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INTRODUCTION 
 

One of the most important practical applications and goals of biochemistry 

is the treatment of diseases. Rapid advances in science and technology disciplines such 

as functional genomics and proteomics greatly help in solving numerous challenges. 

Identification of proteins that could become potential drug targets is one of these 

challenges. Drugs acting on them would be able cure the disease or at least to alleviate 

condition. Another very important challenge is the discovery of drugs acting against 

those targets. The majority of drugs are small-molecular-mass compounds that activate 

or inhibit protein targets. It is useful to inhibit only proteins of disease-causing viruses 

and bacteria without altering the function of important human proteins. For example, 

anticancer drugs target proteins that are essential for cancer cell survival.  

In modern drug discovery, one of the major tasks is identification of ligands 

(small-molecular-mass chemical compounds) that alter protein functions and 

improvement of their properties. There is a demand for flexible, fast, and efficient search 

strategies that can be used to find ligands acting on proteins. After the lead discovery, the 

compounds are further improved until they enter clinical trials and can be used as drugs 

in case the trials are successful. Better inhibitors can be discovered by simultaneous 

usage of several search methods [1]. Computational methods in silico (Latin for “in 

silicon”, which indicates that modeling was carried out using computers) calculate the 

interactions between small molecules and macromolecules, such as proteins, and 

evaluate their complementarity. In silico methods have widely been applied in discovery 

and improvement of ligands. The development of a number of currently used drugs such 

as HIV protease inhibitors has been largely based on the application of structural 

methods and computational search strategies [2]. However, in spite of the success stories, 

computational inhibitor search methods are still far from perfect, mostly due to 

difficulties in computing the correct ligand binding energies.  

Making the inhibitors highly specific for just one enzyme isoform is one of 

the biggest challenges in the development of new drugs [3]. If selectivity is poor, the 
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inhibitor will bind into multiple targets causing undesirable side effects. Many inhibitors, 

currently being used as drugs, are not highly selective for one enzyme isoform, but 

inhibit several isoforms [4]. Quantitative Structure-Activity Relationship (QSAR) 

concepts have long been used in the design of such inhibitors. 

Carbonic anhydrases (CAs), also known as carbonate dehydratases (EC 

4.2.1.1), belong to the family of metalloenzymes. CAs catalyze a reversible reaction 

between carbon dioxide and water [5]: 

 CO2 + H2O ↔ HCO3
− + H+ 

CA II is known to be one of the most active catalysts (with kcat(catalytic 

constant)/Km (the Michaelis constant) = 1.5 × 108 M−1 s−1) [4]. CA is a target for 

approximately 30 drugs or compounds in clinical trials. Human CA inhibitors have 

already been used as diuretics and antiglaucoma drugs for some decades [3]. 

The computational study was carried out in three stages.  

During the first stage of the work, QSAR modeling was carried out using a 

set of 62 ketones. Most of them possess antiproliferative activity against several cancer 

cell lines. The data about those newly synthesized compounds and their antiproliferative 

activity were obtained in collaboration with the scientists of the Faculty of Chemistry 

and the Institute of Biochemistry, Vilnius University. We developed QSAR models 

quantitatively describing the antiproliferative activities of the above compounds. These 

QSAR models can be useful for the development of new, not synthesized yet, chemical 

compounds exhibiting anticancer activity.  

During the second stage of the work, CAs were selected for the comparison 

of several computational methods. The QSAR method was applied to suggest alterations 

in sulphonamide structures that could improve their selectivity. 2D-QSAR and 3D-

QSAR were carried out for different CA isoforms with a data set of 40 inhibitors. CA XII 

selectivities (affinity ratios) were used as the target variables for QSAR modeling. A 

more traditional QSAR protocol in which the affinities for different CA isoforms were 

separately modeled was also used. These two QSAR protocols were compared for each 

CA isoform. Some of the QSAR models were improved using a newly created molecular 

descriptor. The created descriptor can be further modified to develop a large number of 
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analogous descriptors.   

A study comparing the calculated binding energies computed using several 

different computational methods (docking, linear interaction energy (LIE), 

metadynamics, and QSAR) was carried out using 40 CA inhibitors as a data set. The 

QSAR approach showed the best results among all the tested methods. The possible 

rationalization of the obtained results was presented. A new LIE-like equation modifying 

the LIE method was suggested, and this resulted in improved results compared to the 

original LIE method. 

During the third stage of work we undertook a search for new cancer growth 

inhibitors. The theory was tested that it is possible to find new cancer growth inhibitors 

by searching for compounds that are similar to certain human metabolites. The Tanimoto 

chemical similarity index was used to search for drug candidates in large databases of 

purchasable compounds. A probability to find new inhibitors using this procedure was 

estimated by computing the Tanimoto similarity index between the known drug 

structures and human metabolites. Several compounds were suggested as cancer cell 

growth inhibitors, and two of them experimentally exhibited a previously unknown 

anticancer activity. 

Aim of the study 
 

The aim of this study was to search for new biologically active compounds 

using various theoretical approaches as well as to compare and possibly improve the 

computational methods used with a particular attention given to the QSAR method. 

Specific objectives: 

1. To develop QSAR models for a series of 62 α-branched α,β-unsaturated ketones with 

antiproliferative activity for three cancer cell lines (NB4, MCF–7, and A549). 

2. To compare docking, linear interaction energy (LIE), metadynamics, and QSAR 

methods and to determine which of them is the most suitable for the discovery of CA II 

inhibitors. 

3. To modify and improve the LIE approach so that it would become more applicable to 

the development of CA II inhibitors.  
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4. With the help of different approaches, to develop affinity and CA isoform selectivity 

QSAR models for a series of benzensulfonamide compounds with an attached 

pyrimidine ring. 

 

Scientific novelty  

Comparative and computational research on binding constants Kd and 

structures of 40 CA II inhibitors, i.e. benzensulfonamide derivatives with an attached 

pyrimidine ring, was carried out. Docking, LIE, metadynamics, and QSAR methods 

were used for the comparison. The computed Kd values were compared with the 

experimental data. This enabled the evaluation of advantages and disadvantages of the 

methods used when applied for the CA II receptor and its inhibitors. The best results 

were obtained with QSAR (coefficient R2 between the experimental and predicted pKd 

values varied from 0.83 to 0.89). Possible reasons for the observed results were explored. 

Moreover, a new improvement for the LIE method was suggested. With the proposed 

energy estimation equation, LIE results noticeably improved (R2 between the 

experimental and predicted ΔGbind values improved from 0.24 to 0.50). 

Using the antiproliferative activity data of α-branched α,β-unsaturated 

ketones against NB4, MCF–7, and A549 cancer cell lines, several QSAR models using 5 

descriptors were developed. They can be used to predict and explain the antiproliferative 

activities of compounds belonging to this class. 

A probability to find novel inhibitors with a novel inhibitor search strategy 

by employing the Tanimoto similarity index between compound candidates and 

metabolites was estimated. This strategy led to a discovery of two compounds inhibiting 

cancer cell growth, using hitherto unknown modes of action. 
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METHODS 
 

1.1. QSAR studies on antiproliferative activity of α-branched α,β-unsaturated 

ketones against human cancer cell lines 

The QSAR method for a series of α-branched α,β-unsaturated ketones was 

computationally explored. A total data set of 62 molecules was divided into two sets of 

chemical compounds based on the presence of the terminal alkene group: Set 1 set 

without the terminal alkene group (35 molecular structures) and Set 2 with the terminal 

alkene group (27 molecular structures). The IC50 activities of compounds were converted 

to pIC50 = –log(IC50) for the sake of convenience. For computational purposes, 

compounds with IC50 of >100 M (inactive) were assumed to have pIC50 equal to 4. 

Compound structures were sketched and afterward optimized in 3D using the 

AVOGADRO program (v. 1.1.1) [6]. In Set 1, the activity data of some compounds were 

determined for racemic mixtures, with unknown activities for individual enantiomers. 

For all these molecules, the same chirality was used to prevent introduction of noise. The 

generated molecular structure files were merged into a single sdf format file with the 

OPEN BABEL program (v.2.3.1) [7]. The combined sdf file was used as an input to the E-

DRAGON program [8]. E-DRAGON calculates numerous descriptor families [9]. The 

resulting pool consisted of 1666 descriptors. Linear regression QSAR models were 

developed using the LEAPS package within R software environment. LEAPS warned 

about issues arising from the linear dependence of the descriptors, and such QSAR 

models were rejected. The final QSAR equations were built using 5 descriptors 

according to the generally accepted rule that at least 5 molecules should be present for 

each selected descriptor [10]. 

1.2. Benzensulfonamide data set 

A total of 40 benzensulfonamides with experimental affinity data published 

previously [11] were used as the data set for the input. Of the 8 available PDB structures, 

8 initial ligand structures were extracted in the crystallographic binding mode after 
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carrying out protein structure alignment with PYMOL v.1.7.0.0. Hydrogen atoms were 

added with the AVOGADRO program (v.1.1.1) [6]. The structures of the remaining 

compounds were sketched and afterward optimized in 3D using AVOGADRO and 

maintaining the same alignment with the 3D structures of the initially prepared ligands. 

The separate molecular structure files were merged into a single sdf format file using 

OPEN BABEL (v.2.3.1) [7]. For further calculations, Kd values were converted into pKd 

values (pKd = –log(Kd)). 

Selectivity (pKd,diff) toward CA XII was defined as the difference between 

the pKd of CA XII and another CA. Combined selectivity for CA XII (∑CA XII) was 

defined simply as a sum of all selectivities for that compound. Even if a compound is 

highly selective for CA XII against just one other CA and not selective for CA XII when 

compared against the remaining CAs, it is still defined as selective for CA XII in general. 

1.3. Docking 

The same sdf file of chemical structures of CA II inhibitors was used as the 

input to carry out ligand-protein docking with ARGUSLAB [12]. The CA II structure 

(PDB ID: 3MYQ) prepared using the UCSF CHIMERA 1.8 “Dock Prep” procedure [13] 

was used as a docking target. A box on the docking target was set up to cover the extent 

of the known binding site. Docking precision was set to high precision, and the flexible 

ligand docking mode was employed. The same ligand set then was used as the input to 

carry out molecular docking with GLIDE [14] using the MAESTRO 2014.2 software 

package. The CA II receptor and all ligands were prepared using built-in preparation 

tools. Docking was performed using the standard default settings mode except donor-

acceptor bonds between Zn2+ in CA II and the ligand. The donor-acceptor bond between 

the ligand and Zn2+ was not enforced by the program. Docking precision was set to extra 

precision. 

1.4. Linear Interaction Energy 

All molecular dynamics (MD) calculations for LIE were performed using 

GROMACS (v.4.6.2) [15]. The CA II structure (PDB ID: 3MYQ) was prepared using the 

UCSF CHIMERA 1.8 Dock Prep procedure [13]. The Amber ff99SB protein force field 

[16] and the general AMBER force field (GAFF) [17] were used for the protein and the 
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ligand, respectively. To prevent the ligand from traveling away from the binding site 

during the MD simulation, a coordination bond was enforced between Zn and 

sulfonamide nitrogen. The non-bonded parameters R and ε for Zn were taken from ref. 

[18]. The formal charge on Zn was set to +1 in accordance with quantum chemical 

calculations [18]. The parameters for bonds, angles, and dihedrals for the zinc ion 

connected to the surrounding residues and the sulfonamide nitrogen atom were taken 

from references [19] and [20]. Na+ or Cl– counter ions were added to neutralize the 

system. The time step of the simulations was 2 fs. All simulations were carried out at 300 

K. Prior to MD simulations, 800-step minimization and 80-ps equilibrations with the 

constrained protein heavy atoms were carried out. Two sets of 1-ns production runs were 

performed: one on a protein-ligand complex in water and the second on a separate ligand 

in a water box. During the production runs, pressure coupling was applied using the 

Parrinello-Rahman algorithm [21, 22], and temperature coupling was done with the V-

rescale algorithm [23]. The particle-mesh Ewald [24] algorithm was used for long-range 

electrostatic interactions, with a cutoff of 9 Å. The same cutoff of 9 Å was used for Van 

der Waals interactions. The ΔGbind was approximated using standard or modified LIE 

equations. 

1.5. Metadynamics 

The system was prepared for metadynamics calculations using the same 

procedure as for the LIE simulations. Metadynamics was performed using the PLUMED 

plugin (v.2.1.0) [25] compiled together with GROMACS (v.4.6.7). The donor-acceptor 

bond between the Zn ion and the ligand was not built, because the metadynamics 

procedure required a freely moving ligand being able to move away from the binding 

site. We assumed that the absence of the bond between the ligand and zinc should not 

pose a critical problem for the purposes of the ligand ranking. Metadynamics potential 

was set to act on only one distance collective variable (CV) between the Zn ion in CA II 

and the charged ligand nitrogen atom in the sulfonamide group. The rate of Gaussian 

deposition was set to one Gaussian every 500 steps, while the height and width of the 

Gaussian were set to 2 kJ/mol and 0.04 nm, correspondingly. The length of production 

runs was set to 4 ns in order to give enough time for the bias potential to fill the binding 

pocket. The PLUMED utility sum_hills was used to estimate the free energy as the 
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function of metadynamics CVs directly from metadynamics bias potential. 

1.6. Carbonic anhydrase II inhibitor QSAR 

The same set of chemical structures of 40 CA II inhibitors as the sdf file was 

used as the input to compute molecular descriptors with E-DRAGON [8, 9]. The 

resulting pool consisted of 1666 structural descriptors. Appropriate descriptors were 

selected, and multiple linear regression QSAR models were developed using the LEAPS 

package within the R software environment. LEAPS warned about issues arising from the 

linear dependence of descriptors, and such QSAR models were rejected. The final QSAR 

equations were built using a data training set of 30 inhibitors, and the 10 remaining 

inhibitors were used as a test set for the model validation. Descriptors were included into 

the model according to the generally accepted rule that at least 5 chemical compounds 

with experimental data should be taken for each selected descriptor [10]. Mean absolute 

errors (MAE) were calculated according to the procedure described in [26]. The 

Applicability Domain is a QSAR model-relevant approach, which represents the 

chemical space from which a model is derived and where a prediction is considered to be 

reliable [27]. Here we used a simple standardization approach introduced by Roy et al. to 

determine the Applicability Domain of our 2D-QSAR models [28]. This approach is 

used to define outliers in the training set and the compounds residing outside the 

Applicability Domain in the test set of the built QSAR models. 

1.7. PHASE atom-based 3D-QSAR 

PHASE 3D-QSAR studies for CA affinities and CA XII selectivities were 

carried out using the PHASE v.4.4 module in the MAESTRO 10.3 molecular modeling 

package from Schrödinger, LLC [29, 30]. PHASE QSAR models may be atom-, field-, 

or property-based. The difference among them is that either all the atoms of the 

compounds are taken into molecular modeling or different pharmacophores, which 

confirm the hypothesis about what features determine biological activity. Structures of 

compounds were realigned using a common scaffold alignment in MAESTRO 

(Schrödinger, LLC). Atom-based 3D-QSAR models were built by correlating the actual 

and predicted pKd or selectivities for a training set of 30 compounds using Partial Least 

Square (PLS) regression. The validation of the models was performed using the Leave 
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One Out (LOO) method, and by using a test set of 10 compounds. The test set for all 

calculations was kept the same in order to compare different QSAR protocols. PLS 

regression was carried out with a maximum number of n/5 PLS factors (n = number of 

ligands in the training set) and a grid spacing of 1.0 Å. Validation of all models was 

performed by predicting pKd or selectivity of the test set compounds. We used statistical 

metrics, and the X-ray crystal structures representing the active sites of CAs for the 

model validation. The Applicability Domain of PHASE models was not determined as 

there was no way to extract the molecular descriptors from the software. 

  



15  
 

RESULTS AND DISCUSSION 
2.1. Study on antiproliferative activity of α-branched α,β-unsaturated 

ketones against human cancer cell lines by QSAR method  

Using the activity data against the NB4, A549, and MCF-7 targets, several 

QSAR models were developed for compound Sets 1 and 2. The best models are 

presented below: 

pIC50(NB4,Set1) = 5.111 MATS1m – 1.83 MATS5p – 2.47 HOMA + 14.1 E2u – 10.4 E2a 

+ 4.27       

      (1) 

R2 = 0.86, R2
ADJ = 0.83, Q2 = 0.75, F(5,29) = 35.1, p < 10–5 

pIC50(A549,Set1) = 0.968 ATS6e + 1.55 MATS8m + 0.370 Mor05v – 0.484 Mor11p + 

0.765 Mor20p + 1.59      

      (2) 

R2 = 0.81, R2
ADJ = 0.78, Q2 = 0.75, F(5,29) = 25.3, p < 10–5 

pIC50(MCF-7,Set1) = 0.0457 RDF050u – 0.119 RDF035p – 0.620 Mor20m – 3.20 H7u – 

9.44 HATS2u + 8.73      

      (3) 

R2 = 0.92, R2
ADJ = 0.90, Q2 = 0.88, F(5,29) = 64.8, p < 10–5 

pIC50(NB4,Set2) = –5.17 MATS2m + 5.25 MATS2e – 3.90 E3u + 8.17 G2s – 1.29 R4v + 

5.69       

      (4) 

R2 = 0.86, R2
ADJ = 0.82, Q2 = 0.77, F(5,21) = 24.8, p < 10–5 

pIC50(A549,Set2) = -25.0 X3Av + 1.34 Mor16u + 7.19 G3u – 8.85 G3p – 0.140 Htv + 

7.97      (5) 

R2 = 0.80, R2
ADJ = 0.75, Q2 = 0.67, F(5,21) = 16.4, p < 10-5 

pIC50(MCF-7,Set2) = 0.0149 CSI – 0.109 UNIP – 0.0475 MPC10 + 0.815 X2 – 



16  
 

0.909 GATS1v + 1.11      

      (6) 

R2 = 0.89, R2
ADJ = 0.87, Q2 = 0.83, F(5,21) = 34.7, p < 10–5 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Plots of the experimentally determined versus predicted pIC50 values. A diagonal 

straight line represents an ideal agreement between the experimental and calculated 

values. The scaling of x-and y-axes is the same for all subplots for a better comparison. 

 

The models are described by several statistical parameters provided below 

each equation. The model was considered as acceptable based on correlation coefficients 

R2, adjusted correlation coefficients R2
ADJ, and F-test (F) values. The performance of the 

models was validated using the LOO method with variance Q2. Plots of the 

experimentally determined versus predicted pIC50 values are presented in Fig. 1. A 

straight line represents an ideal agreement between the experimental and calculated 

values. It is worth noting that correlation coefficients R2 were similar for the same cell 

line, regardless of the compound set, even though the QSAR equations were different. 

For the A549 cell line, the range of the measured pIC50 data for Sets 1 and 2 was only 0.7 
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and 0.9 log units, respectively, and this partly explains lower QSAR model quality for 

A549 compared to other cell lines. It was interesting to investigate how well the models 

were able to classify compounds as active and inactive. For the numerous points in Fig. 1 

corresponding to inactive compounds with the experimental IC50 >100 M (pIC50 = 4), 

QSAR models predicted pIC50 in the range from 3.76 to 4.25, i.e. the “true negatives” 

were reasonably well predicted by the QSAR equations. Only two compounds – 3ei and 

3fn (Set 1, NB4 cell line) – were defined as “false negative” with the predicted pIC50 

lower than 4.0, although the experimental pIC50 values were greater than 4.2, giving a 

relatively small error. Thus, we showed that QSAR models were able to distinguish 

between the active and inactive compounds, and they can be useful for designing 

molecules with improved antiproliferative properties. 

2.2. Computational analysis of carbonic anhydrase inhibition with 

benzensulfonamides using several computational methods 

2.2.1. Docking results 

Linear regression between the experimentally determined pKd values and the 

predicted energy values calculated using docking programs, namely ARGUSLAB and 

GLIDE, produced coefficients of determination (R2) equal to 0.00 and 0.07, respectively. 

Root-mean-square deviation (RMSD) was calculated between the crystallographic 

binding modes and the conformations of the same ligands docked with GLIDE and 

ARGUSLAB. The binding modes of the 8 ligands with the known structures (1a, 1f, 1i, 1j, 

2f, 2j, 4f, and 4g) were not reproduced with the GLIDE and ARGUSLAB docking programs 

(Fig. 2). Using GLIDE, ligand 1a was docked in a 180° reversed conformation 

(RMSD = 7.8 Å), and for other 6 ligands, the pyrimidine ring position was completely 

wrong. Only the docked conformation of ligand 2f was reasonable compared to the X-

ray structure (RMSD = 2.2 Å). Similarly poor results were also obtained using 

ARGUSLAB. In conclusion, docking procedures with the GLIDE and ARGUSLAB poorly 

predicts the experimental binding modes for this system. Difficulties to correctly predict 

an experimental binding mode with the VDOCK program have been reported previously, 

and constrained docking has been suggested to solve this problem [31]. One suggestion 

to improve the docking procedure in cases like this, where the core structure is the same 

for all ligands and when at least one experimental pose is known, is as follows: to allow 
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moving only the atoms that are different in the series and to fix the remaining (constant) 

part of the ligand structure in the crystallographic binding state. This could radically 

simplify the docking task. With the current versions of both ARGUSLAB and GLIDE 

docking software, it was not possible to try out this constrained docking procedure. 

Another issue is that half of those X-ray structures contain a dimethyl sulfoxide right 

inside the ligand binding pocket (PDB ID: 3SBH, 3SBI, 3S9T, 3SAX) and this may 

cause interference. Such artifact molecules are commonly deleted during the docking 

preparation procedure; thus, the docked ligand often takes a spot previously occupied by 

the artifact, conflicting with the experimental data. 

Fig. (2). Crystallographic (green) and docked (red) ligand binding modes. Zn ion is 

shown as a sphere. 

2.2.2. LIE results 

The MD simulation runs yielded data for 40 ligands. Because there was no 

correlation between the calculated LIE energies and the experimental affinities using the 

default fitting coefficients, new fitting coefficient values for the LIE method were 

derived as applied to CA II. The new fitting coefficients are shown in Table 1. The need 

to derive new fitting coefficients may arise because of the presence of the coordination 

bond between the ligand and the receptor in CA II. The free energy weight γ is an 

estimate of the effect of that bond. 

Table 1. Derived fitting coefficients values for LIE. 
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Fitting Coefficient Value 

α  0.197 

β  0.462 

γ  10.4 

 

Parameterization of the LIE equation with the new coefficients was not very 

successful either (R2 = 0.24). While looking for an explanation for the poor performance 

of the LIE method, we observed that ligand intramolecular interactions play an important 

role in the investigated system and cannot be ignored. 

Based on these observations, another approach inspired by LIE was 

developed to computationally approximate ΔGbind. Two Coulomb and Lenard-Jones 

interactions were used in a similar fashion after observation that they separately show 

some low correlation with ΔGbind: 

ΔGbind = α⟨Vel⟩lig-prot + β⟨Vvdw⟩lig-lig + γ,   (7) 

where ⟨Vel⟩ and ⟨Vvdw⟩ are the averages of electrostatic and van der Waals 

interactions, and the “lig-lig” and “lig-prot” subscripts refer to the ligand interacting with 

itself or with the protein. The parameterization of Eqn. 7 led to a better fit (R2 = 0.50) 

compared with the typical LIE equation. The fitting coefficient values for LIE-like Eqn. 

7 are shown in Table 2. 

Table 2.  Derived fitting coefficients values for the LIE-like method based on Eqn. 7. 

Fitting Coefficient Value 

α  0.0884 

β  0.689 

γ  51.1 
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We also attempted to restrain a ligand position in order to maintain it the 

same as in the X-ray structure for a subset of 8 ligands with the known structures (PDB 

ID: 3S8X, 3S9T, 3SAP, 3SAX, 3SBH, 3SBI, 4KNI, and 4KNJ). The LIE results for the 

ligands with position restraints were not better compared with the results for 

unconstrained ligands. Interestingly, for this ligand subset, the LIE results without 

position restraints correlate with the experimental data (R2 = 0.54). It shows that the 

correct initial ligand pose is beneficial for LIE calculations. It also shows that position 

restraints are not beneficial for LIE calculations. 

2.2.3. Metadynamics results 
 

The metadynamics simulation runs yielded data for a set of 40 ligands. The 

ligand leaving the protein binding pocket was observed during the production MD runs 

when simulation was biased with metadynamics potential. Estimates of free energy as 

the function of the distance between the Zn ion in CA II and sulfonamide nitrogen in the 

ligand were obtained for all ligands from 4-ns metadynamics simulations. An estimated 

difference in free energy between the bound and free ligand states did not correlate with 

the experimental data (R2 = 0.00). The location of the energy minimum did not match the 

X-ray bound state, and for 17 most problematic ligands the energy minimum was in the 

bulk solvent (water). There could be a possibility that our initial assumption was wrong. 

Another important observation is that the ligand shifts away from its X-ray position in 

the binding pocket during the MD equilibration phase, even before the metadynamics 

production run, and this can cause problems both with the metadynamics and the LIE 

calculations. Therefore, the MD equilibration procedure or perhaps even the force field 

may need an improvement, because  the  ligand  pose  theoretically should  remain  

stable  during  the  short  equilibration,  and the ligand  should  leave the binding pocket 

only during  metadynamics calculations. 

2.2.4. QSAR results 
 

Using the activity data against CA II, several QSAR models were 

developed. Three best models are presented below: 

 

pKd(CA II) = 2.05 MATS7m + 1.02 H5u + 4.49 HATS8m + 4.86, 
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      (8) 

R2 = 0.89, R2
ADJ = 0.87, Q2 = 0.87, F(3,26) = 68, p < 10–9, R2

TEST = 0.57 

pKd(CA II) = 0.0867 G(N..S) + 1.23 H5u + 68.7 (R7p+) + 2.19,  

      (9) 

R2 = 0.86, R2
ADJ = 0.84, Q2 = 0.83, F(3,26) = 53, p < 10–9, R2

TEST = 0.61 

pKd(CA II) = 0.0106 VAR + 2.26 MATS7m – 2.65 MATS8p + 4.30, 

       (10) 

R2 = 0.83, R2
ADJ = 0.81, Q2 = 0.79, F(3,26) = 43, p < 10–9, R2

TEST = 0.63 

 
 
 

Fig. (3). QSAR plots of the experimentally determined versus predicted pKd values. 

 

The statistical parameters of the models are provided below each equation. 
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The models were considered acceptable based on high values of coefficients of 

determination R2, adjusted coefficients of determination R2
ADJ, and F-test (F). The 

performance of the models was validated using the LOO method with variance Q2 and 

with a test set of 10 ligands. The plots of experimentally determined versus predicted 

pKd values in all 3 QSAR models, using both training and test sets for all of them, are 

presented in Fig. (3). 

 

2.2.5. Comparison of docking, LIE, metadynamics, and QSAR results  
 

Five methods (ARGUSLAB docking, GLIDE docking, LIE, metadynamics, 

and QSAR) were applied to predict binding energy of the 40 ligand set to CA II with the 

experimentally determined pKd values (Table 3). Of the 5 tested methods, only QSAR 

showed a sufficiently good correlation. One possible reason is that some ligands in the 

set have different tautomeric forms, and there are no available experimental data 

showing which form or forms are active in the binding site. This situation hinders all 

methods that strongly depend on ligand structure. We suggested an improvement for the 

LIE method in the form of modified Eqn. 7 that led to a significant improvement. We 

called this approach LIE-like. Another suggestion for docking, using a constrained 

scaffold, was not possible to test with the used docking software. The QSAR method 

most effectively helped quantify the subtle empirical relationship between the structure 

and the activity for the CA II target. The developed QSAR models have a potential to 

make predictions leading to the synthesis of novel ligands. 

Table 3. Coefficients of determination R2 between the computed binding affinities and 

the experimentally determined pKd using various methods. 

Method R2 

LIE 0.24 

New LIE-like 0.50 

QSAR 0.83-0.89 

ARGUSLAB docking 0.00 
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GLIDE docking 0.07 

Metadynamics 0.00 

 

2.3. E-DRAGON descriptor-based QSAR  

Several QSAR models specifically targeting selectivities of the 

benzensulfonamides toward CA XII were developed. The best models for the compound 

selectivities for CA XII versus other isoforms are presented below: 

 

pKd,diff(CA XII – CA I) = –0.566 T(N..N) + 0.0733 EPS0 + 21.0 (R7m+) + 7.14, 

      (11) 

R2 = 0.84, R2
ADJ = 0.83, Q2

LOO = 0.82, F(3,26) = 47, p < 10–9, R2
TEST = 0.79, Q2

TEST = 

0.67, MAE = 0.33 

pKd,diff(CA XII – CA II) = 8.76 MATS1p – 1.41 GATS8m – 1.03 GATS3v + 4.57, 

      (12) 

R2 = 0.81, R2
ADJ = 0.79, Q2

LOO = 0.77, F(3,26) = 38, p < 10–8, R2
TEST = 0.58, Q2

TEST = 

0.53, MAE = 0.28 

pKd,diff(CA XII – CA VI) = –12.1 GNar + 5.01 MATS7v – 2.74 MATS7p + 23.5, 

      (13) 

R2 = 0.82, R2
ADJ = 0.80, Q2

LOO = 0.78, F(3,26) = 39, p < 10–9, R2
TEST = 0.42, Q2

TEST = 

0.22, MAE = 0.19 

pKd,diff(CAXII – CA VII) = 2.04 MATS8p + 53.3 BELe5 – 0.214 Mor04m – 107, 

      (14) 

R2 = 0.83, R2
ADJ = 0.81, Q2

LOO = 0.78, F(3,26) = 42, p < 10–9, R2
TEST = 0.49, Q2

TEST = 

0.46, MAE = 0.45 

pKd,diff(CA XII – CA XIII)= –12.7 MATS2v + 2.29 MATS8p – 0.866 H4p + 3.43, 

      (15) 

R2 = 0.78, R2
ADJ = 0.75, Q2

LOO = 0.74, F(3,26) = 30, p < 10–7, R2
TEST = 0.71, Q2

TEST = 
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0.68, MAE = 0.36 

pKd,diff(∑CA XII) = –5.40 MATS8e + 0.308 RDF055m – 41.9 HATS8p – 0.0513, 

      (16) 

R2 = 0.78, R2
ADJ = 0.75, Q2

LOO = 0.74, F(3,26) = 31, p < 10–7, R2
TEST = 0.58, Q2

TEST = 

0.56, MAE = 1.34 

 

 

Fig. (4). Plots of selectivity-targeted QSAR using E-DRAGON descriptors. The x- and 

y-axes contain the experimental and calculated selectivities, respectively, for the training 

(gray circles) and the test set (black squares). 

 

Statistical parameters for the selectivity-targeted QSAR models are provided 

below each equation. The models were considered acceptable based on high values of 

coefficients of determination R2 and adjusted coefficients of determination R2
ADJ. The 

predictive performance of the models was validated using the LOO method with 
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variance Q2 and by calculating R2
TEST, Q2

TEST, and MAE for a test set of 10 ligands. The 

plots of experimentally determined versus predicted pKd differences in all computed 

QSAR models, using both training and test sets, are presented in Fig. (4). 

Next, we also developed QSAR models using affinities for each of the 

individual isoforms. This resulted in the following QSAR models: 

 

pKd(CA I) = 1.14·MATS8e + 5.47·GATS5v – 2.98·GATS7p + 4.47,  

      (17) 

R2 = 0.94, R2
ADJ = 0.93, Q2

LOO = 0.93, F(3,26) = 138, p < 10–15, R2
TEST = 0.89, Q2

TEST = 

0.87, MAE = 0.21 

pKd(CA II) = 2.05 MATS7m + 1.02 H5u + 4.49 HATS8m + 4.86,  

      (18) 

R2 = 0.89, R2
ADJ = 0.87, Q2

LOO = 0.87, F(3,26) = 68, p < 10–11, R2
TEST = 0.57, Q2

TEST = 

0.48, MAE = 0.31 

pKd(CA VI) = –0.883 GATS5m + 0.264 H2m + 13.1 (R7m+) + 5.04,  

      (19) 

R2 = 0.79, R2
ADJ = 0.76, Q2

LOO = 0.72, F(3,26) = 32, p < 10–8, R2
TEST = 0.77, Q2

TEST = 

0.56, MAE = 0.20 

pKd(CA VII) = 0.104 T(S..Cl) – 6.54 PCR + 1.59 MATS7v + 15.2,  

      (20) 

R2 = 0.89, R2
ADJ = 0.88, Q2

LOO = 0.86, F(3,26) = 70, p < 10–11, R2
TEST = 0.87, Q2

TEST = 

0.74, MAE = 0.26 

pKd(CA XII) = 1.47 T(O..Cl) + 49.0 MATS7m + 0.0473 H6e + 4.24,  

      (11a) 

R2 = 0.82, R2
ADJ = 0.80, Q2

LOO = 0.78, F(3,26) = 40, p < 10–9, R2
TEST = 0.43, Q2

TEST = 

0.16, MAE = 0.44 

pKd(CA XII)=1.47 H6e + 49.0 (R7p+) + 0.0473 T(OH..Cl) + 4.24,  

      (21b) 
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R2 = 0.82, R2
ADJ = 0.80, Q2

LOO = 0.77, F(3,26) = 40, p < 10–9, R2
TEST = 0.60, Q2

TEST = 

0.51, MAE = 0.24 

pKd(CA XIII) = 18.0 EEig01r + 0.219 G(N..S) + 0.0380 Mor02u – 76.5,  

      (22) 

R2 = 0.88, R2
ADJ = 0.86, Q2

LOO = 0.85, F(3,26) = 63, p < 10–11, R2
TEST = 0.68, Q2

TEST = 

0.49, MAE = 0.32 

The statistical parameters of the QSAR models provided below each 

equation are the same as for Eqns. 11-16. The plots of experimentally determined versus 

predicted pKd values in all individual affinity QSAR models, for both training and test 

sets, are presented in Fig. (5). 

 

 

Fig. (5). Plots of affinity-targeted QSAR using E-DRAGON descriptors. The 

experimental and calculated affinities are plotted on the x- and y-axes, respectively, for 

the training (gray circles) and the test set (black squares). Six compounds (1d, 1g, 2g, 1h, 

3h, and 1i) have the same Kd value for CA VI that equals to 5000 nM. 
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Affinity models of acceptable quality were developed using the original E-

DRAGON descriptors for all CAs except CA XII (Eqn. 21a). Due to an unsatisfactory 

value of R2
TEST in Eqn. 21a (0.36), we created a new ad hoc descriptor T(OH..Cl) 

designed to improve the quality of the CA XII QSAR affinity model (Eqn. 21b). It was 

defined as the sum of the topological distances between hydroxyl groups and chlorine 

atoms in the molecule. This descriptor is analogous to T(O..Cl) used in Eqn. 21a, except 

that in the latter the sum of topological distances between any oxygen atom and chlorine 

atom is used. T(OH..Cl) discerns better between hydroxyls and other oxygen atoms 

compared to T(O..Cl). This encouraging result may justify a more widespread use of 

similar, more refined “pharmacophore-like” descriptors for problems at hand. However, 

the new descriptor did not improve other QSAR models. 

Interestingly, 6 compounds (1d, 1g, 2g, 1h, 3h, and 1i) have the same value 

of Kd (5000 nM) for CA VI. The QSAR approach found a descriptor R7m+, the value of 

which is approximately the same for these compounds (0.058-0.072) and varying more 

widely for the remaining compounds (0.045-0.120). All compounds in the training set 

were considered non-outliers and all compounds in the test set were shown to be inside 

the Applicability Domain of all QSAR models obtained, except compound 2j was 

determined to be an outlier in the CA II affinity model (Eqn. 18). 

The MAE-based criterion for the developed 2D-QSAR models for the test 

set was found to be less than 0.15·(training set range) in all cases except ∑CA XII (Eqn. 

16) and more than 0.25·(training set range)-3·σ in all cases except CA I (Eqn. 17). The 

∑CA XII QSAR model (Eqn. 16) is totally unacceptable according to the MAE criterion. 

2.4. PHASE atom-based 3D-QSAR 

PHASE 3D-QSAR models were developed using either the selectivity data 

for CA XII vs. other isoforms (affinity ratios) or the affinity data. Differently from the E-

DRAGON-based protocol, only two QSAR models of acceptable quality were obtained 

considering built-in statistical data: one for CA XII/CA I selectivity and one for CA I 

affinity. 

The PHASE QSAR statistical parameters for the CA XII/CA I selectivity 

model were as follows: SD = 0.45, R2 = 0.75, R2 CV = 0.69, R2 Scrambled = 0.27, 
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Stability = 0.99, F = 86, p < 10–9, RMSE = 0.52, Q2 = 0.61, Pearson r = 0.82, and MAE 

= 0.39. The CA XII/CA I selectivity model was poor according to the MAE-based 

criterion that was calculated separately (not by PHASE), because compounds 1c and 4e 

in the test set had absolute prediction errors of 0.99 and 0.83 log units, respectively, in 

this model. The analogous statistical parameters for the CA I affinity model were as 

follows: SD = 0.40, R2 = 0.86, R2 CV = 0.82, R2 Scrambled = 0.21, Stability = 0.99, F = 

168, p < 10–12, RMSE = 0.38, Q2 = 0.75, Pearson r = 0.89, and MAE = 0.35.  

In order to better understand PHASE results regarding CA I and CA XII 

selectivity, we explored interactions within the binding site of the two isoenzymes by 

employing manual docking using PYMOL 1.7.4.0. The isoenzymes CA I and CA XII 

were aligned, and the most CA I active compound 2d was manually placed in the active 

site based on the alignment with the available X-ray structures for the investigated series. 

The tert-butyl substituent on the pyrimidine ring of 2d is in contact with the hydrophobic 

Ala132, Ala135 and Leu131 side chains of CA I, and the hydroxyl substituent remains 

exposed to the water solvent (Fig. (6)). In contrast, CA XII has Ser130, Ser133, and 

Ala129 residues in the homologous positions and does not well accommodate the 

hydrophobic tert-butyl group of the ligand. There is a possibility that the pyrimidine ring 

could flip, and in that case, the hydroxyl group would make better contacts with these 

three residues in CA XII, but then the hydrophobic tert-butyl group would become 

unfavorably exposed to water. 
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Fig. (6). The most CA I active compound 2d (yellow sticks) manually docked into the 

aligned CA I (azure, PDB ID: 4WR7) and CA XII (purple, PDB ID: 4KP8) receptors. 

Zinc ion is shown as a sphere. 

 

PHASE in combination with MAESTRO software allows visualization of the 

impact of the various ligand groups on the target function (in this case, affinity or 

selectivity), based on the given QSAR model. The PHASE QSAR model for CA XII/ CA 

I selectivity is shown in Fig. (7), using the most selective compound 4c as an example. 

According to Fig. (7), the three main factors that affect the CA XII/CA I selectivity for 

4c are as follows: the chlorine atom in the benzene ring at the para position with respect 

to the linker (blue zone in the lower part of Fig. (7c)), the neighboring sulfonamide 

group at the meta position (blue zone in the lower part of Fig. (7a) and (7b)), and to a 

lesser extent, the hydrophobic substituent in the pyrimidine ring (meta with respect to the 

linker) (top part of Fig. (7c)). 
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Fig. (7). PHASE atom-based 3D-QSAR for the CA XII/CA I selectivity model 

visualized in the context of the most selective compound 4c. Blue and red cubes depict 

favorable and unfavorable regions, respectively. (a) H-bond donors, (b) electron-

withdrawing atoms (including H-bond acceptors), and (c) hydrophobic/non-polar groups. 

The cube coefficient visualization threshold was set to ±2.5·10–3.  

 

The PHASE/Maestro visualization of the CA I affinity model using the most 

active compound 2d is shown in Fig. (8). Interestingly, Fig. (8) in several ways presents 

the “inverse” of Fig. 7: a blue zone in one visualization often corresponds to a red zone 

in the other, and vice versa. The blue zones near the benzene ring in Figs. 7(a,b) and 

8(a,b) reflect sulfonamide positions in the best series 4 and 2 for the corresponding 

QSAR models. In agreement with the qualitative picture in Fig. (6), Fig. (8) shows the 

importance of the hydrophobic and hydrophilic substituents on the pyrimidine ring for 

the CA I affinity. One of the apparent drawbacks of ligand-only QSAR is that it does not 

take into account the variability of the actual binding modes. In this particular case, 

PHASE aligns benzene and pyrimidine rings as well as the linker. In reality, the most 

spatially constrained part of the ligand is the sulfonamide group that is attached to zinc, 

and the linker with the pyrimidine ring at the end may adopt several rather widely 

differing conformations [32]. 
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Fig. (8). The PHASE atom-based 3D-QSAR affinity model for CA I visualized in the 

context of the most CA I active compound 2d. Blue and red cubes depict favorable and 

unfavorable regions, correspondingly. (a) H-bond donors (b) electron-withdrawing atoms 

(including H-bond acceptors), (c) hydrophobic/non-polar groups. The cube coefficient 

visualization threshold was set to ±2.5·10–3. 

 

For this reason, PHASE cannot always address the actual reasons 

determining the selectivity. For example, the constrained position of sulfonamide in 

series 4 causes the tail of the compound to move to a different zone of the binding pocket 

(not shown) compared to other series. In CA I, the linker part of the ligand interacts with 

the bulky His200 side chain (CA XII has Thr199 in the homologous position). This leads 

to an improved CA XII/CA I selectivity for series 4. 

The lack of the significant QSAR contributions around the pyrimidine ring 

for the CA XII/CA I selectivity model (top part of Fig. (7), cf. Fig. (8)) also shows that 

the selectivity is mostly caused by the substituents of the benzene ring in agreement with 

the argument above. However, this also weakens the prospects of improving the 

substituents of the pyrimidine ring, targeting CA XII/CA I selectivity. If the binding 

modes between the ligands are very different, superposition of the ligand fragments loses 

part of its meaning: incorrectly superposed ligands may lead to a superposition of groups 
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that could be in reality in different areas of space. 

While PHASE generated a good quality QSAR model for CA XII/CA I, 

attempts to develop an acceptable QSAR model of CA XII inhibition by means of 

PHASE failed. Even though a good CA XII QSAR model was not developed, one can 

presumably use the CA XII/CA I selectivity model to help target CA XII affinity. The E-

DRAGON descriptor-based QSAR results in much better models because E-DRAGON 

has many more criteria/descriptors used to build a model. Moreover, the variability of the 

binding modes within the series may have an effect on model quality. A great advantage 

of PHASE is that the influence of factors on affinities/selectivities can be easily 

visualized, while many E-DRAGON descriptors are somewhat obscure and not easy to 

understand. 

2.5. Calculations of selectivity from separate affinity QSAR models compared to 

selectivity QSAR  

In Sections 2.3 and 2.4, the selectivity was pre-calculated from the affinity 

data and then fed into the software as a target variable to compute the QSAR models. It 

is also possible to predict selectivity by calculating the predicted individual isoform 

affinities from the individual isoform affinity QSARs and afterward computing their 

ratio. Table 4 shows comparison of the R2
TEST values for the selectivities computed using 

both methods for the E-DRAGON based descriptors.  

 

Table 4. R2
TEST values of the E-DRAGON descriptor-based QSAR test set for all CA XII 

binding selectivity models and for CA XII selectivity computed from separate affinity 

QSAR models. R2
TEST values of > 0.40 are shown in bold. 

 E-DRAGON descriptor-based QSAR R2
TEST values: selectivity 

computed from separate affinity QSAR models/selectivity QSAR 

models 

CA XII/CA I 0.85/0.79 

CA XII/CA II 0.34/0.58 
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CA XII/CA VI 0.28/0.42 

CA XII/CA VII 0.58/0.49 

CA XII/CA XIII 0.65/0.71 

∑CA XII 0.63/0.58 

 

Using E-DRAGON descriptor-based selectivity QSAR, the acceptable 

R2
TEST values were obtained in all cases. In two cases, namely CA XII/CA I and CA 

XII/CA XIII, the R2
TEST value was greater than 0.70. When selectivities were calculated 

from the separate affinity models, acceptable R2
TEST values were obtained only in four 

cases out of six. This approach failed to give useful results for CA XII/CA II and CA 

XII/CA VI selectivities (R2
TEST was less than 0.40). The mean R2

TEST value was also 

better for the selectivity-targeted QSAR compared to the selectivity computed from the 

predicted affinities (0.595 vs. 0.555), showing the advantage of the first approach. 

2.6. Search for lead compounds similar to metabolites using the Tanimoto index 

The Tanimoto index is a number that describes similarity between two series 

of binary digits (bits) in interval from 0 (no similarity at all) to 1 (high 

similarity/identity). Molecular structures can be converted into such series in one way or 

another, and then they are called molecular fingerprints. 

The structures of the 1475 human metabolites were obtained from the 

KEGG database. For every metabolite structure, the Tanimoto index was calculated with 

OPEN BABEL software using FP2 molecular fingerprints against every structure in the 

DRUGBANK database. 

From the resulting data pool, 4231 pairs of human metabolite and 

DRUGBANK molecular structures with the Tanimoto index higher than 0.9 were extracted 

for further computational studies. For every selected DRUGBANK molecular structure, its 

target EC number was extracted from the DRUGBANK website. The same procedure was 

carried out for every selected human metabolite using the KEGG database. In 2817 pairs, 

the structures had defined targets in both cases; other pairs were rejected. Then the pairs 

in which the DRUGBANK molecule and the human metabolite obtained from KEGG were 
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similar (Tanimoto index higher than 0.9) and least one of their targets matched were 

selected, resulting in 644 such cases. 

These calculations showed that in cases where the structure of the drug is 

similar to the metabolite structure (Tanimoto index higher than 0.9), there is 

approximately a 23% (644/2817·100%) chance that both compounds will bind to the 

same receptor. This is just a rough estimate because many drugs and/or metabolites may 

have unknown targets, targets not listed in databases, targets without the EC number, and 

so on. 

Moreover, there is a possibility that some targets might just match randomly. 

To estimate such chances, 4000 random pairs of human metabolite and DRUGBANK 

molecular structures were generated. For every randomly selected DRUGBANK molecular 

structure, its target EC number was extracted from the DRUGBANK website. Exactly the 

same procedure was carried out for every randomly selected human metabolite using the 

KEGG database. Calculation of the cases where the targets match for both structures 

revealed only approximately a 1% chance that when we randomly pick a pair of the 

human metabolite and DRUGBANK molecular structure, it will have exactly the same 

target. 

This procedure was used to search for compounds that were similar to the 

metabolites, corresponding to the certain metabolic pathways, which were very active in 

cancer cells. A total of 14 candidate compounds were selected for further experimental 

testing, and two compounds were proved to be active against cancer cells.  
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CONCLUSIONS 
 

1. Six QSAR models of α-branched α,β-unsaturated ketones developed for three cell 

lines (NB4, MCF–7, and A549) can differentiate between active and inactive 

compounds.  

2. Of the 5 methods tested, the results of QSAR gave the best correlation with 

experimental data (R2 increased from 0.83 to 0.89). The QSAR method can be used to 

predict Kd values describing the binding of benzensulfonamides to CA II.  

3. Application of the new LIE-like method resulted in a considerably better correlation 

between experimental and predicted data as compared with the original LIE approach (R2 

increased from 0.24 to 0.50). 

4. It was shown that when specialized QSAR models for inhibitor selectivity were 

developed higher statistical scores were obtained compared to selectivity predictions 

made from separate affinity QSAR models.  
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REZIUME 
Vienas iš svarbiausių biochemijos mokslo praktinių pritaikymų ir tikslų yra 

kova su ligomis. Spartus technologijų ir mokslinių metodų vystymasis padeda spręsti 

daugelį iššūkių. Vienas iš jų yra baltymų – vaistų taikinių, nustatymas, kuriuos paveikus, 

būtų išgydyta liga arba bent jau palengvinta jos eiga. Ne mažiau svarbus iššūkis yra 

vaistų prieš ligas paieška, kurių dauguma yra mažos molekulinės masės junginiai, kurie 

slopina arba aktyvuoja baltymus-taikinius. Naudinga slopinti tik ligas sukeliančių virusų 

ar bakterijų baltymus, neliečiant svarbių žmogaus organizmo baltymų. Kovojant su 

vėžiu, dažnai yra taikomasi į baltymus, kurie svarbūs vėžinių ląstelių išlikimui.  

Darbe aprašomas tyrimas vyko trimis etapais. 

Pirmoje darbo dalyje buvo atliekamas QSAR su naujai susintetintais 

ketonais, kurių dauguma yra antiproliferaciškai aktyvūs. Buvo sukurti QSAR modeliai, 

kiekybiškai aprašantys minėtų junginių antiproliferacinius aktyvumus. Generuotieji 

QSAR modeliai yra naudingi naujų, dar nesusintetintų, cheminių junginių, panašių į 

nagrinėtąją ketonų seriją, antiproliferaciniam aktyvumui prognozuoti, ir tai gali 

pasitarnauti, kuriant priešvėžinius vaistus. 

Antroje darbo dalyje CA buvo pasirinkta kaip pagrindinis taikinys. Buvo 

pritaikytas QSAR metodas tam, kad būtų pasiūlyti pakeitimai sulfonamidų struktūrose, 

kurie pagerintų jų selektyvumą. Buvo atlikta QSAR analizė įvairioms CA izoformoms, 

naudojant slopiklių duomenų rinkinį. Du QSAR protokolai buvo palyginti, ir su naujai 

sukurtu QSAR deskriptoriumi buvo pagerinta CA XII QSAR modelių statistika. 

Naudojant įvairius skaičiuojamuosius metodus, buvo atlikta palyginamoji 

cheminės struktūros ir biologinio aktyvumo studija, nagrinėjant CA slopiklių seriją. 

Darbui buvo pasirinkti dokinimo, LIE, metadinamikos ir QSAR metodai. Taip pat buvo 

pasiūlyta LIE metodo modifikacija, kuri galutiniams skaičiavimams naudoja alternatyvią 

„LIE-like“ lygtį. Dėl to pavyko gauti gerokai geresnius rezultatus nei naudojant originalų 

LIE metodą. 

Trečioje darbo dalyje buvo ieškomi nauji vėžio augimo slopikliai. Buvo 

įvertinta tikimybė rasti slopiklius, naudojantis Tanimoto įverčiu, nagrinėjant žinomų 
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vaistų cheminės struktūros panašumus į žmogaus metabolitus. Galiausiai buvo pasiūlyti 

keli junginiai, galimai vėžio augimo slopiklių, poros iš kurių aktyvumas buvo vėliau 

patvirtintas eksperimentiniu keliu. 
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