two-dimensional homogeneous spatial point process, 
bivariate kernels are defined as the product of two univari-
ate kernels. It is assumed here that the observed event points 
in the x and y coordinates do not exhibit autocorrelation. In 
the case where a radially symmetric kernel with the same 
bandwidth in the x and y directions is used, the amount of 
smoothing is the same in each coordinate direction. The 
underlying bivariate PDF is then estimated using the most 

FIGURE 1    |    Classification of KD estimators.
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common kernel estimator f̂h(s) without edge correction at a 
location s(x, y) (Silverman 1986):

where s is the target (or test point) with 2-dimensional (2D) spa-
tial coordinates within а bounded region; Si are bivariate ran-
dom independent identically distributed (i.i.d.) point samples 
taken from a common and usually unknown kernel function 
f̂  ; K() is a 2-dimensional, second-order, zero-centered, radially 
symmetric continuous bimodal fixed kernel function; n is the 
number of point samples; and h is the kernel bandwidth, scaled 
equally in all directions (or radius of the circle for a circular 
kernel). Outside the bounded region, the estimated probability 
density is zero.

Several studies examine kernel functions for bivariate discrete 
PMF kernels (Li and Racine 2007; Chu et al. 2017; Kiessé 2017; 
Belaid et  al.  2018). The first class of two-dimensional dis-
crete PMF kernels includes Dirac-type symmetric kernels 
such as discrete triangular (Belaid et  al.  2018; Aitchison 
and Aitken  1976; Wang and van Ryzin  1981) and discrete 
Epanechnikov kernel functions (Chu et  al.  2017). Another 
class of kernels built from Poisson, binomial, and negative bi-
nomial PMFs is based on non-Dirac-type discrete asymmetric 
kernels (Kiessé 2017).

In the general form, the kernel estimator for count data is ex-
pressed as.

where L( ⋅ ) is a discrete symmetric or asymmetric Dirac or non-
Dirac-type kernel function suitable for smoothing discrete data; 
Si is the location of the univariate event, s is the location of the 
estimate, and h is the kernel bandwidth. For example, a univari-
ate discrete kernel function of ordered variable s (Wang and van 
Ryzin 1981) can be defined as.

For discrete ordered data, the Mean Integrated Squared Error 
(MISE) optimization method of univariate bandwidth selection 
was proposed by Shimazaki and Shinomoto (2010). It is assumed 
that the pattern of events is described by an inhomogeneous 
Poisson point process. This optimization technique can be ap-
plied to any Dirac-type kernel function.

The choice of kernel function can affect the quality of the KDE 
estimate (Kiessé 2017). Appropriate PMF kernels such as nega-
tive binomial kernels can be used for discrete data. For example, 
in the case of criminal events, it is important to consider that the 
data consist of discrete counts that are ordered in the temporal 
dimension but unordered in the spatial dimension.

2.2   |   Choosing Kernel Density Estimator Based on 
Bandwidth Variability and Parameterization

Adaptive or variable KD estimator in the balloon category 
(Scott 2015; Abramson 1982) at a test location s is expressed as

where hs is the kernel bandwidth at the test point. In adaptive 
KD balloon estimators, each test point has its own bandwidth. 
Adaptive KD estimators enforce smoothing in areas where 
events are relatively sparse and reduce smoothing in areas with 
high event density. This method is expected to reduce bias, espe-
cially in the asymptotic context (van Lieshout 2022).

Choosing bivariate bandwidths for a spatially inhomogeneous 
and anisotropic point process is not a trivial task, especially when 
deciding on the appropriate amount of smoothing. There are sev-
eral classes of parameterization of the bivariate bandwidth ma-
trix (Wand and Jones 1995; Kokonendji and Somé 2015) that can 
be considered if the spatial point process is inhomogeneous and 
anisotropic. Although the use of diagonal bandwidth matrices (in-
dependent bandwidths in x and y directions) may be appropriate 
for heterogeneous processes, a full or unconstrained bandwidth 
matrix for smoothing in directions other than the directions of the 
coordinate axes (Duong and Hazelton 2003) may perform better in 
a particular anisotropic process. The spatial bivariate kernel can be 
used to form a multivariate KD estimator as follows:

where |H| is the determinant of the symmetric positive-definite 
2 × 2 bandwidth matrix H.

For count data, the spatial kernel can be defined as a radially 
symmetric PDF kernel or obtained as a product of two unordered 
discrete univariate PMF kernels. In the first case, a radially sym-
metric kernel with a 2 × 2 full bandwidth matrix can be used to 
estimate the density surface. Such matrices include both kernel 
orientation and axis-specific bandwidths (Silverman 1986; Wand 
and Jones 1995), and assume autocorrelation structures in the data 
(Kokonendji and Somé 2015). In the second case, the product ker-
nel assumes uncorrelated x and y coordinates, and the product ker-
nel is defined by two bandwidths in x and y directions. However, 
to account for anisotropy in diagonal directions, the data can be 
pre-scaled or whitened, and then a diagonal bandwidth matrix is 
used for the product kernel, and the result is transformed back at 
the last step (Silverman 1986; Wand and Jones 1995). The bivariate 
product of two univariate kernel estimators is implemented as

where hp is the bandwidth in dimension p; sp is a target univari-
ate point in dimension p; Sip are univariate point samples in di-
mension p.

(1)f̂h(s) =
1

nh2

n∑
i= 1

K

(
s − Si
h

)

(2)f̂h(s) =
1

n

n∑
i= 1

L
(
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(3)Lh
�
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�
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The implementation of diagonal and unconstrained bandwidth 
matrices in adaptive settings presents some challenges (Davies 
et al. 2018). In practical applications, choosing the optimal ker-
nel estimator with the optimal kernel function, parameteriza-
tion, edge correction method, and bandwidth size (discussed 
below) is not a trivial task.

3   |   KDE Validation

3.1   |   Statistical Learning Methods for Model 
Assessment, Selection, and Validation

In machine learning, any quantitative confirmatory analysis 
has two important components: assessment of performance and 
selection of an acceptable method. Assessment of performance 
is an estimate of the method's prediction error for a data set in 
absolute terms. Selection of a method is the identification of the 
best method based on an assessment of its performance (predic-
tion error) in relative terms (compared to other methods).

To solve the above two tasks, validation of a particular model 
is necessary. One of the common and convenient measures of 
assessment and selection of a particular model is the test error 
Errtest or the expected test error. The test error is also known as 
the Mean Squared Error (MSE), extra-sample, or generalization 
error at the new independent test points s

(
x0, y0

)
. The expected 

test error between the new test point and the point fitted to the 
training sample points S

(
xi, yi

)
, i = 1; … ,n is defined as.

where the expectation E is estimated over all random training 
set S and test point s; f(s) is the true value at the new test point; 
f̂ (s) is the estimated value at the new test point. In this case, the 
error loss function used in (7) is the squared error l2, but other 
performance metrics can be used. Training and testing points 
are assumed from the same independent identically distributed 
(i.i.d.) point samples.

Validation of method results can be “formal” or “informal” 
(Baddeley et al. 2016). Formal validation techniques are based 
on classical statistical inference with probabilistic assumptions 
about the data set and allow probabilistic statements to be made 
about the results. Such formal techniques include hypothesis 
testing, confidence intervals, and Bayesian model selection. 
Informal techniques are based on the philosophy of statistical 
learning. The outcomes of particular machine learning tech-
niques with flexible modeling strategies must be validated by 
the ability of the generated model to predict new/hold-out data-
sets (Vapnik 2013; Hastie et al. 2017).

The validation includes informal diagnostics and model-specific 
validation procedures, such as residual analysis and the estima-
tion of validation and test errors, among others. In this context, 
Vapnik  (2013) emphasizes the importance of model validation 
through techniques like the structural risk minimization princi-
ple, which balances model complexity and training error to min-
imize generalization error and improve robustness. Meanwhile, 
Hastie et al. (2017) offer a comprehensive discussion on model 

validation, focusing on methods such as k-fold cross-validation 
and the use of metrics like mean squared error (MSE) to evalu-
ate model performance and prevent overfitting.

Replication-based techniques, such as cross-validation (CV) and 
bootstrap, provide a stochastic estimate of model performance, 
blurring the line between “formal” and “informal” techniques—
minimizing the AIC is similar to minimizing leave-one-out CV 
(Stone 1977), and minimizing the BIC corresponds to perform-
ing leave-K-out cross-validation (Shao 1997).

In the field of machine learning, three distinct methodologies 
are used to evaluate experimental validity for model assessment 
and selection. These methodologies aim to determine the degree 
to which measurements align with their intended representa-
tions. These methodologies include:

1.	 Internal numerical metrics (measures, indexes, scores, or 
criteria) are employed to assess the effectiveness of a mod-
el's structure, denoted as f ( ∙ ), relying on inherent dataset 
features and quantities. There are various approaches for 
estimating the expected test error solely using the training 
dataset when the value at the test point 

(
x0, y0

)
 remains 

unknown.
a.	 Assessment and selection of a model can involve employ-

ing analytical techniques that rely on statistical assump-
tions regarding the dataset. These assumptions enable 
the generation of probabilistic optimizes about the re-
sults. The assessment of model results can encompass the 
analytical estimation of variance and its corresponding 
standard error relative to expected values, along with the 
creation of confidence pointwise intervals for f(S). For 
model selection, hypothesis testing can be used, along 
with information criteria such as AIC and BIC, which 
account for both model complexity and performance. 
These criteria help identify the model that achieves the 
optimal balance between fit and complexity.

b.	 A readily available estimate of the test error is the training 
error Errtraining, often referred to as the residual. These re-
siduals quantify the differences between predicted values 
and the actual values at each data sample point, denoted 
as S

(
xi, yi

)
. The training error represents the average loss 

across all training data points. The expected squared error 
within the set of sample points is defined as:

where the expectation E is taken over all random training sets, 
f(S) represents the observed value at a training point S

(
xi, yi

)
, 

f̂ (S) denotes the estimated value at a training point, and n rep-
resents the size of the training set.

In many cases, the training error may not serve as an 
adequate estimate of test error for two related reasons. 
The first reason is that the training error Errtraining 
will be consistently lower than the actual test error 
Errtest because the same dataset S is used both for fit-
ting a model and estimation of error. Consequently, 
Errtraining cannot be employed for the task of perfor-
mance assessment.

(7)E
(
Errtest

)
=MSE

(
f̂ (s)

)
= E

(
f (s)− f̂ (s)

)2

(8)E
(
Errtraining

)
= E

(
1

n

n∑
i= 1

(
f (S)− f̂ (S)

)2)
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The second reason is overfitting. In many cases, the 
training error Errtraining tends to decrease as the train-
ing dataset is fitted more rigorously. For some methods, 
Errtraining can even drop to zero if the method's com-
plexity is increased significantly, but this often results 
in poor generalization. At the same time, even if the 
expected training error E

(
Errtraining

)
 consistently devi-

ates from the expected test error E
(
Errtest

)
, it can still be 

useful for model selection (Hastie et al. 2017).
c.	 In practical applications, the most widely employed data-

driven techniques for directly estimating the expected pre-
diction test error E

(
Errtest

)
 include cross-validation (CV), 

bootstrap, and other replication-based techniques. These 
techniques are also effective for comparing the results of 
various fitting methods and selecting the best one based 
on the minimum cross-validation error ErrCV. Notably, 
these techniques provide an expectation E

(
ErrCV

)
 that 

closely approximates E
(
Errtest

)
 , and control overfitting. 

The K-fold CV test error estimate ErrCV is defined as

where K represents the number of randomly split folds Fi (so 
F1 ∪ … ∪ Fk = {1, … n})}), each containing approximately 
equal number of training points; CV

f̂ −(k)
 signifies the average val-

idation error computed on the data points within the kth fold; 
the function f̂ −(k)(S) represents a predication function fitted on 
all training points except those in the kth fold; nk represents the 
number of data points in the kth fold. In cross-validation (CV), the 
training involves S

(
xi, yi

)
 for i ∉ Fk, while validation is performed 

on S
(
xi, yi

)
 for i ∈ Fk. Common choices for the value of K include 

5, 10, and n, which corresponds to leave-one-out cross-validation 
(LOOCV). It is important to note that cross-validation effectively 
estimates only the average Errtest (Hastie et al. 2017).

The cross-validation techniques are applicable to any 
loss function, such as the one used for the training error 
Errtraining. These techniques are also used for adaptive 
fitting methods such as nonparametric estimators. 
When the method includes a hyperparameter, denoted 
as h, ErrCV(h) serves as a tool for estimating the error 
curve. It helps to determine the optimal tuning param-
eter by minimizing ErrCV(h), thus facilitating the selec-
tion of the best-fit method.
The standard error of cross-validation SECV is estimated 
at training sample points and serves as a valuable com-
plement to ErrCV, offering an additional quantitative 
measure for assessing the variability of ErrCV. This con-
cept of uncertainty intervals aids in the selection of the 
best-fit method. The standard error SECV for the mean 
of CV

f̂ −(k)
 can be estimated within the framework of the 

central limit theorem as.

where sd
{
CV

f̂ −(i)

}
 is the sample standard deviation of 

CV
f̂ −(1)

, … , CV
f̂ −(k)

. Equation  (10) is valid for small K ≪ n (e.g., 
K = 5 or 10) as folds' samples can be treated as originating from 
a single independent identical distribution (i.i.d.). According to 
the one standard error rule, the best model selection involves 
choosing the most regularized model with ErrCV within one 
standard error SECV of the minimal argmin

(
ErrCV(h)

)
. And 

ErrCV = argmin
(
ErrCV(h)

)
∓ SECV(h) (Hastie et al. 2017).

2.	 External numerical metrics are used to measure the degree 
to which the resulting modeling structure matches either 
the external test dataset or a predefined structure imposed 
on the dataset.

In a data-rich situation, a predictive strategy involves 
the random splitting of the original dataset into two dis-
tinct parts: a training set and a test (hold-out) set. The 
test set is strictly reserved for error estimation and is not 
utilized in the modelling process. This technique offers 
an impartial evaluation of the modelling error, and when 
the test sample size is substantial, it enhances precision. 
Utilizing extra-sample test errors allows for confident se-
lection of the best method from a range of options, while 
ensuring that the chosen method does not exhibit over-
fitting. The extra-sample test error estimate is defined as 
follows:

where f (s) represents the value at an independent test point, 
and f̂ (s) signifies the estimated value at the same independent 
test point.

As a standard practice, a single random split, referred to 
as a hold-out, is employed to thin the original dataset into 
test and training sets. This is done to preserve the simi-
larity in distributions between the training and test sets 
while ensuring the independence of the experiment results 
conducted on these sets and assessing how well the model 
generalizes to the hold-out dataset.

3.	 Relative numerical metrics are used to compare two dif-
ferent modeling structures that can be created using dif-
ferent algorithms or the same algorithm with different 
parameters.

When comparing KDE surfaces, special cases of f-
divergence (such as KL-divergence, Hellinger distance, 
and total variation distance) can be used to measure 
the similarity of distributions, as shown in Moon and 
Hero  (2014). Another set of relative or goodness-of-
fit measures suitable for nonparametric testing using 
Integrated Squared Error (ISE) has been proposed in 
Li and Racine  (2007), Martinez-Camblor and de Una-
Alvarez  (2009), and Chacón and Duong  (2018). These 
goodness-of-fit metrics are valuable for comparing multi-
ple estimated densities f̂ ( ∙ ), against each other or against 
a known KDE function.

However, it is important to note that these measures 
are not applicable to evaluate how well KDE function 
f̂ ( ∙ ) describes the (unknown) true density function 

(9)ErrCV =
1

K

K∑
k= 1

CV
f̂ −(k)

CV
f̂ −(k)

=
1

nk

∑
i∈Fk

(
f (S)− f̂ −(k)(S)

)2

(10)SECV =
sd
�
CV

f̂ −(i)

�
√
K

(11)E
(
Errtest

)
= E

((
f (s)− f̂ (s)

)2)
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f ( ∙ ). Typically, the density function f ( ∙ ) is simulated 
from known distributions and used to test the fit of the 
method. The residual field can be used to evaluate the 
similarity of KDE surfaces.

3.2   |   Assessment and Selection of the Kernel 
Density Estimators

3.2.1   |   Internal Analytical Metrics of Kernel Density 
Estimation: ISE, MISE, and AMISE

The two most common error metrics for kernel density estimation 
are Integrated Squared Error (ISE) and Mean Integrated Squared 
Error (MISE). ISE is a stochastic variable that summarizes the 
performance of kernel density estimator f̂h(s) as a function of 
observed data. MISE, which is the expected value of ISE and a 
deterministic function of the bandwidth parameter h, is estimated 
given the distribution of the unknown density function f (s) 
(Heidenreich et al. 2013; Gramacki 2017). ISE and MISE measure 
the overall estimation error instead of giving excessive importance 
to a small part of the support. These two different global measures 
lead to different specifications regarding the optimal bandwidth. 
ISE and MISE measure the proximity of f̂h(s) to the target density 
f (s) and are defined as

where s represents two vectors x0i and y0i of the point coordi-
nates in 2D space, and f̂H ( ∙ ) indicates the global error which 
is the distance measure between f̂h(s) and f(s) over the entire 
region instead of MSE at a specific point s

(
x0, y0

)
. MISE can 

be thought of as the mean of the global ISE measure relative 
to the sample density. MISE is a measure of estimation risk 
associated with the Mean Square Error Errtest. As a nonpara-
metric technique, MISE incorporates the concept of “optimal” 
balancing between Bias and Variance, controlling under- and 
over-smoothing complexity of the density estimation. This ap-
proach aims to minimize an overall fitting measure such as 
MSE

(
f̂H (s)

)
 or E

(
Errtest

)
.

Nevertheless, using ISE and MISE directly for validation is im-
practical because they have no closed-form expression due to the 
unknown f (s), except when f (s) follows a normal mixture density 
and K is the normal kernel (Wand and Jones 1995). An alterna-
tive is to look for an approximation of MISE known as asymp-
totic MISE (AMISE). However, it is worth noting that AMISE 
also depends on the second derivative of the unknown density 
f (s). Closed-form expressions for AMISE are only available when 
working with normal mixture density and can be calculated ex-
actly. In scenarios involving other f (s), commonly employed ker-
nels would allow for obtaining only approximate AMISE values.

There are different AMISE implementations for different KD es-
timators, which makes AMISE a method-specific measure not 
directly suitable for comparing different KD estimators. The pri-
mary objectives of MISE/AMISE and ISE are:

1.	 Most modern methods for automatic band-
width h selection are based on optimizing MISE/
AMISE, ISE, or a combination of both. They aim 
to find hAMISE = argminH∈ AMISE

(
f̂H ( ∙ )

)
 or 

HLSCV = argminH∈ LSCV(H), where   represents the 
space of all symmetric, positive definite d × d matrices; 
LSCV(H) denotes the least squares cross-validation objec-
tive function. These optimization criteria have led to the 
development of multiple bandwidth selectors to estimate 
the unknown f (s) in Equations (12) and (13).

2.	 ISE is commonly employed for evaluating the perfor-
mance of KDE techniques when applied to test datasets 
simulated from known density functions. In such scenar-
ios, ISE is computed by numerically integrating the dif-
ferences between the estimated density f̂H (s) and the true 
target density f (s). Additionally, various performance 
metrics derived from ISE can also be used (Heidenreich 
et al. 2013).

KDE confidence intervals can be calculated analytically by 
using the KDE pointwise error, defined as the difference 
between f̂H (s) and f (s). However, such confidence inter-
vals remain impractical in real-world applications due to 
the unknown nature of f (s). A straightforward approach 
is to substitute f (s) with its estimate f̂H (s) in the asymp-
totic variance (Chen 2017). A more robust and alternative 
technique for estimating the asymptotic variance and cre-
ating the KDE confidence intervals involves employing 
the bootstrap. Several issues, such as bias under-coverage, 
and strategies to address these problems, are discussed in 
Chen (2017).

In numerous real-world applications, density functions tend to 
be complex and often remain unknown. Consequently, since it 
is not possible to compute ISE and MISE directly, assessing the 
accuracy of kernel density estimations directly through these 
metrics is not feasible.

ISE and MISE, which are error metrics for kernel density es-
timations, are typically employed as data-driven criteria for 
choosing the optimal bandwidths. Nevertheless, when con-
sidering a point pattern as an instance of a point process, the 
measure of error for estimating the KDE function can alter-
natively be based on the concept of the mass conservation 
property (Loader 1999; Baddeley et al. 2016; Cronie and van 
Lieshout 2018).

In the case of an inhomogeneous Poisson point process, the 
mass-preservation property of KDE is formally defined as 
n(A ∩W ) = ∫

W

�̂(s) ds, with the inclusion of a boundary correc-
tion to estimate the point pattern intensity �̂(s). Here, A rep-
resents a set of points S

(
xi, yi

)
 in the two-dimensional space 

ℝ
2+ of the observed point pattern; the term n(A ∩W ) denotes 

the count of points from the set S
(
xi, yi

)
 within the region 

W , while �̂(s) denotes the intensity of the fitted point process 

(12)ISE
(
f̂H ( ⋅ )

)
= ∫

ℝ
2+

(
f (s)− f̂H (s)

)2
du

(13)

MISE
(
f̂H (⋅)

)
=∫

ℝ
2+

E
(
f (s)− f̂H (s)

)2
ds=∫

ℝ
2+

MSE
(
f̂H (s)

)
ds

=∫
ℝ
2+

Variance
(
f̂H (s)

)
ds+∫

ℝ
2+

Bias2
(
f̂H (s)

)
ds
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estimated at any spatial location s
(
x0, y0

)
 (Cronie and van 

Lieshout 2018).

3.2.1.1   |   Bandwidth Selection.  The choice of bandwidth is 
essential when estimating kernel density, whether in univariate 
or multivariate scenarios. While there may be strong contextual 
justifications to select a specific bandwidth size h, in most appli-
cations, determining this value proves challenging and often 
unfeasible, especially in the context of bivariate KDE. The key 
questions that arise are:

•	 What is the optimal size of the spatial bandwidth?

•	 Should the bandwidth remain fixed, or would a variable 
bandwidth be more appropriate? If variable bandwidth, 
should it be adjustable and adaptive?

•	 Which class of parametrization matrix H should be em-
ployed for bivariate bandwidth?

Numerous fixed and variable bandwidth selection techniques 
are available. These techniques, often referred to as data-
driven bandwidth selectors, aim to minimize various errors 
such as Mean Squared Error (MSE), Integrated Squared Error 
(ISE), and Mean Integrated Squared Error (MISE) (Wand and 
Jones  1995; Heidenreich et  al.  2013; Gramacki  2017). When 
considering ISE and MISE distance measures, data-driven or 
fully automatic bandwidth selectors can be divided into two 
categories:

1.	 Plug-in selectors typically determine the optimal band-
width h to minimize MISE. The plug-in selectors are 
based on the AMISE asymptotic equation, which pro-
vides an approximate MISE estimation for large samples. 
The AMISE equation includes only one unknown Ψ4 
quantity, which is estimated using various methods and 
assumptions (Gramacki  2017). Plug-in selectors employ 
internal data-derived measures to optimize the value  
of h.

2.	 Selectors based on cross-validation (CV) and bootstrapping 
typically aim to minimize ISE. A classic example is the 
least-squares (or unbiased) cross-validation (LSCV) selec-
tor. In cross-validation, a subset of the data is employed to 
evaluate another subset, effectively minimizing the ISE. 
The cross-validation technique often employs the classical 
leave-one-out approach when estimating f̂h(s) (Scott 2015; 
Davies and Lawson 2019).

A wide range of cross-validation and plug-in selectors, in-
cluding rule-of-thumb techniques and their hybrids, employ 
various methods to estimate the unknown density function 
f(s) (Silverman  1986; Wand and Jones  1995; Illian et  al.  2008; 
Scott 2015; Davies et al. 2018). There are methods for estimat-
ing optimal bandwidths for multidimensional kernel functions 
based on Bayesian approaches, boot-strapping, extrapolation 
methods, the theory of spatial point processes (Berman and 
Diggle 1989; Loader 1999; Baddeley et al. 2016; Cronie and van 
Lieshout  2018), mixing bandwidth selectors, and neural net-
works (Heidenreich et  al.  2013; Fernando and Hazelton  2014; 
Davies et al. 2018). These methods can be assigned into one of 
the cross-validation and plug-in categories.

3.2.1.2   |   Issues Related to Selecting an Appropriate 
Bandwidth Based on ISE, MISE, and AMISE.  When 
working with real-world datasets, it is not uncommon to 
observe that different selectors yield substantially different 
“optimal bandwidths”. Typically, plug-in bandwidth selec-
tors tend to over-smooth finite sample datasets, while sig-
nificant sample variation can create challenges for nearly 
all cross-validation bandwidth selectors, often resulting in 
overfitting.

Certain challenges arise because ISE and MISE-based selectors 
rely on assumptions about the underlying data distribution, 
yet f (s), in most cases, remains unknown and can be particu-
larly complex, especially when dealing with spatial bivariate 
data. These selectors often use the normal or other known base 
density as a reference distribution function to estimate the un-
known f (s).

For example, rule-of-thumb selectors often use the normal dis-
tribution as a reference to replace the unknown density func-
tion f (s). When dealing with a distribution that substantially 
deviates from the bivariate normal distribution (such as Poisson 
distributions), particularly in datasets containing outliers, the 
results can be highly inaccurate.

Plug-in based selectors require an additional pilot bandwidth 
parameter g4 to estimate the unknown variable conventionally 
referred to as Ψ4 in the AMISE formula (Wand and Jones 1995, 
Sect. 3.5; Gramacki 2017, 66). The estimation of the unknown Ψ4 
involves a multi-stage adjustment process, usually consisting of 
two stages. It is assumed that in the final stage, Ψr

(
gr
)
 is com-

puted using the normal scale formula, with r representing the 
derivative order and an even number. A notable challenge is the 
lack of analytical methods to determine the optimal number of 
stages (Gramacki 2017, 66).

In practice, cross-validation criteria can be derived if the in-
tegral is replaced by summation where the kernel function is 
convoluted with itself, which is appropriate for normal kernels 
(Gramacki 2017), and that is why most cross-validation imple-
mentations use the normal kernels. A well-known weakness of 
cross-validation selectors is that the objective function can have 
more than one local minimum. Another issue is that classical 
least-squares cross-validation selectors are unstable on large 
datasets and typically give substantially dissimilar outputs for 
different datasets having the same distribution (Gramacki 2017). 
Cross-validation does not work well on discrete data, and 
this is problematic as the real data is nearly always finite and 
discretized.

3.2.2   |   Internal Analytical Error Metrics: Standard 
Error of the Spatial Point Pattern Intensity Function

Events that are recorded at specific locations, denoted as x and 
y, constitute a spatial point pattern. This pattern can be concep-
tualized as the result of a spatial point process, a framework 
used to understand the underlying generation mechanism 
of these points. A point process represents a random mecha-
nism that can be mathematically formulated in various ways 
(Baddeley et al. 2016). For instance, one approach is to utilize 
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an inhomogeneous Poisson point process to model the counts 
of disjoint 2D intervals which are considered stochastically in-
dependent. The primary assumption in this context is that the 
individual points are statistically independent of each other.

Numerous research studies have confirmed the effectiveness of 
employing the inhomogeneous Poisson point process to represent 
various real-world, spatially variable independent random events. 
Examples of such events include crime events, traffic accidents, 
and noninfectious diseases, among others (Baddeley et al. 2016).

The measure of the first moment of an inhomogeneous 
Poisson spatial point process is its estimated intensity func-
tion �(s), representing the average number of points per unit 
area at point s. The entire Poisson point process can be fully 
specified by its intensity function, �(s). This intensity function 
can be integrated up to the expected number of points that fall 
within the region of interest W .

The point process intensity function �(s) can be estimated non-
parametrically using KDE. Estimating the intensity of a spatial 
pattern is similar to a bivariate estimate of the probability den-
sity. The intensity function is proportional to its probability den-
sity function as f (s) = �(s)∕∫

W

�(s)ds (Baddeley et al. 2016). Here, ∫
W

�(s)ds generates the number n of independent identically distrib-
uted points for the Poisson process with the rate parameter �(s).

Thus, the KDE probability density surface can be transformed 
into an intensity surface by multiplying the probability den-
sity at each cell by the total number of incidents, expressed as 
�(s) = nf(s), and vice versa. Multiplying f (s) by n scales the nor-
malized density estimate to reflect the expected number of oc-
currences per unit area. The KDE probability density function 
f (s) is normalized such that its total integral over the entire space 
equals 1.

Specific validation metrics can be used to analytically evaluate 
the performance of KDE when fitting a spatial point pattern. 
One such metric is the standard error (SE), which estimates the 
standard deviation of the error term. If the intensity function 
�(s) of the Poisson point process is estimated using an isotropic 
Gaussian kernel, then the standard error SE�(s,h) of the estimate 
�(s) is (Baddeley et al. 2016):

The value of SE�(s,h) is obtained from the estimate of the variance 
of �(s) at a target new point. Although the standard error of the 
intensity estimate is a measure of accuracy, it should be noted 
that this estimate is based on the assumptions of a particular 
point process.

3.2.3   |   Internal Validation Metrics: Spatial Point 
Process Residuals From Training Samples

A Poisson point process, which describes the occurrence of 
random events, can be formally defined using a Poisson distri-
bution. This allows for estimating the probability of a certain 

number of events occurring within a specified spatial region 
or time interval. In the context of validation of fitted Poisson 
regression models, various types of Poisson residuals are used 
for diagnostic purposes. These residuals include both raw re-
siduals and adjusted/normalized residuals such as Pearson, 
Standardized, Studentized, Deviance, and Anscombe residuals 
(Cameron and Trivedi 2013; Hilbe 2014).

The basic or raw residual, denoted as ri, is the difference between 
the observed response zi and the expected response E

(
zi
)
, which 

is similar to the use of residuals in classical linear regression 
models: ri = zi − E

(
zi
)
. In the case of parametric Poisson max-

imum likelihood regression models, one common residual di-
agnostic involves comparing the fitted PMF with observed 
frequencies. The fitted frequency distribution is computed as 
the average over observations of the predicted probabilities, 
E
(
zi
)
= �i, which are fitted for each count, where �i represents 

the fitted local conditional mean.

Even when dealing with count data in large samples, it is observed 
that the distribution of ri exhibits heteroskedasticity and asymme-
try (Cameron and Trivedi 2013). Consequently, analysts often rely 
on adjusted residuals to correct the inherent heteroskedasticity in 
raw residuals. These adjusted residuals are expected to be centered 
around zero and may also exhibit other desirable properties such 
as homoscedasticity and symmetry.

A commonly used adjustment for addressing heteroskedas-
ticity is the Pearson residual, which is calculated as follows: 
rP
i
=
�
zi − �i

�
∕
√
φ̂i�i, where �̂i represents a parameter that 

helps control for overdispersion. It is worth noting that while 
Pearson residuals do result in adjusted residuals with zero mean 
and constant variance in large samples, the distribution of these 
residuals still tends to be asymmetric.

Deviance residuals serve as an estimate of the goodness of 
fit, and they are derived from the maximum likelihood es-
timation process. These residuals are computed as follows: 
rD
i
= sgn

(
zi − �i

)√
2
(
zi log

(
zi ∕�i

)
−
(
zi − �i

))
. The use of devi-

ance residuals in the adjustment process achieves a distribution 
of residuals with desirable properties, including a zero mean, 
constant variance, and symmetry.

The Anscombe residual is a specific transformation of 
yi, designed to make it closest to a normal distribution. 
Subsequently, it is standardized to have a zero mean and a 
variance of 1, represented as rA

i
= 1.5

(
z
2∕3
i

− �
2∕3
i

)
∕�

1∕6
i

. It's 
worth noting that when comparing the values of deviance and 
Anscombe residuals computed for the same model, they tend 
to be highly similar.

The concept of residuals derived from classical Poisson mod-
els can also be extended to Poisson point process models. 
Techniques for “informal” validation of parametric models 
of point processes, used to analyze spatial point pattern data, 
have been explored and discussed in Baddeley et  al.  (2005). 
Furthermore, the properties of such residuals were exam-
ined in Baddeley et al. (2008). In these “informal” techniques, 
no strict assumptions are imposed on the data (Baddeley 
et  al.  2016). Typically, these techniques employ residuals to 

(14)SE�(s,h) =
1

h2

���� 1

2�

n�
i= 1

K

��
s − Si

�

h∕
√
2

�
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validate a point process model, drawing an analogy to how 
residuals are used in classical parametric Poisson regression 
models.

Computing the raw residual of a point process model involves 
subtracting the integrated conditional intensity within the spec-
ified region B from the observed number of points, denoted as 
n, which represents the actual empirical count. The integrated 
conditional intensity corresponds to the fitted value or condi-
tional mean of the intensity function. The raw residual is de-
fined by the following equation (Stoyan and Grabarnik  1991; 
Baddeley et al. 2016):

where A is a set of training points S
(
xi, yi

)
 in two-dimensional 

space ℝ2+ of the observed point pattern; n(A ∩ B) is the num-
ber of points S

(
xi, yi

)
 in the sub-region B; and �̂(s) is the fit-

ted intensity of the fitted point process at any spatial position 
s
(
x0, y0

)
 . Residuals in this context serve as metrics to quantify 

the discrepancy between the observed point pattern and the 
expected pattern, which is recalculated based on the estimated 
intensity �̂(s) within the region B. Moreover, the concept of 
residual analysis is not limited to Poisson point processes; it 
can also be extended to non-Poisson point processes that in-
volve interactions, such as Gibbs point processes (Baddeley 
et al. 2016).

The validation measure R(B) in (15) considers not only the val-
ues at data points S, but also extends to locations s that do not 
correspond to observation points (Baddeley et  al.  2005). This 
type of residual is referred to as location-related residuals (Illian 
et  al.  2008), raw residuals (Baddeley et  al.  2016), pixel-based 
(Gordon et al. 2015), or binned residuals (Lawson 1993). However, 
alternative point-related residuals have also been proposed, which 
involve calculation of local residuals specifically at the data obser-
vation points s (Stoyan and Grabarnik 1991; Lawson 1993; Illian 
et al. 2008), which will be explored in more detail below.

Accordingly, the total raw point residual R(W ) of the heteroge-
neous Poisson point process for the entire study area W  is for-
mally defined as.

The Pearson point process residual is defined as:

for all instances where �𝜆
(
Si
)
> 0. If the estimation is accurate, 

Pearson residuals are standardized with a mean of 0 and a vari-
ance of |B|.

The deviance point process residual for heterogeneous Poisson 
process (Lawson 1993) is defined as

where ||Ti|| is the area of the Thiessen polygon or Voronoi-
Dirichlet tile, Ti, associated with the ith observation and di is 
the deviance contribution of the ith observation (Lawson 1993, 
890–891). In this context, the log-likelihood serves as the loss 
function instead of the classical sum of squared errors. This 
choice is made because the log-likelihood is better suited for 
non-normally distributed response variables over a range of re-
sponse density functions such as Poisson, gamma, exponential, 
log-normal, and others (Hastie et al. 2017).

Additionally, for comparing point process models, pixel-based 
deviances were proposed by Wong and Schoenberg (Gordon 
et al. 2015), which are defined as:

According to Baddeley et  al.  (2005) and others, residuals are 
used in the analysis of fitted parametric models of point pro-
cesses. Kernel density estimation can be considered as a fitted 
nonparametric point processing method. When dealing with an 
inhomogeneous point process that follows a Poisson distribu-
tion, the residuals of the point process can be used to test both 
the local (Equation 15) and global performance (Equation 16) of 
the spatial KDE.

The idea of optimizing residuals for performance assessment of 
a particular kernel density estimation method, similar to opti-
mizing the fit of a linear regression model by minimizing the 
residual sum of squares, seems invalid. Trying to minimize 
Equation  (15) by choosing an optimal bandwidth h for �̂(u, v) 
will cause h to become extremely small, approaching zero. This 
is because aiming for the minimum residual sum of squares on 
the training dataset invariably results in zero residuals, making 
it unsuitable for determining the KDE bandwidth parameter h. 
Therefore, as h decreases, the level of overfitting in kernel den-
sity estimation increases.

Nevertheless, the idea of comparing different kernel density 
estimations by examining the residuals as the bandwidth ap-
proaches zero can be a valuable approach for selecting the appro-
priate KD estimator for a specific dataset. Additionally, creating 
a map and plotting the residuals as a function of different band-
width sizes can be an effective tool for diagnosing the accuracy 
of kernel density estimations and even providing an informal ra-
tionale for choosing the optimal bandwidth. If the analysis is not 
primarily concerned with parameter estimates such as p-values, 
then a stepwise comparison of free parameters h with determin-
istic search may be a reasonable solution.

The proposed framework for comparing KD estimators is based 
on the mass conservation property defined as n(A ∩W) = ∫

W

�(s)ds, 
where a boundary correction is considered to estimate �̂(s). An 
adjusted mass conservation property has been introduced for 
bandwidth selection (Stoyan and Grabarnik  1991; Cronie and 
van Lieshout  2018). This property can also be expressed as 

(15)R(B) = n(A ∩ B) − ∫
B

�̂(s) ds

(16)R(W ) = n(A ∩W) − ∫
W

�̂(s) ds

(17)RP(B) =
∑
Si ∈B

1√
�̂
(
Si
) − ∫

B

√
�̂(s) ds

(18)RD
�
Ti
�
= sgn

�
1

��Ti��
− �̂i(s)

�√
di

(19)RDS(B) =
∑
Si ∈B

log
(
�̂
(
Si
))

− ∫
B

�̂(s) ds
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∑
Si ∈B

1

�(s)
= �W �, where |W | represents the area of the observation 

window. The property is used to express inverse lambda residuals 
as follows:

for all instances where �𝜆
(
Si
)
> 0. Calculating this residual met-

ric is necessary only for the training data points Si, and this met-
ric can exhibit significant variance (Baddeley et al. 2016).

The classical global metrics ISE and MISE were developed to 
guide the selection of the optimal bandwidth based on data-
driven properties for a particular KD estimator. KD estima-
tors, developed specifically for spatial point processes, take 
into account spatial heterogeneity, point-to-point interactions 
(Diggle 1985), and covariance effects in fitting point patterns. 
However, the deviation from mass conservation serves as an 
absolute benchmark for assessing the performance of KD esti-
mators, regardless of their data-driven properties and spatial 
effects. Using global or total residuals for diagnostics directly 
shows discrepancies between the fitted KDE surface and the 
spatial point process pattern.

Local residuals for all of the above residual metrics can be calcu-
lated for count data within sub-regions defined as regular (e.g., 
in quadrats of equal size and shape), natural, or administrative 
spatial units. The main drawback of the local approach is that 
the expected counts are influenced by the size and shape of the 
sub-regions. Creating a map of these local residuals can help in-
terpret the variation of KDE residuals in different regions of the 
study area. When the residuals equal zero, the KDE surface has 
a perfect fit. Significant deviations from zero indicate a poor fit, 
highlighting the sub-regions where the KD estimator fails to ac-
curately represent the data.

3.2.4   |   Internal Validation Metrics: Estimating 
Cross-Validation Test Error or “Predicted Residual”

The raw residuals of the training point samples discussed above 
are estimates of the negative bias in intensity fitting (Baddeley 
et al. 2005). These residuals tend to overfitting when the band-
width parameter h is small, leading to an artificially low ex-
pected training error Errtraining. This overfitting is evident, given 
that the true test error Errtest is not zero. Therefore, relying 
solely on the expected training error Errtraining to assess a KDE 
method and potentially make a selection may not be advisable.

Cross-validation (CV) estimators have an expected CV error 
E
(
ErrCV

)
 that is closer to the expected test error, E

(
Errtest

)
, than 

the expected training error E
(
Errtraining

)
 to E

(
Errtest

)
. This be-

havior is due to the fact that f̂ −(i)(S) is not a function of S
(
xi, yi

)
, 

i ∉ Fk, and f̂ −(i)(S) does not tend to overfit when the bandwidth 
parameter h is small. Consequently, it is recommended to use 
ErrCV, also known as the “predicted residual”, rather than the 
Errtraining ordinary residuals for assessing and selecting a non-
parametric KDE fit. The goal of cross-validation is to prevent 
overfitting and balance between bias and variance.

Classical cross-validation methods come in various forms, 
with two common forms being leave-one-out cross-validation 
(LOOCV) when K equals the total sample size (K = n), and k-
fold cross-validation (K > 1) for other values of K, where K refers 
to the number of groups or folds.

LOOCV is used in many KDE methods for bandwidth selection. 
However, LOOCV tends to produce under-smoothed KDE sur-
faces, resulting in lower bias for E

(
Errtest

)
, but a larger variance. 

This is primarily due to the fact that the n training sets generated 
in LOOCV are extremely similar to each other (Hastie et al. 2017).

The expected error of k-fold cross-validation E
(
Errk-foldCV

)
 may 

deviate slightly more from the expected test error E
(
Errtest

)
 com-

pared to leave-one-out cross-validation E
(
ErrLOOCV

)
. However, 

for sufficiently large sample sizes n, this discrepancy should not 
pose a serious problem. On the positive side, k-fold cross-validation 
provides the advantage of reducing the variance in the Errk-foldCV 
estimate compared to the ErrLOOCV estimate.

Errk-foldCV is computed as the average of the validation errors ob-
tained from k-fold cross-validation sets CV

f̂ −(k)
, which tend to be 

less correlated than the ErrLOOCV errors. This is due to the fact 
that the functions f̂ −(k)(S), for k = 1; … ,K, do not depend on 
large overlapping k-folds, in contrast to LOOCV, where the func-
tions f̂ −(k)(S), k = 1; … ,n, use more overlapping data. However, 
one of the disadvantages of k-fold cross-validation is its sensitiv-
ity to the initial random splitting of samples (Hansen 2022).

Usually, the first step of k-fold cross-validation involves split-
ting the training dataset into k-folds of approximately equal size 
through a process of random shuffling of the training samples 
among these folds. Different random shuffling techniques may 
vary in how they generate the training and validation folds. 
By applying cross-validation to point process patterns, spatial 
cross-validation approaches consider spatial aspects of the data, 
including event locations and spatial effects such as spatial het-
erogeneity and spatial dependence.

There are some arguments that cross-validation partitioning 
for spatial point processes should be based on independent 
random thinning (Cronie et  al.  2021). Independent random 
thinning is a process in which each point in a pattern of points 
is randomly removed or retained based on a specified proba-
bility function. The thinning process is independent, which 
means that the decision to remove or retain a particular point 
is made without considering the status of other points in the 
pattern. This process creates a reduced pattern of points that 
preserves certain statistical properties or meets certain re-
quirements. For instance, when randomly thinning an inho-
mogeneous Poisson point process, the resulting point pattern 
remains a Poisson process with predefined probability density 
functions (Baddeley et al. 2016).

Using the classical k-fold cross-validation Equation  (9) and the 
equation for raw total residuals (16), the total error Errk-foldCV for 
the point process in the study area W  can be determined as follows:

(20)RI (W ) =
∑
Si ∈B

1

�̂
(
Si
) − |W |

(21)Errk-foldCV =
1

K

K∑
k= 1

R−(k)(W )
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Spatial point pattern thinning can be accomplished using 
various techniques, one of which is conventional k-fold cross-
validation. In this technique, partitioning is achieved by ran-
domly selecting cases from the learning set without replacement. 
Where the points are randomly marked from a multinomial dis-
tribution with independent identically distributed (i.i.d.) marks 
m(S) ∈ {1, … , k} and probabilities p1 = … = pk = 1∕k. Each 
fold corresponds to a specific mark, and these folds are mutually 
independent, with no overlapping elements.

Several spatial leave-one-group-out and leave-one-cluster-out 
cross-validation techniques have been proposed to address the 
spatial autocorrelation structure in the data, thereby eliminat-
ing spatial dependence.

1.	 One such technique is the spatial l-block cross-validation, 
denoted as SKBCV (Roberts et al. 2017). In the first step of 
SKBCV, the study area is divided into l spatially contiguous 
polygons or blocks, each of which can contain zero or more 
points. Blocks can have different sizes and shapes. Different 
techniques can be employed to create these blocks, such 
as applying unsupervised clustering methods to identify 
contiguity-constrained point clusters or employing regular 
or irregular grids to subdivide the spatial domain, etc.

There are various strategies for assigning block points to the 
corresponding cross-validation fold. For instance, the num-
ber of blocks can be equal to the number of folds, that is, 
k = l (where each block serves as its own fold). Alternatively, 
several blocks with points can be systematically or randomly 
assigned to the fold, resulting in k ≠ l (Valavi et al. 2019).

However, the SKBCV approach presents several chal-
lenges. One of the main challenges relates to how folds 
should be defined. If grid subdivision is used, new hyper-
parameters such as block size and shape need to be esti-
mated. There is also the possibility of edge effects, which 
should be corrected for, and extrapolation beyond blocks/
folds may be necessary as well.

Additionally, some blocks may remain empty, not contain-
ing any points. One notable limitation of this approach 
is its inability to account for point pattern heterogeneity. 
Blocks may vary significantly in the number of points they 
contain, and changes in point density are not taken into 
consideration.

2.	 To overcome some of the limitations associated with the 
formation of contiguous blocks, space filling curves (SFCs) 
can be used to group observation points within local neigh-
borhoods. SFC starts with a base curve consisting of a set 
of segments positioned on an n-dimensional regular or ir-
regular grid. This curve traverses each grid vertex exactly 
once, ensuring that it does not intersect itself. It has two 
free ends that can be joined to other paths. Formally, the 
SFC is a continuous function with endpoints whose do-
main is the unit interval (0, 1) (Sagan 1994). A SFC com-
pletely fills the region of interest. Notable examples of SFCs 
include the Peano curve and the Hilbert curve.

The base curve is initially set to level/order 1. To construct 
a level i curve, each vertex of the base curve is replaced 
by a level i − 1 curve, which can be appropriately rotated 
and aligned to fit the higher-level curve. Level i − 1 verti-
ces located in close proximity in space are assigned to the 
corresponding spatial cross-validation block. Each block 
corresponds to a level of sub-squares within the curve.

The SFC approach has several benefits: there is no need to 
define block shapes; preserves the heterogeneity of point 
patterns; it eliminates the concern of extrapolation beyond 
blocks or folds; and there are no empty blocks.

3.	 The next spatial cross-validation technique is known as 
buffering leave-one-out cross-validation, l = n, denoted as 
BLOOCV (Le Rest et  al.  2014; Pohjankukka et  al.  2017). 
BLOOCV involves an additional step compared to classic 
LOOCV: in addition to excluding the point intended for 
validation, it also excludes other points that exhibit high 
autocorrelation with the validation point. The remaining 
points then form the training set and are used for estima-
tions and fit validation.

However, the BLOOCV approach comes with several 
challenges. This requires the estimation of a new hyper-
parameter, related to the autocorrelation range or buffer 
size. Additionally, it may require large computational re-
sources, among other considerations.

4.	 Another approach that combines elements from both 
SKBCV and BLOOCV techniques, while overcoming some 
of their limitations, is the use of Delaunay triangulation. 
First, Delaunay triangulation is applied to all training 
points. Spatial folds are then created by excluding the vali-
dation point and its nearest neighbors, which are connected 
to the validation point in the triangle network, while the 
remaining points are used for training. To expand the fold 
size, additional nearest neighbors of the initial set of near-
est neighbors can be excluded from the spatial fold.

It should be noted that there are no exact rules for determining 
the number of folds k and, for example, it has been discussed 
that it should be chosen based on the sample size n. A five-fold or 
ten-fold cross-validation is commonly recommended as a good 
compromise (Hastie et al. 2017), and is often used in practice. 
An even more challenging task is the choice of the number of 
spatial blocks l for the spatial cross-validation, as well as the size 
and shape of the block. A common approach is to treat the num-
ber of folds k and blocks l as hyperparameters and tune them, for 
example, using grid search tools such as GridSearchCV from the 
scikit-learn Python package (Pedregosa et  al.  2011). However, 
the number of folds/blocks in CV can potentially lead to over-
fitting if not chosen carefully. The appropriate number of folds 
should be selected based on the dataset size and complexity 
(Hastie et al. 2017).

3.2.5   |   Internal Validation Metrics: 
Point-Related Residuals

The spatial point process residuals from the training sam-
ples, as discussed in Sections  3.2.3 and 3.2.4, are computed at 
each location 

(
x0, y0

)
 on a fine grid within the bounded region 

R−(k)(W ) = n−(k)(A ∩W ) − ∫
W

�̂
(
s−(k)

)
ds
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W . These residuals are known as location-related residuals (Illian 
et al. 2008). However, residuals can also be computed at the ob-
servation points S

(
xi, yi

)
 of the process, and these are called point-

related residuals (Stoyan and Grabarnik  1991; Lawson  1993; 
Illian et al. 2008, 283). Similar to residuals in classical regression, 
these point-related residuals measure the difference between the 
observed points and their predicted values.

Few approaches have been proposed for calculating point-related 
residuals. One such approach, suggested by Illian et al.  (2008, 
283), involves using the “residual radius”, which is the distance 
from an observation point 

(
xi, yi

)
 to the nearest point s

(
x0, y0

)
 

with the maximum intensity value. A good fit of the point pro-
cess intensity surface is indicated when the length of the resid-
ual radius is small. However, this method requires determining 
a control parameter, such as the residual radius, and identifying 
local maxima within it, if they exist, which makes the imple-
mentation challenging.

Another approach is the Lawson deviance residual, which provides 
a maximum likelihood estimate for each data point, as defined in 
Equation (18) (Lawson 1993). This approach is implemented based 
on the assumption that a point process is defined within convex 
polygons generated by tessellation. Thus, the observation win-
dow area |W | is divided into Thiessen polygons, with the area of 
each polygon ||Ti|| used to estimate the expected intensity as 1∕ ||Ti|| 
within the polygon. One limitation of implementing Thiessen 
polygons is that duplicate points are not allowed.

Similarly, a deviance residual can be calculated for KDE. The 
intensity at the data points corresponding to each Thiessen poly-
gon in Equation (18) can be estimated using the leave-one-out 
cross-validation estimator, which introduces a slight negative 
bias, as shown below:

where �̂h
(
s−(i)
i

)
 represents the kernel estimator of the intensity 

function fitted on all training points except the ith point. Bias 
corrections for edge effects can also be applied. This technique 
relies on the adjusted mass conservation property. However, its 
main limitations include the crude assumption that intensity 
is constant within each Thiessen polygon, as well as the diffi-
culties in correcting for edge effects, particularly for truncated 
Thiessen tiles at the boundary of the observation window.

Additionally, Barr and Schoenberg (Gordon et  al.  2015) pro-
posed Voronoi residuals to diagnose the performance of spatial 
point pattern models. Similar to the Lawson deviance residual, 
Voronoi residuals are estimated within Thiessen polygons sur-
rounding observed event points. The raw Voronoi residual for a 
point in the point process and its corresponding Thiessen poly-
gon Ti is given by:

where μ is the Lebesgue measure used to assign an area mea-
surement within the Thiessen cell (Gordon et al. 2015).

3.2.6   |   External Validation Metrics

The ability of a learning method to make accurate predictions 
on an independent test dataset is evidence of its generalization 
performance. In cross-validation resampling techniques, each 
test fold subset is actually used in the fitting process. To esti-
mate the cross-validation error E

(
ErrCV

)
, the expectation is per-

formed across all random training and test point sets. To support 
the central assumption that the training and testing datasets are 
completely independent, a holdout approach can be used to split 
the entire learning data set into training and testing subsets. 
Therefore, the hold-out test data set is used solely for testing 
and is not incorporated in the training process. In addition, the 
hold-out test dataset does not depend on the distribution of the 
training set. Otherwise, error estimates will tend to be overly 
optimistic, leading to method selection favoring excessively 
complex models.

In a scenario with a “sufficiently large” dataset, one hold-out 
point dataset can be extracted from the entire learning point 
dataset using random thinning or spatial cross-validation split-
ting techniques, as described in Section 3.2.4.

In a more complex scenario, the entire learning dataset can be 
split into three subsets: the training subset, the validation sub-
set (for cross-validation testing), and a test subset that includes 
hold-out points that remain entirely separate from the training 
process. To perform such splitting, various techniques can be 
used, such as independent random multinomial p-thinning with 
varying retention probabilities, subsampling/extrapolation tech-
nique or creating spatial blocks and then allocating them into 
subsets using various scenarios (Valavi et al. 2019; Wang 2019; 
Cronie et al. 2021).

In the previously described scenarios, Errtest can be viewed as 
an extra-sample error since the test set does not have to overlap 
with the training set. Cross-validation and bootstrap techniques 
also provide direct estimates of the extra-sample error (Hastie 
et al. 2017).

It is worth emphasizing again that there are no precise guide-
lines for determining the optimal percentage allocation be-
tween training, validation, and testing subsets. Suggestions 
exist, for example, to include 10% to 30% of learning cases in 
the test set, and the remaining 90% to 70% of cases in the train-
ing set. Alternatively, a typical split might include allocating 
50% to training and 25% each to validation and testing (Hastie 
et al. 2017).

Since the testing points are excluded from the KDE training 
process, point-related residuals must be calculated for these 
hold-out points. Three methods for calculating the point-related 
residuals are outlined in Section 3.2.5.

(22)�̂h

(
s−(i)
i

)
=

|W |
n − 1

n∑
j=1

j≠ i

K

(
si −S

−(i)
j

h
s
−(i)
i

)

h2
s−(i)
i

|W | =
n∑

i= 1

||Ti||

(23)RV
(
Ti
)
= 1 − ∫

Ti

�̂
(
Ti
)
d�
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Furthermore, the inverse lambda point-based residuals for each 
Thiessen polygon Ti can be estimated using the technique de-
scribed below:

where K is the number of points in the removed pattern (points 
that are discarded) and M is the number of points in the thinned 
pattern (points that are retained). The number of points re-
moved (not retained) is K = n −M. The ratio K

M
 represents the 

retention probability ratio between the uniformly thinned train-
ing and hold-out point patterns.

The technique involves the following steps. The intensity is 
estimated from the M-point training set for the entire window 
W, which is then divided using tessellation for the K hold-out 
points. In Equation (24), 

K

M

∑
Ti

1

�̂(Ti) represents the sum of intensi-
ties within the Thiessen polygon Ti of the hold-out testing point 
pattern, considering only those polygons where 

∑
Ti

1
�𝜆(Ti)

> 0.

This technique assumes that if an inhomogeneous Poisson 
pattern with intensity function �̂

(
Si
)
 is subjected to uniform 

random thinning, where the probability of retaining a point at 
location Si is p, and the outcome for each point is independent 
of others, the resulting process of retained points will also be 
Poisson.

After uniform random thinning, the expected number of points 
remaining in region W  is M = p∗ ∫

W

�̂
(
Si
)
dS. The intensity func-

tion of the thinned process will be p∗ �̂
(
Sm

)
. The expected num-

ber of points remaining after uniform random thinning is also 
given by M = n∗p, where n is the total number of points in the 
original pattern before thinning.

4   |   Case Study: The Crime of Violence in Lithuania

From a criminological perspective, the study of the spatial dis-
persion of crime draws its theoretical framework from environ-
mental criminology, which examines the relationship between 
crime and the physical environment, such as population density, 
land use, and urban design. Environmental criminology high-
lights the importance of geographic patterns in understanding 
and preventing crime. It informs national policies on urban 
planning, policing strategies, and crime prevention programs 
by emphasizing place-based interventions rather than just 
offender-focused approaches (Ceccato 2024).

The violent crime in Lithuania was selected for this case study 
because the crime statistics in Lithuania are notably higher 
than the average within the European Union, particularly in 
certain cities. In 2022, Lithuania's violent crime rate was re-
ported at 2.21 homicides per 100,000 inhabitants, while the 
European Union's average rate was 0.86 per 100,000 inhabi-
tants (Eurostat 2024). The value of this indicator increased to 
2.63 in 2023.

Crime maps provide insights into environmental factors influ-
encing criminal behavior. Utilizing KDE and estimated crime 

risk surfaces at a national level allows law enforcement and pol-
icymakers to develop proactive, data-driven strategies aimed at 
reducing violent crime in high-risk areas. The risk surface can 
be combined with other geographical data layers, enabling users 
to evaluate the crime rate in their area of interest. KDE can be 
utilized to aggregate and smooth various types of crime data, 
both spatially and temporally.

The comprehensive geocoded dataset documenting criminal 
incidents reported to Lithuanian police for 2022 includes mil-
lions of records, including attributes for various types of crime. 
Previous studies have found significant dependencies between 
these records and spatial factors, including socio-demographic 
patterns of the population, infrastructure patterns, and urban 
and landscape structures. This correlation is evident across var-
ious types of crimes, including violent crime (Vasiliauskas and 
Beconyte 2016; Beconytė et al. 2020).

For the KDE experiments, the records available for 2022 were 
selected, which include acts of violence such as assault, phys-
ical abuse, threatening behavior, home invasion, murder, and 
manslaughter, resulting in a total of 108,670 records. Figure 1 
illustrates the spatial distribution of those events. The violent 
crime rate varies significantly between densely populated 
areas (more than 100 people per square kilometer, accounting 
for 77.4% of all events) and sparsely populated areas (< 100 peo-
ple per square kilometer, which make up 22.6% of all events). 
The average violent crime rate per 1000 population is 36.59 for 
densely populated areas and 48.30 for sparsely populated areas.

Visual inspection of the point distribution in Figure  2 sug-
gests that KDE will need to estimate a mixture of distribu-
tions, which may correspond to a mixed multivariate normal 
distribution.

4.1   |   Crime Events as a Spatial Point Process

Criminal incidents are registered with geographic coordinates 
and represented as a collection of two-dimensional event points 
(Figure 2). Statistical analysis of these events can be done by con-
sidering them as a random point pattern derived from the reali-
zation of a spatial point process within a finite two-dimensional 
coordinate space (Daley and Vere-Jones  2003; Diggle  2006; 
Illian et al. 2008, etc.).

Figure 2 clearly indicates that the spatial pattern of crime events 
is not completely random. The spatial distribution demonstrates 
a tendency toward clustering, and this tendency can be at-
tributed to first and/or second-order spatial effects (O'Sullivan 
and Unwin 2010). In this scenario, the first-order spatial effect 
can be readily explained by the spatially varying density of the 
human population, which differs significantly between urban 
and rural areas. Clearly, occurrences of crime are linked to pop-
ulated places, as depicted in Figure 2. However, with respect to 
the second-order spatial effect, it is conceivable to assume that 
the location of one violent crime event is independent of the lo-
cation of another violent crime event.

Given the above assumptions, the crime point pattern can be 
conceptualized and modeled as an inhomogeneous Poisson 

(24)RI
(
Ti
)
=

K

M

∑
Ti

1

�̂
(
Ti
) − ||Ti||
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process. The Poisson probability distribution is the classical law 
that governs the frequency of rare events, such as crime inci-
dents. In criminology, there is a common assumption that crime 
events follow the Poisson distribution or an over-dispersed vari-
ant of the Poisson probability function, such as the negative bi-
nomial (Berk and MacDonald 2008).

Inhomogeneous point patterns are designed for situations 
where spatial heterogeneity is a significant factor. In the inho-
mogeneous Poisson point process model, under the assump-
tion of constant risk and no interactions between events, each 
individual has an equal probability of being affected by crime 
during the observation period, regardless of location. In re-
gions with a higher population at risk, a higher number of 
crime cases can be anticipated. A population covariate can be 
used to model the intensity of the Poisson crime process using 
various forms of the Poisson model, such as the baseline or 
constant risk model, where the crime intensity is proportional 
to the covariate.

The next section examines the relationship between population 
and crime events and evaluates the consistency of the crime 
point pattern as a realization of an inhomogeneous Poisson pro-
cess. Following that, validation experiments were carried out 
under the same assumptions.

4.2   |   Exploratory Data Analysis

As part of exploratory data analysis, the inhomogeneity, in-
dependence, and clustering of crime events were examined. 

Additionally, the baseline effect of the human population co-
variate on the distribution of crime was investigated.

As anticipated, the p-values obtained from Pearson chi-squared, 
likelihood ratio G2, Freeman-Tukey T2, and Monte Carlo tests 
of homogeneity (Baddeley et  al.  2016), using quadrat counts 
with rectangles of equal area, indicate the rejection of the null 
hypothesis of complete spatial randomness or homogeneous 
intensity of crime events. This rejection is made under the as-
sumption that the point process follows a Poisson distribution, 
or that the points are independent of each other.

The p-value of the Average Nearest Neighbor (ANN) obtained 
from a Monte Carlo test indicates that the distribution of ANN 
values, simulated from the population density background, 
does not entirely support the notion that the clustering of crime 
events can be explained by an only random process when popu-
lation density is the single controlling factor. Nevertheless, when 
the distribution of ANN values is adjusted for human popula-
tion density, it exhibits a closer proximity to the observed ANN 
value. This suggests the possibility that other variables, such as 
household income, may contribute to explaining the clustering 
of crime events further.

Figure 3 illustrates variations in crime event density correspond-
ing to higher human population density, generated through 
quantile tessellation of population counts using quadrat counts 
of crime events. Visual inspection of the KDE maps reveals over-
all similarities in the distribution of crime density and popula-
tion density patterns (Figure 4), which are further confirmed by 
the explanatory data analysis presented in the following section.

FIGURE 2    |    Distribution of violent crime (108,670 incidents) in relation to Lithuania's population (2022).
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Two formal tests, the chi-squared test and the Monte Carlo 
quadrat counting test, were conducted to assess the (non-)depen-
dence on a covariate (Baddeley et al. 2016). Both tests suggested 
that the density of crime events depends on population density, 
with a two-sided p ≤ 0.01, supporting the alternative hypothesis.

Additional more robust tests were performed to explore the 
influence of a covariate on which crime intensity may de-
pend, rather than assuming homogeneity. The estimation of 
Ripley's second moment function K(r) derived from the dis-
tribution of crime points reveals a departure from a complete 
spatial randomness or a homogeneous Poisson point process. 
The estimation of the inhomogeneous K-function (Baddeley 
et al. 2016) for a nonstationary point pattern indicates that the 
crime points pattern aligns with an inhomogeneous Poisson 
process characterized by the chosen density. This suggests 
the possibility of correlation-stationarity within the point 
process, or fluctuations due to changes in underlying covari-
ates such as population density. Consequently, the similarity 
in the results of the inhomogeneous K-function between the 
two halves of the dataset implies the validity of assumption of 
correlation-stationarity.

Cumulative distribution function (CDF) tests, including 
Kolmogorov–Smirnov, Cramér-Von Mises, and Anderson-
Darling (Baddeley et al. 2016), evaluate CSR based on covariate 
values at data points. Those tests reject the homogeneity of crime 
points and support the alternative hypothesis of dependence on 

the human population covariate. Furthermore, Berman Z1 and 
Z2 tests (Baddeley et al. 2016) demonstrate the dependency of 
the crime point process on the human population.

The CDF test also measures the strength of the effect of a co-
variate in terms of area under the receiver operating character-
istic curve (AUC). The AUC values close to 1 or 0 signify robust 
discrimination, while a value of 0.5 indicates no discriminatory 
power. In this CDF analysis, the obtained AUC ≈ 0.945 suggests 
that high densities of crime events are anticipated at elevated 
values of population density.

To further test and measure the relationships between the spatial 
distribution of crime events and the human population, several 
parametric point process models are run and evaluated against 
the null hypotheses using ANOVA likelihood ratio tests and 
compared using AIC and AUC measures (Baddeley et al. 2016):

•	 The homogeneous Poisson model, also known as the con-
stant intensity model with �̂(u, v) ≡ � = 1.674, is used as a 
reference in certain tests; the AIC value is 105,366.

•	 The offset model, expressed as �̂(u, v) = 0.05160782ẑ(u, v) , 
defined by an intensity that is scaled proportionally with 
the baseline, namely the human population density. The 
ANOVA test rejects the null hypothesis, supporting the 
notion that crime varies with population density; the AIC 
value is −344,222 and the AUC value is 0.8674.

FIGURE 3    |    The graph presents the distribution of crime event intensity against population intensity, grouped by 10-quantile intervals.

FIGURE 4    |    Isotropic kernel density surfaces for (a) crime and (b) population, using a 5 km bandwidth. The densities were grouped using the geo-
metric interval classification method, with 10 classes for each surface.
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•	 The log-linear Poisson regression model, given by 
log

(
�̂(u, v)

)
= 0.256 + 0.00279ẑ(u, v), incorporates the 

human population as a covariate. The ANOVA test rejects 
the null hypothesis, supporting the notion that crime varies 
with population density, with an AIC value of −296,543 and 
an AUC value of 0.8674.

In the above equations, �̂(u, v) denotes the crime intensity per 
square kilometer, and ẑ(u, v) denotes the human population 
value at a given spatial location u, v. The last two models demon-
strate a significant (p < 0.01) influence of population density on 
crime distribution. The area under curve (AUC) measures show 
a high separation in the spatial domain, delineating areas with 
high and low densities of crime points corresponding to human 
population. The offset model with the lowest AIC value outper-
formed the log-linear Poisson regression model.

The spatial relative risk function was used to illustrate the spa-
tial interactions between crime events and the underlying at-
risk population. If the kernel bivariate densities of crime events, 
denoted as Ke( ∙ ), and the human population at risk, denoted as 
Kp( ∙ ), are both estimated through their own KDE processes, 
then the joint spatial relative risk function, denoted as r̂(x, y), 
can be expressed as the ratio of densities describing the spatial 
distribution of crime events and the population at risk back-
ground controls (Bithell 1991; Davies et al. 2018) as follows:

where bandwidths for both kernel functions are denoted as 
he and hp, respectively. As per Davies et  al.  (2016), employing 
a common jointly optimal spatial bandwidth he = hp for both 
events and background controls offers several advantages.

The density surfaces of relative risk with bandwidths 
he = hp = 1 km are illustrated in Figure 5. Areas with an average 
risk density r̂(x, y) ≅ 0 and f̂c(x, y) ≅ f̂p(x, y) are shown in yellow. 
Figure 5b highlight areas where �r(x, y) > 0 with a higher local-
ized concentration of crime relative to the population density, 
and areas with a relatively low crime rate where �r(x, y) < 0 are 
outlined in Figure 5c.

Maps in Figure  5 illustrate asymptotic p-value surfaces delin-
eating tolerance areas from upper-tailed and lower-tailed tests, 

respectively, at significant 5% thresholds of elevated (Figure 5b) 
and reduced (Figure  5c) risk (Davies and Lawson  2019). The 
highlighted areas outline areas where anomalous crime activ-
ity may occur, indicating significantly increased or decreased 
crime risk compared to the background population density.

Nonetheless, the relationship between crime event densities and 
human population densities is not directly proportional, as evi-
dent from the relative risk maps (Figure 5). Therefore, using an 
inhomogeneous Poisson offset model with an intensity propor-
tional to the baseline population can serve as a simplification of 
the relationship between crime events and population.

Based on exploratory data analysis, it appears that the crime 
event pattern closely follows an inhomogeneous Poisson pro-
cess, with clustering being explained by the baseline effect of 
the human population.

4.3   |   KDE of the Crime of Violence in Lithuania

A series of experiments was carried out to investigate kernel es-
timations for crime count data. These experiments advanced 
through three stages: (1) estimating bandwidths; (2) computing 
kernel functions using the estimated bandwidths and visualizing 
kernel surfaces as density maps; and (3) calculating validation 
metrics for the evaluation of results. The key reference in this sec-
tion is Baddeley et al. (2016), which includes extensive discussion 
on model validation for point patterns. They introduce methods 
for assessing the fit of a theoretical model to observed data, such 
as analyzing residuals and using formal statistical tests.

4.3.1   |   Bandwidth Estimation Experiments

The most popular bandwidth selectors from plug-in (PL), cross-
validation (CV), and hybrid methods underwent testing. Some 
of these selectors had foundations in spatial point process the-
ory. Different techniques were used to estimate univariate and 
bivariate bandwidths in the spatial domain, involving isotropic, 
diagonal, and full bandwidth matrices, as well as fixed, adap-
tive, and mixed bandwidths. Boundary corrections implemented 
within the KDE algorithms were applied. The most applicable 
outcomes of bandwidth estimations for the specified dataset are 
presented in Table 1.

The bandwidth values presented in Table  1 show consider-
able variations, ranging from approximately 100 m (based on 

(25)r̂(x, y) =

1

neh
2
e

ne∑
i= 1

Ke

�
d(x,y),i

he

�

1

nph
2
p

np∑
j= 1

Kp

�
d(x,y),j

hp

�

FIGURE 5    |    (a) Estimated log-transformed relative risk surface for relative crime/population density; (b) areas with high relative risk (p ≤ 0.05); 
and (c) areas with low relative risk (p ≤ 0.05).
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TABLE 1    |    Bandwidth selection results.

Bandwidth selectors

Univariate/
isotropic

Anisotropic/
diagonal, m Full matrix, m

Spatial fixed 
or adaptive 

(interval), m

Plug-in (PI) including “rule-of-thumb”

Oversmoothing (OS) bandwidth selector, Terrell (1990) rule-
of-thumb, as implemented in the “sparr” package

11,656

Normal scale bandwidth selector by Silverman (1986) rule-of-
thumb, “sparr” and “sm” packages

10,747
[
12,299 0

0 9195

]

Bivariate bandwidth selector by Scott (1992) rule-of-thumb, 
“spatstat” package

10,634
[
12,299 0

0 9195

]

Rule-of-thumb for bandwidth selector for the pair correlation 
function (Stoyan and Stoyan 1995), “spatstat” packagea

52

Direct Sheathe and Jones' rule-of-thumb bandwidth selector 
at level 2, 2D data, (Wand and Jones 1995), “ks” package

[
1341 0

0 1003

] [
1563 −929

−929 1168

]

Normal scale bandwidth selector, (Chacón et al. 2011), “ks” 
package

[
12,144 0

0 8131

] [
12,299 −7225

−7225 9195

]

Normal mixture bandwidth selector with four mixture 
components, (Cwik and Koronacki 1997), “ks” package

[
12,008 0

0 8872

] [
12,270 −7306

−7306 9268

]

Normal scale bandwidth selector over product kernel with 
the Silverman rule-of-thumb, (Li and Racine 2007), “np” 
package

[
13,028 0

0 9740

]

Cross-validation (CV)

Unbiased least squares CV (LSCV) selector for bivariate, 
edge-corrected bandwidth (Davies and Baddeley 2018), 
“sparr” package

222

Likelihood CV (LIK) selector for bivariate, edge-corrected 
bandwidth (Davies and Baddeley 2018), “sparr” package

333

MSE CV bandwidth selector of point process density 
(Berman and Diggle 1989), assumes a Cox process, “spatstat” 
packagea

13

The likelihood leave-one-out CV (LCV) selector 
(Loader 1999), assumes an inhomogeneous Poisson process, 
“spatstat” packagea

530

The likelihood CV bandwidth selector based on preservation 
mass criterion (Cronie and van Lieshout 2018), “spatstat” 
packagea

26,447

The global adaptive likelihood CV bandwidth selector 
based on preservation mass criterion (van Lieshout 2022), 
“spatstat” packagea

530

Abramson-Hall-Marron's (1982, Hall and Marron 1988) 
adaptive bandwidth selector uses a global bandwidth derived 
from the LCV selector, “spatstat” package

120–2650

Least squares CV (LSCV) bandwidth selector derived from a 
single value (Bowman and Azzalini 1997), “sm” package

6182
[
7405 0

0 5536

]

(Continues)
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cross-validation) to nearly 12,000 m (using the over-smoothing 
Terrell plug-in selector) for fixed bandwidths. Notably, the se-
lector based on the preservation mass criterion (Cronie and 
van Lieshout  2018) produces unreliable results. Choosing 
the suitable bandwidth for a particular application is a prac-
tical concern, as no single selection rule dominates others. 
Therefore, the results presented in Table 1 highlight the im-
practicality of using ISE and MISE optimization criteria to 
unquestionably select the optimal bandwidth.

Selecting the optimal bandwidth for a specific case relies on 
the actual shape of the density being estimated and the criteria 
employed to evaluate the estimate's quality. Furthermore, the 
choice of a particular optimal bandwidth is related to the data 
sample size and the complexity of the data distribution. Several 
bandwidth selectors, primarily cross-validation-based methods 
(SCV and LCV unconstrained selectors) yielded completely un-
satisfactory results and are not included in Table 1. The failure 
can be due to (a) discretization effects and data rounding in a 
very large dataset, and/or (b) intrinsic assumptions about the 
dependence between points that are not true for the test dataset 
with density regions of different shapes and sizes, multimodal-
ity, and asymmetry.

However, the data in Table 1 reveal several consistent patterns, 
with some exceptions. The results confirm the anticipation that 
fixed cross-validation-based methods, notably classic LSCV, 
would generate isotropic bandwidths with very small under-
smoothing. The majority of the assessed selectors estimate 
bandwidths to be under 1000 m. Cross-validation methods might 
not be suitable for highly variable data due to their tendency 
to yield estimates with minimal bias but substantial variance. 

Moreover, LSCV selectors do not perform effectively for large 
samples (Heidenreich et  al.  2013). Modified cross-validation 
methods, such as SCV, account for much less variation without 
significantly increasing bias; in our study, they generated more 
realistic bandwidths.

Compared to cross-validation methods, plug-in selectors al-
ways have a smaller, asymptotic variance, but relatively large 
bias. The plug-in estimates tend to be more stable, resulting in 
over-smoothed surfaces. There is an assumption that the as-
ymptotic properties of the sophisticated plug-in methods make 
those methods hard to compete, and other bandwidth selectors 
are usually underperformed (Heidenreich et  al.  2013). From 
our tests, most plug-in selectors suggest spatial bandwidths 
with sizes around 10,000 m. Sheathe and Jones' rule-of-thumb 
generates relatively modest bandwidths; nevertheless, there 
are no objective criteria available for selecting its arbitrary 
level parameter.

Furthermore, experiments were conducted by mixing meth-
ods that combine various bandwidths and/or KD estimators. 
Such bandwidth mixtures have some potential to yield stable 
results. The mixture can be done by different methods; one of 
the simplest ones is using cross-validation and plug-in band-
width in different proportions on a logarithmic multiplicative 
scale, as described in Heidenreich et al. (2013). Even in prac-
tical scenarios, a straightforward average of cross-validation 
and plug-in bandwidths may outperform their individual al-
ternatives, as noted in Mammen et al. (2011). Given the range 
of biases inherent in the ISE and MISE minimizing methods, 
a combination of cross-validation and plug-in can represent 
a viable compromise. The following formula can be used 

Bandwidth selectors

Univariate/
isotropic

Anisotropic/
diagonal, m Full matrix, m

Spatial fixed 
or adaptive 

(interval), m

Biased CV (BSV) bandwidth selector for bivariate data (Sain 
et al. 1994), “ks” package

[
11,742 0

0 8620

] [
12,655 7523

7523 9461

]

Unbiased CV (UCV) bandwidth selector for bivariate data 
(Bowman 1984), “ks” package

[
9471 4573

4573 2207

]

Smoothed CV (SCV) bandwidth selector (Chacón and 
Duong 2018), “ks” package

[
1640 0

0 1274

] [
1852 −1021

−1021 1433

]

Bootstrap

Bootstrap-estimated MISE, edge-corrected fixed and global 
bandwidth selectors (Davies and Baddeley 2018), “sparr” 
package

2907
5330

Mixed (Mammen et al. 2011)

α = β = 1 3162

α = 2, β = 1 2154

α = 1, β = 2 4642
aBandwidth selectors based on point process theory rely on assumptions regarding point dependencies, such as assuming an inhomogeneous Poisson process or 
assuming a Cox process, etc.

TABLE 1    |    (Continued)

 14679671, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tgis.70051 by V

ilnius U
niversity, W

iley O
nline L

ibrary on [08/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



20 of 29 Transactions in GIS, 2025

to calculate three types of mixture of cross-validation and 
plug-in bandwidths:

where the three possible combinations are � = � = 1, � = 1, � = 2 
and � = 1, � = 2. In Table  1, combinations of ĥPL = 10,000 m 
and ĥCV = 1000 m were used.

4.3.2   |   Experiments With Variants of Kernel 
Density Estimators

The experiments involve a variety of kernel functions with dif-
ferent parameterizations and bandwidth sets to estimate kernel 
densities for violent crime events, followed by the calculation of 
internal validation metrics and visualization of kernel density 
estimation surfaces. The experiments were carried out using 
fixed isotropic, diagonal, and full matrix bandwidths, as well as 
adaptive bandwidths as specified below.

Based on the range of isotropic bandwidth values, estimated 
using plug-in, cross-validation, and mixture selectors (see 
Table  1), the fixed bandwidths of 2000, 5000, and 10,000 m 
were chosen for testing. For each bandwidth value, Gaussian, 
Epanechnikov, and quartic kernel functions were used to gen-
erate kernel density surfaces. These density estimates were not 
adjusted for edge effect bias.

Table 2 and Figure 5 display selected outcomes of violent crime 
density surfaces using classic bivariate radial-symmetric kernels 
with isotropic fixed bandwidths. In all maps, the classification 
and visualization of density values remain consistent, as indi-
cated in the legend in Figure 5. The geometric interval classifi-
cation method with 10 classes is used throughout. Additionally, 
Table  2 presents the total raw point residuals R(W ) for each 
estimate.

Maps in Figure  6 show that density surfaces constructed 
with these bandwidths exhibit significant visual differences. 
Reducing the bandwidth for estimates (as shown in maps #1, 
2, and 5 in Figure 6) enhances the surface details. As a result, 

(26)hmix =
(
ĥ�CVĥ

�

PL

) 1

�+�

TABLE 2    |    Bivariate radial-symmetric kernels with isotropic fixed bandwidths.

Map no.
Kernel density 

estimation method Bandwidth, m (fixed)

Total raw point 
residuals (number 

of points)

Total point raw point 
residuals (% out of 

108,670 events)

1. Spatial bivariate 
Gaussian isotropic

10,000 6566 6.04

2. Spatial bivariate 
Gaussian isotropic

5000 3625 3.34

3. Spatial bivariate 
Epanechnikov isotropic

5000 3790 3.49

4. Spatial bivariate 
Quartic isotropic

5000 3756 3.46

5. Spatial bivariate 
Gaussian isotropic

2000 1453 1.34

FIGURE 6    |    Kernel density maps generated using spatial bivariate isotropic KDEs with different bandwidths and kernel functions, as specified 
in the settings provided in Table 2.
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the density spots around major population areas become more 
condensed and less rounded.

As expected, the choice of kernel functions (maps #2–4 in 
Figure 6) does not have a significant impact, as evidenced by the 
differences in the total point raw residual R(W ) values as well. 
However, with the same other parameters, the Gaussian kernel 
yields slightly better results in terms of the total point raw re-
sidual R(W ). The Gaussian kernel is one of the smoothest KD 
estimators, often requiring a larger optimal bandwidth h. When 
applied to non-normal data, it tends to cause over-smoothing.

Density surfaces, corrected for edge effects using both “uni-
form” correction and Diggle's correction techniques (Davies 
et  al.  2018; Diggle  1985), appear visually similar to the corre-
sponding uncorrected ones, with differences observed only 
along the boundary of the study area.

Table  3 and maps in Figure  6 display selected outcomes of 
violent crime density surfaces using classic bivariate radial-
symmetric kernels with anisotropic fixed bandwidths, with-
out boundary corrections. The anisotropy ratio between the 
horizontal h11 and vertical h22 directions in the bandwidth 
matrix is consistent across all estimated bandwidth sizes in 
Table  1, the average ratio value is approximately 1.356. The 
average ratio between matrix elements h11 and h12 is approx-
imately 1.772. These ratios were used to compute the band-
width matrix elements in Table 3 and to plot the residuals in 
the following subsection.

Surfaces of the diagonal and full parametrization classes (maps 
#6–11 in Figure 7) exhibit anisotropic stretching from the north-
west to the southeast. The major range direction of anisotropy is 
confirmed through trend analysis using global polynomial in-
terpolation, estimated to be approximately 120°.

TABLE 3    |    Bivariate radial-symmetric kernels with anisotropic fixed diagonal and full bandwidths.

Map no. KDE estimation method
Bandwidth 
matrices, m

Total raw point 
residuals (number 

of points)

Total point raw point 
residuals, (% out of 

108,670 events)

6. Spatial bivariate Gaussian 
diagonal anisotropic

[
10,000 0

0 7375

]
5909 5.44

7. Spatial bivariate Gaussian 
diagonal anisotropic

[
5000 0

0 3687

]
3383 3.11

8. Spatial bivariate Gaussian 
diagonal anisotropic

[
2000 0

0 1475

]
1385 1.27

9. Spatial bivariate Gaussian 
unconstrained anisotropic

[
10,000 −5643

−5643 7375

]
5730 5.27

10. Spatial bivariate Gaussian 
unconstrained anisotropic

[
5000 −2822

−2822 3687

]
3258 3.00

11. Spatial bivariate Gaussian 
unconstrained anisotropic

[
2000 −1129

−1129 1475

]
1317 1.21

FIGURE 7    |    Kernel density maps generated using spatial bivariate anisotropic Gaussian KDEs with different bandwidths and parameterization 
classes, as specified in the settings defined in Table 3.
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Considering the anisotropic tendency of the phenomena, the 
total point process residual values decrease in the diagonal KD 
estimations compared to the isotropic KD estimations and de-
crease further in the full parametrization KDEs (Tables 2 and 3), 
indicating an improvement in estimations.

The adaptive bandwidth surfaces (maps #12–14 in Table 4 and 
Figure  8), generated with Abramson's adaptive sample-point 
technique (Abramson 1982) and without boundary corrections, 
are structurally similar to the surfaces with fixed bandwidth 
sizes. However, their densities tend to be more concentrated in 
areas with higher populations. Interestingly, the estimates with 
variable bandwidths perform worse than both fixed bandwidth 
isotropic and anisotropic KDEs.

4.3.3   |   KDE Global Errors for Selecting 
the Best Estimation

The global errors of KDE were plotted against varying band-
width sizes to investigate their changes. Figure 9 shows the total 
raw point residuals against various bandwidth sizes for different 
kernel density estimators. These density estimates were made 
without adjusting for edge effect bias.

As expected, the total raw residuals R(W ) decrease with smaller 
bandwidths but do not converge to zero, likely due to the nu-
merical precision of density computations. Spatial bivariate 
radial-symmetric kernels with anisotropic fixed bandwidths 
outperform both isotropic fixed and adaptive KDEs.

TABLE 4    |    Bivariate radial-symmetric kernels with isotropic adaptive bandwidths.

Map no.
KDE estimation 

method
Global bandwidths 

(h0), m

Total raw point 
residuals (number 

of points)

Total point raw point 
residuals, (% out of 

108,670 events)

12. Isotropic spatial 
Gaussian adaptive 

Abramson

10,000 8943 8.23

13. Isotropic spatial 
Gaussian adaptive 

Abramson

5000 4887 4.50

14. Isotropic spatial 
Gaussian adaptive 

Abramson

2000 1955 1.80

FIGURE 8    |    Kernel density maps generated using spatial bivariate isotropic Abramson Gaussian KDE with different bandwidths, as outlined in 
the settings provided in Table 4.

FIGURE 9    |    Variation of the total raw point residuals R(W ) (left), and its zoomed-in view at lower values (right), displayed against bandwidth size 
in meters, without adjustments for edge effects.

 14679671, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tgis.70051 by V

ilnius U
niversity, W

iley O
nline L

ibrary on [08/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



23 of 29

As shown in Figure 8, the total raw point residuals R(W ) for the 
spatial bivariate Gaussian KD estimators with fixed bandwidths 
stabilize around 1000 m. This suggests that a fixed smoothing 
bandwidth of < 1000 m may be sufficient. Meanwhile, the re-
siduals R(W ) for the isotropic spatial Gaussian adaptive KD 
estimators, where global and pilot bandwidths vary under the 
condition of h0 = hpl, stabilize at bandwidth h ≈ 300 meters. 
Similar to bandwidths derived from cross-validation selectors, 
the stabilization of R(W ) at small bandwidths results in mini-
mal bias.

As anticipated, at the same bandwidth scales, KD estimators 
that utilize diagonal and unconstrained bandwidth selectors 
outperform their isotropic counterparts, resulting in lower re-
siduals R(W ) due to the oblique orientation of the crime point 
pattern relative to the coordinate axes. Additionally, the KD esti-
mators with full matrices show slightly better performance than 
those with diagonal matrices in terms of R(W ).

An interesting finding was that isotropic KD estimators with 
adaptive bandwidths did not show any improvement over KD 
estimators with fixed bandwidths. The smoothing regimen rule 
(Abramson 1982) is typically considered well-suited for process-
ing spatial data, which often exhibit significant heterogeneity 
due to underlying processes like population density (Davies 
and Baddeley  2018). However, with the settings used h0 = hpl, 
the R(W ) values for the adaptive KD estimators are higher than 
those for estimators with fixed bandwidths—as seen in Figure 8, 
all the graphs converge into a single line at a bandwidth of ap-
proximately 300 m.

The total raw point residuals R(W ) were calculated for density 
estimations without considering edge or boundary effects. The 
raw kernel density estimates may exhibit significant negative 
bias near the boundary, which can fluctuate depending on the 
chosen bandwidth values, especially when larger bandwidth 
values are used. This boundary bias may need to be corrected, 
depending on the asymptotic properties of the estimator.

Several solutions have been proposed to address this boundary 
bias issue, such as using special kernels, incorporating bias-
correction terms into f̂h(s), applying domain transformations, 
etc. (Karunamuni and Alberts 2005). In the experiments, both 
“uniform” edge correction at the test point s and Diggle's edge 
correction based on observation Si (Baddeley et al. 2016) have 
been used. The corresponding KD estimators and the incorpo-
rated edge-correction terms are defined as follows:

where f̂h
U
(s) and f̂h

D
(s) denote the uniformly global edge-

corrected and Diggle's local edge-corrected KD estimators at a 
point s, along with their respective edge-correction terms. The 
edge correction term gh(. ) is defined as the reciprocal of the 
kernel mass across the entire study area W. The edge correction 
term rescales the current estimate.

Figure 10 displays the total raw point residuals against differ-
ent bandwidth sizes for various KDE variants with “uniform” 
edge correction. This estimator is biased in general and is only 
unbiased when the density is constant in a homogeneous point 
pattern process (Baddeley et  al.  2016). However, the values of 
the total raw point residuals after “uniform” scaling are signifi-
cantly lower than those without corrections.

The graphs of the uniformly adjusted residuals first reach local 
minima at around 2000 to 2500 m (see Figure  9). The second 
set of local minima for the residual graphs using kernel density 
estimators with fixed bandwidths occurs between 11,000 and 
12,500 m. Meanwhile, the adaptive residual graph displays local 
minima at 2000 and 8500 m.

Comparing these local minima to values in Table 1, it can be seen 
that the fixed KDE bandwidths in the plug-in selectors closely 
correspond to the second set of local minima. Additionally, 
some cross-validation selectors also estimate bandwidths near 
11,000 m.

The results for the cross-validation selectors in Table 1 are in-
consistent. However, it can be noticed that some cross-validation 
selectors, as well as the Bootstrap and Mixed selectors, corre-
spond to the first minima observed in the graphs.

In terms of performance, the trends of residuals with “uni-
form” scaling are different from the trends of residuals with-
out scaling. Notably, Figure  10 shows that isotropic fixed 
kernel uniformly adjusted residuals exhibit smaller values 
compared to anisotropic fixed kernel uniformly adjusted 

(27)

f̂h
U
(s) =

1

nh2gh(s)

n∑
i= 1

K

(
s − Si
h

)
where gh(s) =

1

h2 ∫
W

K
(
u − s

h

)
du

(28)

f̂h
D
(s) =

1

nh2

n∑
i= 1

1

gh
(
Si
)K

(
s − Si
h

)
where gh

(
Si
)
=

1

h2 ∫
W

K

(
u − Si
h

)
du

FIGURE 10    |    Variation of the total raw point residuals R(W) (left), and its zoomed-in view at lower values (right), displayed against bandwidths 
with “uniform” adjustments for edge effects.
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residuals across the bandwidths up to 15,000 m. Additionally, 
the kernel for anisotropic diagonal bandwidths outperforms 
the kernel with full matrix bandwidths. However, once again, 
isotropic KD estimators with adaptive bandwidths show the 
weakest performance.

Figure 11 illustrates the total raw point residuals R(W) against 
different bandwidths for various KD estimators with Diggle's 
edge correction. Diggle's scaling normalizes the integral of 
f̂h
D
(s) over the entire study area W, ensuring it is exactly equal to 

the observed number of points (Baddeley et al. 2016). The esti-
mators seem unbiased within the bandwidth intervals > 400 m. 
However, this plot does not yield meaningful insights for com-
paring the performance of KD estimators.

Figure 12 shows the standard error SE�(s,h) (Equation 14) against 
different bandwidths for various kernel density estimators, in-
cluding both uncorrected and edge-corrected estimates. These 
graphs provide limited information for selecting the best-
performing kernel estimators.

Leave-one-out cross-validation is used to estimate the “pre-
dicted residual” with uncorrected, Uniform, and Diggle's edge-
corrected adjustments. However, computation becomes very 
costly when processing large datasets. The total LOOCV errors 
for uncorrected estimations closely match the total raw point re-
siduals, with the error curves being nearly identical.

Figure  13 shows the distribution of leave-one-out cross-
validation ErrLOOCV errors with uniform correction across 
various bandwidths, parameterization classes, and types of 
bandwidth variability.

There appear to be some variations between plots showing the 
LOOCV errors and the total raw point residuals; however, their 
relative positions remain consistent.

Experiments were conducted using k-fold cross-validation with 
independent random thinning, with K values of 2, 5, 10, and 
100 folds. Figure  14 illustrates the distribution of total cross-
validation error Errk−foldCV for K = 10, across various band-
widths, parameterization classes, and bandwidth variability 
types. In all cases, the total k-fold cross-validation errors are 
larger than the total raw point residuals R(W ), however, the 
shapes of the curves remain nearly identical (Figure 14).

Figure  15 illustrates an example of spatial leave-one-group-
out validation. Space-filling curves were used to sort points 
into local neighborhoods, and the sorted list was subsequently 
divided into blocks, each containing 96 points at the next-to-
lowest level. In this scheme, the algorithm first visits 96 lo-
cations within the next-to-lowest level neighborhood before 
moving on to the next neighborhood. This process generated 
1132 blocks, which were then used to calculate the leave-one-
block-out KDE errors.

FIGURE 11    |    The total raw point residuals R(W), plotted against bandwidths with Diggle's adjustments for edge effects.

FIGURE 12    |    The total standard errors for kernel estimates: (a) without edge corrections, and (b) with Diggle's edge-corrected adjustments. The 
graph for the Uniform edge-corrected adjustment closely resembles the uncorrected graph and is not shown in these plots.
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Once again, in most cases, the total ErrSFC−BlockCV errors are 
larger than the total raw point residuals R(W); however, while 
the shapes of the error curves remain similar, they exhibit 
more deviations compared to LOOCV and random k-fold cross-
validation errors.

4.3.4   |   Selecting the Best Estimation

Figure 8 shows that, based on the total raw point residuals R(W), 
the best kernel density estimator is the one with an anisotro-
pic full matrix parametrization, which effectively captures the 
anisotropy of smooth phenomena. Interestingly, fixed kernels 
outperformed the adaptive kernels in all tests. While adaptive 
kernels may provide the most accurate density estimates at the 
observation locations, fixed kernels deliver the best overall sur-
face estimate.

Figure 9 shows that fixed bandwidth KDEs with uniform correc-
tions exhibit the smallest errors with bandwidths between 2000 

and 3000 m. This aligns well with the performance of kernels with 
bandwidths, estimated using bootstrap-based MISE and mixed 
calculations. Interestingly, the fixed isotropic kernel slightly out-
performs the unconstrained kernel within this bandwidth range, 
while the unconstrained kernel still performs better than the diag-
onal kernel. The adaptive kernel performs the worst again.

For the fixed corrected kernels in the bandwidth interval of 
10,000–13,000 m, which aligns with the optimal range accord-
ing to most plug-in selectors (Table 1), the error curves show the 
second minimum in residuals. Within this bandwidth range, 
the fixed corrected unconstrained kernels achieve the shortest 
bandwidth with zero residuals. However, this clearly represents 
an over-smoothed solution.

Figures  12 and 13 show that the expected training error 
E
(
Errtraining

)
 consistently deviates from the expected test error 

E
(
Errtest

)
 by a fixed margin. As a result, the expected training 

error R(W) can serve as a reliable substitute for the expected test 
error ErrLOOCV, as discussed above.

FIGURE 13    |    Comparison of total point process residuals R(W) (dushed lines) and total ErrLOOCV errors (solid lines) for uniformly corrected 
estimations.

FIGURE 14    |    Comparison between total point process residuals R(W) (lower sets of darker color graphs) and total 10-fold CV Errk−foldCV errors 
(upper sets of lighter color graphs): (a) based on uncorrected estimations, (b) based on uniformly corrected estimations.
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The comparison analysis above suggests that for the dataset 
used in this study, the unconstrained kernel density estimator 
with a bandwidth of approximately 2800 m will be appropriate.

4.4   |   Software Used

The experiments were conducted using R Studio, along with 
packages spatstat, sparr, raster, sf, ks, np, kedd, KernSmooth, sm, 
cvTools, Ake, and cvTools, all of which are freely available from 
the CRAN website (cran.​r-​proje​ct.​org). ESRI ArcGIS Pro was used 
for dataset preparation and pre-processing, point sorting with 
space-filling curves, and visualization. The R scripts used for this 
study is not included in the paper but is available upon request.

5   |   Conclusion

GIS modeling extends beyond basic visualizations of point den-
sity and subjective assessments. When integrating Kernel Density 
Estimation (KDE) surfaces into the modeling process, it is essential 
to consider the errors associated with KDE in order to improve the 
overall accuracy of the model. Although many GIS software pack-
ages offer tools for kernel density estimation, these tools often do 
not provide sufficient capabilities to help users select appropriate 
settings for generating accurate kernel density surfaces and vali-
dating their accuracy. Typically, parameters such as bandwidth are 
estimated using rules of thumb, which do not allow users to effec-
tively assess the accuracy of the resulting kernel density estimates.

The findings from the case study highlight that there is no sin-
gle, definitive method for selecting the best kernel density esti-
mator for a specific point dataset, especially when using current 
rules and “optimal” bandwidth selectors. In real-world scenar-
ios involving large datasets with extreme value mixtures, it is 

common to observe multiple modes or centers of activity, each 
exhibiting varying heights, widths, and directions due to base-
line effects. This observation is relevant not only to crime events 
but also extends to various phenomena, such as rare diseases, 
patterns of mobile phone calls, animal sightings, tree distribu-
tions in forests, and many other occurrences.

The choice of bandwidth selector is important, but it may not 
be the primary factor affecting evaluation errors. Instead, the 
selected parameterization class and the type of bandwidth vari-
ability can have a significant impact. Additionally, the choice of 
kernel function may also influence the validation results.

Selection of the optimal kernel density estimator and the corre-
sponding parameters for a specific dataset and application can 
only be accomplished using the approaches described above, 
as there is no direct method to calculate MISE/AMISE/ISE for 
real-world datasets, particularly in anisotropic situations and 
adaptive KDE cases. The benchmark for this selection can be 
the internal and external error measures derived from the mass 
conservation property, which can be expressed in terms of the 
number of points (Equations 15–17, 21–22), the area of the obser-
vation window (Equations 18 and 20), or the area of the Thiessen 
polygons (Equations 23–24).

When large datasets are involved, such as the 108,670 crime 
event points used in this study, the total raw point residuals 
can be used for selection. Leave-one-out cross-validation er-
rors are more suitable for small datasets. However, certain 
types of leave-k out cross-validation, where k increases with 
n, will remain consistent because as the dataset size grows, 
leaving out a proportional number of data points (with k in-
creasing relative to n) helps ensure that the validation process 
becomes more stable and accurately reflects the data's under-
lying structure.

FIGURE 15    |    Comparison of total point process residuals R(W) (dashed lines) and total SFS-block CV ErrSFC−BlockCV errors (solid lines), based on 
uniformly corrected estimations.
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The primary objective of this study was to identify the optimal 
KDE surface using error measures. This selected surface will 
serve as an intermediate layer for spatial regression and clas-
sification in a neural network (Govorov et al. 2019). Validated 
Probability Density Function (PDF) surfaces can also serve as a 
component in more advanced semi-parametric and other mod-
els (Chacón and Duong 2018).

Kernel smoothing methods are effective tools for visualizing 
and understanding patterns in crime data. Crime risk maps can 
assist policymakers and law enforcement agencies in managing 
crime at both national and local levels. Additionally, these maps 
can help citizens evaluate the safety of their living environment 
and consider the crime context when choosing the location of 
their property.
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