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Abstract

The non-monotonic behavior of amperometric enzyme-based biosensors under uncom-
petitive and noncompetitive (mixed) substrate inhibition is investigated computationally
using a two-compartment model consisting of an enzyme layer and an outer diffusion
layer. The model is based on a system of reaction–diffusion equations that includes a non-
linear term associated with non-Michaelis–Menten kinetics of the enzymatic reaction and
accounts for the partitioning between layers. In addition to the known effect of substrate
inhibition, where the maximum biosensor current differs from the steady-state output,
it has been determined that external diffusion limitations can also cause the appearance
of a local minimum in the current. At substrate concentrations greater than both the
Michaelis–Menten constant and the uncompetitive substrate inhibition constant, and in
the presence of external diffusion limitation, the transient response of the biosensor, after
immersion in the substrate solution, may follow a five-phase pattern depending on the
model parameter values: it starts from zero, reaches a global or local maximum, decreases
to a local minimum, increases again, and finally decreases to a steady intermediate value.
The biosensor performance is analyzed numerically using the finite difference method.

Keywords: amperometric biosensor; substrate inhibition; diffusion limitation; transient
response; mathematical modeling; computational simulation

1. Introduction
Enzyme-based amperometric biosensors were the first type of biosensors developed

and remain the most popular due to their simplicity, ease of production, and low cost [1–3].
They measure changes in the output current at the working electrode caused by the direct
oxidation or reduction of biochemical reaction products. The amperometric response is
typically proportional to the analyte (substrate) concentration in a buffer solution [2,4–6].
These devices have found widespread applications in clinical, environmental, industrial,
toxin detection, and other fields [3,7–11].

Most biosensors operate according to the Michaelis–Menten kinetics scheme,

E + S
k1

GGGGGGBFGGGGGG

k−1

ES
k2

GGGAE + P, (1)

where E is an enzyme, S is a substrate, ES is an enzyme–substrate complex, P is a reaction
product, and k1, k−1 and k2 are the rate constants [2,4,5,7].
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Often, the kinetics of the enzyme-based biosensors are much more complicated than
in the simplest scheme (1). Different substances may act as inhibitors and cause a reduction
in the rate of an enzyme-catalyzed reaction [6,8,12,13]. The substrate in many enzyme-
catalyzed reactions behaves as an inhibitor. In addition to the scheme (1), the interaction
of the enzyme–substrate complex (ES) with other substrate molecules (S), resulting in the
formation of a non-active inhibitory complex (ESS), can give rise to one of the simplest
non-Michaelis–Menten mechanisms of enzyme action—uncompetitive substrate inhibition:

ES + S
k3

GGGGGGBFGGGGGG

k−3

ESS, (2)

where k3 and k−3 are the rate constants [2,3,6,8,14].
A second substrate molecule can also bind to a regulatory site on the free enzyme (E),

leading to the formation of an inactive or less active complex (ESI). This phenomenon is
referred to as competitive substrate inhibition:

E + S
k4

GGGGGGBFGGGGGG

k−4

ESI, (3)

where k4 and k−4 are the rate constants [2,3,6,8,15,16].
In more complex systems involving noncompetitive (mixed) substrate inhibition,

excess substrate can bind to both the free enzyme (E) and the enzyme–substrate complex
(ES), resulting in the formation of inactive complexes in both pathways [12,14,17,18].

Understanding the kinetic properties of biosensors is crucial for their design and
optimization [19–21]. Mathematical modeling has proven to be a useful tool to study the
effect of enzyme inhibition [10,11,15,17,22–25]. Various approaches have been applied for
the biosensor modeling [26–30]. Actual biosensors with substrate inhibition have already
been modeled at various, often steady-state, conditions [16,18,31–34]. The amperometric
biosensors utilizing the enzyme with the substrate inhibition have also been modeled
at the external diffusion limitation and the steady-state [10,22] as well as the transition
conditions [30,35,36].

In particular, Kulys showed that a multi-steady-state response can be generated at the
electrode surface under external diffusion limitations when the substrate concentration is much
greater than the Michaelis–Menten constant, assuming an extremely thin enzyme layer [22].
However, to the best of our knowledge, only non-monotonic transient responses featuring
a maximum followed by a final steady-state current have been simulated [24,31,35–38]. In
such cases, the response typically follows a three-phase pattern: starting from zero, reaching a
maximum, and finally decreasing to a steady value.

When modeling practical biosensors, multi-layer models are usually required to achieve
sufficient accuracy of the model [31,39,40]. Nevertheless, even mono-layer models that neglect
external mass transport by diffusion have still been used in various applications in recent
years due to the model’s simplicity [14,15,24,38,41–45]. However, external mass transport by
diffusion significantly influences the dynamics of the catalytic processes in enzyme-loaded
systems in general and biosensor response and sensitivity in particular [9,46–50]. Fortunately,
mass transport through several outer diffusion layers can be rather effectively approximated
by a single diffusion layer with effective diffusion coefficients [51–53]. As a result, two-
compartment models have been widely used in biosensor modeling [10,39,54–59].

The aim of this work was to investigate in detail the influence of substrate inhibition,
in conjunction with internal and external diffusion limitations, on the transient response of
enzyme-based amperometric biosensors under uncompetitive, competitive, and noncom-
petitive (mixed) substrate inhibition. This study focuses on the conditions under which the



Biosensors 2025, 15, 441 3 of 24

transient response of the biosensor, after being immersed in a substrate solution, exhibits a
complex, multi-phase pattern, characterized by the appearance of a local minimum, a local
maximum, or even both.

Under transient conditions, a biosensor is mathematically modeled using a two-
compartment model comprising a mono-enzyme layer, where both the enzymatic reaction
and mass transport by diffusion occur, and a diffusion-limiting region, where only mass
transport by diffusion takes place. The model is based on a system of reaction–diffusion
equations that includes a nonlinear term associated with non-Michaelis–Menten kinetics of
the enzymatic reaction and accounts for partitioning between layers. The performance of
the treated system is analyzed numerically using the finite difference technique [60,61], and
the simulation results are compared with previous studies on biosensors under substrate
inhibition [22,24,31,35,36].

2. Mathematical and Computational Modeling
2.1. Biosensor Principal Structure

An amperometric biosensor consists of an electrode coated with a relatively thin
enzyme layer, also referred to as the enzyme membrane [2,4,6,7,9]. The model describes
three distinct regions: the enzyme layer, where both enzymatic reactions and diffusion-
driven mass transport occur; a diffusion-limiting region, where only diffusion-based mass
transport takes place; and a convective region, where the analyte concentration remains
constant [35,36]. A schematic representation of the biosensor model is shown in Figure 1,
where d1 and d2 denote the thicknesses of the enzyme layer and the outer diffusion layer,
respectively.
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Figure 1. Schematic representation of the amperometric biosensor. The figure is not to scale.

In the enzyme layer, we account for the enzyme-catalyzed reactions described by
Equations (1)–(3). At the electrode surface, the electro-active product P is converted into a
non-interfering species P′, releasing electrons in the process,

P → P′ ± ne− (4)

where n is the number of electrons transferred in the reaction.
Some reactions in the network (1)–(4) occur very rapidly, while others proceed much

more slowly [2,4,6,7,9]. This wide disparity in reaction timescales complicates both the
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simulation of the network dynamics and the understanding of its fundamental behavior.
To address these challenges, the quasi-steady-state approximation (QSSA) is commonly
employed [62,63].

Under the assumption of the QSSA, the concentrations of the enzyme (E) and the
intermediate complexes (ES, ESS, and ESI) remain constant over time. As a result, the rate
of the biochemical reaction is described by the following equation, which does not follow
Michaelis–Menten kinetics:

V(S) =
VmaxS

KM(1 + S/K′
I) + S(1 + S/KI)

,

Vmax = k2E0, KM = (k−1 + k2)/k1, KI = k−3/k3, K′
I = k−4/k4,

(5)

where S is the substrate concentration, Vmax is the maximal enzymatic rate, E0 is the total
enzyme concentration, KM is the Michaelis constant, and KI and K′

I are the inhibition
(dissociation) constants [4,14,16,17,64,65].

At very low substrate concentrations, where S ≪ KM, S ≪ KI and S ≪ K′
I , the

nonlinear reaction rate given in (5) simplifies to the first-order reaction rate VmaxS/KM.
At high substrate concentrations such that S ≫ KM but still S ≪ KI and S ≪ K′

I , the
rate becomes independent of the substrate concentration, exhibiting zero-order kinetics.
The influence of inhibition on the overall biochemical process decreases as the inhibition
constants KI and K′

I increase, and the kinetics gradually approach the standard Michaelis–
Menten kinetics form as KI → ∞ and K′

I → ∞.
In the case of uncompetitive substrate inhibition (K′

I → ∞), where only two enzymatic
reactions (1) and (2) occur, the reaction rate reduces to:

V(S) =
VmaxS

KM + S + S2/KI
, K′

I → ∞ . (6)

When S > KI , the inhibitory term S2/KI in the denominator becomes significant, and the
reaction rate begins to decline despite the increasing substrate concentration [4,64].

When the biosensor operates under competitive substrate inhibition (with KI → ∞),
the reaction rate can be rewritten in Michaelis–Menten form,

V(S) =
VmaxS

KM(1 + S/K′
I) + S

=
Veff

maxS
Keff

M + S
, KI → ∞,

Veff
max =

Vmax

1 + KM/K′
I

, Keff
M =

KM
1 + KM/K′

I
.

(7)

Here, Veff
max and Keff

M represent the apparent or effective kinetic parameters under competitive
substrate inhibition. They correspond to the effective maximal enzymatic rate and Michaelis
constant, respectively. Thus, the behavior of enzyme-based biosensors under competitive
substrate inhibition can be described using modified kinetic expressions that extend beyond
the classical Michaelis–Menten model.

The biochemical reactions occurring in practical biosensors are influenced by various
important biosensor-related factors such as pH, enzyme concentration, cofactor availability,
temperature, enzyme degradation over time, and others [2,4,5,7,12,15,25]. Under certain
conditions, these factors are commonly incorporated into the Michaelis–Menten parameters
and inhibition constants. Although they are not part of the original Michaelis–Menten
derivation, they are often embedded empirically through experimental observations. In
biosensor modeling, these adjusted parameters are typically referred to as the “apparent”
or “effective” Veff

max and Keff
M [8,9,12,14,30,58].
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This work focuses on the impact of uncompetitive and noncompetitive substrate
inhibition and is restricted to substrate concentrations greater than at least one of the
inhibition constants, KI or K′

I .
In the two-compartment (or two-layer) model, the diffusion layer is commonly consid-

ered to be the Nernst diffusion layer [9,60,66]. However, if the external Nernst diffusion
layer is neglected, the diffusion layer can instead be modeled as a semi-permeable (diffusion-
limiting) membrane [30,39,48,60,67]. It is important to note, though, that a Nernst layer
with zero thickness cannot be realized in practice [68].

Mathematical models of biosensors sometimes account for both the outer membrane
and the Nernst diffusion layer [31,52,53,69]. However, the mass transport across multiple
diffusion layers can often be effectively approximated by a single layer with adjusted
diffusion coefficients, allowing a complex multi-compartment model to be simplified into
a two-compartment one [51–53]. As a result, the effects examined in this study are also
applicable to amperometric biosensors modeled with several diffusion layers, including
both the outer membrane and the Nernst layer.

2.2. Mathematical Model

Assuming symmetrical geometry of the electrode, enzymatic, and diffusion layers, as
well as uniform distribution of the immobilized enzyme within the enzyme membrane,
leads to a two-compartment mathematical model defined in a one-dimensional spatial
domain. This model is expressed as an initial boundary value problem that captures the
dynamics of substrate and product concentrations [8,30,39,70].

2.2.1. Governing Equations

The changes in the concentrations of the substrate S and product P within the enzyme
layer over time are governed by a system of reaction–diffusion equations (t > 0),

∂S1

∂t
= DS1

∂2S1

∂x2 − VmaxS1

KM(1 + S1/K′
I) + S1(1 + S1/KI)

,

∂P1

∂t
= DP1

∂2P1

∂x2 +
VmaxS1

KM(1 + S1/K′
I) + S1(1 + S1/KI)

, x ∈ (0, a1),
(8)

where S1(x, t) and P1(x, t) are the concentrations of the substrate and the product in the
enzyme layer, DS1 and DP1 are the diffusion coefficients, d1 = a1 is the thickness of the
enzyme layer, and V(S1) is the reaction rate, as defined in (5) [8,39,64].

In the diffusion layer, both compounds are transported solely by diffusion (t > 0),

∂S2

∂t
= DS2

∂2S2

∂x2 ,

∂P2

∂t
= DP2

∂2P2

∂x2 , x ∈ (a1, a2),
(9)

where S2(x, t) and P2(x, t) are the concentrations of the substrate and the reaction product,
DS2 , DP2 are the diffusion coefficients, a2 = a1 + d2, and d2 is the thickness of the diffusion
layer [8,30,39].

2.2.2. Boundary Conditions

During biosensor operation, the concentrations of the substrate and product remain
constant in the bulk solution (t > 0),

S2(a2, t) = S0, P2(a2, t) = 0, (10)
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where S0 is the concentration of the substrate in the bulk.
At the boundary between adjacent layers, the fluxes of the substrate and product are

assumed to be equal; that is, the outgoing flux from one layer equals the incoming flux to
the next. However, the concentrations on either side of the interface differ and are related by
the formal partition coefficients θS for the substrate and θP for the product (t > 0) [69–73],

DS1

∂S1

∂x

∣∣∣
x=a1

= DS2

∂S2

∂x

∣∣∣
x=a1

, S1(a1, t) = θSS2(a1, t),

DP1

∂P1

∂x

∣∣∣
x=a1

= DP2

∂P2

∂x

∣∣∣
x=a1

, P1(a1, t) = θPP2(a1, t).
(11)

The partition coefficients are generally different for different species [72,74], but they are
often assumed to be identical [10,53,58,69,71].

Due to the electrochemical reaction (4), the concentration of the reaction product
decreases at the electrode surface. The substrate is considered electrically inactive, and no
concentration flux is assumed for it (t > 0) [8,39,75],

P1(0, t) = 0, DS1

∂S1

∂x

∣∣∣
x=0

= 0, t > 0. (12)

2.2.3. Initial Conditions

Two different initial conditions corresponding to two modes of biosensor operation
are considered.

In the first mode, the biosensor is assumed to be permanently immersed in a buffer
solution, and its operation begins when the analyte (substrate) is introduced at t = 0 into
the buffer solution,

S1(x, 0) = 0, P1(x, 0) = 0, x ∈ [0, a1],

S2(x, 0) = 0, P2(x, 0) = 0, x ∈ [a1, a2),

S2(a2, 0) = S0, P2(a2, 0) = 0.

(13)

This setup simulates injection analysis (IA) or real-time monitoring, where the analyte
arrival initiates the biosensor transient response [8–10,15,31,56,76].

The second type of operation is common in batch analysis (BA), when the biosensor is
directly immersed in a buffer solution containing the analyte [8,9,25,58,77]. The biosensor
operation starts responding to the analyte from the moment of immersion. In this case, the
initial conditions (13) have to be replaced with the following:

S1(x, 0) = 0, P1(x, 0) = 0, x ∈ [0, a1),

S1(a1, 0) = θSS0, P1(a1, 0) = 0,

S2(x, 0) = S0, P2(x, 0) = 0, x ∈ [a1, a2].

(14)

Let us notice that both initial conditions, (13) and (14), result in the same steady-state
solution for the problem (8)–(12). Only the transient solution is affected by the initial
conditions [8,30,39,60].

The two-compartment model defined by Equations (8)–(14) converges to the corre-
sponding one-compartment model as a2 → a1 (d2 → 0) [15,38,41,42,44,45].
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2.3. Biosensor Response

The amperometric electrode detects the faradaic current, whether anodic or cathodic in
nature [2,8,64]. The current density I(t) at time t can be explicitly derived using Faraday’s
and Fick’s laws,

I(t) = nFDP1

∂P1

∂x

∣∣∣
x=0

, (15)

where n is the number of electrons involved in a charge transfer at the electrode surface,
and F is the Faraday constant [8,39,75].

As t → ∞, the system (8)–(12) approaches a steady state [8,39,64],

Iss = lim
t→∞

I(t), (16)

where Iss is the density of the steady-state output current.
Since the transient current in the case of the enzyme inhibition can be a non-monotonic

function of time, the maximal current has also been used as a characteristic for this kind of
biosensor [24,31,35–38]. Aiming to determine conditions under which biosensor response
follows a multi-phase pattern, the number Next of extrema in transient output current I(t)
was studied. A local or global maximum of output current I(t) occurs at time t = te if
I(te) ≥ I(t) for all t near te, while a local minimum occurs at that time t = te if I(te) ≤ I(t)
for all t near te. Next is considered as the total count of maxima and minima that the function
I(t) has at t > 0,

Next =

∣∣∣∣{t > 0
∣∣∣ dI(t)

dt
= 0 and

d2 I(t)
dt2 ̸= 0

}∣∣∣∣, (17)

where | · | denotes the set cardinality and the condition for defining the set.
In the specific case of a monotonic output current, I(t), Next = 0. In the case of a

three-phase pattern, when the output current starts from zero, reaches a maximum, and
then decreases to a steady value, Next = 1. Next = 2 when the biosensor response approaches
a four-phase pattern, exhibiting a local minimum in addition to the maximum.

2.4. Dimensionless Model Parameters

To identify the key governing parameters of the mathematical model, a dimensionless
form is typically derived [66,69]. The two-compartment model (8)–(12) was transformed
into a dimensionless form by rescaling time and space [30,36,48]. This process yielded the
following dimensionless governing parameters:

x∗ =
x
a1

, t∗ =
DS1 t

a2
1

, S∗
0 =

S0

KM
, K∗

I =
KI
KM

, K′
I
∗
=

K′
I

KM
,

S∗
i =

Si
KM

, P∗
i =

Pi
KM

, i = 1, 2,

σ2 =
Vmaxd2

1
KMDS1

, βS =
DS2 d1

θSDS1 d2
, βP =

DP2 d1

θPDP1 d2
,

I∗(t∗) =
I(t) d1

neFDS1 KM
, I∗ss = lim

t∗→∞
I∗(t∗),

(18)

where σ2 is the dimensionless Damköhler number (the Thiele modulus squared) or the
diffusion module, and βS and βP are the Biot numbers for the substrate and product,
respectively [39,75,78,79]. Equations (8)–(12) in dimensionless form are presented in the
Appendix A. All of the dimensional and dimensionless model parameters are listed in
Table A1.

The dimensionless parameter σ2 represents the ratio between the intrinsic enzyme reac-
tion rate (Vmax/KM) and the rate of substrate diffusion through the enzyme layer (DS1 /d2

1).
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When σ2 ≪ 1, the biosensor response is governed primarily by enzyme kinetics. In contrast,
when σ2 ≫ 1, internal diffusion becomes the limiting factor in the response [2,8,39,47,79].
By rearranging the expression for σ2, one can derive the characteristic timescales for both
the enzymatic reaction and internal diffusion.

The Biot number is a dimensionless parameter commonly used to compare the
relative resistances to mass transport caused by external and internal diffusion pro-
cesses [9,46,47,49,50,78]. Because the diffusion characteristics of the substrate and product
typically differ, separate Biot numbers are often defined for each. However, these are fre-
quently assumed to be equal for simplicity [46,48–50,53,80]. A high Biot number suggests
that diffusion within the enzyme layer is slower than in the surrounding diffusion layer,
whereas a low Biot number indicates that diffusion is more restricted in the diffusion layer
than in the enzyme layer [9,47,78].

2.5. Numerical Simulation

Due to the nonlinearity of the governing Equation (8), the initial boundary value
problem (8)–(14) can be analytically solved only for specific values of the model parame-
ters [10,39,60]. Hence, the problem was solved numerically.

To find a numerical solution to the problem (8)–(14), a non-uniform discrete grid was
introduced in space and time. A semi-implicit linear finite difference scheme has been
built as a result of the difference approximation of the model equations [30,36,81]. The
resulting system of linear algebraic equations was solved efficiently using the Thomas (the
tridiagonal matrix) algorithm [60]. To have an accurate and stable result, it was required to
use a small step size in the x direction at the boundaries x = 0, x = a1, and x = a2, where
the concentration gradients are larger than the gradients away from those boundaries.
Further from these boundaries, an exponentially increasing step size was used [30,53,80].

Although the time step is restricted by the partition conditions (11) [82–84], it was
reasonable to apply an increasing step size in the time direction [85], as the biosensor
action follows the steady-state assumption as t → ∞. The final step size in time was a
few orders of magnitude higher than the first one [48]. The density Iss of the steady-state
output current was approximated by the output current calculated at the moment, when
the normalized absolute current slope value fell below a given small value 0.001 [30,39].

The numerical simulator has been programmed in Java [86]. The numerical solution
was validated using exact analytical solutions known for specific cases of the first and
zero-order reaction rates at the steady-state conditions [39,48] and numerical solutions
derived for a two-compartment model of amperometric biosensors at transient condi-
tions [10,36,39]. Approximate analytical solutions, obtained for the corresponding one-
compartment model of biosensors with substrate inhibition at steady-state [33,41,42] and
transient conditions [38], were also used for validation of the numerical solution.

The simulation results were visualized using Origin [87].

3. Results and Discussion
To investigate the non-monotonic behavior of amperometric enzyme-based biosensors

under substrate inhibition, in conjunction with internal and external diffusion limitations,
the biosensor action was simulated across a wide range of key dimensionless model parame-
ter values, using the following typical assumptions for the parameter values [1,35,36,48,53]:

DP1 = DS1 = 400µm2/s, DP2 = DS2 = 600µm2/s,

θP = θS = θ, βP = βS = β,

d1 = 20µm, d2 = 300µm, KM = 100µM, ne = 1.

(19)
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The biosensor response behavior is primarily analyzed under uncompetitive sub-
strate inhibition (K′

I = ∞). Additionally, the response is examined in the case of mixed
(noncompetitive) substrate inhibition.

3.1. Temporal Dynamics of Biosensor Response

Figure 2 shows the typical temporal dynamics of the biosensor current I, simulated
under uncompetitive substrate inhibition (K′

I = ∞) at the following ten initial substrate
concentrations S0: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1, 2, and 3 mM. The simulations were
performed using fixed parameters: Vmax = 100µM/s, θ = 0.75, and KI = KM, in both types
of analysis, injection analysis (IA) and batch analysis (BA). The corresponding normalized
values S∗

0 = S0/KM of the substrate concentration are indicated on the curves in Figure 2.
All the other model parameters were defined in (19). These simulations were performed
under mixed control, involving both enzyme kinetics and internal diffusion (σ2 = 1). On
the other hand, mass transport in the outer diffusion layer was slower than in the enzyme
layer, as indicated by β = 0.13.
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Figure 2. Dynamics of the output current I(t) at ten values of the normalized substrate concentration
S∗

0 , with fixed parameters Vmax = 100µM/s, θ = 0.75, KI = KM and K′
I = ∞, in IA (a) and BA

(b) modes. Other parameters are defined in (19).

One can see a noticeable difference in the dynamics of the biosensor response in
Figure 2 when changing the substrate concentration S0. The shape of the curves also
depends significantly on the mode of analysis, i.e., on the initial conditions (13) or (14).
However, the steady-state response is independent of the analysis mode, as the steady-
state solution of the initial boundary value problem (8)–(11) is unaffected by those initial
conditions [8,30,39,60].

At the beginning of biosensor operation, the output current becomes noticeably slower
in IA mode than in BA mode. The delay consists of about 6–10 s. This delay in the transient
response can be attributed to the diffusion time required for the substrate to pass through
the outer diffusion layer and reach the enzyme layer in IA mode [4,34,64]. In contrast,
in BA, the substrate contacts the enzyme layer immediately at t = 0. The corresponding
steady-state times are approximately the same, though they noticeably depend on the
substrate concentration.

In IA (Figure 2a), at relatively high substrate concentrations (S∗
0 > 5), the response fol-

lows a three-phase pattern: starting from zero, reaching a maximum, and finally decreasing
to a steady value. The output current, after reaching its maximum, enters the descending
limb of the bell-shaped curve characteristic of uncompetitive substrate inhibition. In the
case of low and moderate substrate concentrations (S∗

0 ≤ 5 in Figure 2a), the biosensor
current monotonically approaches steady-state. On the other hand, Figure 2a shows non-
monotonic behavior of the steady-state current. At substrate concentrations corresponding



Biosensors 2025, 15, 441 10 of 24

to the three-phase pattern (S∗
0 > 5), the steady-state current decreases with increasing S∗

0 ,
whereas at lower concentrations (S∗

0 ≤ 5), it increases with increasing S∗
0 . These aspects of

the biosensor with uncompetitive substrate inhibition are well known [24,31,35–38].
In particular, Forastiere et al. determined that the maximal steady-state current can

be achieved at relatively low substrate concentration due to substrate inhibition, and
that it can be several times greater than the current observed at extremely high substrate
concentrations [24], consistent with the simulation results presented in Figure 2. Rafat et al.
have demonstrated a nonmonotonic dependence of the biosensor response and sensitivity
on the substrate concentration and mass transfer for IBE biosensors and an amperometric
electrochemical immunosensor [10,58]. Sánchez-Trasviña et al. demonstrated how the
appearance of substrate inhibition transforms the monotonically increasing reaction rate
versus luminol concentration into a nonmonotonic behavior [65].

Figure 2b shows noticeably more complex dynamics of the biosensor current in BA
mode than in IA. Even at relatively low substrate concentrations (1 ≤ S∗

0 ≤ 4), the output
current is nonmonotonic. At a slightly greater concentration S∗

0 = 5, the output current
becomes a monotonously increasing function of time t, butit has an extra inflection point
(t ≈ 2 s) where the curve changes from concave down to concave up.

In the case of relatively high substrate concentrations (6 ≤ S∗
0 ≤ 10), the biosensor

response exhibits a local minimum and follows a four-phase pattern. At higher concentra-
tions S∗

0 ≥ 20, the response even approaches a five-phase pattern, although the oscillations
at t > 10 are only slight. Specifically, at S∗

0 = 20, the transient current I(t) starts from zero,
reaches a global maximum of 2.27µA/cm2 at t = 0.18 s, decreases to a local minimum
of 1.196µA/cm2 at t = 10.5 s, increases to a local maximum of 1.206µA/cm2 at t = 42 s,
and finally decreases to a steady value of 1.17µA/cm2. Thus, the variation between the
local extrema and the steady value is only 2–3%. At a higher concentration of S∗

0 = 30, this
variation is even smaller.

3.2. Effect of Internal Diffusion Limitation

Figure 2 shows the influence of substrate concentration on the dynamics of output
current at a fixed maximal enzymatic rate of Vmax = 100µM/s, which corresponds to a
diffusion module equal to unity (σ2 = 1). To investigate the effect of the diffusion module
on the transient response of the amperometric biosensors, the response was simulated at
very different values of Vmax. This allowed the transition from enzyme kinetics control
(σ2 ≪ 1) to internal diffusion control (σ2 ≫ 1) to be observed, while keeping all other
parameters the same as those used in the simulations depicted in Figure 2. Figure 3 shows
the number Next of extrema calculated from the simulated responses in both modes of
analysis, IA and BA.

As shown in Figure 3a, the transient output current exhibits one or even no local
extrema in IA, when the diffusion module changes in four orders of magnitude, from 0.01
to 100, and the dimensionless substrate concentration S∗

0 changes from 1 to 30. When the
biosensor acts under the internal diffusion limitation (σ2 ≫ 1), the response follows a
two-phase pattern (Next = 0): starting from zero increases to a steady value. A three-phase
pattern (Next = 1) is observed when the biosensor response is governed by enzyme kinetics
or mixed control (σ2 ≲ 10), although it also depends on the substrate concentration. The
yellow line in Figure 3 represents an approximate boundary between the two values of Next,
0 and 1, i.e., between model parameter values that result in either two-phase or three-phase
patterns. This yellow line is a linear approximation of the boundary,

S∗
0 = 1.5 + 3.5σ2. (20)
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The relationship (20) between the substrate concentration and the diffusion mod-
ule σ2, resulting in changes in the number of response phases, is approximately linear
when the biosensor operates in IA mode, as defined by (20) (Figure 3a). Similar de-
pendencies of the substrate concentration on the diffusion module have already been
observed [31,36,38,44,45]. In particular, it was found that the minimum dimensionless
substrate concentration at which the response reaches its maximum is a monotonically
increasing function of σ2 [36]. In the case of BA (Figure 3b), that relation is noticeably more
complicated as the number Next of extrema varies between zero and three, indicating that
the number of phases in the response pattern ranges between two and five. In particular,
at σ2 = 1, increasing the normalized substrate concentration S∗

0 from 1 to 30 results in the
number Next of extrema changing in the following sequence: 1, 0, 1, 2, 3. This can also be
noticed in Figure 2b.
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Figure 3. Number Next of extrema of the output current vs. the diffusion module σ2 and the
normalized substrate concentration S∗

0 , with fixed parameters θ = 0.75, KI = KM and K′
I = ∞, for IA

(a) mode and BA (b) mode. Other parameters are defined in (19). The yellow line is defined in (20).

Although the variation in the number of extrema Next differs noticeably among the
analysis modes, at relatively low substrate concentrations (S∗

0 ≲ 4.5) and very low values
of the diffusion module (σ2 ≲ 0.03), the number Next is practically invariant across the
analysis mode, as observed in the lower left corners of Figure 3a,b.

To observe the effect of the diffusion module σ2 on the shape of the transient response,
the biosensor action was simulated at different values of σ2 while keeping the substrate
concentration fixed at a relatively high level (S∗

0 = 10K∗
I = 10, S0 = 10KI), where the

uncompetitive inhibition plays a significant role in the biosensor response. The simulation
results are shown in Figure 4.

One can see in Figure 4a that in IA, the transient output current exhibits a global
maximum for σ2 < 3, whereas it is a monotonously increasing function of time t for
greater values of the diffusion module σ2, as predicted in Figure 3a. In BA (Figure 4b), for
σ2 < 3, the shape of I(t) is similar to that observed in the IA mode (Figure 4a), although
the function I(t) in BA has additional local extrema, which are close to steady values.
However, at slightly greater values of σ2 (3 ≤ σ2 ≤ 10), the transient current I(t) exhibits
a noticeable peak in BA. At high values of the diffusion module (σ2 > 20), when the
response is governed by internal diffusion control, the output current exhibits only a global
maximum, following a two-phase pattern.
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Figure 4. Dynamics of the output current I(t) at ten values of the diffusion module σ2, with fixed
substrate concentration S∗

0 = 10 and K′
I = ∞, in IA (a) mode and BA (b) mode. Other parameters are

the same as in Figure 3.

On the other hand, at high values of the diffusion module (σ2 > 5), the transient
response in IA becomes practically invariant to σ2, whereas in BA, the response dynamics
still noticeably depend on σ2. Maintaining the analytical capability of biosensors for as
long as possible is very important [2,4,7]. Typically, the maximal enzymatic rate Vmax

decreases over time due to enzyme inactivation [76,88]. Therefore, ensuring the stability
of the biosensor response (the biosensor resistance) across a range of Vmax values is cru-
cial [30,38,42,44,45,88]. Since Vmax directly influences σ2, it is essential to maintain a stable
response even when σ2 undergoes slight variations.

In particular, at two significantly different values of σ2, namely 0.5 and 5, the response
of a biosensor operating under BA conditions follows a five-phase pattern (Next = 3).
However, in the case of σ2 = 0.5 (and for σ2 < 0.5 as well), the local minimum is barely
noticeable, whereas for σ2 = 5, all extrema and all five phases are clearly observable. This is
particularly important in practical applications of amperometric biosensors, as oscillations
in the biosensor response may complicate the use of the calibration curve [21,22]. On
the other hand, analyzing both the steady-state and the maximal biosensor currents can
significantly extend the calibration curve when using intelligent biosensors [21,35,36,89].

3.3. Effect of External Diffusion Limitation

To investigate the influence of external diffusion limitations on the behavior of amper-
ometric enzyme-based biosensors, the biosensor response was simulated by varying the
partition coefficient θ over two orders of magnitude, from 0.01 to 1.0. This variation caused
the governing dimensionless Biot number β to change from 0.1 to 10, representing a shift from
external to internal mass transfer dominance [9,78]. The substrate concentration S0 was also
independently varied from 0.025 to 3 mM. Simulations were conducted for both types of anal-
ysis, injection (IA) and batch (BA), using fixed parameters of Vmax = 100µM/s and KI = KM.
Figure 5 shows the number Next of extrema calculated from the simulated responses.

As one can see in Figure 5a, in IA, the dependence of the number Next of extrema of
the transient current on the Biot number is rather similar in shape to that on the diffusion
module σ2. In IA, when the mass transport by diffusion in the diffusion layer is notably
faster than in the enzyme layer (β ≳ 2), the response follows a two-phase pattern (Next = 0).
At smaller values of β, when the diffusion in the outer diffusion layer is comparable with
or slower than that in the enzyme layer (β ≲ 1), the response follows a three-phase pattern
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(Next = 1), although it also depends on the substrate concentration. The yellow line in
Figure 5a represents an approximate boundary between the two values of Next, 0 and 1,

S∗
0 = 3.2 + 12.7β. (21)

In the case of BA (Figure 5b), the relationship between the number Next of extrema, the
Biot number β, and the substrate concentration is noticeably more complex. The number
Next varies between zero and three, and the boundary between the regions where Next = 0
and Next = 1 is clearly nonlinear. Nevertheless, the boundary (yellow line) between
areas indicated as Next = 0 and Next = 2 is similar to that observed in IA (Figure 5a)
between Next = 0 and Next = 1. At relatively high substrate concentrations (S∗

0 ≳ 15), the
number of response phases is the same in both modes of analysis, IA and BA, except when
0.15 ≲ β ≲ 2, where the number of phases in BA is greater than in IA.
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Figure 5. Number Next of extrema of the biosensor current vs. the Biot number β and the normalized
substrate concentration S∗

0 , with fixed parameters Vmax = 100µM/s, KI = KM and K′
I = ∞, for IA

(a) mode and BA (b) mode. Other parameters are defined in (19). The yellow line is defined in (21).

To observe the effect of the Biot number β on the shape of the transient response, the
biosensor performance was simulated at nine values of β, while keeping the substrate
concentration fixed at a relatively high level (S∗

0 = 10K∗
I = 10). The simulation results are

shown in Figure 6.
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Figure 6. Dynamics of the output current I(t) at nine values of the Biot number β, with fixed substrate
concentration S∗

0 = 10 and K′
I = ∞, in IA (a) mode and BA (b) mode. Other parameters are the same

as in Figure 5.
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Figure 6a shows that in IA at S∗
0 = 10, the transient biosensor current exhibits a global

maximum for β ≤ 0.5, whereas it is a monotonously increasing function of time t for greater
values of the Biot number β, as also shown in Figure 5a.

In BA (Figure 6b), three extrema can be observed only for the smallest value of the
Biot number of β = 0.1. However, a local minimum and local maximum differ by less than
1 percent. At β = 0.5, no local extrema are observed, but an extra inflection point (t ≈ 2 s) is
observed where the curve changes from concave down to concave up. When 1 ≤ β ≤ 3, the
transient output current has only one global maximum (Next = 1), which occurs noticeably
later (at t ≈ 100 s) than the global maximum observed for small values of β (at t < 1 s),
and is close to the steady-state value. For larger values of β (β > 3), the global maximum
decreasingly approaches the steady-state value.

In addition to the Biot number β, the external Thiele modulus σext (also known as
the external Damköhler number and the external diffusion module) is used to compare
external and internal mass transport resistances. It relates the characteristic timescale of
the enzymatic reaction within the enzyme layer to that of external mass transfer, i.e., it
represents the ratio between the first-order surface reaction rate (VmaxθS/KMd1) and the rate
of the mass transfer through the external diffusion layer (DS2 /d2) [22,35,49,50]. If σ2

ext ≪ 1,
then the external mass transfer is fast, and the system acts in a reaction-limited regime. The
enzymatic reaction is fast, and the external diffusion is limiting when σ2

ext ≫ 1. The internal
and external Thiele moduli are related through the Biot number for the mass transfer,

σ2
ext =

VmaxθSd1d2

KMDS2

=
σ2

βS
. (22)

The effect of the external Thiele modulus on the behavior of amperometric enzyme-
based biosensors was not investigated separately, as it is represented through two other
dimensionless parameters: the diffusion module σ2 and the Biot number β = βS.

3.4. Effect of Uncompetitive Substrate Inhibition

To investigate the effect of uncompetitive substrate inhibition (K′
I = ∞) on the behav-

ior of the biosensor transient current, the biosensor response was simulated by varying the
inhibition constant KI over four orders of magnitude, from 1µM to 10 mM, thereby chang-
ing the normalized inhibition constant K∗

I from 0.01 to 100. The substrate concentration S0

was independently varied from 0.025 to 3 mM, as in the numerical experiments discussed
above. Simulations were conducted for both types of analysis, injection (IA) and batch
(BA), using fixed parameters of Vmax = 100µM/s and θ = 0.75. At these parameter values,
the diffusion module σ2 = 1, and the Biot number β = 0.13. Figure 7 shows the calculated
number Next of extrema.

As shown in Figure 7, the dependence of the number Next of extrema of the transient
current on the inhibition constant K∗

I differs noticeably from those on the diffusion module
σ2 (Figure 3) and the Biot number β (Figure 5).

In IA (Figure 7a), the response follows a three-phase pattern (Next = 1) in most of
the entire region of parameter values, (S∗

0 , K∗
I ) ∈ [0.25, 30]× [0.01, 100]. Only at relatively

low substrate concentrations and large values of the inhibition constant, the response
follows a two-phase pattern (Next = 0), as in the Michaelis–Menten kinetics. This behavior
is reasonable because the influence of inhibition decreases with an increasing inhibition
constant K∗

I . Nevertheless, an increase in the inhibition constant can be compensated
for by an increase in the substrate concentration. In a particular case of K∗

I = 10, the
inhibitory term S2/KI in the reaction rate equation (5) becomes significant when S∗

0 ≥ K∗
I .

The relationship between S∗
0 and K∗

I is nonlinear. The yellow line in Figure 7a represents an
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approximate boundary between the two values of Next, 0 and 1. This line is a power-law
(allometric) approximation of the boundary,

S∗
0 = 4.9 × K∗

I
0.345. (23)

As shown in Figure 7, in the region parameter values S∗
0 and K∗

I where Next = 0 in IA
(i.e., below the yellow line), Next = 1 in BA.
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Figure 7. Number Next of extrema of the biosensor current vs. the normalized inhibition constant
K∗

I and the normalized substrate concentration S∗
0 , with fixed parameters Vmax = 100µM/s, θ = 0.75

and K′
I = ∞, for IA (a) mode and BA (b) mode. Other parameters are defined in (19).

Figure 7a shows that, in the particular case of K∗
I = 1, the transient output current in

IA is a monotonically increasing function of time for concentrations S∗
0 ≲ 5, and become a

non-monotonic function (with Next = 1) at higher concentrations. In the corresponding
BA (Figure 7b), the number Next changes with increasing substrate concentration in the
following sequence: 1, 0, 2, 3. Notably, Next = 0 occurs in the specific case of S∗

0 = 5. The
current dynamics in these cases are also illustrated in Figure 2.

To observe the effect of the inhibition constant K∗
I on the dynamics of the transient

current, the biosensor action was simulated at eleven different K∗
I values, with the constant

substrate concentration held at S∗
0 = 10. The simulation results are depicted in Figure 8.
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Figure 8. Dynamics of the output current I(t) at eleven values of the normalized inhibition constant
K∗

I , with fixed substrate concentration S∗
0 = 10 and K′

I = ∞, in IA (a) mode and BA (b) mode. Other
parameters are the same as in Figure 7.

As seen in Figures 7a and 8a, in IA at S∗
0 = 10, the transient current exhibits a global

maximum for all values of the inhibition constant K∗
I less than 8. Only when K∗

I becomes
comparable to or greater than the concentration S∗

0 (K∗
I ≳ S∗

0) does the output current
become a monotonically increasing function of time t.
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In BA (Figures 6b and 7b), the transient current at S∗
0 = 10 is monotonic only within

a relatively narrow range of the inhibition constant K∗
I , approximately between 3 and 8.

The number of extrema Next = 3 is observed when K∗
I varies approximately between 0.1

and 0.9. However, the local minimum and maximum differ from the steady-state by only
1–2%, although the global maximum is noticeably more pronounced. Such small deviations
in local extrema from the steady value can be considered perturbations of the response,
influencing the response analysis procedure [21,35,36,89].

3.5. Effect of Noncompetitive Substrate Inhibition

To examine the impact of noncompetitive substrate inhibition on the transient current
behavior of the biosensor, the response was simulated by varying both the uncompetitive
(KI ) and competitive (K′

I) inhibition constants. All other parameters were the same as
those used in the analysis of uncompetitive substrate inhibition presented earlier in this
section. The simulation results are presented in Figures 9–12. Figures 9 and 11 display
the computed number Next of extrema, while Figures 10 and 12 show the dynamics of the
output current I(t).
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Figure 9. Number Next of extrema of the biosensor current vs. the normalized inhibition constant K∗
I

and the normalized substrate concentration S∗
0 , with a fixed competitive substrate inhibition constant

K′
I = KM for IA (a) mode and BA (b) mode. Other parameters are the same as in Figure 7.

The numerical experiments whose results are presented in Figures 9 and 10 differ from
those shown in Figures 7 and 8 only in the values of the competitive inhibition constant K′

I .
Figures 9 and 10 illustrate how the response of the biosensor, operating under uncompeti-
tive substrate inhibition, is influenced by the addition of competitive substrate inhibition at
a fixed moderate rate K′

I = KM; that is, how the competitive substrate inhibition reaction (3)
affects the response of the biosensor governed by reactions (1) and (2).

One can observe similar shapes in the evolution of output current I(t) in Figures 8 and 10,
but there is a noticeable difference in its absolute values. However, this difference becomes
significant only when the uncompetitive inhibition constant KI exceeds the Michaelis
constant (KI > KM, K∗

I > 1). At K∗
I = 0.1 (KI = 0.1KM), the steady-state output current

Iss in the case of noncompetitive substrate inhibition (Figure 10) is only about 1% lower
than that for uncompetitive substrate inhibition (Figure 8). This difference increases with
increasing substrate concentration S0, reaching 12% at K∗

I = 1 and 35% at K∗
I = 100. This

property is valid for both IA and BA analysis modes.
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Figure 10. Dynamics of the output current I(t) at eleven values of the normalized inhibition constant
K∗

I , with fixed substrate concentration S∗
0 = 10 and K′

I = KM, in IA (a) and BA (b) modes. Other
parameters are the same as in Figures 7 and 9.

The increasing influence of the competitive inhibition constant K′
I while increasing

the uncompetitive inhibition constant KI can also be observed in the dependence of the
number Next of extrema in the biosensor current on the normalized inhibition constant K∗

I
and the substrate concentration S∗

0 (Figures 7 and 9). The corresponding regions with the
same number Next have very similar shapes for K∗

I < 1, but they diverge for larger values
of K∗

I . Similar to the case of uncompetitive inhibition, the boundary between the two values
of Next, 0 and 1, observed in the IA mode for noncompetitive inhibition and indicated by
the yellow line in Figure 9a, is also approximated by a power-law (allometric) relationship,

S∗
0 = 3.81 × K∗

I
0.354. (24)

The increasing effect of the competitive inhibition constant K′
I with an increasing

uncompetitive inhibition constant KI can be explained by the reaction rate expression (5).
At a fixed value of K′

I , the rate of the noncompetitive (mixed) inhition V(S) approaches the
rate of competitive inhibition, as defined in (7), when KI ≫ K′

I .
To extend the study of the impact of noncompetitive substrate inhibition on the

transient current behavior of the biosensor, the response was simulated by varying the
competitive (K′

I), keeping the uncompetitive (KI ) inhibition constants unchanged. Figure 11
shows the dependence of the number Next of extrema in the biosensor current on the
normalized inhibition constant K∗

I and the normalized substrate concentration S∗
0 , with a

fixed competitive substrate inhibition constant K′
I = KM for the IA (a) mode and BA (b)

mode.
As one can see in Figure 11a, in IA, the dependence of the number Next of extrema

of the transient current on the normalized competitive inhibition constant K′
I
∗ noticeably

differs in shape from the dependencies observed earlier in this section. The yellow line in
Figure 11a, representing an approximate boundary between the two values of Next, 0 and 1,
saturates as K′

I
∗ → ∞ and is expressed as a rational function,

S∗
0 = 4.9 − 1.3

0.44 + K′
I
∗ . (25)

Figure 11b shows a relatively large region where Next = 3 in BA. However, this re-
gion corresponds to only relatively high substrate concentrations (S∗

0 ≳ 10). At S∗
0 = 10,

Figure 12b clearly shows local minima and maxima for K′
I
∗ > 0.2 (Next = 2). The dif-

ference in maximal currents between the analysis modes is among the most significant
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differences observed, as shown in (Figure 12), compared to the other cases presented in
Figures 2, 4, 6, 8 and 10.

When K′
I
∗ ≫ 1, at a fixed value of K∗

I , the rate of noncompetitive (mixed) inhibition
V(S) approaches the rate of uncompetitive inhibition, as defined in (6). Thus, at K′

I
∗ = 100,

the simulation results shown in Figures 11 and 12 for K′
I
∗ = 100 coincide with the results

presented in Figures 7 and 8 for the specific value K∗
I = 1. In particular, the output currents

in Figure 12, labeled with 100, coincide with the currents in Figure 8, labeled with 1, as in
both cases K∗

I = 1 (KI = KM).
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Figure 11. Number Next of extrema for the biosensor current vs. the normalized inhibition constant
K′

I
∗ and the normalized substrate concentration S∗

0 , with a fixed uncompetitive substrate inhibition
constant KI = KM for IA (a) and BA (b) modes. Other parameters are the same as in Figure 9.
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Figure 12. Dynamics of the output current I(t) for ten values of the normalized inhibition constant
K′

I
∗, with fixed S∗

0 = 10 and KI = KM, in IA (a) and BA (b) modes. Other parameters are the same as
in Figure 11.

4. Conclusions
The two-compartment mathematical model (8)–(14) of amperometric enzyme-based

biosensors is useful for investigating the influence of noncompetitive (mixed) substrate
inhibition, in conjunction with internal and external diffusion limitations, on the biosensor
response. Deriving the corresponding dimensionless form of the model (A1)–(A7) reveals
the main governing dimensionless parameters (18).

The dynamics of the enzymatic system shown in Figure 1 are highly sensitive to
internal and external diffusion limitations, enzyme inhibition, and, most notably, the
mode of analysis. In injection analysis (IA, real-time monitoring), where the arrival of the
analyte initiates the biosensor transient response, the response follows a two- or three-
phase pattern. In batch analysis (BA), where the biosensor is directly immersed in a buffer
solution containing the analyte, the response may exhibit up to five phases. The number
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Next of extrema in the transient output current, as defined by Equation (17), is useful for
determining the conditions under which the biosensor response follows a multi-phase
pattern. The steady-state biosensor current is invariant with respect to the analysis mode
(Figures 2, 4, 6, 8, 10 and 12).

The non-monotonic (three-phase, Next = 1) transient output current of biosensors
operating in IA is observed only when the enzyme kinetics predominate in the biosensor
response, compared to the internal diffusion, or when the operation is under mixed con-
trol (diffusion module σ2 ≲ 10) (Figure 3a), the diffusion in the outer diffusion layer is
comparable to or slower than that in the enzyme layer (the Biot number β ≲ 1) (Figure 5a),
and the substrate concentration is comparable to or greater than the inhibition constant
(Figure 7a), where the current shows a global maximum greater than a steady value
(Figures 4a, 6a and 8a).

In BA, the monotonic (two-phase, Next = 0) transient current is observed only when
the biosensor response is notably governed by enzyme kinetics (σ2 < 1), mass transport
by diffusion in the diffusion layer is faster than in the enzyme layer (β ≳ 1), and under
specific values of other parameters. Under conditions where biosensors operating in IA
follow a three-phase pattern, the transient current in BA can exhibit a maximum five-phase
pattern (Next = 3) (Figures 3b, 5b, and 7b), where the current shows a global maximum, a
local minimum, and a local maximum. The global maximum may occur either before or
after a local minimum (Figures 4b, 6b, and 8b).

The effect of the competitive substrate inhibition constant K′
I on the response dynamics

of biosensors operating under noncompetitive (mixed) substrate inhibition increases with
increasing uncompetitive inhibition constant KI (Figures 9–12).

Oscillations in the transient biosensor response, caused by substrate inhibition and
both internal and external diffusion limitations, should be taken into consideration when
using the biosensor calibration curve.
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Appendix A. Dimensionless Mathematical Model
The two-compartment model (8)–(14) was expressed in the dimensionless form by

rescaling the time, space, concentrations, and diffusion coefficients, defined in Table A1.
The governing Equation (8) in the dimensionless form was then expressed as follows

(t∗ > 0):

∂S∗
1

∂t∗
=

∂2S∗
1

∂x∗2 − σ2 S∗
1

1 + S∗
1/K′

I
∗ + S∗

1(1 + S∗
1/K∗

I )
,

∂P∗
1

∂t∗
= D∗

P1

∂2P∗
1

∂x∗2 + σ2 S∗
1

1 + S∗
1/K′

I
∗ + S∗

1(1 + S∗
1/K∗

I )
, x∗ ∈ (0, 1),

(A1)

where D∗
P1

= DP2 /DS1 .
The diffusion Equation (9) takes the following form (t∗ > 0):

∂S∗
2

∂t∗
= D∗

S2

∂2S∗
2

∂x∗2 ,

∂P∗
2

∂t∗
= D∗

P2

∂2P∗
2

∂x∗2 , x∗ ∈ (1, a∗2),
(A2)

where D∗
S2

= DS2 /DS1 , D∗
P2

= DP2 /DS1 , a∗2 = a2/a1.
The boundary conditions (10), (11) and (12) are rewritten as follows (t∗ > 0):

S∗
2(a∗2 , t∗) = S∗

0 , P∗
2 (a∗2 , t∗) = 0, (A3)

∂S∗
1

∂x∗
∣∣∣
x∗=1

= D∗
S2

∂S∗
2

∂x∗
∣∣∣
x∗=1

, S∗
1(1, t∗) = θSS∗

2(1, t∗),

∂P∗
1

∂x∗
∣∣∣
x∗=1

= D∗
P2

∂P∗
2

∂x∗
∣∣∣
x∗=1

, P∗
1 (1, t∗) = θPP∗

2 (1, t∗),
(A4)

P∗
1 (0, t∗) = 0,

∂S∗
1

∂x∗
∣∣∣
x∗=0

= 0. (A5)

The initial conditions specific to IA, as given in (13), take the following form:

S∗
1(x∗, 0) = 0, P∗

1 (x∗, 0) = 0, x∗ ∈ [0, 1],

S∗
2(x∗, 0) = 0, P∗

2 (x∗, 0) = 0, x∗ ∈ [1, a∗2),

S∗
2(a∗2 , 0) = S∗

0 , P∗
2 (a∗2 , 0) = 0.

(A6)

The initial conditions (14), which are specific to BA, are transformed to the following
conditions:

S∗
1(x∗, 0) = 0, P∗

1 (x, 0) = 0, x∗ ∈ [0, 1),

S∗
1(1, 0) = θSS∗

0 , P∗
1 (1, 0) = 0,

S∗
2(x∗, 0) = S∗

0 , P∗
2 (x∗, 0) = 0, x∗ ∈ [1, a∗2 ].

(A7)
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Table A1. Dimensional and dimensionless parameters.

Parameter Dimensional Dimensionless

Time t, s t∗ = DS1 t/a2
1

Distance from electrode x, µm x∗ = x/a1
Enzyme layer thickness d1, µm d∗1 = d1/a1 = 1
Diffusion layer thickness d2, µm d∗2 = d2/a1
Substrate concentration in enzyme layer S1, µM S∗

1 = S1/KM
Product concentration in enzyme layer P1, µM P∗

1 = P1/KM
Substrate concentration in diffusion layer S2, µM S∗

2 = S2/KM
Product concentration in diffusion layer P2, µM P∗

2 = P2/KM
Substrate concentration in bulk S0, µM S∗

0 = S0/KM
Michaelis constant KM, µM K∗

M = KM/KM = 1
Uncompetitive substrate inhibition constant KI , µM K∗

I = KI/KM
Competitive substrate inhibition constant K′

I , µM K′
I
∗ = K′

I/KM
Maximal enzymatic rate Vmax, µM/s
Current density I, µA/cm2 I∗ = Id1/(neFDS1 KM)
Steady-state current density Iss, µA/cm2 I∗ss = Issd1/(neFDS1 KM)
Diffusion coefficient of substrate in enzyme
layer DS1 , µm2/s D∗

S1
= DS1 /DS1 = 1

Diffusion coefficient of product in enzyme
layer DP1 , µm2/s D∗

P1
= DP1 /DS1

Diffusion coefficient of substrate in
diffusion layer DS2 , µm2/s D∗

S2
= DS2 /DS1

Diffusion coefficient of product in diffusion
layer DP2 , µm2/s D∗

P2
= DP2 /DS1

Partition coefficient for substrate θS
Partition coefficient for product θP
Biot number for substrate βS = DS2 d1/(θSDS1 d2)
Biot number for product βP = DP2 d1/(θPDP1 d2)
Diffusion module σ2 = Vmaxd2

1/(KMDS1)
External diffusion module σ2

ext = σ2/βS
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