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1. Introduction, goals of the work

and thesis statements

For the first time dislocations in wavefronts were described by Nye and Berry in
1974 [1]. These dislocations are common to all types of waves, whether it is sound
or electromagnetic waves. There are three types of such dislocations : the screw
dislocation (I), the edge dislocation (II) and the mixed screw-edge dislocation (III).
The screw dislocations in light waves are also called "Optical Vortices" [2]. The light
intensity at these dislocations is zero wavefronts helical. They are stable and do not
disappear during propagation. Optical vortices are a widely researched topic today.
Due to their unique properties they have found their way into applications such as
optical trapping of particles[3], STED microscopy [4] and other...

Other types of wavefront dislocations exist as well. For example, edge dislocations
manifest as dark lines in the intensity pattern of a beam, which do not disappear
as the beam propagates. Edge dislocations can be either infinite (like in Hermite-
Gaussian modes) or closed (like in Laguerre-Gaussian modes with radial index higher
than 0).

In addition, there is a third type of dislocations - the mixed screw-edge disloca-
tions, sometimes called the 'fractional topological charge optical vortices". These
dislocations are unstable and upon propagation transform into optical vortices with
the nearest topological charge [5, 6].

In this work most of the attention is dedicated to the screw dislocations, that is,
the optical vortices. In addition, some parts of this work are dedicated to the mixed

screw-edge dislocations as well as polarization singularities.

The goals of this work

1. To analyze theoretically and show experimentally a computer-controlled motion

of optical vortex dislocations by means of interference.

1



1. Introduction, goals of the work and thesis statements

2. To theoretically investigate a possibility to generate half-charged optical vor-
tices using a radial polarization converter and to test this idea experimetally.

3. To theoretically investigate a possibility to generate doubly-charged vortices
using a radial polarization converter and to test this method experimentally.

4. To investigate theoretically and experimentally whether or not the topologi-
cal charge conservation holds true for mixed screw-edge dislocations in the second
harmonic generation process.

5. To analyze and demonstrate experimentally a new method which allows to cre-
ate beams with polarization singularities using the optical parametric amplification

of optical vortices.

The novelty of the results

1. A computer-controlled optical vortex motion based on interference was imple-
mented experimentally.

2. A wavelength mismatch effects on the operation of the radial polarization
element was analyzed and a new method was proposed to form a half-charged optical
vortices.

3. A new method was proposed to create a double-charged vortices using a radial
polarization converter.

4. Some of the properties of the half-charged optical vortices have been investi-
gated and the validity of the topological charge conservation law was confirmed in
the second harmonic generation process.

5. A new method to create beams with polarization singularities has been pro-

posed, analyzed and experimentally demonstrated.

Thesis Statements

1. It is possible to position optical vortices precisely in light beams using a collinear
interference with a Gaussian beam and manipulating the beam’s phase and inten-
sity. The positions of the vortex cores depend on the intensity ratio and the phase
difference between the two interfering beams.

2. By using a radial polarization converter, it is possible to generate half-charged
optical vortices by converting light of double wavelength compared to the converter’s

nominal wavelength.



1. Introduction, goals of the work and thesis statements

3. By using a double pass-technique, not only a singly, but also a doubly-charged
optical vortex can be generated using only a single radial polarization converter.
While the converter can be manufactured for optical vortices of any topological
charge, this method can double that topological charge.

4. Despite the inherent instability of a half-charged vortex and its transformation
into a unit-charged vortex, the topological charge conservation law holds true for
half-charged optical vortices in the second harmonic generation process and a unit-
charged vortex is observed in the second harmonic beam.

5. By optical parametric amplification of optical vortices in a nonlinear crystal
with type-II phase matching and subsequent conversion by a \/2 waveplate, beams
with polarization singularities can be obtained, including radially and azimuthally

polarized beams.
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2. Literature overview

am=1 bym= -1 c)m= -3

Figure 2.1: Examples of helical wavefronts with different topological charges : 1 (a), -1 (b) ir -3 (c).

Dislocations in wavefronts

In optical waves, the screw dislocations are called "Optical vortices" [2]. Around
such a dislocation, the wavefront is helical in form. The multiplicity and winding di-
rection of the wavefront is described by the parameter called the "topological charge".
In fig. 2.1, some examples of helical wavefronts are given width different topological
charges.

The optical vortices are stable upon propagation and the dark spot does not
disappear, as it would otherwise, if the beam did not have the helical wavefront.
However, dislocations with higher than unit topological charge are unstable and
if there is a coherent background, they decay into unit-charged dislocations [7, §].
Examples of optical vortices are the Laguerre-Gaussian modes. One useful property
of optical vortices is that they carry the orbital angular momentum [9, 10, 11]. This
property is exploited in optical tweezers and spanners to rotate microscopic objects
[12].

Another interesting property of optical vortices that has been investigated is the
self-reconstruction of the beam. When a part of the vortex beam is blocked, it has

been shown that during the propagation they reconstruct [13, 14, 15, 16, 17]. Optical
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2. Literature Overview

vortices have been shown to reconstruct even if their central dark core was blocked

o] H | |

m =3

Figure 2.2: The inerference of optical vortices with a Gaussian beam. The topological charge is denoted by

m =3

Figure 2.3: A collinear interference between an optical vortex and a Gaussian beam when the curvature

radii of the beams are different.

Optical vortices also have their characteristic interference patterns. When an
optical vortex interferes with a simple Gaussian beam, one of the fringes is forked at
the position of dislocations. The quantity of new fringes that appear indicates the
topological charge of the vortex and the fork’s direction - its sign (fig. 2.2). Also,
optical vortices are sometimes analyzed using a Michelson interferometer. In this
case, the optical vortex interferes with itself. The center of optical vortex interferes
with the edge of it, thus also producing the forked interference pattern.

Apart from screw dislocations there are also edge dislocations and mixed screw-
edge dislocations. The edge dislocations are lines in the intensity pattern where
there is a sudden phase shift of m. These dislocations can be either infinite (like in
Hermite-Gaussian modes or closed (like, for example, in the Bessel beams [18]).

Also Nye and Berry suggests that there is a third type of dislocations - the mixed
screw-edge dislocations. They are also referred to as the "fractional-charge optical
vortices". It was shown that these dislocations are unstable and transform into integer
charged dislocations of the nearest topological charge [6, 19, 5].

In this work we mostly dedicate our attention to optical vortices and mixed screw-

6



2. Literature Overview

edge dislocations.

Nonlinear transformations of optical vortices in a quadratic-nonlinearity

medium

There are numerous publications dedicated to nonlinear optics of singular beams
20, 21, 22, 23, 24, 25, 26, 27, 28]. Soskin and Vastnetsov in their work [20] suggested
the following generalizations :

1) All known nonlinear phenomena can be also observed for beams with heli-
cal wavefront. Often they show some peculiarities that are connected with helical
wavefront, integer topological charge and orbital angular momentum.

2) In the collinear sum and frequency difference generation, the topological charge
conservation law holds true.

3) A low intensity CW laser radiation can create optical vortex solitons in a
focusing as well as defocusing medium.

4) Arrays of optical vortices wit a zero net topological charge can appear due to
astigmatic Gaussian lens appearing in anisotropic media.

There are a lot of works dedicated to the second harmonic generation [21, 22], sum
26, 27] and difference [28] frequency generation, parametric fluorescence [29, 30, 31]
as well as optical vortex transformation in a cubic nonlinearity media [32, 33, 34, 35,
36, 37].

One of the ideas, suggested by Soskin - the law of topological charge conservation.
In a collinear three wave interaction, where the frequencies of waves are such that

w3 > wy,wo, a relation between the topological charges of these waves holds true :

Il3=10+1s. (21)

The only case when this is not apparent is the parametric fluorescence when the
signal and idler waves are created from the quantum noise. The topological charge

conservation seems to hold true even in seeded second harmonic generation [24].

Generation of the optical vortex beams

There are numerous methods of generating optical vortex beams, such as the
printed holograms [38, 39, 40, 41, 42], spiral phase plates and phase holograms [43,
44, 45, 46, 47], spatial light modulators [48, 49, 50, 51, 52, 53], cylindrical-lens mode

7
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LA

Figure 2.4: Binary optical vortex holograms that are simpler to print by printer I=1 (a) and 1=3 (b).

Figure 2.5: A spiral phase plate for generation of optical vortices.

converters [54, 55, 56, 57, 58, 59], the S-waveplate (the radial polarization converter)
(60, 61] , inside the laser resonator [63, 64, 65, 66, 67, 68, 69], microspheres [70] and
a deformable mirror [71, 72, 73].

Probalby the first and the easiest method is generation of otpical vortices by
printed holograms [38, 39, 40, 41, 42]. A forked diffraction granting is printed with
a printer on a transparent film (fig. 2.4). This an easy method to create optical
vortices, only not very efficient. Most of the beam’s energy goes into a non-useful
central maximum as well as into other maxima. In addition, the holograms have a
low optical damage threshold and tend to degrade over time. While this method is
probably the easiest of all, it is very inefficient and does not allow the generation of

intense optical vortex beams.

Optical vortices can be created by using phase holograms as well as spiral phase
plates [43, 44, 45, 46, 47]. The spiral phase plate is an optical element with its
thickness varying in the angular direction. It has a ramp, the height of which depends

on the intended topological charge of the vortex. It is shown in fig. 2.5.

Also phase holograms can also be manufactured to deflect the optical vortex by an
angle. The advantage of such holograms is that they don’t absorb much light and can
withstand higher intensities than simple printed holograms. Therefore the efficiency
is much higher and it is possible to create more intensive optical vortices, suitable

for nonlinear optics experiments. However, such plates are difficult to manufacture.

8
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Figure 2.6: Orientations of the principal axes in the radial polarization converter [60].

Generation of optical vortex by a radial polarization converter

One of the methods used in this work to create optical vortices is the radial
polarization converter (S-waveplate) [60, 61]. The radial polarization converter is
essentially a spatially-variant \/2 waveplate with the direction of the optical axis
depending on the azimuthal angle (fig. 2.6). While it is meant for generation of a

radially or azimuthally polarized beam, for a circularly polarized light it acts as a

phase plate, forming a unit-charged optical vortex.



3. (eneration of unit- and
half-charged optical vortex by a radial

polarization converter

In this chapter we review a method to generate a unit-charged optical vortex by a
radial-polarization converter (also called the S-waveplate) [61] and discuss a method
to create a half-charged optical vortex. The results of this work have been published

in the article [P3].

The Jones matrix of a radial polarization converter

In principle, the radial polarization converter [61, 60] is a /2 waveplate, with
its principal axis depending on the azimuthal angle. The Jones matrix of a radial

polarization converter is :

e lcosgb singb] | (3.1)

sing — cos ¢

Therefore the radial polarization converter is described by a Jones matrix A in
eq. (3.1). The radial polarization converter transforms linearly polarized light into
radially /azimuthally polarized light or a superposition of both, depending on the
direction of the polarization of the incoming light. If the incoming light has a circular
polarization, then the converter works as a phase plate and converts it to an optical

vortex [61].

If the polarization of incoming light has components v, and v,, using the con-
verter’s Jones matrix, the output polarization vector can be written in polar coordi-

nates :

10



3. Generation of unit- and half-charged optical vortex by a radial polarization converter

v
Wpol = ’ . (32)
Therefore, from eq. (3.2) it can be seen that the radial polarization converter
transforms the beam’s x component into the radial polarization and the y component

to the azimuth polarization.

The influence of the wavelength mismatch on the beams, formed

by the radial polarization converter

Let us assume that a beam is passing through the radial polarization converter
which has a different wavelength than the converter was designed for. In this case
the converter no longer works as a \/2 waveplate. It will create a phase difference 6
between the two orthogonal polarization components. Then, the radial polarization

element’s matrix can be shown to be:

~ cos¢ sing . sin? £ cos £ sin £
B— + (619 + 1) 2 . 2 2 (33)
sing —coso coS % sin 5 cos? %

We can see that the radial polarization matrix consists of two summands (eq. 3.3):
the radial polarization converter’s matrix (as in eq. 3.1) and the additional compo-
nent (the background part). By inserting 6 = = we can see, that the background part

actually vanishes.

Creation of optical vortices by a radial polarization converter

As discussed previously, the radial polarization converter can be used to create a
unit-charged optical vortex from a circularly polarized light. Another interesting case
is when the converter is used to convert the light with double its nominal wavelength.

Then, in eq. 3.3, the phase shift will be § = = /2. If the input polarization vector is

=11 . (3.4)

multiplying it by the matrix B in eq. 3.1, the resulting beam will have the following

polarization vector:

11



3. Generation of unit- and half-charged optical vortex by a radial polarization converter
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To Michelson interferometer N

or CCD camera N
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s - polazitation Pl
VRN
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Figure 3.1: The experimental setup (Stage 1 : the unit-charged vortex). BTFP - Brewster thin-film polarizer,
PCND -the radial polarization converter, PC - polarization beam splitter.

1)
) ) © @

Figure 3.2: The experimental results : the s (a) and p (b) polarization components and their interference
patterns ((c) ir (d)) obtained by using the Michelson interferometer.

+

= vaet | < ) (3.5)

sin (% - %)

We can see the azimuthal phase factor e?. In two orthogonal polarization com-

M- NS
NN

ponents, there will be two half-charged vortices, oriented by 180 degree angle with

respect to each other.

The Experiment

The experiment was carried out in two stages : 1) The Gaussian beam (A = 532
nm) was converted into a unit-charged optical vortex. The experimental setup is
shown in fig. 3.1. A circularly polarized light beam was formed by using a polarizer
(BTFP) and a \/4 waveplate. Then, by passing the radial polarization element (the
S-waveplate) a unit-charged optical vortex was formed. The intensity distribution
and the interference pattern of the beam was captured by using a CCD camera. The
results are shown in fig. 3.2. In both polarization components a unit-charged optical

vortex can be seen (as indicated by the fork in interference patterns).

12
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Figure 3.3: The experimental setup (Stage 2 : the half-charged vortex). BTEP - the brewster thin-film
polarizer PCND - the radial polarization converter, PC - the polarization beam splitter.

)

Figure 3.4: The experimental results : The intensity pattern of one of the vortices’ polarization components
(a), the interference pattern with a Gaussian beam in the near field (b) and the magnified central part of
the interference pattern (c)

(a)

2) The experimental setup (as shown in fig. 3.3) was assembled and a half-charged
optical vortex was generated. The wavelength of light used in this part of the exper-
iment was A = 1064 nm. The generated vortex was superimposed with a Gaussian
beam and the resulting interference pattern was captured using a CCD camera. The
results are shown in fig. 3.4. In fig. 3.4 (¢) a phase shift of = pi between the

interference fringes is visible.

Conclusions

It has been shown both theoretically and experimentally that by using a radial
polarization converter it is possible to form a unit-charged as well as half-charged
optical vortices. In order to obtain a half-charged vortex, it is necessary to use a light
beam that has double wavelength than the radial polarization element was designed

for.

13



4. Formation of doubly charged
optical vortices by radial polarization
converter by using a double-pass

technique

It is well known that a radial polarization converter can be used to create unit-
charge optical vortices [61]. In this chapter we present a new method which can
be used to form the doubly-charged optical vortices by using only a single radial
polarization converter. The results of this work have been published in the article

[P4] and presented in the conference [K2]

Effect of radial polarization converter on optical vortices

The Jones matrix of a radial polarization converter is :

sing —coso

jSWZ |:cosgz> sin ¢ ] | (4.1)

The radial polarization converter can change the topological charge of the incoming

circularly polarized optical vortex by one. Supposing the input beam is :

1
+i

(p, 9) = Ai(p) [ el (4.2)

where A;(p) is the beam’s envelope. It can be shown that the output beam will

have the following polarization vector :

1

@(p, ¢) = Ailp) [ } =00 (4.3)

Fi
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double-pass technique

Cl D] |x —

oL _ICLIN f
M PP1 SW PP2 FR  PBSA ¢

Vi

N\

/’/;—\\//’

Figure 4.1: The conceptual double-pass setup. M- mirror, PBS - polarization beam splitter, FR - Faraday’s
rotator, PP1,PP2 - \/4 waveplates, SW - the radial polarization converter (the S-waveplate). The arrows
show the polarization states of the beam in respective positions.

We see that the topological charge is changed by 1 and the direction of circular
polarization is inverted.

Introducing the polarization’s handedness coefficient p = 41, which shows the
direction of the circular polarization ( +1 - clockwise, -1 - counter-clockwise), the

absolute value of the topological charge can be written : written :

|+1, 1-p>0
|m| = . (4.4)
=1, 1-p<0

Eq. (4.4) shows the conditions when the topological charge increases or decreases.
If the winding direction of the helical wavefront coincides with the direction of circular
polarization then the absolute value of the topological charge increases, otherwise -

decreases.

The principle of the double-pass technique

The conceptual double-pass setup is shown in fig. 4.1. A linearly polarized beam
is reflected from a polarization beam splitter (PBS) and passes through a Faraday’s
rotator FR. Then it passes through a \/4 waveplate and becomes circularly polarized.
The radial polarization converter SW transforms a circularly polarized Gaussian
beam into an unit-charged optical vortex. Further, the beam passes through a A\/4
waveplate PP1, is reflected from the mirror and again passes through PP1, thus the
direction of polarization is inverted. This way, it is ensured that a beam passing
back through the radial polarization element SW has proper polarization, so that
the topological charge increases. Then the beam passes through the /4 waveplate
PP2, then through the Faraday’s rotator FR and exits through PBS.

It is important to note that the Faraday’s rotator and the polarization beam

splitter are not essential in this setup. Instead, a simple beam splitter could be used,
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7]
C ‘Ol_lﬁaﬁ\u*o c
SW' PP1' M PP1 SW

Figure 4.2: The imaginary setup : PP1 - \/4 waveplate, SW - the radial polarization element (the S-
waveplate), M - mirror, SW> and PP1’ - the "reflected" optical components.

however, in this case the efficiency would be reduced, which, even in the ideal case,
would be at most 25 percent.

For calculation purposes, it is possible to re-imagine a part of the experimental
setup as shown in fig. 4.2. The SW’ and PP1’ are the "mirrored" optical components,
which are reflections of the SW and PP1. The Jones matrix of such system can be

written :

~ o~ o~ cos2¢  sin2¢
Q = JswJsw = _ (4.5)
—sin2¢ cos2¢p
A circularly polarized beam with a polarization vector v :
1 |1
= — 4.6
V2 |i (46)
will transform into a doubly-charged optical vortex :
A 2ig |1
@ =Qu =" (4.7)

V2 il

where @ is the Jones matrix from the eq. (4.5). We see, that in eq. (4.7) there
is a phase factor e?¢, which is characteristic of an optical vortex with topological
charge [ = 2. The polarization of this beam is circular, but as it passes through the
waveplate PP2 (fig. 4.1), it becomes linear.

Of course, converters for higher order optical vortices can also be created. In
general, if the waveplate is created to form an optical vortex of topological charge [,

then its Jones matrix will be :

~ coslg  sinlg
Tew = . (4.8)
sinl¢p —coslo
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4. Formation of doubly charged optical vortices by radial polarization converter by using a
double-pass technique

M Mi
—

o
HH -2

M A4 SW A/4 BS L (A=532 nm)

A

Figure 4.3: The experimental setup. L - the light source, P - poliarizer, BS - beam splitters, A\/4 - /4
waveplates, M - mirrors, SW - theradial polarization converter, MI - the Michelson interferometer, CCD -
a CCD camera.

i, ! ’%!'?

"’5»?‘:1 i

(a)

Figure 4.4: The experimental results : the intensity pattern of the optical vortex (a) and the interference
pattern after the Michelson interferometer (b). The fork in the interference pattern indicates the presence
of an optical vortex with topological charge [ = 2.

Following the same calculations as before, it can be shown that the double-pass

setup will have a Jones matrix :

~ cos2l¢p  sin2l¢p
T . (4.9)
—sin2l¢ cos2lp

It is easy to prove that such experimental setup would create an optical vortex

with topological charge |21].

The Experiment

The experimental setup is shown in fig. 4.3. The light source emits a light beam
of A = 532 nm. The light is polarized by a polarizer P. After passing through the
beam splitter BS, the beam goes through the system \/4-SW-)/4-M and comes back.
The beam, reflected from the beam splitter BS is recorder using the CCD camera.
Additionally, using the Michelson interferometer, an interference pattern can be reg-
istered proving that there is an optical vortex with topological charge | = 2 (fig. 4.4).

The fork in the interference pattern clearly indicate the presence of an optical vortex
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4. Formation of doubly charged optical vortices by radial polarization converter by using a
double-pass technique

with second topological charge.

Conclusions

A new technique was proposed, allowing to create a doubly-charged optical vortex
by using a single radial polarization converter. This technique has been analyzed the-
oretically and demonstrated experimentally. Interferometric measurements confirm
the presence of a double-charged optical vortex at the output of the experimental

setup.
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5. Control of optical vortex

positions by interference

In this chapter we overview a method allowing to control optical vortex positions
by interference. The results of this work have been published in the article [P1] and

presented in the conference [K4].

Collinear interference of the Laguerre-Gaussian beams

The collinear interference of two Laguerre-Gaussian beams was analyzed in [7, 8].
In this section it will be only briefly reviewed. Let us consider the following situation
: we have two collinear Laguerre-Gaussian modes with topological charges m and I

and the radial index equal to zero. Their amplitudes can be written :

Wo1 P ml *—g% i(kz+m¢+k—L2 ,m(z))

F z)=A W2 (2) IR1(2) 1
s Wo2 p \ 2 i(kz+z¢+k—i—n2(z)+cpo)

E b, 2) = A W3 (z) 2R2(2) ) 1

In egs. 5.1a and 5.1b, Wy; and Wy are the beam’s waist radii, Wi(z) and Wa(z)
are the beam radii at z, Rj(z) and Ry(z) are the wavefront curvature radii, 7;(z)
and 72(z) are the Gouy phases. ®pis the phase difference between the beams. For

Laguerre-Gaussian beams, these parameters can be expressed as follows :

W(Z) =Wpy/1+ (Z/ld)Q , (52&)

R(z) =z (1+ (la/2)?) , (5.2b)
n(z) = (Jm| + 1) arctan (z/1y)) , (5.2¢)
la=kW5/2. (5.2d)

In eq. 5.2d 1; is the diffraction length, also known as the "Rayleigh length". It
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5. Control of optical vortex positions by interference

shows at what distance from the waist the beam radius increases v/2 times.

The positions of optical vortices will be found from the following equation :

E=FE+FEy=0. (53)

The coordinates of the optical vortices can be obtained at z = const :

p—W(2) (i—j) T (5.4a)

(2n+ 1)+ Og
m — [

¢ =

: (5.4b)

where n is an integer (0 < n < |m — | for each dislocation at p = 0), and the

amplitudes A; and Ag in the eq. (5.4a) are :

A1 = A01W0/W(2) s (55&)
AQ = AQQWO/W(Z) . (55b)

Also, if I # 0, there will be a dislocation in the center of the beam which has a

topological charge m — I.

Egs. (5.4a) and (5.4b) show that the position of the optical vortex depends only
on the ratio of the amplitudes and the angular position depends only on the phase
difference between the beam. Thus, it is possible to control the optical vortex posi-
tions in two transverse coordinates independently. However, this is only true if the
wavefront curvature radii of the beams are the same. Otherwise, the angular position

of the vortices will also depend on the ratio of the beams’ amplitudes.

Eq. (5.4a) can be rewritten to include the maximum intensities of the beams :

W(Z) I2mam|m‘|m| [m |+l
= ) 5.6
P \/% \/ Ilmaw”“” ( )

The results of numerical modeling are shown in fig. (5.1) (see the next page). It is
possible to see that by changing the intensity ratio we can control the radial position
of the vortex. Also, by changing the phase difference the whole beam can be rotated

around its axis.

Also it should be mentioned that if the beam radii are not the same, it is possible

for secondary dislocations to appear and annihilate.
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5. Control of optical vortex positions by interference

00>

2max Zmax_o 0543[1111&){ zmax_o 2175[1max
D =727

Figure 5.1: Numerical results : the intensity pattern of the combined beam from an unit-charged optical
vortex (I7) and a Gaussian beam (I3). In the top row : different intensity ratios, in the bottom row :
different phase differences.

ES2

[Controller H pac|

Controller

cch I

Figure 5.2: The experimental setup : M1-M3 - mirrors, L1-L3 - lens, BS1-BS2 - beam splitters, F - variable
transparency filter, H - an optical vortex hologram, DAC - digital-analog converter, PC - a computer.

The Experiment

A computerized vortex controller was implemented experimentally. The experi-
mental setup is shown in fig. 5.2. A HeNe laser (A = 632.8 nm) was chosen for the
experiment. The beam was split into two parts, one part was used as a reference
beam and from the other part an optical vortex was generated. Then these two
beams were joined in a collinear way. The phase difference was controlled by the
mirror M2, which was mounted on a piezoelectric translation stage and the intensity
ration was controlled by a variable transparency filter F. The phase and intensity of
the reference beam was controlled from computer.

The experimental results are shown in fig. (5.3). It is possible to see that the
vortices can be rotated by changing the phase difference and can be translated in the

radial direction by changing the intensity ratio of the beams. Also, optical vortices
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5. Control of optical vortex positions by interference

Figure 5.3: Intensity patterns of the combined beam from an optical vortex and a Gaussian beam (experi-
mental results) : a) topological charge m = 1, b) m = 2. Phase differences (from left to right) : A® = 0°,
Ad =90°, A® = 180°.

with topological charge |m| > 1 are unstable and decay to a set of unit-charged

vortices.

Conclusions

It was shown theoretically and experimentally that is it possible to control optical
vortex positions by collinear interference between an optical vortex and a Gaussian
beam. Formulas have been derived allowing to calculate optical vortex positions
based on the intensity ratio and the phase difference of the superimposing beams.
The advantage of this method is that it is not limited by the optical damage threshold.
However, the it is only possible to control unit-charged vortices, since the higher-order
vortices decay in presence of a coherent background. Also, the maximum range of

optical vortex motion is limited.

22



6. Conservation of topological
charge in a second harmonic
generation process for

fractional-charge optical vortices

In this chapter we investigate the topological charge conservation for fractional
charge optical vortices. The results of this work have been published in the article

[P5] and presented in the conference [K3].

The dilemma of topological charge conservation of fractional-charge

optical vortices

Let us take simple example of the second harmonic generation. The pump de-
pletion and walk-off can be neglected. Then, the equation for the second harmonic
beam looks like this:

Zikg% + %a% <paa—‘jf) + %%—“12 — i09A2(p, ¢, 2)eBk* (6.1)

where As(p, ¢, z) is the complex amplitude of the second harmonic, A;(p, ¢, z) is

the complex amplitude of the first harmonic and Ak is the phase mismatch. if the fist

harmonic is an optical vortex with topological charge [, t. y. Ai(p, ¢, 2) x exp(ile),

then the equation (6.1) will have a solution with double azimuthal phase modulation:
As(p, 6, 2)  exp(i2lg).

This topological charge conservation should be valid for any vortices : with integer
or fractional topological charge . However, the fractional-charge vortices are unstable
and decay into optical vortices with the nearest topological charge [5, 6]. Then the
question arises, which topological charges will add up in the nonlinear process : the

integer or the fractional? This question will be addressed in further sections.

23



6. Conservation of topological charge in a second harmonic generation process for
fractional-charge optical vortices

0 mm 2 mm 4 mm 6 mm 8 mm 10 mm

0 mm 2 mm 4 mm 6 mm 8 mm 10 mm

Figure 6.1: Results of the numerical simulation : the first harmonic (PH) and the second harmonic (AH)
intensity patterns (top) and phase maps (bottom). In the second harmonic, approximately in the center of
the beam a unit-charged vortex is visible.

Topological charge conservation in the second harmonic generation

process

Numerical modeling and the experimental results show, the second harmonic gen-
erated by a half-charged vortex, will carry a unit-charge vortex. To explain this

phenomenon, the following equations have been simulated numerically :

A
Qikl% + V%Al = iOlAgAl eXp(—iAkz) (62&)
. 3A2 2 s 2 N
21k2§ + V7 Ay = io9 A exp(iAkz) (6.2b)

The full phase matching has been assumed (Ak = 0), the walk-off was also ne-
glected. The refractive indices have been chosen for both waves n; = ns = 1.5 without
attachment to any particular crystal. The length of the nonlinear crystal was in the

simulation was 10 mm. The results of numerical simulations are shown in fig. 6.1.

In fig. 6.1 we can see that approximately in the center of the second harmonic
beam, a unit-charged optical vortex is present, despite the fact that the fractional-
charged vortex transforms into a unit-charged vortex. It happens due to the fact
that the transformation of the first harmonic beam into a unit-charged optical vortex
happens in the dark area of the beam which does not contribute much into the second
harmonic generation. The phase of the second harmonic beam is influenced by the

bright part of the first harmonic beam.
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Figure 6.2: The experimental setup. SHC1,SHC2 - the nonlinear crystals and BFTP - brewster thin-film

£ 7

Figure 6.3: The experimental results

visible between the interference fringes.

interference pattern, (c) - the magnified central part of the interference pattern. The phase shift og 7 is

the first harmonic beam. (a) - the intensity pattern, (b) - the
H /’ “
(a) (b)
Figure 6.4: The experimental result : the second harmonic beam. (a) - the intensity pattern, (b) - the
interference pattern, (c¢) - the magnified central part of the interference pattern.

(©)

The Experiment

In the center of the
interference pattern, a fork is visible, which is characteristic of unit-charged optical vortex.

In order to determine the topological charges of the optical vortices, a Mach-

Zehnder interferometer was used. The experimental setup is shown in fig. 6.2. A

STA-01CW laser was used as the light source (wavelength A = 1064 nm). A Gaussian
25
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6. Conservation of topological charge in a second harmonic generation process for
fractional-charge optical vortices

splitter into two branches : one of them was for the reference beam and the other
one for the optical vortex. The reference beam is meant only for the interferometric
measurements. It produceas a second-harmonic Gaussian beam in the crystal SHC2.
At the output, the reference and the vortex beams are brought together again by
the use of a beam splitter. After filtering off the remains of the first harmonic, a
second-harmonic beam was registered using a CCD camera (or, if the reference beam
is not blocked, then the interference pattern ir registered). By changing the filter,
the remains of the first harmonic were registered as well. The results are shown in
figs. 6.3 and 6.4.

The first harmonic beam has the phase characteristic of a half-charged optical
vortex (fig. 6.3), while in the center of the second harmonic interference pattern, a
fork is visible (fig. 6.4 (c)), which proves the existence of a unit-charged optical vortex
in the second harmonic beam. Therefore, we have experimental proof of topological

charge conservation for half-charged optical vortices.

Conclusions

It has been shown both theoretically and experimentally that the topological
charge conservation law is valid for a half-charged optical vortex in the second har-
monic generation process despite the decay of the vortex. This happens because the
second harmonic is generated in the bright part of the beam and its phase charac-
teristic influences the second harmonic beam the most, while the decay happens in

the dark part of the beam and does not influence second harmonic.
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7. Generation of beams with
polarization singularities using the
optical parametric amplification of

optical vortices

In this chapter, a new way to form beams with polarization singularities is pre-

sented.

Generation of beams with polarization singularities by superposi-

tion of Laguerre-Gaussian modes

Beams with polarization singularities can be formed by superposition of two
Laguerre-Gaussian modes [74, 75, 76]. A detailed analysis has been given in works

(74, 75]. In here, we define only two classes of beams which are significant for our

purposes :
i = A(r) Cosllz] _
S1n
7.1
| e 0 (7.1)
= 3A(r) | exp(ilg) i + exp(—ilg) :
and

—sinlg -
coslo

_ (7.2)
= $A(r) (exp(ilqb) {111 — exp(—ilg) H)

which we will call as the radial-type (eq. (7.1)) and azimuthal-type (7.2)) since in
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7. Generation of beams with polarization singularities using the optical parametric
amplification of optical vortices

NLC
M (typell) F QW

Pump(:\s/f) - ~rF--Ft------- 3

. Output
\ PR
.
: Signal (A,)
Figure 7.1: The conceptual experimental setup : M - a mirror, PR - a phase regulator (a thin glass plate
which can be rotated to change the optical path of the beam), NLC - a type-II nonlinear crystal, F - filter,

which absorbs the pump beam and QW -a quater-waveplate. The pump beam is Gaussian and the signal
is an optical vortex. At the output the beam has a polarization singularity

the simplest case of | = 1, they have radial and azimuthal polarization respectively.
The [ is the topological charge of the optical vortices and A(r) is the envelope of
the beam which depend only on the radial coordinate. We can see that radial and
azimuthal type beams with polarization singularities can be expressed as a super-
position of two oppositely-charged optical vortices wit opposite handedness circular

polarization.

The general idea of the method

The main idea is to obtain a beam with polarization singularity from two op-
positely charged optical vortices. Such optical vortices can be obtained in optical
parametric amplification process since a topological charge conservation law holds
true.

The conceptual experimental setup is shown in fig. 7.1. The signal and pump
beams are joined by using the wavelength-selective mirror M and are amplified in
the nonlinear crystal NLC. The NLC has a type-II phase matching so that the polar-
izations of the outgoing signal and idler waves are perpendicular and the interaction
is degenerate with respect to the wavelength. The phase regulator PR selects the
proper phase of the signal beam. It is actually a glass plate which, when rotated,
changes the optical path of the signal beam. At the output, the quarter-waveplate
QW transforms the combined signal-idler beam into a beam with a polarization sin-
gularity. The quarter-waveplate has to be properly oriented at an angle of 45 degrees.

The Jones matrix of a properly the rotated waveplate should be :



7. Generation of beams with polarization singularities using the optical parametric
amplification of optical vortices

vertical
o e e

horizontal
—

Figure 7.2: The experimental setup along with the results. PR -the phase regulator, M1 - a mirror, M2
- wavelength-selective mirror, KTP - the nonlinear crystal, QW - the quarter-waveplate, CC - the calcite
crystal.

Let us discuss two cases:
1) When there is 7/2 phase difference between the signal and idler wave. Then,

after the crystal we have the output polarization vector:

exp(il¢)
iexp(—ilg)

As it passes through the quarter-waveplate, it will transform in the following way

<y
Il

(7.4)

o 1 —i exp(il¢) 5 cos(lg) ‘ (7.5)
—1 1| |iexp(—ilo) sin(l¢)
At the output, we will have a radial-type beam.
2) Another case, when the phase difference between the signal and idler wave is

—mn/2. Then ,after the quarter-waveplate we obtain an azimuthal-type beam:

e . R
o i| | iexp(ilg) _ sin(l¢) | (76)

—i 1] |exp(—ilg) cos(l¢p)
Yet another type of beams will be obtained if the quarter-waveplate is rotated to

the opposite direction.
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7. Generation of beams with polarization singularities using the optical parametric
amplification of optical vortices

Figure 7.3: Vertical (top) and horizontal (bottom) polarization components of the outgoing radial (a) and
azimuthal (b) polarization beams.

Experimental

The experimental idea has already been discussed. The experimental setup was
assembled as shown in fig. 7.2. The polarization structure of the resulting beams has
been confirmed by analysis using a birefringent calcite crystal. The radial and az-
imuthal beams have been produced using this method. Both radially and azimuthally
polarized beams have been obtained as can be seen from the split polarization com-

ponents in fig. 7.3.

Conclusions

A new method has been experimentally demonstrated and theoretically analyzed,
which allows to generate radially and azimuthally polarized beams. This can also

produce higher order polarization singularities.

30



8. The main results and conclusions

1. It has been shown both theoretically and experimentally that by using a radial
polarization converter it is possible to obtain a unit-charged or a half-charged optical
vortex by using a circularly polarized Gaussian beam. In order to create a half-
charged vortex, a light beam of double wavelength (compared to the wavelength for
which the radial polarization element was designed for )is needed.

2. A new technique to create a doubly-charged optical vortex with an S-waveplate
was created and investigated both theoretically and experimentally. It has bees
shown that by using a double-pass technique, a doubly-charged optical vortex can
be obtained.

3. It has been shown both theoretically and experimentally that is it possible to
control optical vortices’ positions by a collinear interference with a Gaussian beam.
This method is not limited by the optical damage threshold. However, multiply-
charged optical vortices decay into unit-charged vortices. Also, the maximum ampli-
tude of the vortex motion is limited.

4. It has been theoretically and experimentally confirmed that for the half-charged
vortex, despite it inherent instability, the topological charge conservation holds true
in the second harmonic generation process. This happens because the second har-
monic beam is mainly influenced by the bright part of the first harmonic beam and
the decay of the half-charged vortex happens in the dark part, which does not con-
tribute much to the second harmonic generation.

5. A new method to create beams with polarization singularities was created and
demonstrated experimentally. Radially and azimuthally polarized beams have been

created by using this method.
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