
Vilnius University
Center for physical sciences and technology

Andrius Gelžinis

Spectroscopy of photosynthetic molecular
complexes. Theoretical modeling and analysis

Doctoral dissertation
Physical sciences, Physics (02P)

Vilnius, 2017



Doctoral dissertation was prepared at Vilnius University in 2013 – 2017, Vilnius,
Lithuania.

Scientific supervisor:

prof. habil. dr. Leonas Valkūnas (Vilnius University, Physical sciences, Physics –
02P).



Vilniaus universitetas
Fizinių ir technologijos mokslų centras

Andrius Gelžinis

Fotosintetinių molekulinių kompleksų
spektroskopija. Teorinis modeliavimas ir analizė

Daktaro disertacija
Fiziniai mokslai, fizika (02P)

Vilnius, 2017 metai



Disertacija rengta 2013 – 2017 metais Vilniaus universitete.

Mokslinis vadovas:

prof. habil. dr. Leonas Valkūnas (Vilniaus universitetas, fiziniai mokslai,
fizika – 02P).



Acknowledgments

It takes ten hands to score a basket.

John Wooden

Yess, excellent. Teamwork and cooperation – those are the
Predacon watchwords.

Megatron, The Transformers Beast Wars

First, I would like to thank my supervisor prof. Leonas Valkūnas for making
this thesis possible. His guidance and teaching were invaluable and his moti-
vational skills are truly without peer. I would also like to express my gratitude
to prof. Darius Abramavičius, who generously shared his vast knowledge and
experience and was very helpful to me, especially in the earliest part of my sci-
entific career.

I also thank all my current and former colleagues in the Department of The-
oretical Physics (VU) and the Department of Molecular Compound Physics
(FTMC), especially, Juozas Bučinskas, Vytautas Butkus, Vytautas Balevičius Jr.,
Jevgenij Chmeliov, Vytautas Abramavičius, Vladimir Chorošajev, Ramūnas Au-
gulis, Egidijus Songaila, and last but not least, Stepas Toliautas.

I must thank Jennifer Ogilvie, Bruno Robert, Donatas Zigmantas, Alexander
Ruban and their groups for rewarding scientific collaborations.

Many of the computations presented in this thesis were performed using
the resources of the High Performance Computing Center “HPC Saulėtekis” at
Faculty of Physics, Vilnius University.

Personal thanks go to Gytis Bašinskas and Alina Lipovec.
Finally, I thank my family for the moral support during my long years of

studies.



Contents

Introduction 9

1 Overview of 2D spectroscopy 17
1.1 From pump–probe to 2D spectroscopy . . . . . . . . . . . . . 17
1.2 Basic principles of 2D spectroscopy . . . . . . . . . . . . . . 21

1.2.1 2D spectra of model systems . . . . . . . . . . . . . . 21
1.2.1.1 Single two- (or three-) level system . . . . . 21
1.2.1.2 Two coupled two-level systems – a dimer . . 25

1.2.2 Comparison of 2D and pump–probe spectroscopies . . 28
1.2.3 Two-color 2D spectroscopy . . . . . . . . . . . . . . . 32
1.2.4 Analysis of 2D spectra . . . . . . . . . . . . . . . . . 33

1.3 2D spectroscopy of FCP . . . . . . . . . . . . . . . . . . . . . 36
1.3.1 Ultrafast energy transfer from Chl c to Chl a . . . . . . 37
1.3.2 Energy transfer from Fxs to Chls . . . . . . . . . . . . 48

1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2 Spectroscopic properties of molecular aggregates 57
2.1 Tight-binding Hamiltonian . . . . . . . . . . . . . . . . . . . 57

2.1.1 Double-excited states . . . . . . . . . . . . . . . . . . 61
2.2 Linear spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 64

2.2.1 Linear absorption . . . . . . . . . . . . . . . . . . . . 64
2.2.2 Linear dichroism . . . . . . . . . . . . . . . . . . . . 67
2.2.3 Circular dichroism . . . . . . . . . . . . . . . . . . . 68

2.3 Calculations of linear absorption of molecular dimer . . . . . . 69
2.4 Stark spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 77
2.5 2D spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3 Microscopic model of PSII RC 91
3.1 The model parameters of PSII RC . . . . . . . . . . . . . . . 93

6



Contents

3.2 Spectroscopy of PSII RC . . . . . . . . . . . . . . . . . . . . 96
3.2.1 Fits of optical spectra . . . . . . . . . . . . . . . . . . 96
3.2.2 Calculations of independent spectra . . . . . . . . . . 99
3.2.3 2D spectroscopy of PSII RC . . . . . . . . . . . . . . 104

3.3 Comparison with other models . . . . . . . . . . . . . . . . . 105
3.3.1 Site energies . . . . . . . . . . . . . . . . . . . . . . . 105
3.3.2 Stark spectrum and CT states . . . . . . . . . . . . . . 108

3.4 Effect of vibrations to charge transfer . . . . . . . . . . . . . 110
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Afterword 115

Appendix A Cumulant expansion 117

Bibliography 121

7



Common notations and abbreviations
t2 waiting time
ω1 excitation frequency
ω3 detection frequency
2D two-dimensional
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ctR complex time-dependent Redfield

(M)DAS (modified) decay associated spectra
ESA excited state absorption
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FWHM full width at half maximum

Fx fucoxanthin
GSB ground state bleaching

HEOM hierarchical equations of motion
HOMO highest occupied molecular orbital

LD linear dichroism
LHCII major light-harvesting complex of higher plants

LO local oscillator
LUMO lowest unoccupied molecular orbital

ME molecular excitation
mR modified Redfield

Pheo pheophytin
PSII photosystem II
RC reaction center
sR standard Redfield



Introduction

Sometimes it is hell trying to get to heaven.

The Undertaker

Throughout the ages all living organisms on Earth have used Sun as the main
energy source. The most important metabolic process that occurs in plants, al-
gae and bacteria is photosynthesis. It begins with the absorption of solar light by
specific pigments, (bacterio)chlorophylls and carotenoids, which are bound to
light-harvesting proteins. Subsequently the energy is transferred to the reaction
centers. There the excitation triggers a fast charge separation, through which the
excitation energy is transduced into chemical potential. The latter then is used
for the production of sugars. Additionally, oxygenic photosynthesis also pro-
vides oxygen as a byproduct, making it invaluable to support living conditions
for mankind on the planet [1, 2].

Despite tremendous progress, a lot of open questions on the timescales and
mechanisms of excitation energy transfer and charge separation in the photo-
synthetic systems – light-harvesting antennae complexes, reaction centers and
whole photosystems – remains. Therefore, photosynthesis research is among
many scientific fields in physics, chemistry, and biology that requires the devel-
opment of time-resolved spectroscopic methods with the highest time resolution
possible [3, 4]. Between the mid-’70s and the mid-’90s, following the devel-
opment of the pulsed lasers, the nano- and picosecond time domains became
accessible to the pump–probe spectroscopy [5–10]. This technique provided
mountains of information about the timescales of the processes involved.

Yet the higher time resolution is desired, the shorter must be the laser pulses
used in the experiments. Unfortunately, due to the Heisenberg uncertainty prin-
ciple, the shorter the laser pulse, the less defined is its energy. Thus, achiev-
ing exact selective excitation with high temporal resolution is a fundamentally
challenging task. To circumvent this unavoidable limit, an echo technique, now
termed two-dimensional (2D) electronic spectroscopy, was formulated at the
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turn of the century, which provides information on the evolution of the sys-
tem with both high time (reaching tens of femtoseconds) and spectral resolu-
tions [11]. This technique has now been widely employed for studies of light-
harvesting antennas and photosystems [12–19] and led to a number of break-
throughs in the field. Naturally, it has also been applied to other systems, like
atomic vapors [20], semiconductor nanostructures [21] or photoreactive mo-
lecular species [22] to name only a few. In case the longer timescales are of
interest, experimentalists can safely turn to less complicated techniques, such
as time resolved fluorescence [23]. Extraction of the relevant information from
the ever increasing mountains of experimental data requires understanding of
fundamental photophysical processes.

Upon light absorption, separate molecules undergo a transition from the
ground state to their excited states. In aggregated conditions molecules with
similar optical properties can interact (even strongly) electrostatically although
they might not even be in a “physical” contact. In this case new collective energy
levels are created with transitions to these levels being (partly) allowed and/or
(partly) forbidden since excitations are intimately shared between molecules in
the aggregate [24, 25]. Absorption and fluorescence properties of such collec-
tive excitations known as Frenkel excitons depend on the relative orientations
and positions of the interacting molecules. They are, however, not the only pos-
sible excitations in the photosynthetic complexes. Charge transfer (CT) states,
relevant in the reaction centers, have to be taken into account to describe charge
separation. In this case, electrons and holes are not bound together but can be
on separate pigments. Taking CT states into account can severely complicate
the theoretical description [26, 27].

Spectral and dynamical properties of the photosynthetic molecular aggre-
gates reflect a complex interplay of electronic excitations interacting with intra-
and intermolecular vibrations. These systems are thus an example of open quan-
tum systems [28, 29] sharing similar properties with other systems from the
fields of condensed matter and even quantum computing. Theoretically, the key
issue is being able to describe both intermolecular interaction and interaction
with vibrations on equal footing. In case one type of interaction is weaker than
the other, perturbative approaches can be applied [30, 31]. They can reliably
and without prohibitive computational costs describe both the dynamics and the
spectral properties of the system. Nonetheless, sometimes the accuracy of even
similar methods varies widely, thus investigations of known and development
of new methods are always needed.
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Applications of microscopic theoretical models on real molecular systems,
however, are heavily dependent upon the availability of the structural data. Since
1984, when the crystal structure of the bacterial reaction center was first ob-
tained [32], the amount and quality of the structural data improved substantially
[33–38]. It is a foundation for all the microscopic models, as it allows calcula-
tions of molecular transition dipole moments and the resonance couplings [39].
If no structural data is available, as is the case for the fucoxanthin–chlorophyll
protein (FCP) complex from diatoms, only basic and phenomenological models
are possible.

Having all this in mind, what is a theorist to do? How can he contribute to-
wards the understanding of the processes in the photosynthetic molecular com-
plexes and their dynamical and spectroscopic properties?

The answer to this question is threefold. First, for systems with no structural
data available a theorist can use his knowledge of the system to make detailed
analysis of the experimental data and construct simple effective models (see
Chapter 1). Second, a theorist can develop general microscopic models and ac-
companying theories (see Chapter 2). Third, a theorist can apply the relevant
models and theories to describe a concrete system by explaining specific exper-
imental data (see Chapter 3). This thesis is the author’s attempt to contribute to
all three of these areas.

Main goal and tasks of the research work
The main goal of this research work is to uncover the identity and properties of
the microscopic molecular states participating in the energy transfer and charge
separation in the photosynthetic molecular complexes. In order to achieve this
goal, the following tasks were formulated:

• Perform a detailed analysis and effective modeling of the experimental
two-dimensional spectra of the fucoxanthin–chlorophyll protein complex.

• Develop an accurate but computationally efficient theoretical approach
suitable for the calculation of the optical lineshapes of the photosynthetic
molecular complexes.

• Develop a tight-binding model of the photosystem II reaction center ca-
pable of explaining its linear and non-linear spectra.
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Novelty and relevance of the results

Diatoms are a major group of algae, that account for up to a quarter of global
primary production. They absorb efficiently in the blue–green spectral region.
This is usually ensured by the carbonyl-containing carotenoid molecules, such
as peridinins or fucoxanthins. The FCP complex is the main complex of the
light-harvesting antenna of diatoms. Characterizing the electronic excitation
dynamics in FCP is a particularly challenging task because of a large number
of molecules and electronic levels involved. Previously, FCP was investigated
using the pump–probe spectroscopy [40–43]. The present thesis summarizes
the analysis of the first ever 2D spectroscopy experiments of FCP. These results
provide important insights to the structural organization of the FCP complex
and the energy transfer cascades therein.

Understanding of complex spectroscopic features of the photosynthetic mo-
lecular complexes requires the ability to model optical lineshapes. This issue
was investigated thoroughly in literature, and exact [44, 45] and approximate
[45–53] methods exist. A non-Markovian approach has been derived in the
work by Renger and Marcus [47], yet it has never been used in actual calcu-
lations. This thesis presents this complex time-dependent Redfield (ctR) theory
and shows its advantages over other perturbative methods. In addition, expres-
sions for calculations of both Stark and 2D spectra within the ctR theory are
derived here for the first time.

Photosystem II (PSII) is the only known biological complex capable of split-
ting water, thus it is the source of oxygen to all living beings on the planet Earth.
The reaction center (RC) of the PSII is responsible for the primary charge sepa-
ration. Despite intensive studies [54–61], the pathways of charge separation and
the identities of the participating states are still under debate. This thesis reports
a tight-binding model of the PSII RC with parameters derived from the fits of
optical spectra using the ctR theory, applied to the spectroscopic analysis of the
PSII RC for the first time. Simulations of Stark spectrum are reported, allowing
insights to the properties of the charge transfer states in the PSII RC. Addition-
ally, a proof of concept calculations demonstrate how coupling to vibrations can
enhance the charge separation.
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Statements of the thesis
1. Analysis of the experimental 2D spectroscopy data of the FCP complex,

supplemented with theoretical insights and representation in terms of suit-
able decay associated spectra, enabled to propose both a possible struc-
tural scheme and a detailed scheme of energy transfer pathways.

2. Accounting for the lifetime broadening with complex and time-dependent
terms significantly improves the quality of spectroscopic lineshapes, when
the lineshape function formalism is used. Neglecting the imaginary part
means ignoring the time-dependent reorganization and thus induces non-
uniform peak shifts, while the Markovian approximation assumes relax-
ation independent of bath state and thus reduces the overall accuracy of
the calculated lineshapes.

3. By using the ctR theory the characteristics of the PSII RC were deter-
mined from a fit of multiple spectroscopic data. The primary CT state is
identified to be Chl+D1Pheo−D1 from the fits of the Stark spectrum.

Author’s contribution and approbation of the results
This thesis is based upon the results that have been presented in seven published
and two, as of the time of writing, not yet published scientific papers:
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[P2]     A. Gelzinis, L. Valkunas, F. D. Fuller, J. P. Ogilvie, S. Mukamel, and
D. Abramavicius, “Tight-binding model of the photosystem II reaction
center: application to two-dimensional electronic spectroscopy”, New J.
Phys. 15, 075013, 2013.

[P3]     E. Songaila, R. Augulis, A. Gelzinis, V. Butkus, A. Gall, C. Büchel,
B. Robert, D. Zigmantas, D. Abramavicius, and L. Valkunas, “Ultra-
fast energy transfer from chlorophyll c2 to chlorophyll a in fucoxanthin–
chlorophyll protein complex”, J. Phys. Chem. Lett. 4, 3590–3595, 2013.

[P4]     F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox,
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[P5]     A. Gelzinis, V. Butkus, E. Songaila, R. Augulis, A. Gall, C. Büchel, B.
Robert, D. Abramavicius, D. Zigmantas, and L. Valkunas, “Mapping
energy transfer channels in fucoxanthin–chlorophyll protein complex”,
Biochim. Biophys. Acta 1847, 241–247, 2015.
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sional spectroscopy study”, J. Chem. Phys. 142, 212414, 2015.

[P7]     A. Gelzinis, D. Abramavicius, and L. Valkunas, “Absorption lineshapes
of molecular aggregates revisited”, J. Chem. Phys. 142, 154107, 2015.

[p8]     A. Gelzinis, R. Augulis, V. Butkus, B. Robert, and L. Valkunas, “Two-
dimensional spectroscoy for biologists: application to fuco-
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[p9]     A. Gelzinis, D. Abramavicius, J. P. Ogilvie, and L. Valkunas, “Spectro-
scopic properties of photosystem II reaction center revisited”, submitted
to J. Chem. Phys.

The author of this thesis is a theorist. He therefore claims no credit for the
experimental work presented here, as it was performed by the experimental-
ist colleagues. Analysis of the experimental data was always a group effort.
The theoretical work was done in a close collaboration with the supervisor and
other theorists, making exact attributions difficult. Nonetheless, here the author
lists the work that he feels he can safely be credited with. For [P1], the author
contributed a part of calculations. For [P2], the author formulated the model,
performed all the calculations and did most of the writing. For [P3], the author
performed all the calculations, and contributed substantially to the analysis of
the experimental data and the writing. For [P4], the author performed part of
the calculations. For [P5], the author performed most of the detailed analysis
of the experimental data and did most of the writing. For [P6], the author par-
ticipated in the analysis of the experimental data and contributed to the writing.
For [P7], the author contributed the idea, performed all the calculations and did
most of the writing. For [p8] the author performed the majority of manuscript
preparation. For [p9], the author performed all the calculations and theoretical
work, and wrote the majority of the paper.

The author has also co-authored a number of papers that are not included
into this thesis:
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Chapter 1

Overview of 2D spectroscopy

Information is victory. One cannot and should not dismiss
any data as inconsequential until one is in a position to

evaluate its significance, and that only comes with
hindsight. So all detail is important until circumstances

render it redundant.

Roboute Guilliman in “Know No Fear”
by Dan Abnett

This chapter is dedicated to the introduction of the 2D electronic spectros-
copy and its applications to the FCP complex. Therefore, it is divided into two
major parts. In the first part, we introduce the basics of the 2D spectroscopy, dis-
cuss its experimental implementations, the most important features visible in the
2D spectra, and different ways of analyzing the experimental data. In the second
part, we present the key findings from the 2D spectroscopy studies of the FCP
complex, namely a discovery of two chlorophyll (Chl) c molecules, with their
excited states exhibiting completely different evolution, and the characterization
of two spectroscopically distinct fucoxanthin (Fx) species in the complex.

1.1 From pump–probe to 2D spectroscopy
The usual goal of a multidimensional spectroscopic technique is to provide data
that is resolved in excitation frequency, detection frequency, and time. This type
of data is most naturally represented as time-resolved 2D maps, with one axis
representing the excitation, and the other – the detection frequency resolution.
Different approaches have their own advantages and disadvantages, relating to
resolution, noise, etc. In this section, we will provide a short overview of several
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1. Overview of 2D spectroscopy

a)Pump–probe spectroscopy

c)Colinear self-heterodyne 2D spectroscopy

b)Homodyne transient grating spectroscopy

d)Non-colinear heterodyne 2D spectroscopy
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Background signals

pulse
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Figure 1.1: Schematical presentation of multidimensional spectroscopies that
can provide excitation frequency, detection frequency and time resolved infor-
mation. a) pump–probe spectroscopy. b) homodyne transient grating spectros-
copy. c) colinear self-heterodyne 2D spectroscopy. d) non-colinear heterodyne
2D spectroscopy. Top left (all parts), the spatial arrangement of the pulses, the
sample and the detector; bottom left (all parts), the temporal arrangement of the
pulses and the signal; right (all parts), procedure to obtain the 2D maps and the
characteristic features of the technique.
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1.1. From pump–probe to 2D spectroscopy

types of spectroscopies, from the conventional pump–probe spectroscopy to the
non-colinear heterodyne 2D spectroscopy. To this end, in Fig. 1.1 we present the
principal schemes of the relevant experimental techniques, together with a short
description on how to obtain the time-resolved 2D maps and the advantages and
disadvantages of particular approaches. Similar description was presented in a
recent review of the experimental implementations of the 2D spectroscopy [62].

In Fig. 1.1a we present the principle scheme of the pump–probe spectros-
copy. First, a strong pump pulse (often narrow-band) with central frequency
ωpump excites the sample. Then, after a delay time tdelay, a weak probe pulse
(usually spectrally wide) probes the sample, and the resulting signal is recorded
by a detector. A single experimental run thus gives a linear spectrum that rep-
resents a broadband detection after tdelay has passed since the excitation of the
sample with ωpump. Repeating experiments with different ωpump allows one to
stack the obtained spectra and to depict a 2D map corresponding to a specific
tdelay. To observe the temporal dynamics, one then has to repeat the procedure
for different tdelay. In this way the system dynamics after excitation can be fol-
lowed. Nonetheless, this scheme suffers from two major drawbacks. The first
one is due to the interdependence of the time and excitation frequency resolu-
tions. Narrow-band pulses, which are required for a selective excitation, have
wide envelopes in the time domain, obscuring the observed dynamics. Con-
versely, one can use a wide-band pulse, but then no selective excitation is pos-
sible. In practice this means that this technique is suitable when the studied
spectral features are well-separated or the timescales of the processes are not
too short. Another disadvantage of this technique is that it is not background-
free, since the probe pulse and the signal arrive at the detector from the same di-
rection. Therefore, the signal-to-noise ratio is limited, and observation of weak
features becomes difficult.

The latter drawback can be circumvented by the transient grating spectros-
copy, illustrated in Fig. 1.1b. This is done by dividing a single pump pulse into
two, which have different spatial directions. In this way, after the interaction
with the probe, the sample emits the signal in the phase matching direction that
differs from the probe pulse, thus detector is not polluted by the background sig-
nals. The situation can be interpreted as the pump pulses creating a grating of
matter response, and the probe pulse undergoing a Bragg diffraction, resulting
in the emitted signal at different direction. In this technique the 2D maps are ob-
tained in the same way as in the pump–probe configuration. Correspondingly,
the issue of interdependence of the excitation frequency and time resolutions
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1. Overview of 2D spectroscopy

remains.

Excitation frequency and time resolutions can be decoupled using the Fourier
transform methodology [11]. The simplest experimental implementation of this
approach results in the colinear self-heterodyne 2D spectroscopy [63], illus-
trated in Fig. 1.1c. The difference from the pump–probe spectroscopy is that
the pump pulse is split into two pulses (using a pulse shaper, for example) with
the same wavevector. This gives additional adjustable time delay. Following the
accepted nomenclature, the delay between the pump pulses is often called the
coherence time and denoted by t1, the delay between the second pump pulse and
the probe pulse is called the waiting time and is denoted by t2 (it corresponds
to tdelay in the pump–probe and transient grating experiments), and the delay
between the probe pulse and the registered signal is called the detection time
and is denoted by t3. Thus, differently from the pump–probe and transient grat-
ing experiments, the excitation frequency resolution is obtained not by scanning
the central frequency of the pump pulse, but instead by employing narrow-band
pulses, scanning the t1 delay between the pump pulses, and applying the Fourier
transform over it. To obtain the 2D maps at different waiting times t2, also the
t3 delay has to be scanned and the corresponding Fourier transform (over t3)
applied. Often this is unnecessary, as spectrally dispersed signals are measured
directly. The excitation frequency is denoted as ω1, and the detection frequency
– as ω3. This approach therefore avoids the interdependence of the excitation
frequency and time resolution, as the employed pulses can be as narrow as pos-
sible. Nevertheless, because of the pump–probe geometry, this technique still
suffers from background signals.

By combining the ideas from both the transient grating and the colinear 2D
spectroscopy, one comes to the non-colinear heterodyne 2D spectroscopy, il-
lustrated in Fig. 1.1d. Here the pump pulses are separated both in spatial di-
rection and in time. Thus, both the decoupling of excitation frequency and
time resolutions (because of Fourier transform methodology) and the removal
of background signals (by detecting in direction different from the probe pulse)
is achieved. Moreover, one often employs an additional local oscillator (LO)
pulse, to ease the detection. The 2D maps are obtained by scanning the delays
t1, t2 and t3, and performing the corresponding Fourier transforms over t1 and t3.
This technique is the current state of the art, and this is what we will have in mind
when we refer to the 2D spectroscopy later in the text. Note that formally one
can distinguish between the so-called rephasing and non-rephasing 2D spectra.
These are related to signals emitted to different directions, see Ref. [P1]. In
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1.2. Basic principles of 2D spectroscopy

this work, however, we will focus on the so-called total 2D spectrum, which is
purely absorptive and is a sum of rephasing and non-rephasing contributions.

In this section we presented the different spectroscopic techniques sche-
matically, highlighting only the most important differences. More details can
be found in [31, 62, 64, 65].

1.2 Basic principles of 2D spectroscopy
In the previous section, we introduced the experimental basis of the 2D spec-
troscopy. In this section, its basic concepts, notation and conventions will be
explained using the schematic representations shown in Figs. 1.2-1.9.

1.2.1 2D spectra of model systems

1.2.1.1 Single two- (or three-) level system

First, let us consider a two-level system (2LS) as the simplest model usually
used to describe the optical transitions in a monomer. The 2LS is characterized
by two energy levels, the ground state g and the excited state e. Therefore, the
single parameter defining this system is the difference between the energies of
these levelsωeg (which coincides with the transition frequency), as shown on the
left of Fig. 1.2a. Here and in the rest of the thesis we set ℏ = 1 and use frequency
units for the energy. The 2D spectrum of such system at zero waiting time (t2 =
0) is displayed in the central part of Fig. 1.2a. The horizontal axis corresponds to
the excitation frequency, ω1, which increases from left to right, and the vertical
axis corresponds to the detection frequency, ω3, which increases from down to
up. This is the most often used convention, but sometimes 2D spectra are plotted
with excitation and detection axis interchanged, or using wavelength instead of
frequency. Also note that there is no universal agreement on the number and the
exact positioning of the contour lines. Throughout this thesis we employ a linear
scale (with a single exception being Fig. 1.11) with solid lines for positive and
dashed lines for negative amplitudes. Also, there is no universal color scheme
used to represent the 2D data, though the scheme employed here is encountered
often in literature.

In the 2D spectrum given here, only one positive peak is visible, correspond-
ing to the transition between the ground and excited states and determined by
the ground state bleaching (GSB) and the excited state emission (ESE) contribu-
tions. Their physical origin is the same as in the pump–probe spectroscopy. It is
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Figure 1.2: Example of the 2D spectra of the simplest electronic systems. a) left,
energy level diagram of a 2LS; top, the absorption spectrum of the system (black
solid line), along with the assumed laser spectrum (gray filled curve) and a di-
agonal cut of the 2D spectrum (red dashed line); center, the 2D spectrum of a
2LS with an idealized lineshape at zero waiting time. b) left, an energy level di-
agram of a 3LS; center, the 2D spectrum of a 3LS with an idealized lineshapes
at zero waiting time; right, a vertical cut of the 2D spectrum (red dashed line)
and the pump–probe spectrum of the system (solid black line). c) left, the en-
ergy level diagram of a 2LS with disorder (inhomogeneous ensemble of 2LSs);
right, the 2D spectrum of an ensemble of 5, 9, or∞ 2LSs at zero waiting time;
top, absorption spectra of the corresponding ensembles (thick solid lines) and
the constituents (thinner black or blue lines).
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1.2. Basic principles of 2D spectroscopy

centered at ωeg in both the excitation and detection axis. Note that the peak here
is presented with an idealized lineshape, which is a two-dimensional Gaussian.
For this system the 2D spectra remain constant throughout the waiting time t2.
On the top side of Fig. 1.2a the absorption spectrum of this system is displayed
by the solid black line. The laser spectrum is chosen to entirely cover the ab-
sorption spectrum of the system (this is also assumed in other figures of this
section, unless explicitly noted otherwise) and is given by the gray filled curve.
For a 2LS, the diagonal cut (with ω1 = ω3) of the 2D spectrum at zero waiting
time can be scaled to perfectly match the absorption spectrum, as shown by the
dashed red line.

A slightly more complicated example is a three level system (3LS), which
is illustrated in Fig. 1.2b. On the left we show the energy level diagram, which,
in addition to the ground state g and the excited state e, also contains the higher
excited state f . The energy difference between states f and e is ω f g, which is
here assumed to be larger than ωeg. In the central part of Fig. 1.2b we show
the corresponding 2D spectrum at zero waiting time. In this case, besides the
positive peak, a negative peak is also present, centered at excitation frequency
ωeg and detection frequency ω f e. This peak is due to the excited state absorp-
tion (ESA), thus it has a negative amplitude. Note, that this sign convention is
opposite to the sign used in the pump–probe spectroscopy, as is shown on the
right side of Fig. 1.2b. For this simple system the vertical cut of 2D spectrum
(red dashed line) can be scaled to match the sign inverted pump–probe spectrum
(black line).

Usually, the 2D spectroscopy is performed on a sample consisting of an in-
homogeneous ensemble of systems. Constituent molecules often have different
electronic excitation energies, due to the slow degrees of freedom of their sur-
roundings (solvent or protein). The system is then considered as having ener-
getic disorder. This affects the 2D spectra of a simple 2LS as shown in Fig. 1.2c.
The energy level diagram illustrates a large number of non interacting 2LSs
with similar transition frequencies, composing the observed system. The 2D
spectra of ensembles of increasing number of 2LSs (N2LS equal to 5, 9 or ∞)
are displayed (right panel), with the corresponding absorption spectra shown
above. When N2LS = 5, the absorption spectrum is a sum of 5 one-dimensional
Gaussians (given by thinner lines), while the 2D spectrum is a sum of 5 two-
dimensional Gaussians centered at different frequencies on the diagonal. There-
fore, the 2D peak lineshape becomes elongated along the diagonal as a result
of the disorder. The diagonal width of the peak increases with N2LS. When
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Figure 1.3: Example of the 2D spectra of a 2LS (without or with disorder) with
realistic lineshapes. a) left, the energy level diagram of a realistic 2LS, illustrat-
ing the potential energy surfaces along some generalized coordinate; right, the
2D spectra of a 2LS with realistic lineshapes at zero and large waiting times.
b) left, the energy level diagram of a realistic 2LS with disorder; right, the 2D
spectra of a realistic 2LS with disorder at zero and large waiting times. Cal-
culations of these 2D spectra were performed using the approach described in
Section 2.5.

N2LS = ∞, the peak shape in both the absorption and the 2D spectrum becomes
fully Gaussian, and its width along the diagonal and antidiagonal corresponds
to the inhomogeneous and homogeneous broadening, respectively. This can
be visualized by comparing the absorption spectrum of the ensemble, given by
the black line, and the single constituent absorption, given by the thinner blue
line. Strictly speaking, the antidiagonal width corresponds to a convolution of
a homogeneous lineshape and the inhomogeneous distribution of the transition
frequencies and can be denoted as total broadening, though we will not make
such distinction here. Ability to separate the homogeneous and inhomogeneous
broadening is an advantage of a 2D spectroscopy technique, that is not available
in linear spectroscopic measurements.

In real experiments, the lineshapes of the peaks in the 2D spectra are rarely
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1.2. Basic principles of 2D spectroscopy

simple two-dimensional Gaussians, as they are determined by the interactions
between the electronic and vibrational degrees of freedom. Examples of 2D
spectra with realistic lineshapes is given in Fig. 1.3. First, in Fig. 1.3a realistic
lineshapes of a single 2LS are shown. On the left we depict the energy level
diagram. Curved lines illustrate the potential energy surfaces of the ground state
g and the excited state e along some generalized coordinate. The energy surface
of the excited state is shifted relative to that of the ground state. Therefore,
transitions do not occur between the minima of the surfaces, and subsequent
relaxation occurs (on the order of time τrel). Accordingly, 2D spectra will evolve
during the waiting time t2, as shown in the right panel of Fig. 1.3a. While at
zero waiting time the 2D peak is not symmetric, elongated along the diagonal,
and accompanied by negative lobes on its sides, after a waiting time longer than
relaxation (t2 ≫ τrel), its shape becomes almost round. This is related to the loss
of memory of excitation – no matter at what frequency the system was excited,
it emits from a relaxed state (corresponding to a thermal distribution).

When disorder is added to such a realistic 2LS, at zero time the peak in the
2D spectrum is more elongated diagonally than in Fig. 1.3a, and similarly as in
Fig. 1.2c (see Fig. 1.3b, right panel). With time, the antidiagonal width of the
peak increases, but the peak does not become round. Thus, contrasting the 2D
spectra at t2 ≫ τrel in both Fig. 1.3a and b, we see that a homogeneous system
exhibits round peaks in the 2D spectra at longer times, while the peaks of an
inhomogeneous system remain elongated along the diagonal. This qualitative
difference is useful for the analysis of experimental data.

1.2.1.2 Two coupled two-level systems – a dimer

Let us now consider a more complicated situation, with a dimer consisting of
two resonantly coupled 2LSs. The 2D spectrum of a dimer, along with the il-
lustrating diagrams, is shown in Fig. 1.4. The transition dipole moments (left
of the figure) are assumed to be at some angle, and, due to the close proximity
of the monomers, resonance interaction between the excited states is not neg-
ligible. In the energy diagram (central part of the figure), both molecules have
their own ground states, the corresponding excited states are denoted by a and b,
and the transition frequency ωag is assumed to be smaller than that of the other
monomer, ωbg. Due to the resonance interaction, the molecular excitation states
are no longer the eigenstates of the dimer, which are the delocalized excitations
called the excitonic states or excitons [25]. The energy gap between the exci-
tonic states e1 and e2 is larger than the energy gap between the molecular states
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Figure 1.4: Example of a 2D spectrum of a dimer – two coupled 2LSs. Left,
a depiction of the orientation of the transition dipole moments; center, the en-
ergy level diagrams depicting both the molecular and the excitonic states; right,
the 2D spectrum of such a system at zero waiting time; top, the corresponding
absorption spectrum (solid black line) and the diagonal cut of the 2D spectrum
(red dashed line).

a and b, because of the energy level repulsion. There is also a double-excited
state f , which corresponds to the situation when both excitonic states are ex-
cited at the same time. Transitions e2 ↔ g and f ↔ e1 are somewhat stronger
in this example, thus are drawn with thicker lines.

The 2D spectrum of such a system (Fig. 1.4, right panel) at zero waiting time
contains four peaks at excitation and detection frequencies matching the transi-
tion frequencies of the excitonic statesωe1g andωe2g. In addition to the diagonal
peaks, the cross-peaks arising from the coupling between the monomers can also
be observed. As these vanish when the interaction between the molecular states
goes to zero, their presence at very early time in the 2D spectra implies interac-
tions between the constituents of the observed system. The lower cross-peak is
negative, which indicates that the ESA signal is stronger than the corresponding
ESE and GSB signals. Note, that this depends on the spatial arrangement of
the constituent transition dipole moments. Above the 2D spectrum the corre-
sponding absorption spectrum (solid black line) and the diagonal cut of the 2D
spectrum (dashed red line) are shown. For a system bigger than a single 2LS,
the diagonal cut can no longer be scaled to perfectly match the absorption spec-
trum, as the peak amplitude is proportional to the square of the transition dipole
moment in the absorption spectrum, and to the fourth power of the transition
dipole moment in the 2D spectrum.

The evolution of this 2D spectrum is shown in Fig. 1.5. In the diagram of
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top row, the 2D spectrum of a dimer at waiting time t2 equal to zero, vertical
cuts (red and blue curves) of the 2D spectrum at excitation frequencies equal to
ωe1g and ωe2g, and integral over excitation frequency ω1; bottom row, same as
top row, but at waiting time t2 ≫ 1/

(
ke2e1 + ke1e2

)
, that is, after the relaxation

between the excitonic states is complete.

energy levels (left panel), the transition rates between the excitonic states (ke1e2

and ke2e1) are introduced. Their sum defines the relaxation timescale in the sys-
tem. 2D spectra at time t2 = 0 and at time when the energy transfer is completed,
i. e. t2 ≫ 1/

(
ke2e1 + ke1e2

)
, are plotted in the top and bottom rows of the figure,

respectively. At long waiting time, the diagonal peak at ω1 = ω3 = ωe2g shows
a considerable loss of amplitude, because the excitation energy was transferred
from e2 to e1. The lower cross-peak, correspondingly, shows a large increase
of the signal amplitude, even going from negative to positive. On the other
hand, dynamics of peaks at excitation frequency ωe1g is much less pronounced.
Nonetheless, the diagonal peak shows some loss of the amplitude, because of
the uphill excitation transfer from the lower excitonic state to the higher one.
This is possible at higher temperatures, when the thermal energy is of similar
magnitude to the energy gap between the excitonic states. Correspondingly,
the cross-peak shows some increase of the amplitude. Vertical cuts of the 2D
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spectrum at excitation frequency ω1 equal to ωe1g or ωe2g (denoted in the right
panels of the figure by red and blue lines respectively), in principle, can be com-
pared to the narrow-band pump–probe experiments. Relation of the 2D spectra
and the pump–probe spectra will be discussed in Section 1.2.2. Red line shows
larger intensity at the detection frequency ω3 = ωe1g, while the amplitude of
the cross-peak is much smaller at the initial time. The blue line shows larger
intensity at ω3 = ωe2g, while the amplitude of the cross-peak is negative. At
longer times the amplitudes of the cuts become somewhat similar, with features
corresponding to the lower detection frequency having larger amplitudes. The
integral of the 2D spectrum over the excitation frequencyω1 can be compared to
a wide-band pump–probe spectrum. It shows a more global picture – decrease
of the amplitude at higher energy and increase of the amplitude at lower energy
with increasing waiting time.

1.2.2 Comparison of 2D and pump–probe spectroscopies

The decoupling of time and frequency resolution is one of the main advantages
of the 2D spectroscopy versus the pump–probe spectroscopy. In this subsec-
tion, we will provide a simplified explanation for these differences. To keep the
discussion simple, we will neglect the influence of the pulse overlap effects.

The resolution can be defined along three axis: excitation frequency (ω1 or
ωpump), waiting time (t2 or tdelay) and detection frequency (ω3 or ωprobe). The
influence of the laser pulses to the 2D or pump–probe spectra can expressed as:

2D (ω1, t2, ω3) = 2Dideal (ω1, t2, ω3) ×Wide band pulse (ω1)
∗ Short pulse (t2) ×Wide band pulse (ω3); (1.1)

PP (ω1, t2, ω3) = 2Dideal (ω1, t2, ω3) ∗ Pump pulse (ω1)
∗ Pump pulse (t2) ×Wide band (probe) pulse (ω3). (1.2)

Here 2Dideal (ω1, t2, ω3) is the ideal 2D spectrum of the system, determined only
by the system’s characteristics, and the symbols × and ∗ mean multiplication
and convolution, respectively. In both the 2D and pump–probe spectroscopy
experiments, the detection frequency resolution is obtained by multiplying the
system response with the laser pulse in the frequency domain. Since it is com-
mon that the laser pulse is wide, thus covering every relevant transition band,
the detection frequency resolution can be very close to the ideal case. Of course,
if the laser pulse is narrower than the spectral bandwidth of the system, some
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of the spectroscopic features near or outside the edges of the laser pulse be-
come unresolvable (see also discussion in Section 1.2.3). The main differences
between the 2D and pump–probe spectroscopy lie in the waiting time and ex-
citation frequency resolution. In the 2D spectroscopy, the excitation frequency
resolution is the same as it is for the detection frequency resolution – the sys-
tem response is multiplied by the laser pulse in the frequency domain. The time
resolution, meanwhile, is obtained by convolving the system response with the
laser pulse in the time domain. Since the laser is broad in the frequency domain,
and thus short in the time domain, both excellent time and excitation frequency
resolutions can be achieved. This is in a strong contrast with the pump–probe
spectroscopy. There the convolution in the time domain is also employed to
obtain the waiting time resolution. Yet to obtain the excitation frequency res-
olution, the convolution in the frequency domain must be employed with the
same (pump) laser pulse. The key issue is that short pulses in the time domain
mean wide pulses in the frequency domain and, conversely, long pulses in the
time domain mean narrow pulses in the frequency domain. Thus, in the narrow
band pump–probe (long pump pulse) conditions, selective spectral excitation
is achieved, but at the cost of the time resolution, and wide band pump–probe
(short pump pulse) experiments have good time resolution, but are not able to
discern spectral features. The 2D spectroscopy, however, combines the advan-
tages of both approaches.

To further illustrate this description, in Fig. 1.6 we show a comparison of
the frequency and time resolutions in an idealistic 2D experiment, a realistic 2D
experiment, and a realistic pump–probe experiment. The system under consid-
eration is a dimer, with two excitonic states separated by 150 cm−1 (Fig. 1.6b),
a downhill energy transfer rate of (100 fs)−1 and an uphill rate calculated from
the detailed balance relation (assuming the experiment is performed at 300 K)
of (205 fs)−1. These numbers represent typical values for the photosynthetic
complexes [25].

In the idealistic 2D experiment, the width of the laser pulse in the time do-
main tends to zero (standard deviationσt → 0), while the width in the frequency
domain is infinite (σω →∞). For the realistic 2D experiment, the width of the
laser pulses was fixed at σt = 5 fs (or full width at half maximum (FWHM)
≈ 12 fs), which is at the limit of what is possible with the current experimental
setups [P6, 66, 67]. Accordingly, in the frequency domain the laser pulses have
a width of σω ≈ 1060 cm−1 (or FWHM ≈ 2500 cm−1). Finally, for the realistic
pump–probe experiment, the laser pulses controlling the excitation frequency
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and time resolution were chosen with σt = 50 fs (or FWHM ≈ 120 fs) in the
time domain, and σω ≈ 106 cm−1 (or FWHM ≈ 250 cm−1) in the frequency do-
main. The center frequency of the pulses was set at 15000 cm−1, in the middle
between the energies of the two exciton states.

Fig. 1.6a shows a comparison of the 2D maps at two different waiting times.
The idealistic 2D spectra show four clearly resolvable peaks (two diagonal peaks
and two cross-peaks), centered at the transition frequencies ωe1g and ωe2g. The
realistic 2D spectra are very similar at both delay times, demonstrating the ex-
cellent resolution that can be achieved in the 2D experiments. In contrast, the
2D maps showing the realistic pump–probe spectra are substantially different.
Note that such maps could be constructed by stacking many pump–probe ex-
perimental data sets obtained at different excitation frequencies as discussed in
Section 1.1. First, due to the loss of the excitation frequency resolution, it is not
possible to discern four separate peaks – only two peaks, at the detection fre-
quency equal to ωe1g or ωe2g are visible. Moreover, while the lower cross-peak
should be negative, there is no negative amplitude in the pump–probe spectra.
This can, for instance, prevent extraction of information about the relative ori-
entation of the transition dipole moments. At longer delay times, the maximum
of the peak corresponding to the detection frequency equal to ωe1g shifts along
the excitation frequency axis, suggesting that there should be at least two states,
which are clearly resolved in 2D spectra. Interpretation of the pump–probe data
thus often requires more a priori knowledge about the system. Finally, Fig. 1.6c
depicts the dynamics of the diagonal peak D1 and the cross-peak CP1. While
the curves corresponding to the realistic 2D and idealistic 2D are very similar,
pump–probe data show considerable differences. For the diagonal peak D1, the
slow rise of the amplitude is a result of a convolution with the laser pulse in
the time domain, causing difficulties to determine the real decay time. In addi-
tion, the relative long time amplitude of the D1 peak is much larger than in the
2D case. For the cross-peak CP1, the dynamics clearly shows an offset ampli-
tude, as discussed before, and the rise time looks slower, due to the convolution
effects.

It must be noted, however, that the resolution deficiencies of the pump–probe
spectroscopy become important only when the system under consideration has
several close bands, and dynamics of those bands is fast. This is the case for the
FCP complex discussed in Section 1.3. If the spectroscopic bands are well sep-
arated and the timescales of interest are longer, the pump–probe spectroscopy
is able to provide the same answers, though some more work to account for the
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Figure 1.7: Two-color 2D spectroscopy of a dimer. In all parts center panel
depicts the 2D spectrum, top panel – the absorption spectrum (solid black line)
and the pump pulse (shaded curve), right panel – the absorption spectrum (solid
black line) and the probe (and LO) pulse (shaded curve). a) blue–blue case (blue
excitation, blue detection). b) red–red case. c) blue–red case. d) red–blue case.

influence of the pulses might be required.

1.2.3 Two-color 2D spectroscopy

This description of the 2D spectroscopy would be incomplete without mention-
ing the two-color 2D spectroscopy. Conceptually, it is similar to the two-color
pump–probe spectroscopy – excitation at one frequency (or color) and detec-
tion at another. Nonetheless, due to the experimental difficulties, two-color 2D
spectroscopy is relatively rarely employed. Its application to the FCP complex
is given in Section 1.3.2. In Fig. 1.7 we illustrate the fundamental concepts of
this approach. As the resolution of the 2D spectroscopy depends on the width
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1.2. Basic principles of 2D spectroscopy

and center frequency of the laser pulses, employing narrower pulses, and center-
ing them to different frequencies, leads to the selective extraction of some parts
of the 2D spectra along the diagonal. Fig. 1.7a and b show that tuning pump
pulses and probe (and LO) pulse to different bands of the absorption spectrum
of a dimer leads to the extraction of the lower or higher energy peaks. Extract-
ing the cross-peaks requires the tuning of the pump and probe pulses to different
frequencies (as illustrated in Fig. 1.7c and Fig. 1.7d). The main use of the two-
color 2D spectroscopy is when the laser pulses are not wide enough to cover
all the relevant spectral bands of the system. Then by pumping and probing at
different frequencies, information can be obtained from all the relevant parts of
the full 2D spectrum.

1.2.4 Analysis of 2D spectra

In this section, we will discuss different ways to present and analyze data of a 2D
spectroscopy experiment. This is illustrated in Fig. 1.8. First, let us note that
the overall dataset comprises a cube of 2D spectroscopy data (see Fig. 1.8a),
with one dimension being the excitation frequency ω1, another – the detection
frequency ω3, and the third – the waiting time t2. The 2D data is most often
analyzed by taking cuts of this cube along some chosen dimensions.

To demonstrate this we take a model system depicted in Fig. 1.8b. We have
two excited eigenstates, e1 and e2, with possible transfer between them. Addi-
tionally, the higher energy state, e2, also decays to the ground state. For this
system, in Fig. 1.8c we plot the 2D spectra at several waiting times. This cor-
responds to cuts of the full cube of the 2D data at specific t2 values. As a first
step of analysis, the 2D map corresponding to the earliest waiting time should
be considered. This reveals the pattern and the position of the peaks and the
sign of the cross-peaks. It would also show the homogenous and inhomoge-
nous broadenings, though in the example here we choose idealized lineshapes
for simplicity. Then we can compare the 2D maps at different waiting times and
note the differences between them. Here we can immediately notice a decrease
of the amplitude of the diagonal peaks, and an increase and a later decrease of
the amplitude of the cross-peaks. The lower cross-peak even changes the sign
from negative at initial time to positive at later times.

Choosing the most interesting spectral features, we are in position to analyze
their temporal dynamics more closely. First, in Fig. 1.8d we present a 2D plot
corresponding to the cut of the full cube of 2D data along the specific value of
the excitation frequency, ω1 = 15075 cm−1. Thus, the horizontal axis here rep-
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Figure 1.8: Different ways of analyzing the 2D spectroscopy data. a) a graphical
representation of the combined three dimensional (two frequency dimensions
and one time dimension) data available from the 2D experiment, with colors
highlighting specific cuts. b) the energy level scheme of the system, depicting
the energy transfer rates. Note that the higher energy excited state can decay
to the ground state. c) the 2D spectra at different waiting times, corresponding
to the cuts of the full data cube at a specific t2. d) the cut of 2D data cube at
the specific excitation frequency ω1 = 14975 cm−1, with horizontal and vertical
axis representing waiting time (t2) and detection frequency (ω3) ,respectively.
e) the cuts of the full cube of 2D data cube at the specific excitation frequency
ω1 = 14975 cm−1 at several waiting time (t2) values. f) the cuts of the full cube
of the 2D data at specific excitation frequency and detection frequency values,
representing the kinetics of the chosen spectral features. The color of the lines
in parts e) and f) corresponds to the cuts of the 2D map in d).
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Figure 1.9: Demonstration of DAS analysis of the 2D spectra (data is the same
as in Fig. 1.8). a) chosen compartment scheme. b) obtained DAS.

resents the waiting time t2 instead of the excitation frequency. In this way, we
see all the time evolution of the upper diagonal peak and the lower cross-peak.
While this type of representation gives nice visualization, for more quantitative
analysis it is more convenient to compare the cuts at different t2 values, as is
shown in Fig. 1.8e. Here the colors of the lines correspond to colors of ver-
tical lines in Fig. 1.8d. It depicts the cuts of the full data cube both at fixed
excitation frequency ω1 and fixed waiting time t2. This type of plot allows to
quantitatively compare the amplitudes of the spectral features at specific times.
Another way to obtain the temporal dynamics of the selected spectral features
is to simply plot their kinetics. This is demonstrated in Fig. 1.8f for the upper
diagonal peak (orange line) and the lower cross-peak (brown line), with colors
matching the horizontal lines in Fig. 1.8d. This representation corresponds to
cuts of the full data cube at fixed excitation and detection frequencies. In this
case, we can notice that there are two distinct timescales in the system. Fast
timescale corresponds to decay of amplitude of the diagonal peak with the cor-
responding increase of amplitude of the cross-peak, reflecting energy transfer.
A slower timescale corresponds to the decay of both peaks, corresponding to
the relaxation of excitation to the ground state.

We must also mention the representation of the 2D data in terms of the de-
cay associated spectra (DAS). Though performed on the pump–probe or time-
resolved fluorescence datasets for decades [68], only recently this approach was
applied to the 2D spectroscopy results, with different implementations [69, 70].
The main idea is to decompose the full 2D dataset into several distinct 2D spec-
tra, each evolving with distinct timescale. The obtained spectra then correspond
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1. Overview of 2D spectroscopy

to some compartment in a chosen kinetic model (parallel, sequential, etc.). A
more complicated but sometimes revealing analysis is to assume different ki-
netics for each point of the 2D spectra [14, P5], see this type of analysis in
Section 1.3.2.

From the dataset of Fig. 1.8 one can obtain the DAS shown in Fig. 1.9. Here
we have chosen a simple parallel two compartment scheme, demonstrated in
Fig. 1.9a. The obtained DAS with their timescales are given in Fig. 1.9b. In this
case, the two DAS can be easily interpreted, with one corresponding to the en-
ergy transfer between the excited states with a fast timescale while the other cor-
responding to the overall relaxation to the ground state. Nonetheless, extreme
caution must be applied when interpreting the DAS for larger systems (larger
photosynthetic complexes, their aggregates or even whole photosystems), as
then the obtained DAS might not correspond to any physical processes, being
instead a mathematical representation of a complex non-exponential dynam-
ics arising from multiple constituents, with possibly fluctuating connectivity or
spatial positions.

1.3 2D spectroscopy of FCP
In order to collect the solar photons, eukaryotic photosynthetic organisms gen-
erally use a complex membrane light-harvesting system, based on the assembly
of several light-harvesting proteins belonging to the LHC superfamily [1]. Di-
atoms are unicellular chromophyte algae inhabiting marine environment. They
are the major players in photosynthesis, accounting for nearly a quarter of the
global primary production [71–73]. The light-harvesting system of diatoms
(and brown algae) is based on the FCPs [74]. Their pigment composition re-
flects the adaptation to the green–blue light of marine environment. First, Fx
molecules are found in greater amounts relative to the carotenoids in the major
light-harvesting complex of higher plants (LHCII), and their absorption extends
into the blue–green range. Also, Chl c displays an intense Soret electronic tran-
sition in the blue, due to the higher symmetry of the molecule, and reinforces
the ability of FCP to harvest blue photons [75].

As an atomic structure for FCP is still lacking, the crystal structure of the
LHCII [36] can be used as a template for pigment organization in FCP, as these
two antennae complexes share similar primary sequences [76, 77]. Nonethe-
less, it cannot be applied directly, as the pigment stoichiometry in FCP strongly
differs from that of LHCII. In a recent resonance Raman study, it was shown
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1.3. 2D spectroscopy of FCP

that no less than 5 or 6 distinct Fxs per Chl c, as well as two distinct Chl c
should be present in FCPs from the Cyclotella meneghiniana diatom [78]. This
implies that FCP polypeptides should bind no less than 18 pigments, that is 8
Chl a, 8 Fx, 2 Chl c – this ratio, though not the exact numbers, was established
before [40]. LHCII, on the other hand, contains 8 Chl a, 6 Chl b and 4 xantho-
phyll molecules [36]. Sequence analysis suggests that a few helices of LHCII
are conserved in FCP, as well as seven of the Chl binding sites [78]. Neverthe-
less, even if FCP and LHCII share common structural features, the cascades of
the excitation energy transfer and the mechanisms involved are expected differ
significantly.

The initial events in FCP from diatom Cyclotella meninghiniana were ana-
lyzed using the pump–probe spectroscopy [40, 41]. This was also done for FCP
from the brown algae Cladosiphon okamuranus Tokida [43]. Nonetheless, in
such a complex system, no less than 8 compartments were necessary to model
the data [40]. The main conclusions of that study was that a sizable fraction of
excitation was transferred very rapidly from the second, optically allowed ex-
cited state of Fx (S2) to Chl a, and that the transfer from Chl c to Chl a was
ultrafast.

Therefore, such a pigment-protein complex, with a particularly complicated
network of pigments and several ultrafast excitation pathways, is an ideal system
to illustrate the power of the 2D electronic spectroscopy.

1.3.1 Ultrafast energy transfer from Chl c to Chl a

Previously, the question of Chl c to Chl a energy transfer in FCP was studied
by pump–probe spectroscopy. [40, 42]. Fast transfer was inferred, yet its exact
timescale was not established. The role that Chl c plays in the energy transfer
pathways of FCP is therefore still an open question [43].

To investigate the Chl c→Chl a energy transfer, we performed 2D spectros-
copy experiments at room temperature1. More details about the sample prepa-
ration and the experimental conditions are given in Ref. [P3].

First, in Fig. 1.10 we show the absorption spectrum of FCP at room tempera-
ture, together with those of Chl a and Chl c. While FCP absorbs more strongly in
the blue spectral region, in this subsection we consider the lower energy bands,
which are highlighted. The Qy band due to Chl a is at ∼ 14900 cm−1, while
that of Chl c is at ∼ 15600 cm−1. As can bee seen, these bands are well-covered

1Experiments were performed by Egidijus Songaila and Ramūnas Augulis at the lab of Do-
natas Zigmantas, Lund University, Sweden.
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Figure 1.10: Experimental absorption spectrum of FCP at room temperature
(open circles). Also, the absorption spectra of isolated Chl a [43] (dark green
line) and Chl c2 in acetone [P3] (green line), with their corresponding Qy/x
bands marked. Soret transitions are in the blue spectral region (? 21000 cm−1).
Red dashed line denotes the fit of FCP Chl Qy/x absorption bands (see text for
details). Red shaded area illustrates the laser pulse used in the single color 2D
experiments and the probe pulse in the two-color 2D experiments. Blue shaded
area illustrates the pump pulse used in the two-color 2D experiments. For the
exact shapes of the pulses, see Refs. [P3, P6].

with the laser pulse used in our experiments (see red shaded area). No clear ex-
citonic structure is visible in the spectrum, suggesting relatively small couplings
between the pigments.

In Fig. 1.11 we show the experimental and simulated (see below) 2D spectra
of FCP. The dominant peak at the initial waiting time t2 = 20 fs is the Chl a Qy

band at 14900 cm−1 (670 nm). Note that the spectra at earlier waiting times are
not shown due to the presence of the pulse overlap effects. There also is another
diagonal peak, marked by a red circle, at 15600 cm−1 (640 nm), which is due
to the transitions to the Qy band of Chl c. Also present is the corresponding
cross-peak below the diagonal (marked by a blue circle), though it is relatively
weak and is seen only as an elongation of the main diagonal peak along the ω1

axis. The presence of such cross-peak at very early times suggests that Chl a
and Chl c are excitonically coupled. Discussion about other features in the 2D
spectra is given in Ref. [P3].

We turn to the time evolution of the 2D spectra. We focus onto the diagonal
element of Chl c and the corresponding cross-peak with the Chl a Qy band. It
can be seen that the diagonal peak disappears very quickly, as it is not visible in
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Figure 1.11: Experimental and simulated 2D spectra of the FCP complex at
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tively.
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1. Overview of 2D spectroscopy

the t2 = 60 fs spectrum. It shows a clear exponential decay with the timescale
of 60 fs (see Fig. 1.12a for the plot of kinetics) and this can be interpreted as a
signature of energy transfer from Chl c Qy to Chl a Qy. Even though no fast
rising component is visible in the cross-peak evolution (Fig. 1.12b), this might
be related to the decay of the Chl a Qy diagonal peak [P3].

To investigate the possibility of such fast energy transfer in FCP, we have
performed simulations of the 2D spectra of the FCP complex. Preferably, they
would be accomplished using a microscopic model (like described in Chapter 2).
Unfortunately, there is still no structure of the FCP complex available. This
prevents us from employing explicit microscopic exciton model as it requires
the knowledge about the spatial arrangement of the constituent molecules. To
circumvent this difficulty, here we present the results based on an effective model
of the FCP complex (similar to a four state model in Ref. [79]). The main idea is
to describe the main features visible in the 2D spectra with a minimum number
of parameters. Below we provide a brief description for our model together
with its relevant parameters. At this point a more theory inclined reader might
first read Chapter 2, especially Section 2.1, where the relevant Hamiltonian is
discussed, and Section 2.5, where the theory behind 2D spectra simulations is
presented with more detail. Nonetheless, the model presented here is based on
both a simplified Hamiltonian and a simplified theory, thus exact expressions of
Chapter 2 are not directly applicable.

In the absorption spectra of the FCP complex (Fig. 1.10), we can distinguish
four bands corresponding to the Qy and Qx transitions of Chl a and Chl c. To
model only the absorption, we could treat each band as arising from the tran-
sitions in a 2LS. This type of formulation, however, would fail to explain the
negative ESA features in the 2D spectra. Thus, we model each band as an an-
harmonic oscillator. This effectively take into account two things. First, multi-
ple excitations of the same band become possible, which is necessary since each
oscillator represents a band of states and not a single microscopic state. Second,
anharmonicity accounts for the fact that there could be transitions between the
Qy/x bands to the higher energy excited states of the same Chl molecule. The
system Hamiltonian then is defined as:

ĤS =

4∑
e=1

εeâ†e âe +
1
2

4∑
e,e′=1

∆ee′a†e â†e′âe′âe. (1.3)

Here εe is the energy of the e-th band (exciton),∆ee′ is the anharmonicity matrix,
representing the binding energies of the excitons, that describe the energy shifts
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1.3. 2D spectroscopy of FCP

arising from the presence of other excitations. These parameters will define the
positions of the peaks in the absorption and 2D spectra. â†e and âe are the bosonic
creation and annihilation operators of the e-th exciton. Thus, we have 4 single
exciton states and 10 double exciton states, with 4 being overtone states and 6
being combination states. Note that the Hamiltonian presented in Section 2.1
does not include the anharmonic effects.

The bath comprise vibrational degrees of freedom of both the molecules
themselves and their environment. We model it as an infinite set of harmonic
oscillators linearly coupled to the exciton subsystem (similar as described by
Eqs. 2.8 and 2.10). The bath is described by the spectral density. We assume
that the energy fluctuations of different excitonic oscillators are uncorrelated.
This type of treatment prevents us from modeling any purely coherent contribu-
tions to the 2D spectra. In this effective model, the spectral density parameters
will define the lineshapes of the peaks in both the absorption and 2D spectra.
The shape of the spectral density of molecular complexes is a subject of an active
debate [47, 80]. In our effective model, the exact shape is not important, as we
only are interested in an adequate reproduction of the spectral lineshapes. For
this model we choose Debye spectral density [30], which provides an exponen-
tially decaying bath correlation function and due to its simplicity was employed
in many theoretical works [44, 81–85]. Here we use a composite spectral density
consisting of two terms that describe fast and slow bath modes, respectively:

C′′e (ω) =
2λFeγFω

ω2 + γ2
F
+

2λSeγSω

ω2 + γ2
S
. (1.4)

The reorganization energy λF(S)e describes the coupling strength of the e-th ex-
citon band with the fast (slow) bath modes and γ−1

F(S) is the timescale of bath
relaxation. The fast bath modes are responsible for Lorentzian spectral shapes
(homogeneous broadening) and the slow bath modes induce Gaussian spectral
shapes (inhomogeneous broadening). Inclusion of the slow mode thus allows us
to represent the static disorder in a computationally convenient way. We choose
values γ−1

F = 50 fs and γ−1
S = 10 ps, which are typical for the photosynthetic

pigment–protein complexes [25].
To describe optical experiments, the system has to be coupled to the classi-

cal electromagnetic field ®E (t). We assume the dipolar system–field interaction
Hamiltonian:

ĤSF = −
4∑

e=1

(
®µeâ†e +

1
√

2
®µ(2)e â†e â†e âe + H.c.

)
· ®E (t) . (1.5)
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1. Overview of 2D spectroscopy

Here ®µe is the transition dipole moment vector of the eth exciton state and ®µ(2)e

is its anharmonic correction corresponding to the transitions from the single ex-
citon state to the overtone state. For simplicity, we assume that all the transition
dipole moment vectors are parallel. Even though in the real FCP complex the
pigments are not expected to be perfectly oriented, this assumption reduces the
number of free parameters, which is very important in an effective model. The
electric field pulses are assumed to be δ-shaped. This means that the calculated
2D signal is directly proportional to the relevant third order response function,
as discussed in Section 2.5.

Both the linear and 2D spectra are calculated using the response function
formalism employing the lineshape functions [86, 87]. We used the expressions
given in Ref. [79]. Compared to the theory presented in Chapter 2, those ex-
pressions are simpler, neglecting both the ctR theory terms and the microscopic
population transfer rates. Nonetheless, for effective simulations of the 2D spec-
tra of the FCP complex these simplifications are adequate. In our model we have
the following free parameters to describe the experimental data: the exciton en-
ergies εe, the anharmonicity matrix ∆ee′, the reorganization energies λF(S)e , the
transition dipole moments ®µe and their corrections ®µ(2)e . The values of these
parameters were obtained by fitting the absorption and 2D spectra.

From the fit of linear absorption spectrum we can determine all the param-
eters of the single exciton manifold. We used the Markov Chain Monte Carlo
fitting procedure [88] and optimized the exciton band energies εe (responsible
for peak positions), their transition dipole moments ®µe (responsible for peak in-
tensities), and the couplings with the bath λF(S)e (responsible for homogeneous
and inhomogeneous broadenings). The fitted model parameters are given in Ta-
ble 1.1, whereas the simulated room temperature absorption spectrum is shown
in Fig. 1.10 by the red dashed line.

In order to simulate the 2D spectra, we also need the parameters of the dou-
ble exciton states. Their energies are εe+εe′+∆ee′. Transitions from the single-
excited states to the combination exciton states are fully described by ®µe, while
transitions to the overtone states are described by ®µe,ee =

√
2 ®µe + ®µ(2)e . Because

the fitting of the full 2D maps would be very expensive computationally, we have
opted instead to fit the cuts of the t2 = 20 fs 2D spectrum atω1 = εe along theω3

axis. In this way we obtained the values of ∆ee′ and ®µ(2)e . The transition dipole
corrections are provided in Table 1.1, while the non-zero anharmonicity matrix
values are ∆11 = 510 cm−1, ∆21 = 150 cm−1, ∆22 = 270 cm−1, ∆31 = 235 cm−1

and ∆32 = 150 cm−1.
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1.3. 2D spectroscopy of FCP

Table 1.1: Single exciton band parameters of the effective FCP model deter-
mined by the fit of the linear absorption spectrum and the transition dipole
corrections obtained from the fit of the 2D spectra. The single exciton bands
e = {1, 2, 3, 4} correspond to the Chl a Qy, Chl c Qy, Chl a Qx and Chl c Qx
transitions, respectively.

Parameter Single exciton band
1 2 3 4

εe
[
cm−1] 14935 15680 16275 16945

®µe,x [a. u.] 1 0.57 0.38 0.45
λFe

[
cm−1] 100 55 60 115

λSe
[
cm−1] 5 155 50 105

®µ(2)e,x [a. u.] −0.72 −0.13 0 0

Energy transport between the different exciton bands is described by the
transfer rates Ke′←e. In a microscopic model these would be calculated from
the model parameters (e. g. using Eqs. 2.49 or 2.50 from Chapter 2). In the
effective model, the rates cannot be calculated, because of assumed totally in-
dependent energy fluctuations. Thus they have to be specified. As the diagonal
peak of exciton e = 2 (Chl c Qy band) exhibits a single-exponential decay,
we set K−1

1←2 = 60 fs. The corresponding upward excitation is then calculated
from the detailed balance relation [86] and is found to be K−1

2←1 = 2000 fs. As
no other transfer processes are visible in the experimental 2D spectra [P3], no
other transport rates were used in the simulations.

We obtain good agreement between our simulated 2D spectra and the experi-
mental results (Fig. 1.11). The shape of the main diagonal peak at initial waiting
time t2 = 20 fs together with its qualitative evolution are well reproduced. The
negative ESA feature above the diagonal peak is obtained by including a large
anharmonic shift of the Qy overtone state of Chl a. Simulated spectra also match
the diagonal peak corresponding to the Qy transition of Chl c and the elongated
cross-peak below the diagonal.

As our goal is to find whether the simulations can support the conclusion
on the ultrafast energy transfer from Chl c, here we discuss the evolution of the
peaks related to the Qy band of Chl c. Simulated evolutions of the relevant di-
agonal and off-diagonal peaks are presented in Fig. 1.12. The diagonal peak dy-
namics fits the experiment very well, though subtraction of a constant is needed.
Therefore, our calculations indicate that experimentally observed diagonal peak
kinetics can be explained by the K−1

1←2 = 60 fs excitation energy transfer rate.
Nonetheless, it has to be noted that the simulated curve for the cross-peak does
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Figure 1.13: Experimental 2D spectra of the FCP complex at 77 K. Real part
of the total spectra is given. Only the Chl c region is depicted. For the full
2D spectra and more details about the experimental conditions see Ref. [P6].
Vertical and horizontal lines at frequencies equal to 15610 and 15810 cm−1

highlight two diagonal peaks related to the Chl c Qy transitions. The spectra
were normalized to the maximum of the full t2 = 50 fs spectrum, then multiplied
by 20 to highlight the weak features.

not match the experimental dynamics. As discussed in Ref. [P3], the Chl a Qy

band exhibits fast decay, which suggests that some excitation is transferred to a
dark state, possibly related to Fx. Adding such a state to the model might help to
reproduce the experimental dynamics of the cross-peak. Nonetheless, since its
parameters are completely unknown, it would severely complicate our simple
effective model.

Thus, we find that our effective model of FCP supports the conclusion re-
garding the ultrafast energy transfer from Chl c to Chl a at room temperature.

Nonetheless, to obtain better spatial and temporal resolution, we performed
additional 2D spectroscopy experiments2, this time at 77 K, to narrow the spec-
tral bands. A detailed account about the sample preparation and the experimen-
tal conditions is given in Ref. [P6].

The low temperature 2D spectra allowed us to separate two distinct diagonal
peaks in the Chl c Qy spectral region, as demonstrated in Fig. 1.13. Note that
the amplitude of these peaks is more than 20 times lower than the amplitude
of the main Chl a Qy band. From the presented spectra the maxima of the two
bands were identified to be at 15610 and 15810 cm−1 on the diagonal.

Another noteworthy thing visible from the 2D spectra in Fig. 1.13 is the
totally different time evolution of the two Chl c Qy bands. While at t2 = 50 fs
spectrum both of these bands have similar intensities, already at t2 = 200 fs the

2Experiments were performed by Ramūnas Augulis at the lab of Donatas Zigmantas, Lund
University, Sweden.

44



1.3. 2D spectroscopy of FCP

0 1 2 3 4 5 6
0

1

2

3

4

5

t2 [ps]

In
te

ns
ity
×

10
3

[a
.u

.]

a)

15610 cm−1 peak

Fit with τ = 410 fs

0 5 10 20 30
0

1

2

3

4

5

t2 [ps]

In
te

ns
ity
×

10
3

[a
.u

.]

b)

15810 cm−1 peak

Fit with τ = 4.6 ps

Figure 1.14: Kinetics of a) 15610 cm−1 diagonal peak and b) 15810 cm−1 diag-
onal peak extracted from the 2D spectra of the FCP complex shown in Fig. 1.13.
Black points denote experimental data, obtained by integrating over a circle of
∼ 35 cm−1 radius. Red lines denote single exponential fitting, with time con-
stants written in the panels.

Chl a

Chl c

Chl a

Chl a

Chl a

Chl c

J J

J

J
15610 cm−1

15810 cm−1

Figure 1.15: Proposed arrangement of the Chl c molecules in the FCP complex.
The molecule responsible for the 15610 cm−1 transition should be surrounded
by several Chl a molecules, to allow effective transfer. On the other hand, the
molecule responsible for the 15810 cm−1 transition, should be spatially well
separated from most of the molecules in the complex.

15610 cm−1 peak has decayed significantly. On the other hand, the 15810 cm−1

peak can still be clearly distinguished even at t2 = 5 ps. These results imply
completely different evolution of excitation of the two Chl c molecules.

To highlight the differences of the time evolutions of the two peaks, in
Fig. 1.14 we plot their kinetics. It can be seen that they exhibit clear expo-
nential decays. To verify this, we have fitted the obtained evolutions and found
that a single exponential fit was sufficient. These fits are denoted as red lines
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1. Overview of 2D spectroscopy

in the figure. The kinetics of the 15610 cm−1 peak (its first 5 ps) can be fitted
with a time constant of 420 fs. Meanwhile, time constant of 4.6 ps is sufficient
to explain the first 30 ps of the evolution of the 15810 cm−1 peak. For longer
times, additional components would be present. It should also be noted that
the initial evolution of both of these peaks exhibits oscillatory behavior and this
might affect the accuracy of the fitting. Nonetheless, it should not change an
order of magnitude difference in the obtained timescales. A detailed analysis of
the oscillatory behavior of the 2D spectra of the FCP complex is presented in
Ref. [P6].

We thus conclude that the obtained two different Chl c states directly transfer
energy to Chl a on different timescales. Notice that energy transfer via inter-
mediate states (presumably from Fxs) is not consistent with the fluorescence-
excitation spectrum of FCP [40], which implies 100 % efficiency of Chl c to
Chl a energy transfer, and the fact that significant portions of excitation from
Fx S1/ICT (intramolecular CT) state, a possible bridge between Chl c and Chl a,
are lost due to the decay to the ground state (see Section 1.3.2).

Recent studies of FCP also suggested that there are two Chl c molecules
in the complex [78]. Moreover, some of them can be of different types (i.e.,
Chl c1, c2, or c3) that have slightly different absorption spectra [43]. Even if
the discussed spectral features are caused by the chlorophylls of different types
(thus, causing signals in different frequencies), the temporal dynamics of the
corresponding peaks indicate that their interaction with the rest of the system or
a surrounding environment is different. The simplest picture is that one Chl c is
situated in the periphery of the FCP complex and is weakly coupled to the rest of
Chl a. Thus, the excitation transfer to the core pigments is slow and we observe
a picosecond decay of the peak at 15810 cm−1. At the same time, the protein
environment causes it to have higher energy. Another, internal Chl c, absorbing
at 15610 cm−1, must be coupled to Chl a stronger for faster excitation transfer.
Since the cross-peak between these two transitions as well as the relevant ESA
contribution is absent, the two Chls c in FCP are not coupled. This implies that
they probably are spatially well separated.

Nevertheless, the fast energy transfer from the internal Chl c state still re-
mains an issue to be explained. The strength of coupling between the Chl c and
Chl a is not known, although it may be estimated from LHCII, which shares
considerable sequence homology [77]. Couplings between chlorophylls in the
LHCII complex were calculated to be less than 140 cm−1 [89]. Considering
this and the fact that the transition dipole moment of the Qy band is smaller for
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1.3. 2D spectroscopy of FCP

Chl c than for Chl a, one can be certain that coupling between Chl c and Chl a
in FCP should be even weaker. This is also supported by the absence of intense
excitonic cross-peaks between Chl a and Chl c states in our 2D spectra, and the
lack of circular dichroism signal related to Chl c [74].

The Förster energy transfer could apply in this range of parameters [30, 90].
Nevertheless, it leads to slower – picosecond – transfer rates. The 420 fs transfer
timescale observed in 2D spectroscopy could be explained by using a structural
model shown in Fig. 1.15. The internal Chl c should be coupled to several Chl a
molecules. Thus, it transfers energy to a few Chl a molecules at once. The rates
effectively sum-up and lead to the fast decay of the Chl c population. On the
other hand, the second Chl c molecule should be further away.

The proposed schematic spatial arrangement of Chl a and Chl c molecules
(shown in Fig. 1.15) is comparable to the CP29 photosynthetic antenna of PSII
[91, 92]. The structure of the CP29 complex is similar to the LHCII complex,
which shares the sequence homology with FCP. In CP29, there are eight Chl a
and four Chl b (the absorption maximum of Chl b is around 15675 cm−1, sim-
ilarly as to Chl c) and one more chlorophyll binding site can be occupied by
either type of chlorophyll [92], although previously it was assumed that there
are 8 Chl a and 2 Chl b molecules [91]. Nonetheless, in both models, one Chl b
molecule is well spatially separated from the other, which is strongly coupled to
the rest of the Chls a of the complex. Consequently, two bands at 15650 cm−1

and 15385 cm−1 are observed in the absorption and in the pump–probe spectrum
have completely different temporal dynamics: the excitation from the higher en-
ergy Chl b is transferred to Chl a with the rate of 350 fs, while transfer from the
lower energy Chl b band occurs in 2.2 ps [91]. This implies that having two ac-
cessory chlorophylls that are in different spatial situations might be a property
shared by a number of light-harvesting complexes. We speculate that it probably
has a functional significance.

In a recent study of FCP based on resonance Raman technique [78], signa-
tures of two distinct Chl c molecules were observed. In that study, a possible
pigment organization scheme in FCP was discussed, based on the pigment bind-
ing sites of LHCII from plants [36]. It was suggested that one of Chl c should
be bound at either the site of a614 (which is preserved in FCP) or a613 (not
preserved in FCP), while the other Chl c should be bound at the site of b609
(preserved) or a604 (not preserved). For the internal Chl c, the site of b609
would be a logical choice, as it is in the vicinity of several pigments. Mean-
while, the peripheral (15810 cm−1) Chl c could indeed be situated at the site of
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a614, as that site is relatively isolated and would be in accord with slower energy
transfer from this pigment. Since this pigment is situated at the periphery of the
complex, it might be responsible for the inter-complex Chl c to Chl a transfer in
the FCP–PSII supercomplexes [93].

1.3.2 Energy transfer from Fxs to Chls

In the previous subsection, we have discussed the energy transfer dynamics in
FCP only relating to the Chl Qy/x bands. Yet there is also a considerable inter-
est in the excitation dynamics after excitation of the green–blue spectral region
[40–43]. As can be seen from Fig. 1.10, FCP absorbs strongly in this range.
While the far blue absorption is mostly from the Soret band of Chls, the 18000–
21000 cm−1 spectral region is due to absorption to the Fx S2 state. Previous
pump–probe studies have established the general scheme of energy relaxation
dynamics following the excitation of the latter region. Most of the excitation of
the Fx S2 state relaxes to the S1/ICT state in less than 100 fs. Note that the Fx
S1 and ICT states are difficult to separate, thus they are often treated as a sin-
gle state. Meanwhile, some part of the Fx S2 population is quickly transferred
to Chl a (within 100–200 fs). The S1/ICT state undergoes vibrational relax-
ation on the timescale between 0.5 and 1 ps, while at the same time transferring
energy to Chl a. The remaining excitation of the S1/ICT state decays to the
ground state with a longer timescale (15 to 35 ps). Some of the previous studies
suggested the existence of several spectroscopic species of Fx, yet their distinct
roles have not been investigated in detail.

This is why in this subsection we present the results based on the two-color
2D spectroscopy to disentangle the energy transfer pathways in FCP following
the excitation of the Fx S2 state. Application of the two-color 2D ES is very
rare due to its extreme experimental difficulty [63, 94–96]. The experimental
results presented here3 (based on Ref. [P5]) is the first application of the two-
color 2D ES to a complicated light-harvesting complex. In the experiments, the
Fx S2 state was excited, while the Qy state of Chls was probed (see blue and red
shaded regions in Fig. 1.10). More details about the sample preparation and the
experimental setup are given in Ref. [P5].

A few representative two-color 2D spectra of the FCP complex at differ-
ent waiting times are presented in Fig. 1.16. The negative features at ω3 from
15100 to 17400 cm−1 are due to the ESA of the Fx S1/ICT state with some

3Experiments were performed by Egidijus Songaila and Ramūnas Augulis at the lab of Do-
natas Zigmantas, Lund University, Sweden.
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Figure 1.17: Cuts of the experimental two-color 2D spectra of the FCP com-
plex along the ω3 axis at different waiting times. a) excitation frequency
ω1 = 19000 cm−1. b) ω1 = 20000 cm−1.

contributions from the ESA of Chl a Qy at ≈ 15100 cm−1. Positive band at
ω3 ≈ 14900 cm−1 corresponds to the ESE from the Chl a Qy band [40, 42, 43].
It can be seen from the presented spectra that these two features have different
time evolution. The positive ESE feature increases in amplitude both at early
times (tens and hundreds of femtoseconds) and at later times (few picoseconds).
Later, it starts to decay in tens of picoseconds. On the other hand, the negative
ESA feature, while gaining amplitude at very early times (compare t2 = 50 fs
and t2 = 100 fs spectra), already starts to decrease in amplitude within a few
picoseconds, and continues to do so with tens of picoseconds.

To illustrate the time evolution of the spectral features, in Fig. 1.17 we plot
the cuts of the 2D spectra of FCP along the detection frequencyω3 axis. Since in
the 2D spectra presented in Fig. 1.16 we observe differences depending on the
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excitation frequency, for comparison we present cuts at excitation frequency
ω1 = 19000 cm−1 and ω1 = 20000 cm−1 in Fig. 1.17a and b, respectively.
Overall, the observed behavior is similar. The positive ESE feature at ω3 ≈
14900 cm−1 increases rapidly up to the first picosecond, and continues to in-
crease at later times. The negative ESA feature atω3 from 15100 to 17400 cm−1

shows rapid increases within the hundred femtoseconds, and then decays. None-
theless, some differences in dynamics at different excitation frequencies can be
observed. In Ref. [P5], existence of at least two functional Fx species in the FCP
was proposed from the analysis of kinetics of several points in the 2D spectra.
The ω1 < 19500 cm−1 and ω1 > 19500 cm−1 excitation regions were suggested
to correspond to the Fxred and Fxblue species, respectively.

Time evolution of the 2D spectra can be represented by different sorts of
DAS, see also Section 1.2.4. Standard DAS analysis of the 2D spectra [69, 70,
97], which is similar to the global analysis of the pump–probe spectra [68], is a
powerful tool to find out the timescales of the dominant processes in the system.
Nonetheless, it implies the same kinetics in all spectral region. To distinguish
the differences in kinetics in the spectra, the 2D modified DAS (MDAS) [14] can
be constructed. They are obtained by fitting the time evolution of each point in
the 2D spectrum by a sum of decaying exponentials, and allowing to vary all free
parameters of the fit independently for each data point. This type of approach
allows to obtain the whole spectral distribution of the decay constants. In the
following, both types of analysis will be presented for the 2D spectra of the
FCP complex. We have chosen a four-exponential fit, because attempts to fit
the spectra with smaller number of exponentials proved to be unsatisfactory.
The fitting was done using the non-linear optimization algorithm based on the
gradient projection method [98], as implemented in the R software [99]. Since
the 2D spectra at long times (> 100 ps) show only slow decay on the order of
nanoseconds, we used only times up to 100 ps for the fit.

The standard DAS of the two-color 2D spectra of FCP are presented in
Fig. 1.18. The first DAS corresponds to ultrafast processes with a timescale
of 30 fs. Unfortunately, the experimental t2 = 0 fs spectrum is contaminated by
a presence of a strong positive peak and the second lowest t2 spectra available
is that of 50 fs [P5]. For this reason we have to neglect the area covered by the
gray rectangle in the first DAS. Nonetheless, the first DAS already shows same
negative amplitude at ω3 ≈ 14900 cm−1, indicating that signal is growing there.
Note that negative amplitude means a growth of a positive signal and a decrease
of a negative signal and this is reversed for positive DAS amplitude. This im-

50



1.3. 2D spectroscopy of FCP

Excitation frequency ω1 [cm−1]

D
et

ec
tio

n
fr

eq
ue

nc
y
ω

3
[c

m
−

1 ]

nm510530

15
00

01
55

00
16

00
0 1

65
00

17
00

0

18500 19000 19500 20000
nm

60
0

64
0

τ1 = 30 fs

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

Excitation frequency ω1 [cm−1]

D
et

ec
tio

n
fr

eq
ue

nc
y
ω

3
[c

m
−

1 ]

nm510530

15
00

01
55

00
16

00
01

65
00

17
00

0

18500 19000 19500 20000

nm
60

0
64

0

τ2 = 1.5 ps

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

Excitation frequency ω1 [cm−1]

D
et

ec
tio

n
fr

eq
ue

nc
y
ω

3
[c

m
−

1 ]

nm510530

15
00

01
55

00
16

00
0 1

65
00

17
00

0

18500 19000 19500 20000

nm
60

0
64

0

τ3 = 18 ps

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Excitation frequency ω1 [cm−1]

D
et

ec
tio

n
fr

eq
ue

nc
y
ω

3
[c

m
−

1 ]

nm510530

15
00

01
55

00
16

00
01

65
00

17
00

0

18500 19000 19500 20000

nm
60

0
64

0

τ3 = 0.9 ns

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Figure 1.18: Standard 2D DAS of the 2D spectroscopy data of the FCP complex.
Each plot represents the amplitude map corresponding to the separate timescale.
The four timescales are τ1 = 30 fs, τ2 = 1.5 ps, τ3 = 18 ps, τ4 = 0.9 ns. Since the
2D spectrum at t2 = 0 fs is contaminated by the presence of the strong positive
peak (see Ref. [P5]), it affects the short time dynamics, thus we did not analyze
the areas marked by a gray rectangle in 30 fs DAS.

plies that some part of excitation is very rapidly transferred from the Fx S2 state
to the Qy band of Chl a. The second DAS, with a timescale of τ2 = 1.5 ps, has
a negative amplitude throughout all the spectral area. Thus, the positive ESE
feature at ω3 ≈ 14900 cm−1 continues to increase in amplitude, while the ESA
signal of the Fx S1/ICT decreases. The timescale of the third DAS is τ3 = 18 ps.
It has a negative amplitude throughout the ESA region, implying that the ampli-
tude of this signal continues to decrease. Finally, the fourth DAS has a timescale
of τ4 = 0.9 ps and corresponds to the long-lived 2D spectra. Overall, DAS anal-
ysis is very much in line to what is known about the kinetics in FCP from the
pump–probe studies, as described in the first paragraph of this subsection.
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Figure 1.19: 2D MDAS of the 2D spectroscopy data of the FCP complex. The
left and the right columns show the timescale and amplitude maps for separate
time constant clusters, respectively. Amplitudes exceeding the maximum (or the
minimum) value of the color bar are depicted with the color of maximum (or
the minimum) allowed value. The amplitude map corresponding to the longest
timescale (2 ns) is not shown. The areas covered by a gray rectangle were not
analyzed (see text for details).
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The analysis of 2D spectra in terms of DAS, however, fails to discern the
dependence of the temporal evolution upon the excitation frequency ω1. Thus,
the advantage of the 2D spectroscopy versus the pump–probe spectroscopy is
not utilized. The MDAS, on the other hand, can rectify this, as can be seen from
Fig. 1.19. There timescale and amplitude maps corresponding to the distinct
timescale clusters are shown. The first row corresponds to timescales between
0 and 400 fs, the second – between 0.4 and 3 ps, while the third – between 12 and
30 ps. The longest timescale was fixed to 2 ns, as in Ref. [14], and the obtained
amplitude map is very similar to that of 0.9 ns DAS (Fig. 1.18), thus not shown.
The most important thing is that the MDAS show significant heterogeneity in
both the timescales and the amplitudes.

The MDAS of shortest timescales (first row in Fig. 1.19) illustrate the ultra-
fast processes on timescales shorter than 400 fs. After excitation of the Fxred

species (ω1 < 19500 cm−1) we observe < 50 fs processes in the Chl a Qy ESE
(ω3 ≈ 14900 cm−1) and S1/ICT ESA regions (ω3 ≈ 17400 cm−1). Due to the
limited number of early time 2D spectra, we cannot resolve the exact timescale
of these processes with certainty. The rates of S2 to S1/ICT internal conversion
and energy transfer from S2 to Chl a must, therefore, be similar. As in the case
of τ = 30 fs DAS, we did not analyze the area covered by the gray rectangle.
It is important to note that we discern differences depending on the excitation
frequency. Excitation of Fxblue (ω1 > 19500 cm−1) leads to a slower evolution
in the Chl a Qy ESE region as the signal there grows with a timescale between
100 and 200 fs. The S1/ICT ESA region (ω3 ≳ 15100 cm−1) evolves with times
< 100 fs, again indicating efficient internal conversion.

Processes with timescales between 0.4 ps and 3 ps are represented by the
MDAS shown in the second row of Fig. 1.19. Again, Fxred and Fxblue spectral
regions show different timescale values. After excitation of the Fxred a 0.9–
1.2 ps growth component is observed in the Chl a Qy region (ω3 ≈ 14900 cm−1),
while the decay constants of the S1/ICT ESA region (ω3 ≳ 15100 cm−1) are
1–3 ps. The S1/ICT ESA shows faster 0.5–2 ps evolution when the Fxblue is
excited, and the evolution of the Chl a Qy region is slower (1.2–1.6 ps). The
amplitude map of this MDAS shows that changes in the Chl a Qy region are
more significant when Fxred is excited. Note that two processes contribute to the
S1/ICT dynamics in this timescale window, namely vibrational cooling of the
hot Fx S1/ICT state and energy transfer to Chls. Unfortunately, our analysis does
not allow us to distinguish between these processes, thus, we can not estimate
the vibrational cooling rate nor determine whether excitation transfer to Chl a
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Figure 1.20: Scheme of the energy transfer pathways in the FCP complex ob-
tained from the two-color 2D spectra and the modified decay associated spectra.

occurs via hot or relaxed S1/ICT states.
Processes with timescales between 12 ps and 40 ps are given by the MDAS

shown in the third row of 1.19. The decay timescales of 15–20 ps are slightly
faster when the Fxblue is excited, compared to the 15–28 ps timescales obtained
upon the Fxred excitation. The amplitude map shows that this decay is much
stronger upon Fxblue excitation, implying that the overall transfer efficiency to
Chl a is lower for Fxblue.

Thus, two-color 2D spectroscopy performed on a photosynthetic protein
from diatoms clearly distinguishes “red” and “blue” functional species of Fx
and reveals that their excitation results in qualitatively distinct spectral evolu-
tions. From the 2D spectra and subsequent MDAS analysis we conclude that
their S2 energies correspond to the transitions at approximately 19000 cm−1 and
20000 cm−1, respectively. Recently it was shown that three Fx species could be
distinguished in FCP [100], based on their resonant Raman properties. Our data
and analysis indicate that two of these species are preferably excited at 19000
and 20000 cm−1. Meanwhile, the existence of a third Fx species would only be
consistent with our data if its excitation energy were > 20500 cm−1, which is
not covered with our pulses.

Having all this in mind, we construct a comprehensive energy transfer scheme
for the FCP that includes both Fx species (Fig. 1.20). The timescales were
obtained from the MDAS analysis. Meanwhile, the relative amplitudes were
obtained as follows: from the FCP fluorescence-excitation spectrum given in
Ref. [40] the overall transfer yield after Fxred and Fxblue excitation was esti-
mated to be 80 % and 60 %, respectively. The ratios of the S2 to Chl a and
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S1/ICT to Chl a transfer were obtained from the amplitude maps of the MDAS
given in the first and second row of Fig. 1.19 and the remaining amplitudes
were derived from the compartmental model as AS1/ICT←S2 + AChl a←S2 = 1 and
AChl a←S1/ICT + AS0←S1/ICT = AS1/ICT←S2 .

Our energy transfer scheme in Fig. 1.20 shows the major excitation relax-
ation pathways. Some excitation energy is very rapidly transferred from both
Fxblue S2 and Fxred S2 to Chl a. This transfer is slower for Fxblue. Nonethe-
less, most of the excitation from the Fxblue S2 and Fxred S2 states relaxes to their
respective S1/ICT states within 100 femtoseconds. From there, Fxred transfers
most of its excitation (59 %) to Chl a, while this transfer is slightly less efficient
from Fxblue (44 %). This transfer step is again slower for Fxblue. From this we
conclude that the Fxred pigments should either be more strongly coupled to the
Chl a pigments (being closer or having a more favorable orientation) or their
electronic states must be closer in energy to the Chl a states, since the excitation
transfer is faster from those pigments both from S2 and S1/ICT states. Nev-
ertheless, 20 % (Fxred) or even 40 % (Fxblue) of excitation is not transferred to
Chls, but relaxes to the ground state. This might be surprising, since the transfer
rates from S1/ICT to Chl a Qy are much faster than decay to the ground state,
and only a small fraction of excitation population should be lost as a result of the
latter process. It mus be highlighted, however, that the transfer rates and ampli-
tudes in our scheme represent averaged values, which could be greatly affected
if the Fx molecules in the whole complex are distributed non-uniformly. The
existence of at least one poorly transferring Fxblue is consistent with previous
suggestions [40, 41] and with the amplitude map of the MDAS corresponding
to the timescales of tens of picoseconds (third row in Fig. 1.19). We also note
that the direct interaction between the S1/ICT states of Fxred and Fxblue must
be weak, because they decay to the ground state with distinct lifetimes, whereas
strong interaction would lead to decay with the same rate [84, 85]. Overall, the
energy transfer schemes of FCP, obtained from the pump–probe studies [40–
43], are mostly consistent with our results. The scheme presented here, how-
ever, is more detailed, as it includes not only timescales but also the relative
amplitudes of transfer pathways.

1.4 Conclusions
In this chapter, we have introduced the 2D spectroscopy. This technique pro-
vides a wealth of information, but its extraction can be difficult. Here we have
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1. Overview of 2D spectroscopy

attempted to ease the transition from the pump–probe to the 2D spectroscopy
by making a detailed explanation of its specific features. This was done by con-
sidering numerous examples of simple model systems.

Yet the full force of a spectroscopic technique can be felt only when it is ap-
plied to the real-world problems. In this chapter we have reported the 2D spectra
of the FCP complex. FCP is the major light-harvesting complex from diatoms,
which contribute heavily to the global primary production. Unfortunately, the
crystal structure of FCP is not available yet, thus detailed microscopic models
(such as of the PSII RC, presented in Chapter 3) are not possible. Thus, this
chapter is a demonstration on how detailed analysis and simple modeling of the
2D spectra can provide insights to both functional and structural relationships
in a photosynthetic complex.

First, the role of the Chl c pigment in FCP was studied. Analysis of the ex-
perimental 2D spectra at room temperature suggested an ultrafast energy trans-
fer from Chl c to Chl a pigments. We have constructed a simple theoretical
model, which supported this conclusion. Further analysis of 77 K 2D spectra
have shown the existence of two spectrally distinct Chl c molecules. Knowledge
of the relevant energy transfer mechanisms and their characteristic timescales
allowed us to suggest a possible structural arrangement of Chl pigments in the
FCP complex.

Second, the energy transfer cascades in FCP after the excitation of the Fx
S2 band was investigated with the help of two-color 2D spectroscopy. Analysis
of the experimental data implied that there are two spectroscopically distinct Fx
species in the FCP complex. A more detailed picture was obtained from the data
analysis in terms of the MDAS, which revealed a considerable heterogeneity
in timescales and amplitudes. This lead to a proposed detailed scheme of the
energy transfer pathways in the FCP complex.

All this allows us to formulate the first statement of the thesis: Analysis
of the experimental 2D spectroscopy data of the FCP complex, supplemented
with theoretical insights and representation in terms of suitable decay associated
spectra, enabled to propose both a possible structural scheme and a detailed
scheme of energy transfer pathways.

The introduction to the 2D spectroscopy presented in the first part of this
chapter is mostly based on [p8] and [P1]. Reported results on the 2D spectros-
copy of FCP are based on [P3, P5, P6].
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Chapter 2

Spectroscopic properties of
molecular aggregates

Sloppiness. Disorganization. As I've tried to teach you,
undisciplined thinking can make even the simplest task

impossible!

Ultra Magnus, The Transformers G1

In this chapter we formulate the theoretical description of the molecular
aggregates and their spectroscopic properties. We introduce the tight-binding
Hamiltonian, which extends the Frenkel exciton Hamiltonian by taking into ac-
count the CT states. Then we obtain the expressions for the relevant response
functions to describe absorption, linear and circular dichroism spectra using
the cumulant expansion and the ctR theory. Absorption spectra of a molecular
dimer obtained from this description are then compared to other well-known
approaches. This theory is then applied to describe the Stark spectroscopy. Fi-
nally, the well-known expression for the 2D spectroscopy response functions
are extended with ctR theory terms.

2.1 Tight-binding Hamiltonian
To describe the molecular system we use the tight-binding Hamiltonian [P2,
101], which is an extension of the Frenkel exciton model [25] that enables the
inclusion of CT states. This method is similar to other recent descriptions of
Frenkel excitons and CT states in molecular systems [102–104]. In Chapter 3

57



2. Spectroscopic properties of molecular aggregates

this model will be applied to the PSII RC, but its formulation is independent of
any particular molecular system.

We consider the ground and the single-excited state manifolds, which are
sufficient to calculate the linear spectra. The global ground state is denoted by
g, and its energy is set to zero. In the single-excited state manifold we have
the molecular (pigment) excitation states n∗, with excitation localized on a sin-
gle site n, and the CT states m+n−, which are not accounted for in the Frenkel
exciton model. To describe the CT states, we introduce separate creation and
annihilation operators for electrons and holes. Thus ê†n (ên) creates (annihilates)
an electron on site n, and ĥ

†
n

(
ĥn

)
creates (annihilates) a hole on site n. Then

molecular excitation (ME) states are described by ê†nĥ
†
n |g⟩ = |n∗⟩ and CT states

by ê†nĥ
†
m |g⟩ = |m+n−⟩. The electron and hole creation and annihilation opera-

tors satisfy the Fermi commutation relations [P2, 101].
The total Hamiltonian consists of the Hamiltonians of the system, the bath,

and their interaction:
Ĥ = ĤS + ĤB + ĤSB. (2.1)

The electronic degrees of freedom compose the system, which is described by
the tight-binding Hamiltonian:

ĤS =

N∑
m

N∑
n

temn ê
†
m ên +

N∑
m

N∑
n

thmnĥ
†
mĥn

−
N∑
m

N∑
n

V eh
mn ê

†
mĥ
†
nĥn êm +

N∑
m

m,n∑
n

Jmn ê
†
mĥ
†
mĥn ên. (2.2)

Here temn
(
thmn

)
is the electron (hole) hopping rate between LUMO (HOMO)

orbitals of different pigments. Diagonal elements te/hmm correspond to the or-
bital energies. N is the number of molecules, and the total number of states
in the single-excited state manifold is Ntot = N2. Jmn is the resonance cou-
pling between the molecular excitations on sites m and n. The term V eh

mn corre-
sponds to the electron–hole Coulomb attraction energy between sites m and n
(see Eq. (2.25)). Note that the electron–electron and hole–hole repulsion terms
are not needed to describe the single excitation manifold. For this Hamiltonian,
the energies of the excited states are

⟨n∗ |ĤS |n∗⟩ = εn∗ = tenn + thnn − V eh
nn ; (2.3)

⟨m+n− |ĤS |m+n−⟩ = εm+n− = tenn + thmm − V eh
nm . (2.4)
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2.1. Tight-binding Hamiltonian

Here ε∗n is the energy of the ME state n∗ (site energy), εm+n− is the energy of
the CT state m+n−. Note that for calculations only the energies and not their
constituent terms need to be specified. The couplings between different excited
states are

⟨n∗ |ĤS |m∗⟩ = Jnm; (2.5)

⟨n∗ |ĤS |k+l−⟩ = tenlδnk + thnkδnl; (2.6)

⟨m+n− |ĤS |k+l−⟩ = tenlδmk + thmkδnl . (2.7)

Thus, couplings involving the CT states are related, which is not the case if the
CT states are treated as additional molecular excitation states [105–107].

All vibrational degrees of freedom of the molecules themselves and their
environment compose the bath and are represented by an infinite set of harmonic
oscillators with the Hamiltonian:

ĤB =
∑

j

ω j

2

(
p̂2

j + x̂2
j

)
. (2.8)

Here ω j is the frequency, p̂ j – the dimensionless momentum, and x̂ j – the di-
mensionless coordinate of the jth bath mode. We remind the reader that we set
ℏ = 1 throughout the thesis. The system–bath coupling is assumed to be linear
in the bath coordinates:

ĤSB = −
N∑
n

∑
j

ω j deh
nn, j x̂ j ê

†
nĥ
†
nĥn ên

−
N∑
m

m,n∑
n

∑
j

ω j deh
mn, j x̂ j ê

†
mĥ
†
nĥn êm. (2.9)

Here the two terms are separated for future convenience. The parameter deh
nn, j(

deh
mn, j

)
is the dimensionless displacement of the equilibrium configuration of

the jth bath mode between the ground state and the excited state of the nth
molecule (n+m− CT state). This formulation differs from the previous applica-
tions of the tight-binding model, where the bath was coupled to electron and
hole orbitals and not to the excited states themselves [P2, 101]. The present
approach is more natural when describing excitations in a molecular aggregate
and not in a solid state system.

We introduce bath operators F̂n = −
∑

j ω j deh
nn, j x̂ j and F̂mn = −

∑
j ω j deh

mn, j x̂ j ,
enabling us to rewrite the system–bath coupling Hamiltonian as

ĤSB =

N∑
n

F̂n ê
†
nĥ
†
nĥn ên +

N∑
m

m,n∑
n

F̂mn ê
†
mĥ
†
nĥn êm. (2.10)
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2. Spectroscopic properties of molecular aggregates

For simplicity, we subsequently denote both the ME and the CT states by capital
letters A, B, . . . Then summation over all single-excited states is expressed as

Ntot∑
A

zA =

N∑
n

zn +

N∑
m

m,n∑
n

zmn. (2.11)

Here zA denotes any quantity related to the state A. The reorganization energies
of the excited states are defined as λA =

∑
j ω j

(
deh

A, j

)2
/2.

For a harmonic bath, the key quantities that describe the bath effects are the
correlation functions [30, 86, 108]:

CAB (τ2 − τ1) = TrB

(
F̂I

A (τ2) F̂I
B (τ1) ρ̂eq

B

)
, (2.12)

since
TrB

(
F̂I

A (t)
)
= 0. (2.13)

Here
F̂I

A (t) = ei(ĤS+ĤB)t F̂Ae−i(ĤS+ĤB)t = eiĤBt F̂Ae−iĤBt (2.14)

defines the operator in the interaction representation. The equilibrium bath den-
sity operator is

ρ̂
eq
B =

exp
(
−βĤB

)
TrB

(
exp

(
−βĤB

)) (2.15)

with β = (kBT)−1 being the inverse temperature in energy units, and kB – the
Boltzmann constant. The spectral densities

C′′AB (ω) = π
∑

j

ω2
j deh

A, j d
eh
B, j

2
(
δ
(
ω − ω j

)
− δ

(
ω + ω j

) )
(2.16)

describe the bath in the frequency domain. They show how strongly the sys-
tem states are coupled to the specific frequency bath modes. From the spectral
densities the bath correlation functions can be calculated as

CAB (t) =
1
π

∞∫
−∞

dω
1

1 − e−βω
e−iωtC′′AB (ω) . (2.17)

The reorganization energies are also related to the spectral densities:

λA =
1
π

∞∫
0

dω
C′′AA (ω)

ω
. (2.18)
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2.1. Tight-binding Hamiltonian

Diagonalization of the system Hamiltonian (Eq. (2.2)) leads to the introduc-
tion of the generalized exciton basis (denoted as such, because it includes not
only Frenkel but also CT excitons):

|e⟩ =
Ntot∑
A

ψe,A |A⟩ (2.19)

with ψe,A = ⟨e|Û† |A⟩ being the elements of transformation matrix Û†, which
satisfies (

ĤS

)EB
= Û†

(
ĤS

)SB
Û. (2.20)

Here the superscript EB (SB) means the generalized exciton (site) basis. We
assume that the matrix elements ψe,A are real. In the generalized exciton basis,
the bath correlation functions are

Ce1e2,e3e4 (τ2 − τ1) = TrB

(
F̂I

e1e2 (τ2) F̂I
e3e4 (τ1) ρ̂eq

B

)
=

Ntot∑
A

Ntot∑
B

ψe1,Aψe2,Aψe3,Bψe4,BCAB (τ2 − τ1) . (2.21)

with

F̂e1e2 = ⟨e1 |ĤSB |e2⟩. (2.22)

Similarly one can introduce the spectral density in the generalized exciton ba-
sis. The lineshape functions, required to describe the optical lineshapes (see
Section 2.2), are defined as

ge1e2,e3e4 (t) =
t∫

0

dτ2

τ2∫
0

dτ1Ce1e2,e3e4 (τ2 − τ1) . (2.23)

When static disorder is present in the system, the energies of the states are
different in each particular case of the ensemble. Thus in the system Hamilto-
nian (Eq. (2.2)) one needs to change V eh

nn → V eh
nn +δεn∗ and V eh

mn → V eh
mn+δεn+m− ,

with δεn∗ and δεn+m− being random numbers from a Gaussian distribution with
zero mean and some chosen standard deviations σn∗ and σn+m− . All observable
quantities then have to be averaged over disorder, i. e. X̄ = ⟨X⟩dis.

2.1.1 Double-excited states

To simulate 2D optical spectroscopy experiments, we have to describe the
double-excited states. There are two excited electrons and two excited holes
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2. Spectroscopic properties of molecular aggregates

in the state |m+k−n+l−⟩ = ê†k ê
†
l ĥ
†
mĥ
†
n |g⟩ with k > l and m > n. Three kinds of

double-excited states are possible: ME–ME states m∗n∗, ME–CT states m∗n+k−

and CT–CT states m+n−k+l−. The total number of double-excited states is
N2tot = N2 (N − 1)2 /4.

To properly describe these states we have to augment the Hamiltonian with
a few additional terms:

Ĥ(II)S =
1
2

N∑
m

m,n∑
n

V e
mn ê
†
m ê
†
n ên êm +

1
2

N∑
m

m,n∑
n

Vh
mnĥ

†
mĥ
†
nĥnĥm

+
1
4

N∑
k

k,m∑
m

N∑
l

l,n∑
n

Kkl,mn ê
†
k ĥ
†
l ê
†
mĥ
†
nĥn êmĥl êk . (2.24)

Here V e
mn (Vh

mn) is the electron–electron (hole–hole) Coulomb repulsion energy,
and the K couplings describe the interaction between the static dipoles of the
pigments with other static dipoles or the charges and thus are responsible for the
electrochromic shifts. Explicitly, we have

V e
mn = Vh

mn = V eh
mn =

e2

4πϵ0ϵr
��� ®Rmn

��� ; (2.25)

Kmm,nn =
1

4πϵ0ϵr

©­­«
(∆ ®µm · ∆ ®µn)��� ®Rmn

���3 − 3

(
∆ ®µm · ®Rmn

) (
∆ ®µn · ®Rmn

)
��� ®Rmn

���5
ª®®¬ ; (2.26)

Kmm,kn =
e

4πϵ0ϵr

©­­«
(
®Rnm · ∆ ®µm

)
��� ®Rnm

���3 −

(
®Rkm · ∆ ®µm

)
��� ®Rkm

���3
ª®®¬ . (2.27)

Knm,lk = 0.

Here e is the electron charge, ϵr is the relative dielectric constant, ®Rmn = ®Rm− ®Rn

is the distance vector from n to m pigments, with ®Rm being the position vector
corresponding to the center of the pigment m. ∆ ®µm is the difference between
the dipole moments of the excited and the ground states, see Eq. 2.70. Note that
Eq. 2.25 is not applicable to V eh

mm, some effective value should be used instead.
In this formulation, the energies of the double-excited states are:

εm∗n∗ = εm∗ + εn∗ + Kmm,nn; (2.28)

εm∗n+k− = εm∗ + εn+k− + Kmm,kn; (2.29)
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2.1. Tight-binding Hamiltonian

εm+n−k+l− = εm+n− + εk+l− + V e
nl + V h

mk − V eh
nk − V eh

ml . (2.30)

It is obvious that due to the strong Coulomb interaction effects, the energies
of the CT–CT states will be significantly shifted, effectively decoupling them
from the rest of the double-excited states. Therefore, they will be neglected in
the following.

The couplings between the remaining double-excited states are:

Jm∗n∗,m′∗n′∗ = Jm∗,m′∗ (1 − δmm′) δnn′ + Jm∗,n′∗ (1 − δmn′) δnm′

+ Jn∗,m′∗ (1 − δnm′) δmn′ + Jn∗,n′∗ (1 − δnn′) δmm′; (2.31)

Jm∗n+k−,m′∗n′∗ = δmm′Jn′∗,n+k− + δmn′Jm′∗,n+k−; (2.32)

Jm∗n+k−,m′∗n′+ k ′− = δmm′Jn+k−,n′+ k ′− + δnn′δkk ′ (1 − δmm′) Jm∗,m′∗

+ δmn′δnm′δkk ′Jm∗,m+m′− + δmk ′δnn′δkm′Jm∗,m′+m−. (2.33)

Here Jm∗n∗,m′∗n′∗ is the coupling between ME–ME states m∗n∗ and m′
∗
n′
∗ ,

Jm∗n+k−,m′∗n′∗ is the coupling between ME–CT state m∗n+k− and ME–ME state
m′
∗
n′
∗ , Jm∗n+k−,m′∗n′+ k ′− is the coupling between ME–CT states m∗n+k− and

m′
∗
n′
+

k′
− .

Additionally, we have to augment the system–bath coupling Hamiltonian by

Ĥ(II)SB =

N∑
m

m,n∑
n

F̂ ee
mn ê
†
m ê
†
n ên êm +

N∑
m

m,n∑
n

F̂hh
mn ĥ

†
mĥ
†
nĥnĥm. (2.34)

The bath operators are assumed to be equal to

F̂ ee
mn = F̂hh

mn = −F̂mn = −F̂nm, (2.35)

due to the sign of the charges involved.
We introduce the double-excitation eigenstates

| f ⟩ =
k>l∑
k,l

m>n∑
m,n

Ψ f ,klmn |m+k−n+l−⟩. (2.36)

The transformation matrix Ψ f ,klmn is calculated by diagonalizing the double-
excitation blocks of the system Hamiltonian. We assume that all elements of
this matrix are real.
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2. Spectroscopic properties of molecular aggregates

2.2 Linear spectroscopy

2.2.1 Linear absorption

For calculations of the linear absorption one has to include the interaction with a
time-dependent electric field in the Hamiltonian, which induces the transitions
between the ground and excited states:

ĤSF = − ®̂µ · ®E (t) = −
N∑
n

(( ®µn · ®o) E (t))
(
ê†nĥ

†
n + ĥn ên

)
. (2.37)

Here ®̂µ is the electric dipole moment operator, ®µn is the transition dipole vector
for pigment n and ®o is the polarization vector of the electric field. For now we
disregarded the static dipole moments (the diagonal elements of the dipole op-
erator). Note that the CT states are dark and carry no transition dipole strength.
We also define the scalar dipole moment operator µ̂ = ®̂µ· ®o for later convenience.

Assuming a linearly polarized incoming light, the linear absorption spec-
trum is calculated as a one-sided Fourier transform of the linear response func-
tion [30, 53, 64, 86]:

A (ω) = ωRe
∞∫

0

dteiωt
⟨
R(1) (t)

⟩
dis
. (2.38)

The linear response function is formally a tensor

R(1) (t; ®o2, ®o1) =
⟨
Tr

[
eiĤt

(
®̂µ · ®o2

)
e−iĤt

(
®̂µ · ®o1

)
ρ̂gg

]⟩
or
. (2.39)

Here ρ̂gg = |g⟩⟨g | ρ̂eq
B is the ground state equilibrium density operator, ®o1

and ®o2 denote the polarizations of the incoming light and registered signal,
and ⟨•⟩or denotes orientational averaging, which has to be performed for ran-
domly oriented systems. In this expression we have assumed the rotating wave
approximation (RWA). For isotropic systems, the tensorial nature of the re-
sponse function can be neglected and scalar response function can be defined
as R(1) (t) = R(1) (t; ®o, ®o), with ®o being an arbitrary polarization vector.

Using the Condon approximation, i. e. assuming that the dipole moment op-
erator is independent of the vibrational degrees of freedom, the response func-
tion in the excitonic basis is expanded as

R(1) (t) =
Ntot∑
e1,e2

⟨
µe1gµe2g

⟩
or

TrB

[
eiĤBt ⟨e2 |e−iĤt |e1⟩ ρ̂eq

B

]
, (2.40)
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2.2. Linear spectroscopy

where we used the fact that for our model ⟨g |eiĤt |g⟩ = eiĤBt . Here µe1g =

⟨e1 | µ̂|g⟩ is the excitonic transition dipole moment. For a molecular system ori-
ented randomly in a sample, orientationally averaged transition dipole moments
are [109]: ⟨

µe1gµe2g

⟩
or
=

1
3

(
®µe1g · ®µe2g

)
(2.41)

In the following we use the so-called secular approximation, i. e. we consider
only terms, when e1 = e2. This means that the coherence transfer effects in
Eq. (2.40) are neglected.

We need to evaluate the expression

φe1 (t) = TrB

[
eiĤBt ⟨e1 |e−iĤt |e1⟩ ρ̂eq

B

]
. (2.42)

This can be performed using the second order cumulant expansion technique
[86]. This procedure is described in more detail in Appendix A. We then obtain
[P7]:

φe1 (t) = e−iεe1 t−ge1 (t)−ξe1 (t). (2.43)

Here ge1 (t) = ge1e1,e1e1 (t), and the off-diagonal fluctuation term is

ξe1 (t) =
Ntot∑

e2,e1

t∫
0

dτ2

τ2∫
0

dτ1eiωe1e2 (τ2−τ1)Ce1e2,e2e1 (τ2 − τ1) . (2.44)

This is the non-Markovian expression, which was originally derived in Ref. [47].
We denote this term as the complex time-dependent Redfield (ctR) theory term.
It is responsible for the lifetime broadening, though in a more accurate if com-
pared to the phenomenological approaches (see below).

Recently, a similar but slightly more complicated expression was also ob-
tained [45]. In this thesis the second order cumulant expansion was performed
for the matrix elements of the operator TrB

[
eiĤBte−iĤt ρ̂

eq
B

]
, while in Ref. [45]

it was done for the whole operator. Note that the cumulant expansion is exact
for the autocorrelation of the diagonal fluctuations but not for terms involving
the off-diagonal fluctuations. This is because the diagonal fluctuations are char-
acterized by a Gaussian process (for harmonic bath) and thus Wick’s theorem
applies [108], while off-diagonal fluctuations also include excitonic propagators
eiωe1e2 t .

Finally, the response function can be expressed as

R(1) (t) = 1
3

Ntot∑
e1

| ®µe1g |2e−iεe1 t−ge1e1,e1e1 (t)−ξe1 (t). (2.45)
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2. Spectroscopic properties of molecular aggregates

Application of the Markovian approximation can be used for the off-diagonal
fluctuation term, and the resulting expression is

ξM
e1 (t) =

Ntot∑
e2,e1

t

∞∫
0

dτ1eiωe1e2τ1Ce1e2,e2e1 (τ1) . (2.46)

This level of theory (denoted by us as the complex Redfield (cR) theory) was
extensively used in previous studies [47, 110–112].

In a phenomenological way, the off-diagonal fluctuations are assumed to
induce the lifetime broadening, which can be expressed as

ξLB
e1 (t) =

t
2τe1

. (2.47)

The excited state lifetime τe1 can be calculated from the transfer rates as

1
τe1

=

Ntot∑
e2,e1

Ke2e1 . (2.48)

Either the standard Redfield (sR) theory transfer rates [30, 90]

KsR
e2e1 = 2Re

∞∫
0

dτ1eiωe1e2τ1Ce1e2,e2e1 (τ1) (2.49)

=

(
1 + coth

(
βωe1e2

2

))
C′′e1e2,e2e1

(
ωe1e2

)
or those of the modified Redfield (mR) theory [90, 113]

KmR
e2e1 = 2Re

∞∫
0

dteiωe1e2 t exp
{
− ge2e2,e2e2 (t) − ge1e1,e1e1 (t) + ge1e1,e2e2 (t)

+ ge2e2,e1e1 (t) − 2i
(
λe1e1,e1e1 − λe2e2,e1e1

)
t
}

×
{
Ce2e1,e1e2 (t) − [ Ûge1e2,e2e2 (t) − Ûge1e2,e1e1 (t) − 2iλe1e2,e1e1]

× [ Ûge2e2,e2e1 (t) − Ûge1e1,e2e1 (t) − 2iλe2e1,e1e1]
}

(2.50)

have been used [46, 49, 114]. Here dot denotes the time derivative and

λe1e2,e3e4 =
1
π

∞∫
0

dω
C′′e1e2,e3e4 (ω)

ω
(2.51)

is the reorganization energy in the excitonic basis. We note that taking only the
real part of Eq. (2.46) results in accounting of the off-diagonal fluctuations by the
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2.2. Linear spectroscopy

sR theory lifetimes with Eqs. (2.47)−(2.49). To obtain the equivalent expression
with the mR lifetimes a slightly different derivation and more approximations
must be used [49]. The sR and mR theories thus simply account for the life-
time broadening as in Eq. (2.47) with Eqs. (2.49) and (2.50), respectively. Note
that these names are here used only in the context of describing off-diagonal
fluctuations. Formally, using the Redfield theory for calculations of the absorp-
tion lineshape requires to solve the time local quantum master equation and the
modified Redfield theory was originally developed to describe only population
transfer [90, 113].

2.2.2 Linear dichroism

Linear dichroism (LD) spectroscopy is performed on oriented samples (they are
no longer isotropic). For simplicity we orient the molecular coordinate system
in such a way that the membrane normal lies along the z axis. The LD spec-
trum then corresponds to a difference between two absorption measurements:
one where the incoming light is polarized parallel to the membrane plane, the
other, when the incoming light is polarized perpendicular to the membrane plane
[115]:

LD (ω) = A∥ (ω) − A⊥ (ω) . (2.52)

The required absorption spectra are then defined by

A∥/⊥ (ω) = ωRe
∞∫

0

dteiωt
⟨
R(1)

(
t; ®o∥/⊥, ®o∥/⊥

)⟩
dis
. (2.53)

The response functions are calculated using the same approximations as above.
The relevant orientational average is⟨(

®µe1g · ®o∥
)2 −

(
®µe1g · ®o⊥

)2
⟩

or
∝ µ2

e1g,x + µ
2
e1g,y − 2µ2

e1g,z . (2.54)

Finally, the LD spectrum can be calculated as

LD (ω) = ωRe
∞∫

0

dteiωt
⟨
R(1)LD (t)

⟩
dis
, (2.55)

with

R(1)LD (t) =
Ntot∑
e1

(
µ2

e1g,x + µ
2
e1g,y − 2µ2

e1g,z

)
exp

(
−iεe1t − ge1 (t) − ξe1 (t)

)
. (2.56)
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2.2.3 Circular dichroism

The circular dichroism (CD) spectrum is defined as a difference between the
absorption of left and right polarized light [25, 115, 116]:

CD (ω) = AL (ω) − AR (ω) . (2.57)

To properly describe the CD spectrum, one has to take into account the cou-
pling with the magnetic field. Therefore, in this case the system–field coupling
Hamiltonian is

ĤSF = − ®̂µ · ®E (t) − ®̂m · ®B (t)

= −
N∑
n

E (t) ( ®µn · ®oE)
(
ê†nĥ

†
n + ĥn ên

)
−

N∑
n

B (t)
(
( ®mn · ®oB) ê†nĥ

†
n +

(
®m∗n · ®oB

)
ĥn ên

)
. (2.58)

Here ®̂m is the magnetic dipole moment operator and ®oB is the polarization vec-
tor of the magnetic field. Following Ref. [53], we use an effective molecular
magnetic dipole moment defined as

®mn =
i
2
εn∗

[
®Rn × ®µn

]
. (2.59)

Here ®Rn is the position vector corresponding to the center of the pigment n. The
CD spectrum can also be calculated from the response function:

CD (ω) = ωIm
∞∫

0

dteiωt
⟨
R(1)CD (t)

⟩
dis
. (2.60)

The relevant response function is found to be [53]:

R(1)CD (t; ®o2, ®o1) =
⟨
Tr

[
eiĤt

(
®̂µ · ®o2

)
e−iĤt

(
®̂m · ®o1

)
ρ̂gg

]⟩
or
. (2.61)

For isotropic medium, we can again set R(1)CD (t) = R(1)CD (t; ®o, ®o), though note that
the same vector ®o is taken as both arguments. Using the same level of theory as
above, the response function is:

R(1)CD (t) =
1
3

Ntot∑
e1

(
®µe1g · ®me1g

)
exp

(
−iεe1t − ge1 (t) − ξe1 (t)

)
. (2.62)

Here ®me1g = ⟨e1 | ®̂m|g⟩ is the excitonic magnetic dipole moment.
We note that this level of theory neglects the intrinsic CD of the pigments.

In addition, the CD spectra can be affected by couplings to the higher energy
states [25, 117], which we ignore in the present treatment.

68



2.3. Calculations of linear absorption of molecular dimer

2.3 Calculations of linear absorption of molecular
dimer

In this section we compare the ctR theory and other approaches described in
Section 2.2.1 by calculating the absorption lineshapes for a simple dimer sys-
tem [P7]. Here all the calculations are of the absorption lineshapes (not spectra),
thus factorω in Eq. (2.38) is not included. For benchmark calculations of the ab-
sorption lineshape we used an exact HEOM (hierarchical equations of motion)
method as described in Ref. [44].

The system Hamiltonian of the dimer under consideration is given by

ĤS =

(
ε̃ + ∆ J

J ε̃

)
. (2.63)

We set the molecular transition dipole moments to be of the same length and
perpendicular to each other, to avoid coherence transfer effects. Then the secular
approximation is valid.

For simplicity, we assume that fluctuations for both sites are described by
the same Debye spectral density:

C′′ (ω) = 2λγω
ω2 + γ2 . (2.64)

Here, λ is the reorganization energy and γ is the bath relaxation rate. For nu-
merical calculations, we expanded the resulting correlation functions in terms
of exponentials using the [K − 1/K] Padé approximant [118].

Our system under consideration is completely characterized by 5 parame-
ters: the difference between site energies ∆, the resonance coupling J, the re-
organization energy λ, the bath relaxation rate γ and the temperature T (we set
the overall energy shift ε̃ to 15000 cm−1). We investigate the absorption line-
shape dependence on all these parameters in turn, holding the others constant.
The fixed parameters for our investigations are ∆ = 100 cm−1, J = 100 cm−1,
λ = 50 cm−1, γ−1 = 50 fs, T = 77 K. These are typical values for the realistic
photosynthetic complexes [25].

To describe the quality of the approximate methods, we use a simple quality
parameter – the intersection area of the lineshape obtained from an approximate
method with that from HEOM divided by the union area of the said lineshapes:

Q =

∫ ∞
−∞ dω

(
AHEOM (ω) ∩ Aapproximate (ω)

)∫ ∞
−∞ dω

(
AHEOM (ω) ∪ Aapproximate (ω)

) . (2.65)
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Figure 2.1: Quality of the approximate methods (left) and the absorption line-
shapes (right) in dependence on: a) reorganization energy λ; b) resonance cou-
pling J; c) difference between site energies ∆; d) bath relaxation rate γ; e) tem-
perature T . Other parameters are listed in the text.
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2.3. Calculations of linear absorption of molecular dimer

This parameter is equal to 100 % when the lineshapes perfectly match, and de-
creases, when they begin to differ. Q value of 0 % means no overlap between
the lineshapes. Note that we normalize every lineshape to its maximum value.

First, we analyze the absorption lineshape dependence on the reorganiza-
tion energy – in Fig. 2.1a we plot the quality of the approximate methods and
the lineshapes for a few reorganization energy values. To remain in the regime
where the approximate methods are expected to perform adequately, we limit
the reorganization energies to the value of the resonance coupling, when λ < J.
Other parameters are set to their fixed values. The ctR theory shows very good
agreement for all considered λ values. The quality of the cR theory decreases
with increasing λ, but is still considerably better than using either the sR or mR
approaches, that give deviations of peak positions for larger reorganization en-
ergies. While the mR theory is close to the sR theory for small reorganization
energies, it falls off rapidly with increasing λ.

Now we turn to the absorption lineshape dependence on the resonance cou-
pling J (see Fig. 2.1b). For small J values, corresponding to localized excita-
tions, all theories give good description of the lineshape, but only the ctR theory
remains good elsewhere. The agreement between HEOM and other theories
worsens with increasing J, though the cR theory performs considerably better
than simple lifetime theories. Overall, the mR theory gives the worst agreement
with HEOM. It should also be noted that the quality of approximate methods
becomes better for large J values, and this improvement is the most dramatic
for the cR theory.

The absorption lineshape dependence on the site energy difference ∆ is
shown in Fig. 2.1c. The ctR theory gives good results for all ∆ values. The cR
theory performs slightly worse, while the sR and mR theories are even worse.
These theories show better agreement with HEOM as ∆ increases, going from
delocalized to localized excitations.

Next we consider the influence of the bath relaxation rate γ (see Fig. 2.1d).
For slow baths, the quality of approximate methods is mostly constant, but it
deteriorates for Markovian baths. This is especially noticeable for the sR and mR
theories. As can be seen from the given absorption lineshapes for γ−1 = 10 fs,
these theories fail to capture correct peak positions. This results in low Q values,
despite that obtained peak amplitudes and linewidths are adequate.

The absorption lineshape dependence on temperature is given in Fig. 2.1e.
Even though the change of temperature strongly influences the lineshapes, the
quality of the approximate methods remains mostly the same for the consid-
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Figure 2.2: Quality of the approximate methods (left) and the absorption line-
shape (right) in dependence on disorder standard deviation σ. Other parameters
are set to fixed values (see text).
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Figure 2.3: Dependence of the quality of the absorption spectrum using the ctR
theory on the reorganization energy λ for several angles φ between the transition
dipole moments. Other parameters are set to fixed values (see text).

ered T range. For these parameters, the ctR theory gives results very close to
the HEOM, the cR theory is somewhat worse, the sR theory is still worse and
the mR theory is the worst of all considered theories. An interesting feature is
that the sR and mR theories give smaller gap between the peaks with increasing
temperature. This might seem surprising as these theories do not include the
imaginary part of the off-diagonal fluctuation term. However, from the analysis
of contributions of separate excitonic transitions (see supplementary material of
Ref. [P7]) it becomes apparent that the decreasing gap is a result of the increas-
ing overlap between the peaks due to the lifetime broadening term.

We also investigated the absorption lineshape dependence on the diagonal
disorder, which is characterized by the standard deviation of the excited state
energies σ. These results are shown in Fig. 2.2. The ctR theory again gives very
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2.3. Calculations of linear absorption of molecular dimer

good agreement with the HEOM lineshapes, and the other theories are worse,
with the cR being considerably better than both sR and mR theories. While
the quality of the ctR theory remains more or less constant, other theories give
better results with increasing σ, but the increase of quality is not dramatic.

All the preceding calculations were made by considering a dimer with per-
pendicular transition dipole moments of equal length. To investigate how the
coherence transfer contribution affects the absorption lineshape, we also cal-
culated the quality parameter dependence on the reorganization energy for an-
gles between the transition dipole moments equal to 0, π/4 (coherence trans-
fer present) and π/2 (no coherence transfer, as before). Calculations were per-
formed using the ctR theory. These results are plotted in Fig. 2.3. The ctR
theory gives good agreement with exact lineshapes even for non-perpendicular
transition dipole moments. This implies that non-secular contributions are rel-
atively minor for the considered parameter range.

Our calculations clearly show that application of the ctR theory gives the
best lineshape compared to the exact HEOM method. This theory results in an
expression that is complex and time dependent. Our results demonstrate that
both of these two features are important in order to accurately calculate the ab-
sorption lineshape. Since the linear response function (Eq. (2.45)) is rapidly
decaying due to the presence of the lineshape function in the exponential, it is
important to accurately describe the short time effects of the off-diagonal fluctu-
ations. Application of the Markovian approximation means that the information
about the short time dynamics is lost. Therefore, the cR theory, used extensively
[47, 110–112, 117, 119], gives worse agreement with exact lineshapes.

On the other hand, inclusion of the imaginary part is also very important
– our results demonstrate that using only real valued expressions for the off-
diagonal fluctuations results in considerably worse quality of the absorption
lineshape. Lack of the imaginary part means that some part of the frequency
shift due to interaction with the bath is not accounted for, thus using the sR and
mR expressions for lifetime broadening gives incorrect peak positions. Note
that this cannot be corrected by a common frequency shift, as different exci-
tonic transitions experience different shifts, which is most obviously seen in the
absorption spectra at 300 K shown in Fig. 2.1e.

Here we considered the Debye spectral density, which might not be suitable
to describe low temperature experiments [80]. It was chosen because the solu-
tions can be readily compared to the exact HEOM method, which has problems
incorporating more structured spectral densities. Nonetheless, all expressions
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2. Spectroscopic properties of molecular aggregates

required for the application of the ctR theory (Eq. (2.44)) can be calculated by
straightforward numerical methods for arbitrary spectral densities. Moreover,
when the bath correlation function can be expressed as a sum of exponentials
(which is the case for a variety of spectral densities [120]), the integrals of the
ctR theory can be calculated analytically. Thus, the speed of numerical calcu-
lations can be improved substantially.

Even though we performed simulations only for a dimer, our conclusions re-
main valid for bigger systems. In our view, the ctR theory should be considered
for simulations of larger aggregates, if an exact method is not available or too
expensive computationally. Its application to the PSII RC is presented in Chap-
ter 3. We note that a very similar approach to the ctR was recently proposed
[45]. It does not invoke the secular approximation, thus can include coherence
transfer effects. Nonetheless, this approach scales with the system size worse
than the ctR, because the numerical evaluation of an exponent of an operator is
required. Therefore, we suggest the ctR theory as the most practical approach,
since our calculations show that the coherence transfer effects are not very im-
portant when calculating the absorption spectra.

In another recent study, an approach based on a systematic perturbative treat-
ment of the off-diagonal fluctuations was proposed [53]. Application of the
secular and Markovian approximations gave expressions corresponding to the
cR theory. In addition, the first order correction was also incorporated, which
accounted for the coherence transfer effects, that were shown to give only mi-
nor contributions to the absorption lineshape. The authors concluded that the
secular approximation combined with the Markovian approximation for the off-
diagonal fluctuations is a sufficient level of theory by describing the absorption
lineshapes. While our results confirm the validity of the secular approximation
in the limit of relatively weak system–bath coupling, they show that the appli-
cation of the Markovian approximation (going from ctR to cR theory) gives
somewhat worse results. Nonetheless, the non-secular corrections proposed in
[53] can be used together with ctR theory to yield even closer results to the exact
lineshapes.

A very important finding is that using the mR lifetimes to account for the
off-diagonal fluctuations gives the worst results of all the approximate theories
considered. Thus, the question whether the sR or the mR theory provides more
accurate description of the lifetime broadening [53], can now conclusively be
answered in favor of the former. This might be surprising, as in deriving the
mR transfer rates only the off-diagonal fluctuations are taken as a perturbation,
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2.3. Calculations of linear absorption of molecular dimer

instead of the full system–bath coupling Hamiltonian as in the sR theory [90,
113]. It was also shown that the mR theory is able to reproduce the results of the
Förster theory in the localized excitation limit [90]. Recently the mR theory was
further extended to include coherent dynamics [121, 122]. Thus it is superior to
the sR theory for the energy transfer calculations. Nonetheless, the calculation
of absorption lineshapes is a somewhat different problem. The usage of the mR
lifetimes for the absorption lineshapes was already examined in detail [49]. It
was shown that a number of approximations are needed to obtain the response
function expression with the mR lifetimes. Besides the Markovian approxima-
tion and neglect of the imaginary part, both of which we showed to contribute
significantly to the reproduction of the exact lineshape, two more approxima-
tions are needed. First (i) requires setting eiĤBte−i(ĤB+F̂ee)t ≈ ÎB. Another (ii)
requires substituting ρ̂eq

e = exp
(
−β

(
ĤB + F̂ee

))
/Tr

(
exp

(
−β

(
ĤB + F̂ee

)))
in-

stead of ρ̂eq
B . Both of these approximations are valid only for small diagonal

fluctuations (they can be regarded as zero order approximations) and are against
the spirit of the original mR theory [113]. An improved version of the mR the-
ory for optical lineshapes was developed recently [123], which corrected some
of the shortcomings of the original approach.

It should be emphasized, however, that the major source of error in using the
mR lifetimes for absorption lineshape calculations comes from the phenomeno-
logical way of using the lifetimes, i. e. neglect of the imaginary part and the
Markovian approximation. This is why the mR theory gives close results to the
sR theory for smaller values of system–bath coupling. However, as its strength
increases, the quality of the mR theory worsens even compared to the sR theory
(see Fig. 2.1a)) due to approximations (i) and (ii). This is different from what
one may expect, as in energy transfer problems mR theory can handle stronger
system–bath couplings than the sR theory. Therefore, we emphasize that usage
of the mR transfer rates for absorption calculations does not improve over the
sR rates and should be avoided.

The mR transfer lifetimes were used to account for the off-diagonal fluctu-
ations in a number of studies of optical spectra of photosynthetic complexes:
the LHCII of higher plants [114, 124], the light-harvesting complex 2 of purple
bacteria [125–129], the PSII RC [P2, 101, 105, 106, 130] and other systems
[131]. Often, system parameters were obtained from fitting the optical spectra.
However, as we have demonstrated, the applicability of the mR lifetimes to the
optical spectra is severely limited. As an example, consider a comparison of
the absorption spectra of the PSII RC (see Fig. 2.4) calculated using both ctR
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Figure 2.4: Comparison of the PSII RC absorption spectra at 77 K calculated
using model parameters from [P2] and mR or ctR theories.
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Figure 2.5: Quality of approximate methods (left) and absorption lineshape
(right) in dependence on the frequency of vibrational mode W . Other parame-
ters of the vibrational mode are λd = 15 cm−1, Γ−1 = 500 fs, and all others are
set to fixed values (see text).

and mR theories and the same parameters from Ref. [P2], where mR theory was
used to fit the experimental spectrum. As can be seen, huge differences between
two theories are obtained, considerably more so than could be expected. Thus,
we can conclude that the parameters obtained from the fitting might be misesti-
mated due to inadequate theory and should be revised. This is done for the PSII
RC in Chapter 3.

Recently, a number of studies were made about the treatment of specific vi-
brational modes, which are coupled to the electronic degrees of freedom [132–
134]. They can be included by adding damped vibrational modes to the spectral
density. However, this should create problems for perturbative methods, espe-
cially in the vicinity of resonance (between electronic and vibrational levels)
conditions. We have analyzed this by including one damped vibration to the
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spectral density:

C′′d (ω) =
2λdωW2Γ(

ω2 −W2)2
+ Γ2ω2

. (2.66)

We chose parameters λd = 15 cm−1 and Γ−1 = 500 fs. In Fig. 2.5 we plot the
quality of the approximate methods and the absorption lineshape dependence
on the frequency of vibrational mode W . Other dimer parameters are the same
as before. For this system the excitonic energy splitting is ≈ 224 cm−1. We can
see that in near resonance conditions, all methods diverge from the HEOM line-
shapes. The ctR theory remains qualitatively good, but no longer quantitatively
good. On the other hand, the quality of the other methods worsens substantially.
Clearly, in this regime the Markovian approximation completely breaks down.
If correlation function possesses oscillatory term ≈ ωe1e2 , then the integrand
in Eq. (2.44) is no longer highly oscillating and its value increases consider-
ably. Then the second order perturbation theory is no longer valid. While the
ctR theory still manages to correctly capture the short time behavior of the re-
sponse function, Markovian theories fail to do that. Thus, in quantitative studies,
the vibrational degrees of freedom in near resonance conditions should either
be treated exactly via non-perturbative methods like the HEOM, or explicitly
as recently described [134]. The ctR theory can be used when vibrations are
off-resonant, or perhaps even in resonant conditions if the qualitative result is
sufficient.

2.4 Stark spectroscopy
Stark spectroscopy relies on the effect of an applied static electric field on an
absorption spectrum and is defined as the difference between the spectrum with
the field on and the field off [135]:

S (ω) = AE (ω) − A (ω) . (2.67)

Theoretically, the key issue is to calculate the absorption spectrum with a pres-
ence of the electric field. For this, the system–field Hamiltonian is extended to
also include the static field:

ĤSF = − ®̂µ ·
(
®E (t) + ®E

)
. (2.68)

Here the static electric field is denoted by ®E, and we assume that the electric
dipole operator ®̂µ stays constant even in the presence of the electric field – there-
fore we are describing only the linear Stark effect. The term − ®̂µ · ®E can be added
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to the system Hamiltonian, because it is constant. Here we can no longer neglect
the diagonal elements of the dipole moment operator. In fact, they cause a shift
in the excited state energies:

⟨A|
(
ĤS − ®̂µ · ®E

)
|A⟩ − ⟨g |

(
− ®̂µ · ®E

)
|g⟩ = εA − ∆ ®µA · ®E . (2.69)

Here,
∆ ®µA = ⟨A| ®̂µ|A⟩ − ⟨g | ®̂µ|g⟩ (2.70)

is the difference between the dipole moments of the excited and the ground states
and will be called the static dipole moment for convenience. We have to subtract
the ground state energy, because we have set it to zero. Thus, for simplicity, we
redefine the dipole moment operator:

®̂µ→ ®̂µ − Î ⟨g | ®̂µ|g⟩. (2.71)

In this work we follow [136] and use perturbation theory to calculate the
Stark spectrum. To this end, we first write the expression for the linear response
function in the presence of the static electric field:

R(1)E (t; ®o2, ®o1; ®oE) =⟨
Tr

[
ei

(
Ĥ−

(
®̂µ· ®oE

)
E
)
t
(
®̂µ · ®o2

)
e−i

(
Ĥ−

(
®̂µ· ®oE

)
E
)
t
(
®̂µ · ®o1

)
ρ̂gg

]⟩
or

=

⟨
Tr

[
exp−

©­«−i
t∫

0

dτ
(
®̂µI (τ) · ®oE

)
Eª®¬ eiĤt

(
®̂µ · ®o2

)
× e−iĤt exp+

©­«i
t∫

0

dτ
(
®̂µI (τ) · ®oE

)
Eª®¬

(
®̂µ · ®o1

)
ρ̂gg

]⟩
or

. (2.72)

Here ®oE is the polarization vector of the static electric field, and E is its magni-
tude. If we expand this expression in powers of E (this is done by expanding the
time-ordered exponentials and collecting the terms), then the zeroth order term
gives the usual absorption spectrum, the first order term vanishes for isotropic
samples, and the second order term is responsible for the Stark signal.

Thus, the Stark spectrum response function is

R(3)S (t; ®oE ; ®oE) =

78



2.4. Stark spectroscopy

− E2
t∫

0

dτ2

τ2∫
0

dτ1

⟨
Tr

[
µ̂I
E (τ1) µ̂I

E (τ2) eiĤt µ̂Ee−iĤt µ̂E ρ̂gg

]⟩
or

− E2
t∫

0

dτ
t∫

0

dτ′
⟨
Tr

[
µ̂I
E (τ) eiĤt µ̂Ee−iĤt µ̂I

E (τ′) µ̂E ρ̂gg

]⟩
or

− E2
t∫

0

dτ2

τ2∫
0

dτ1

⟨
Tr

[
eiĤt µ̂Ee−iĤt µ̂I

E (τ2) µ̂I
E (τ1) µ̂E ρ̂gg

]⟩
or
. (2.73)

Here we have set ®o1 = ®o2 = ®oE . Expansion of these three terms in the eigen-
state basis of the system Hamiltonian produces many contributions to the Stark
spectrum. Nonetheless, the majority of them are non-resonant, i. e. oscillating
with factors other than e−iω̄et , ω̄e being the band gap between the ground and
the single-excited state manifolds. In fact, only a single contribution survives
the the RWA (this limit was denoted as pure RWA in Ref. [106]):

R(3)S (t; ®oE ; ®oE) = −E2
t∫

0

dτ2

τ2∫
0

dτ1

Ntot∑
e3

Ntot∑
e2

Ntot∑
e1

⟨
µE
ge3µ

E
e3e2µ

E
e2e1µ

E
e1g

⟩
or

× TrB

[
eiĤBt ⟨e3 |e−iĤ(t−τ2) |e3⟩⟨e2 |e−iĤ(τ2−τ1) |e2⟩⟨e1 |e−iĤτ1 |e1⟩ ρ̂gg

]
.

(2.74)

Here we have denoted µ
E/E
ab = ⟨a|

(
®̂µ · ®oE/E

)
|b⟩. Then, using the secular ap-

proximation and performing the second order cumulant expansion (see Ap-
pendix A) we obtain the following expression, which includes the ctR theory
terms to describe the off-diagonal fluctuations:

R(3)S (t; ®oE ; ®oE) = −E2
t∫

0

dτ2

τ2∫
0

dτ1

Ntot∑
e3

Ntot∑
e2

Ntot∑
e1

⟨
µE
ge3µ

E
e3e2µ

E
e2e1µ

E
e1g

⟩
or

× exp
(
−i

(
ωe3gt + ωe2e3τ2 + ωe1e2τ1

) )
× exp

{
− ge1e1,e1e1 (τ1) − ξe1 (τ1) + ge2e2,e1e1 (τ1) + ge2e2,e1e1 (τ2 − τ1)

− ge2e2,e1e1 (τ2) − ge2e2,e2e2 (τ2 − τ1) − ξe2 (τ2 − τ1)
− ge3e3,e1e1 (τ2 − τ1) + ge3e3,e1e1 (τ2) + ge3e3,e1e1 (t − τ1)
− ge3e3,e1e1 (t) + ge3e3,e2e2 (τ2 − τ1) + ge3e3,e2e2 (t − τ2)

− ge3e3,e2e2 (t − τ1) − ge3e3,e3e3 (t − τ2) − ξe3 (t − τ2)
}
. (2.75)
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If we assume magic angle
(
cos (θm. a.) = 1/

√
3
)

between the static and probing
electric fields, then the orientational averaging results in [106, 109]:⟨

µE
ge3µ

E
e3e2µ

E
e2e1µ

E
e1g

⟩m. a.
or =

1
9

(
®µe1g · ®µge3

) (
®µe2e1 · ®µe3e2

)
. (2.76)

The Stark spectrum is finally calculated as:

S (ω) = ωRe
∞∫

0

dteiωt
⟨
R(3)S (t; ®oE ; ®oE)

⟩
dis
. (2.77)

Expression (2.75) is one of the major results of this thesis.

2.5 2D spectroscopy
2D spectroscopy was introduced in detail in Chapter 1. Here we provide expres-
sions needed to calculate the so-called total 2D spectrum using the ctR theory.

From the 2D experiment scheme depicted in Fig. 1.1d, we see that the sample
is excited by three laser pulses, which have different wavevectors ®k1, ®k2, ®k3. Due
to the wave-mixing, the outgoing signal is generated at all combinations of the
wavevectors ±®k1± ®k2± ®k3. We are interested in the 2D spectrum recorded in the
®kI = −®k1+ ®k2+ ®k3 direction. Another direction, ®kII = ®k1− ®k2+ ®k3 is also of note.
Experimental total 2D spectrum, which depends on the excitation frequencyω1,
the waiting time t2 and the detection frequency ω3, is

S®kI
(ω3, t2, ω1) =

∞∫
−∞

dt1e−iω1t1S®kI
(ω3, t2, t1) . (2.78)

Here

S®kI
(ω3, t2, t1) =

∞∫
0

dt3eiω3t3 ®E®kI
(t3, t2, t1) · ®oLO. (2.79)

is an experimentally available signal [64]. ®E®kI
(t3, t2, t1) is the outgoing electric

field and ®oLO is the polarization vector of the LO pulse (see Section 1.1). As
defined in Section 1.1, t1 is the time delay between the first two excitation pulses
(pump pulses), t2 is the time delay between the second and third excitation pulses
(last pump pulse and the probe pulse) and t3 is the time delay between the third
pulse and the signal. Note, however, that in experiments t2 and t3 are always
positive, but t1 can have negative values, which means that the order of the two
pump pulses is reversed.
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It can be shown that the outgoing electric field is proportional to the induced
polarization [86]:

®E®kI
(t3, t2, t1) = i ®P(3)®kI

(t3, t2, t1) . (2.80)

The third order polarization can be calculated using the perturbation theory and
the response function formalism [86]. Assuming the RWA, and limiting the
consideration to the ultrashort pulses we obtain the following expression for the
polarization:

®P(3)®kI
(t3, t2, t1) = i3

{
θ (t1) R(3)®kI

(t3, t2, t1; , ®o3, ®o2, ®o1) .

+ θ (−t1) R(3)®kII
(t3, t2,−t1; , ®o3, ®o2, ®o1)

}
. (2.81)

Here θ (t) is the Heaviside step function, ®oi are the polarization vectors of the
electric field that interacts with the system at time moments ti and R(3)®kI/II

are
specific parts of the full third order response function, which is defined as

R(3)
(
t3, t2, t1; ®E4, ®E3, ®E2, ®E1

)
=

⟨
Tr

{ (
®̂µ · ®E4

)
e−iĤt3

[ (
®̂µ · ®E3

)
, e−iĤt2

[ (
®̂µ · ®E2

)
, e−iĤt1

[ (
®̂µ · ®E1

)
, ρ̂gg

]
eiĤt1

]
eiĤt2

]
eiĤt3

}⟩
or

. (2.82)

Formally the third order response function is a fourth rank tensor, thus it re-
quires four vector arguments to give a scalar. When only three vector ar-
guments are supplied, a fourth rank tensor gives a vector, as is the case in
Eq. (2.81). Response functions with a direction index correspond to specific
terms of Eq. (2.82), which oscillate as

R(3)®kI
∼ e−iω0(t3−t1), (2.83)

R(3)®kII
∼ e−iω0(t3+t1). (2.84)

Here ω0 is the characteristic interband frequency, which corresponds to the en-
ergy difference between the ground state and the single-excited state manifold.
The laser pulses used in experiments should also have similar central frequency.
Expressions for the response function terms will be provided below.

Using the expression for the third order polarization, we obtain

®E®kI
(t3, t2, t1) · ®oLO = θ (t1) R(3)®kI

(t3, t2, t1; ®oLO, ®o3, ®o2, ®o1)
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+ θ (−t1) R(3)®kII
(t3, t2,−t1; ®oLO, ®o3, ®o2, ®o1) . (2.85)

In the following, we will suppress the vector arguments to the response function,
as they will be understood to be as in this expression. Furthermore, we will use
the scalar dipole moments µ̂i = ®̂µ · ®oi, with i = 1, 2, 3, 4 ≡ LO.

Combining Eqs. (2.78), (2.79) and (2.85) we obtain the final expression
needed to calculate the total 2D spectra:

S®kI
(ω3, t2, ω1) =

∞∫
0

dt3eiω3t3

∞∫
0

dt1e−iω1t1
⟨
R(3)®kI
(t3, t2, t1)

⟩
dis

+

∞∫
0

dt3eiω3t3

∞∫
0

dt1eiω1t1
⟨
R(3)®kII
(t3, t2, t1)

⟩
dis
. (2.86)

The only thing that remains is to develop expressions for the relevant terms of
the response function. Here we have also taken the averaging over disorder into
account.

The directional response functions can be separated to three terms:

R(3)®kI/II
(t3, t2, t1) = RESA

®kI/II
(t3, t2, t1) + RESE

®kI/II
(t3, t2, t1) + RGSB

®kI/II
(t3, t2, t1) . (2.87)

They correspond to the ESA, ESE and GSB contributions. Assuming that the
excited states of the system under consideration can be separated into the ground
state, the single-excited state and the double-excited state manifolds, we can
express the molecular dipole moment operator as

®̂µ =
Ntot∑

e

®µeg |e⟩⟨g |︸          ︷︷          ︸
®̂µ[eg]

+

Ntot∑
e

®µge |g⟩⟨e|︸          ︷︷          ︸
®̂µ[ge]

+

Ntot∑
e

N2tot∑
f

®µ f e | f ⟩⟨e|︸                ︷︷                ︸
®̂µ[ f e]

+

Ntot∑
e

N2tot∑
f

®µe f |e⟩⟨ f |︸                ︷︷                ︸
®̂µ[e f ]

.

(2.88)
Now we can express the response function terms. Remembering (2.82) and
using (2.83) and (2.84) we obtain:

RESA
®kI
(t3, t2, t1) =

−
⟨
Tr

{
µ̂1
[ge]e

iĤ(t1+t2+t3) µ̂4
[e f ]e

−iĤt3 µ̂3
[ f e]e

−iĤt2 µ̂2
[eg]e

−iĤt1 ρ̂gg

}⟩
or

; (2.89)

RESE
®kI
(t3, t2, t1) =
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Tr

{
µ̂1
[ge]e

iĤ(t1+t2) µ̂3
[eg]e

iĤt3 µ̂4
[ge]e

−iĤ(t3+t2) µ̂2
[eg]e

−iĤt1 ρ̂gg

}⟩
or

; (2.90)

RGSB
®kI
(t3, t2, t1) =⟨

Tr
{
µ̂1
[ge]e

iĤt1 µ̂2
[eg]e

iĤ(t2+t3) µ̂4
[ge]e

−iĤt3 µ̂3
[eg]e

−iĤ(t2+t1) ρ̂gg
}⟩

or
; (2.91)

RESA
®kII
(t3, t2, t1) =

−
⟨
Tr

{
eiĤt1 µ̂2

[ge]e
iĤ(t2+t3) µ̂4

[e f ]e
−iĤt3 µ̂3

[ f e]e
−iĤ(t2+t1) µ̂1

[eg] ρ̂gg
}⟩

or
; (2.92)

RESE
®kII
(t3, t2, t1) =⟨

Tr
{
eiĤt1 µ̂2

[ge]e
iĤt2 µ̂3

[eg]e
iĤt3 µ̂4

[ge]e
−iĤ(t3+t2+t1) µ̂1

[eg] ρ̂gg
}⟩

or
; (2.93)

RGSB
®kII
(t3, t2, t1) =⟨

Tr
{
eiĤ(t1+t2+t3) µ̂4

[ge]e
−iĤt3 µ̂3

[eg]e
−iĤt2 µ̂2

[ge]e
−iĤt1 µ̂1

[eg] ρ̂gg
}⟩

or
. (2.94)

Now we need to calculate these expressions. The simplest is to deal with the
GSB terms. We will assume the secular approximation. Then, expanding the
response function in the system eigenbasis, we obtain

RGSB
®kI
(t3, t2, t1) =

Ntot∑
e1

Ntot∑
e2

⟨
µ4
ge2µ

3
e2gµ

2
e1gµ

1
ge1

⟩
× TrB

{
⟨e1 |eiĤt1 |e1⟩⟨g |eiĤ(t2+t3) |g⟩⟨e2 |e−iĤt3 |e2⟩⟨g |e−iĤ(t2+t1) |g⟩ ρ̂eq

B

}
,

(2.95)

and similarly for RGSB
®kII
(t3, t2, t1). The trace then can be calculated using the

second order cumulant expansion (see discussion in Appendix A).
The treatment of the ESA and ESE terms is slightly more complicated.

First, we separate these contributions into coherence and population terms:
ESA = ESAc + ESAp. We have coherence term when interaction with the first
two light pulses creates coherence |e1⟩⟨e2 |, with e1 , e2. On the other hand, we
have population term, when the first two light pulses create population |e1⟩⟨e1 |.
Coherence terms can be treated in the same way as the GSB terms. For example,

RESAc
®kI
(t3, t2, t1) = −

Ntot∑
e1

e1,e2∑
e2

N2tot∑
f1

⟨
µ4

e1 f1µ
3
f1e2

µ2
e2gµ

1
ge1

⟩
or
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× TrB

{
⟨e1 |eiĤ(t1+t2+t3) |e1⟩⟨ f1 |e−iĤt3 | f1⟩⟨e2 |e−iĤt2 |e2⟩⟨g |e−iĤt1 |g⟩ ρ̂eq

B

}
.

(2.96)

Again, the trace can be evaluated using the second order cumulant expansion.
Other coherence terms can be calculated similarly.

The treatment of populations terms is much less straightforward. The rea-
son behind this is that a direct application of the cumulant expansion would give
expressions accurate only for small t2 values. Thus, population transfer at long
time would be poorly described. Therefore, additional assumptions and approx-
imations are necessary. First, we will assume that population transfer happens
only during the t2 interval. Then, taking one term as an example,

RESEp
®kI
(t3, t2, t1) =

Ntot∑
e1

Ntot∑
e2

⟨
µ4
ge2µ

3
e2gµ

2
e1gµ

1
ge1

⟩
or

× TrB

{
⟨e1 |eiĤt1 |e1⟩⟨e1 |eiĤt2 |e2⟩⟨g |eiĤt3 |g⟩

× ⟨e2 |e−iĤt3 |e2⟩⟨e2 |e−iĤt2 |e1⟩⟨g |e−iĤt1 |g⟩ ρ̂eq
B

}
. (2.97)

Now we assume that the trace over the different time periods can be performed
independently. Unfortunately, this Markovian approximation would destroy the
correlations between the different time intervals. To mitigate this, we assume a
different state of the bath for each time interval. We thus obtain

RESEp
®kI
(t3, t2, t1) =

Ntot∑
e1

N2tot∑
e2

⟨
µ4
ge2µ

3
e2gµ

2
e1gµ

1
ge1

⟩
or

× TrB

{
⟨g |eiĤt3 |g⟩⟨e2 |e−iĤt3 |e2⟩ ρ̂B (e1e1, t2; ge1, t1)

}
/TrB { ρ̂B (ge1, t1)}

× TrB

{
⟨e1 |eiĤt2 |e2⟩⟨e2 |e−iĤt2 |e1⟩ ρ̂eq

e1

}
× TrB

{
⟨e1 |eiĤt1 |e1⟩⟨g |e−iĤt1 |g⟩ ρ̂eq

B

}
. (2.98)

Here

ρ̂B (e1e1, t2; ge1, t1) = e−i(F̂e1e1+ĤB)t2e−iĤBt1 ρ̂
eq
B ei(F̂e1e1+ĤB)t1ei(F̂e1e1+ĤB)t2 (2.99)

and
ρ̂

eq
e1 = lim

t ′→∞
e−i(F̂e1e1+ĤB)t ′ ρ̂eq

B ei(F̂e1e1+ĤB)t ′ . (2.100)

In Eq. (2.98) the traces in the second and fourth lines are evaluated using the cu-
mulant expansion. Note that in the second line the division by TrB { ρ̂B (ge1, t1)}
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is to prevent the double counting of the evolution of the bath state during the t1
interval, which is already accounted for by the trace in the fourth line. Mean-
while, it can be shown that the trace in the third line can be identified with the
population Green function as [113]:

Ge2e1 (t2) = TrB

{
⟨e1 |eiĤt2 |e2⟩⟨e2 |e−iĤt2 |e1⟩ ρ̂eq

e1

}
. (2.101)

It represents probability the system to be in state e2 at time t2 if at initial time it
was in state e1. Green’s function is the solution of the Pauli master equation:

d
dt

Ge2e1 (t) = −
e3,e2∑

e3

KmR
e3e2Ge2e1 (t) +

e3,e2∑
e3

KmR
e2e3Ge3e1 (t) . (2.102)

Here KmR
e3e2 are the mR transfer rates, see Eq. (2.50). All the rest of the population

terms are evaluated similarly.
For completeness, now we list all the response function terms derived using

the approach described here:

RESAc
®kI
(t1, t2, t3) =

−
Ntot∑
e1

e1,e2∑
e2

N2tot∑
f1

⟨
µ4

e1 f1µ
3
f1e2

µ2
e2gµ

1
ge1

⟩
or

exp

{
iωe1gt1 + iωe1e2t2 − iω f1e1t3

− ge2e2,e2e2 (t2) − ξe2 (t2) + g f1 f1,e2e2 (t2) + g f1 f1,e2e2 (t3)
− g f1 f1,e2e2 (t2 + t3) − g f1 f1, f1 f1 (t3) − ξ f1 (t3) + g∗e1e1,e2e2 (t1 + t2)
− g∗e1e1,e2e2 (t1) − ge1e1,e2e2 (t3) + ge1e1,e2e2 (t2 + t3)
+ g∗e1e1, f1 f1 (t1 + t2 + t3) − g∗e1e1, f1 f1 (t1 + t2) + ge1e1, f1 f1 (t3)

− g∗e1e1,e1e1 (t1 + t2 + t3) − ξ∗e1 (t1 + t2 + t3)
}

; (2.103)

RESAp
®kI
(t1, t2, t3) =

−
Ntot∑
e1

Ntot∑
e2

N2tot∑
f1

Ge2e1 (t2)
⟨
µ4

e2 f1µ
3
f1e2

µ2
e1gµ

1
ge1

⟩
or

exp

{
iωe1gt1 − iω f1e2t3

− g∗e1e1,e1e1 (t1) − ξ
∗
e1 (t1) − g f1 f1, f1 f1 (t3) − ξ f1 (t3)

− g∗e2e2,e2e2 (t3) − ξ
∗
e2 (t3) + g

∗
f1 f1,e2e2

(t3) + ge2e2, f1 f1 (t3)
+ g∗f1 f1,e1e1

(t1 + t2 + t3) − g∗f1 f1,e1e1
(t1 + t2)
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− g∗f1 f1,e1e1
(t2 + t3) + g∗f1 f1,e1e1

(t2)
− g∗e2e2,e1e1 (t1 + t2 + t3) + g∗e2e2,e1e1 (t1 + t2)
+ g∗e2e2,e1e1 (t2 + t3) − g∗e2e2,e1e1 (t2)

+ 2iIm
[
ge2e2,e1e1 (t2 + t3) − ge2e2,e1e1 (t2) − ge2e2,e1e1 (t3)

− g f1 f1,e1e1 (t2 + t3) + g f1 f1,e1e1 (t2) + g f1 f1,e1e1 (t3)
]}

; (2.104)

RESEc
®kI
(t1, t2, t3) =

Ntot∑
e1

e1,e2∑
e2

⟨
µ4
ge2µ

3
e1gµ

2
e2gµ

1
ge1

⟩
or exp

{
iωe1gt1 + iωe1e2t2 − iωe3gt3

− ge2e2,e2e2 (t2 + t3) − ξe2 (t2 + t3) + g∗e2e2,e1e1 (t1 + t2 + t3)
− g∗e2e2,e1e1 (t1) − g

∗
e2e2,e1e1 (t3) + ge1e1,e2e2 (t2)

− g∗e1e1,e1e1 (t1 + t2) − ξ∗e1 (t1 + t2)
}

; (2.105)

RESEp
®kI
(t1, t2, t3) =

Ntot∑
e1

Ntot∑
e2

Ge2e1 (t2)
⟨
µ4
ge2µ

3
e2gµ

2
e1gµ

1
ge1

⟩
or exp

{
iωe1gt1 − iωe2gt3

− g∗e1e1,e1e1 (t1) − ξ
∗
e1 (t1) − ge2e2,e2e2 (t3) − ξe2 (t3)

+ g∗e2e2,e1e1 (t1 + t2 + t3) − g∗e2e2,e1e1 (t1 + t2)
− g∗e2e2,e1e1 (t2 + t3) + g∗e2e2,e1e1 (t2)

+ 2iIm
[
ge2e2,e1e1 (t2) + ge2e2,e1e1 (t3) − ge2e2,e1e1 (t2 + t3)

]}
; (2.106)

RGSBc
®kI
(t1, t2, t3) =

Ntot∑
e1

Ntot∑
e2

⟨
µ4
ge2µ

3
e2gµ

2
e1gµ

1
ge1

⟩
or exp

{
iωe1gt1 − iωe2gt3

− ge2e2,e2e2 (t3) − ξe2 (t3) + g∗e2e2,e1e1 (t1 + t2 + t3) − g∗e2e2,e1e1 (t1 + t2)

− g∗e2e2,e1e1 (t2 + t3) + g∗e2e2,e1e1 (t2) − g
∗
e1e1,e1e1 (t1) − ξ

∗
e1 (t1)

}
; (2.107)
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RESAc
®kII
(t1, t2, t3) =

Ntot∑
e1

e1,e2∑
e2

N2tot∑
f1

⟨
µ4

e2 f1µ
4
f1e1

µ2
ge2µ

1
e1g

⟩
or

exp

{
− iωe1gt1 + iωe2e1t2

− iω f1e2t3 − ge1e1,e1e1 (t1 + t2) − ξe1 (t1 + t2) + g f1 f1,e1e1 (t1 + t2)
+ g f1 f1,e1e1 (t3) − g f1 f1,e1e1 (t1 + t2 + t3) − g f1 f1, f1 f1 (t3) − ξ f1 (t3)
+ g∗e1e1,e2e2 (t2) − ge2e2,e1e1 (t1) − ge2e2,e1e1 (t3) + ge2e2,e1e1 (t1 + t3 + t3)
+ g∗f1 f1,e2e2

(t2 + t3) − g∗f1 f1,e2e2
(t2) + ge2e2, f1 f1 (t3)

− g∗e2e2,e2e2 (t2 + t3) − ξ∗e2 (t2 + t3)
}

; (2.108)

RESAp
®kII
(t1, t2, t3) =

Ntot∑
e1

Ntot∑
e2

N2tot∑
f1

Ge2e1 (t2)
⟨
µ4

e2 f1µ
3
f1e2

µ2
ge1µ

1
e1g

⟩
or

exp

{
− iωe1gt1 − iω f1e2t3

− ge1e1,e1e1 (t1) − ξe1 (t1) − g f1 f1, f1 f1 (t3) − ξ f1 (t3)
− g∗e2e2,e2e2 (t3) − ξ

∗
e2 (t3) + g

∗
f1 f1,e2e2

(t3) + ge2e2, f1 f1 (t3)
− g f1 f1,e1e1 (t1 + t2 + t3) + g f1 f1,e1e1 (t1 + t2) + g f1 f1,e1e1 (t2 + t3)
− g f1 f1,e1e1 (t2) + ge2e2,e1e1 (t1 + t2 + t3) − ge2e2,e1e1 (t1 + t2)
− ge2e2,e1e1 (t2 + t3) + ge2e2,e1e1 (t2)

+ 2iIm
[
ge2e2,e1e1 (t2 + t3) − ge2e2,e1e1 (t2) − ge2e2,e1e1 (t3)

− g f1 f1,e1e1 (t2 + t3) + g f1 f1,e1e1 (t2) + g f1 f1,e1e1 (t3)
]}

; (2.109)

RESEc
®kII
(t1, t2, t3) =

Nt∑
e1

e1,e2∑
e2

⟨
µ4
ge1µ

3
e2gµ

2
ge2µ

1
e1g

⟩
or exp

{
− iωe1gt1 + iωe2e1t2 − iωe1gt3

− ge1e1,e1e1 (t1 + t2 + t3) − ξe1 (t1 + t2 + t3)
+ g∗e1e1,e2e2 (t2 + t3) − ge2e2,e1e1 (t1)

− g∗e1e1,e2e2 (t3) + ge2e2,e1e1 (t1 + t2) − g∗e2e2,e2e2 (t2) − ξ
∗
e2 (t2)

}
; (2.110)
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RESEp
®kII
(t1, t2, t3) =

Ntot∑
e1

Ntot∑
e2

Ge2e1 (t2)
⟨
µ4
ge2µ

3
e2gµ

2
ge1µ

1
e1g

⟩
or exp

{
− iωe1gt1 − iωe2gt3

− ge1e1,e1e1 (t1) − ξe1 (t1) − ge2e2,e2e2 (t3) − ξe2 (t3)
− ge2e2,e1e1 (t2) + ge2e2,e1e1 (t1 + t2)
+ ge2e2,e1e1 (t2 + t3) − ge2e2,e1e1 (t1 + t2 + t3)

+ 2iIm
[
ge2e2,e1e1 (t2) + ge2e2,e1e1 (t3) − ge2e2,e1e1 (t2 + t3)

]}
; (2.111)

RGSBc
®kII
(t1, t2, t3) =

Ntot∑
e1

Ntot∑
e2

⟨
µ4
ge2µ

3
e2gµ

2
ge1µ

1
e1g

⟩
or exp

{
− iωe1gt1 − iωe2gt3

− ge1e1,e1e1 (t1) − ξe1 (t1) − ge2e2,e1e1 (t2) + ge2e2,e1e1 (t1 + t2)

+ ge2e2,e1e1 (t2 + t3) − ge2e2,e1e1 (t1 + t2 + t3) − ge2e2,e2e2 (t3) − ξe2 (t3)
}
.

(2.112)

The transition dipole moments connecting the single and double excitation
manifolds are

µi
e1 f1 = ⟨e1 | µ̂i | f1⟩. (2.113)

Lineshape functions related to the double-excited states are defined by general-
izing expressions pertaining the single excitation manifold:

gαβ,γδ (t) =
t∫

0

dτ2

τ2∫
0

dτ1Cαβ,γδ (τ2 − τ1) ; (2.114)

Cαβ,γδ (τ2 − τ1) = TrB

(
F̂I
αβ (τ2) F̂I

γδ (τ1) ρ̂eq
B

)
, (2.115)

with F̂αβ = ⟨α |ĤSB |β⟩. α, β, . . . can number both single-excited states
(e1, e2, . . . ) and double-excited states ( f1, f2, . . . ). The ctR theory term pertain-
ing the double excitations is

ξ f1 (t) =
N2tot∑
f2, f1

t∫
0

dτ2

τ2∫
0

dτ1eiω f1 f2 (τ2−τ1)C f1 f2, f2 f1 (τ2 − τ1) . (2.116)
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Assuming the pulses and the response polarized in the same direction, the
relevant orientational average is [64, 87, 109]:⟨

µ4
α4β4

µ3
α3β3

µ2
α2β2

µ1
α1β1

⟩
or
=

1
15

{(
®µα1β1 · ®µα2β2

) (
®µα3β3 · ®µα4β4

)
+

(
®µα1β1 · ®µα3β3

) (
®µα2β2 · ®µα4β4

)
+

(
®µα1β1 · ®µα4β4

) (
®µα2β2 · ®µα3β3

)}
. (2.117)

Here αi or βi can also label the ground state, in addition to the single- or double-
excited states.

Expressions for the response functions presented in this work are overall
similar to Refs. [81, 87]. Nonetheless, the key novelty of this work is the inclu-
sions of the ctR theory terms, which was not done before. In earlier works the
lifetime broadening was mostly accounted for phenomenologically. As demon-
strated in Section 2.3, inclusion of the ctR theory terms significantly improved
the quality of the absorption lineshapes, thus similar improvement can be ex-
pected in the calculations of the 2D spectra.

2.6 Conclusions
In this chapter we presented the tight-binding Hamiltonian suitable to describe
the dynamical and spectroscopic properties of various molecular aggregates. In
the next chapter, it will be applied for the PSII RC.

We also presented derivations of expressions for the spectroscopic line-
shapes in terms of the ctR theory. Though originally derived for absorption line-
shapes by Renger and Marcus more than a decade ago [47], it was never used in
actual calculations. Here we presented an investigation of several methods that
account for the off-diagonal fluctuations when calculating the absorption line-
shape. Our results clearly indicate that the ctR theory gives very good agreement
with the HEOM results over a wide parameter range and should be considered
for simulations when an exact theory is unavailable or too costly computation-
ally. Comparison of other theories leads to the second statement of the the-
sis: Accounting for the lifetime broadening with complex and time-dependent
terms significantly improves the quality of spectroscopic lineshapes, when the
lineshape function formalism is used. Neglecting the imaginary part means ig-
noring the time-dependent reorganization and thus induces non-uniform peak
shifts, while the Markovian approximation assumes relaxation independent of
bath state and thus reduces the overall accuracy of the calculated lineshapes.
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Additionally, we found that accounting for the off-diagonal fluctuations with
the mR lifetimes gives much poorer agreement with the exact lineshapes. This
was explained by analyzing the approximations needed to obtain that level of de-
scription. Since this approach was used in a number of studies of optical line-
shapes of molecular systems, the parameters obtained might be misestimated
and should be rechecked. This is done for the PSII RC in the next chapter.

In this chapter we also extended the ctR theory to describe the Stark spec-
trum. Our description is a considerable theoretical improvement over previous
works [106, 136]. Though the obtained expression is somewhat computation-
ally expensive, it allows calculations of the Stark spectrum on the same footing
as absorption.

Finally, here we presented expressions needed to calculate the 2D spectra
(see Chapter 1). Our results are similar to those of previous works [81, 87].
Nonetheless, whereas earlier the lifetime broadening was included phenomeno-
logically, our expressions demonstrate how faithful application of theoretical
principles gives terms that are complex, time-dependent and not generalizeable
from simpler expressions. This level of theory will be applied for the first time
to simulate the 2D spectra of the PSII RC in the next chapter.

The tight-binding Hamiltonian presented in this chapter is based on [p9]
and [P2]. The ctR theory for absorption and the calculations of the absorption
lineshapes for a dimer system is presented in [P7]. The Stark spectrum response
function with ctR terms is developed in [p9], where expressions for the LD and
CD spectra are also given. Response functions with ctR terms for the 2D spectra
calculations are not published at the time of the writing.
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Chapter 3

Microscopic model of PSII RC

For what, pray, is the pleasure of doing an easy thing?

John Carter in “The Gods of Mars”
by Edgar Rice Burroughs

Oxygenic photosynthesis in plants, cyanobacteria and algae begins in PSII,
which is the only known biological complex with strong enough redox potential
to split water. PSII is a dimeric supercomplex, consisting of major and minor
light-harvesting complexes and the RC. Excitation within the light-harvesting
antennae of PSII is transferred to the RC, leading to the oxidation of water, the
reduction of plastoquinone and the formation of a proton gradient across the
thylakoid membrane. The PSII is thus the main producer of oxygen on Earth [1,
61].

The PSII RC itself contains six Chl and two pheophytin (Pheo) molecules
arranged into two almost symmetric branches, corresponding to the D1 and D2
proteins [37]. The pigment arrangement in the PSII RC is shown in Fig. 3.1.
Two closely situated Chls, PD1 and PD2, are known as the “special pair” (from
the analogous attribution in the bacterial RC). Each branch also contains an
accessory chlorophyll ChlD1/D2 and a pheophytin PheoD1/D2. Two peripheral
chlorophylls ChlzD1/D2 are about 25 Å away from the other six RC pigments,
and they do not participate in the primary charge separation. In vivo, the electron
transfer proceeds through the D1 branch to PheoD1 and then further to plasto-
quinone QA and finally to QB [1]. The most often studied PSII RC preparation
(the so-called D1D2cytb559 complex), however, lacks the oxygen evolving com-
plex, the redox active tyrosine TyrZ and the quinone acceptors [137, 138], thus
allowing the electrons to accumulate on PheoD1. Meanwhile, the hole remains

91



3. Microscopic model of PSII RC

PD1 PD2

ChlD1 ChlD2

PheoD1 PheoD2

QA QB

TyrZ TyrD

ChlzD1 ChlzD2

CarD1

CarD2

Fe

OEC

Figure 3.1: The structural arrangement of pigments and other cofactors in the
PSII RC. Data taken from 3WU2 PDB structure [37]. The tails of chlorophylls,
pheophytins and plastoquinones are truncated for clarity. Figure made with
VMD software [147].

localized on PD1.
The energy and charge transfer processes in the isolated PSII RC, the PSII

core (which includes the CP43 and CP47 antenna complexes) or the whole PSII
have been extensively studied over the last few decades, as reviewed in Refs. [54–
61]. Nonetheless, the pathways of charge separation and the identities of the
participating states are still under debate. Many studies claim that the primary
electron donor is the ChlD1 pigment, thus the primary CT state is Chl+D1Pheo−D1
[110, 139–142]. In addition, a series of works [106, 107, 143] have highlighted
the importance of the special pair CT state P+D2P−D1, which has been proposed
to be strongly mixed with the exciton states, providing an alternative charge
separation pathway. These suggestions have to be tested against an increasing
amount of experimental data using appropriate theoretical modeling.

Most of the theoretical work on the PSII RC is based on the exciton concept
[25]. The first exciton model that captured some features of the PSII RC spec-
troscopic data was the so-called multimer model [144]. It was formulated by
taking the structural data of the bacterial reaction center into account and addi-
tionally assuming equal transition energies for all the core pigments. Later, as
the PSII structural data became available with increasing resolution [34, 37, 145,
146], the theoretical models were refined [P2, 105–107, 110, 111, 119, 130],
and many spectroscopic properties of the PSII RC were successfully described.
Some models have included one or more CT states phenomenologically, treat-
ing them as additional exciton states [105–107, 130]. Only a few works have
accounted for the relevant properties of electrons and holes [P2, 101].

Although there have been attempts to obtain the PSII RC site energies di-
rectly from the structural data [119, 148, 149], the majority of the theoretical
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models derive their parameters from fits to the optical spectra. Since exact cal-
culations are almost always too computationally expensive, approximate meth-
ods have to be applied to calculate optical lineshapes and dynamics. We have
recently analyzed various approaches to calculating absorption lineshapes (see
[P7] and Section 2.3) and have found that the ctR theory gives results very close
to the exact ones. On the other hand, the mR theory, used in Refs. [105–107,
130] and in our previous work on the PSII RC [P2] was found to perform sig-
nificantly worse. The Markovian Redfield approach (or cR), used in Refs. [110,
111, 119], showed improvements but did not perform as well as the ctR theory.
These findings raise some doubts about the optimization of the parameters of
the previous models of the PSII RC [P2, 105–107, 110, 111, 130] and motivate
our use of the ctR theory for describing its spectroscopic properties.

The CT states, being optically dark, are insensitive to most spectroscopic
measurements like absorption, LD or CD. Nonetheless, due to their strong static
dipole moments, they are sensitive to the presence of static electric fields, and
thus can influence the results of Stark spectroscopy. Stark experiments have
been performed on the PSII RC [150], but the results were not easy to under-
stand without a detailed theoretical description. Previously, the PSII RC Stark
spectrum was fitted using mR theory [106]. Even though significant progress
in understanding the observed features was achieved, a check of the obtained
conclusions, especially the parameters of the CT states, using a more accurate
lineshape theory is definitely called for.

In this chapter we revisit the spectroscopic properties of the PSII RC using
the ctR theory (Chapter 2 and Ref. [P7]). We construct a model that includes
a single CT state together with MEs. We obtain model parameters by fitting a
number of linear optical spectra. We also extend the ctR theory to calculate the
Stark spectrum, which is then used to tune the parameters of the CT state. Due
to the more advanced lineshape theory, in our current model we improve upon
the parameters obtained in our previous work based on mR [P2].

3.1 The model parameters of PSII RC
Since the PSII RC has 8 pigments, in addition to 8 ME states, there could be 56
possible CT states. If we limit the CT states to the particular pigments (ChlD1,
PheoD1, PD1, PD2) that have been proposed to be involved in charge separation,
and take into consideration the directionality of the charge transfer, this number
is significantly reduced to 6. Restricting the CT states to neighboring pigment
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Table 3.1: Single excitation Hamiltonian matrix elements (in cm−1), energies
of the states in nanometers, and standard deviations of energy distributions (in
cm−1). See text for details.

PD1 PD2 ChlD1 ChlD2 PheoD1 PheoD2 ChlzD1 ChlzD2 Chl+D1Pheo−D1 Eλ σ

PD1 15080 158 −27.3 −41.8 −4 12.6 0.5 0.6 0 663 80
PD2 158 15015 −46.8 −22 15.1 −3 0.6 0.6 0 666 80

ChlD1 −27.3 −46.8 14800 3.5 43.5 −2.2 1.7 −0.1 125 675.5 80
ChlD2 −41.8 −22 3.5 15010 −2.4 41.7 −0.1 1.8 0 666 80
PheoD1 −4 15.1 43.5 −2.4 14950 1.5 −2.5 −0.2 125 669 80
PheoD2 12.6 −3 −2.2 41.7 1.5 14850 −0.2 −2.6 0 673.5 80
ChlzD1 0.5 0.6 1.7 −0.1 −2.5 −0.2 14985 0.1 0 667.5 80
ChlzD2 0.6 0.6 −0.1 1.8 −0.2 −2.6 0.1 15065 0 664 80

Chl+D1Pheo−D1 0 0 125 0 125 0 0 0 14270 701 550

pairs further reduces this number to 3. Given that the majority of the spectra
that we fit (absorption, LD, CD) are not significantly affected by the dark CT
states, we include a single CT state in our model. We note that only the Stark
spectrum is sensitive to CT states, and previous attempts to fit the Stark spectrum
of the PSII RC included a single CT state [106]. We performed calculations that
considered either the P+D2P−D1 or Chl+D1Pheo−D1 CT states and from the fits of the
Stark spectrum (see Section 3.2.1 for details) we have chosen Chl+D1Pheo−D1 as
the primary CT state. Thus, our model includes 9 states in the single excitation
manifold.

We obtain the site energies of the pigments from the fitting procedure. The
resonance couplings between the pigments were taken from Ref. [151], where
they were calculated using the Poisson TrEsp method [152–154]. The CT state
energy and the coupling between the CT state and molecular states were also
obtained from the fits. Formally, there are two couplings involving a single CT
state,

⟨Phe∗D1 |ĤS |Chl+D1Pheo−D1⟩ = thPheoD1ChlD1
; (3.1)

⟨Chl∗D1 |ĤS |Chl+D1Pheo−D1⟩ = tePheoD1ChlD1
; (3.2)

but we have chosen temn = thmn for simplicity. The entire single excitation Hamil-
tonian matrix is given in Table 3.1.

Our model takes into account the disorder of the energies of the pigments
and CT states. We assume the disorder for all pigments to be the same, and the
CT state to have different disorder. In both cases, the disorder was described by
a Gaussian distribution with standard deviations obtained from the fits (given in
Table 3.1).

The strengths of the transition dipole moments of Chl and Pheo pigments
are taken to be 4.4 and 3.4 debye respectively [P2, 111]. The transition dipole
vectors are assumed to be directed from NB to ND atoms (for nomenclature see,
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Table 3.2: The transition dipole moments in D, the static dipole moments in
D, and the geometric center of the pigments in Å. Data taken from the 3WU2
crystal structure [37] obtained from OPM database [155].

µx µy µz ∆µx ∆µy ∆µz Rx Ry Rz

PD1 1.08 −3.74 2.05 0.32 −1.07 1.07 37.87 4.05 11.99
PD2 −0.66 3.73 2.24 −0.13 1.03 1.15 32.57 9.55 11.12

ChlD1 −0.33 4.06 1.67 0.29 1.34 0.73 30.65 −2.13 9.30
ChlD2 0.11 −4.04 1.74 −0.36 −1.31 0.75 40.19 15.45 8.24
PheoD1 1.65 −0.55 −2.92 0.84 0.10 −0.99 33.73 −4.13 −0.31
PheoD2 −1.77 0.19 −2.90 −0.89 −0.19 −0.93 36.67 16.71 −1.41
ChlzD1 −1.91 −0.64 3.91 −1.01 −0.32 1.13 31.92 −27.24 8.07
ChlzD2 2.07 0.98 3.76 1.06 0.41 1.05 38.91 39.35 4.76

e. g., Ref. [156]) as obtained from the 3WU2 crystal structure [37]. The CT state
was assumed to have no transition dipole strength. The static dipole moments
are assumed to be rotated by 15◦ in the direction of the NC atom from the NB

to ND axis. This was based on the calculations of absorption difference spec-
tra corresponding to the P+D1Pheo−D1 CT state, see Sec. 3.2.1 for details. Their
strengths are taken to be 1.55 and 1.3 debyes for Chls and Pheos, respectively.
The static dipole moment of the CT state was calculated by assuming charges
fully localized at the geometric centers of the four N atoms of the involved pig-
ments. This gives a static dipole strength of 49.3 debyes for the Chl+D1Pheo−D1
state. The transition dipole moments, the static dipole moments and the geo-
metric centers of the pigments of the PSII RC are given in Table 3.2. Here the
z axis is perpendicular to the membrane plane, with data taken from the 3WU2
crystal structure [37] obtained from the OPM database [155].

We assume that fluctuations of the energies are uncorrelated, thus C′′AB (ω) =
C′′AδAB. All pigments (both Chls and Pheos) are described by the same spectral
density consisting of two parts, C′′m∗ (ω) = C′′LF (ω) + C′′HF (ω). In our previ-
ous work [P2] we assumed that the low frequency part was given by a Debye
spectral density. However, this form is unsuitable for low temperature spectra
calculations due to the divergence of the total Huang-Rhys factor [80]. Instead
we adopt the superohmic spectral density which is free from this deficiency,
consisting of two terms:

C′′LF (ω) =
∑
j=1,2
λ j
π

2
ω3

ωc
j

exp
(
− |ω| /ωc

j

)
. (3.3)

The two cut-off frequencies were chosen to beωc
1 = 20 cm−1 andωc

2 = 80 cm−1.
The values for reorganization energy were obtained from the fits of spectra and
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Table 3.3: Parameters of the underdamped vibrations included in the spectral
density (from ∆FLN measurements of Chl a in solution [157]).

Mode 1 2 3 4 5 6 7 8
W j, cm−1 93 189 262 352 389 519 573 745

s j 0.012 0.010 0.013 0.023 0.015 0.016 0.017 0.034

found to be λ1 = 15 cm−1 and λ2 = 35 cm−1. The high frequency part is repre-
sented by 8 underdamped vibrational modes:

C′′HF (ω) =
8∑

j=1

4s jW jω
3Γ(

ω2 −W2
j − Γ2

)2
+ 4ω2Γ2

. (3.4)

The damping parameter was chosen to be the same for all modes, Γ−1 = 1 ps.
The frequencies W j and the Huang-Rhys factors s j were taken from ∆ fluores-
cence line-narrowing (∆FLN)measurements of Chl a in solution [157], and are
given in Table 3.3. We included only the modes with center frequencies less
than 750 cm−1, as higher frequency modes are not expected to influence system
dynamics, being completely non-resonant. For the CT state we keep the high
frequency part of the spectral density the same, but introduce an additional mul-
tiplicative factor for the low frequency part, as CT states are expected to couple
more strongly to the environment. Thus, C′′CT (ω) = ηC′′LF (ω) + C′′HF (ω). From
the fits of the Stark spectrum, we obtained η = 12 for the Chl+D1Pheo−D1 state.

3.2 Spectroscopy of PSII RC

3.2.1 Fits of optical spectra

Most of the model parameters were obtained from a fit of nine linear spectra
shown in Fig. 3.2. In particular, we fitted absorption at 6, 77 and 298 K, lin-
ear and circular dichroism at 6 and 298 K, and absorption difference spectra
with exchanged pheophytins at 6 K. The latter spectra correspond to the so-
called RC1x and RC2x complexes [158, 159], where in the RC1x complexes
80 % of the PheoD2 is estimated to be replaced by 131-OH-Pheo, and in the
RC2x complexes all PheoD2 and 50 % of PheoD1 is replaced. When calculat-
ing RC1x/RC2x spectra, we took this into account accordingly. The energies
of the exchanged Pheos were also free parameters of the fit. In the fitting pro-
cedure, we minimized the sum of the deviations from the experimental data at
each wavelength for each spectra and added them with different weights (1.0 for
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Figure 3.2: Fits of the PSII RC spectroscopic data. Open circles denote exper-
imental values, while black lines denote theoretical calculations. a) absorption
at 6 K. b) linear dichroism at 6 K. c) circular dichroism at 6 K. d) absorption
at 77 K. e) absorption difference RC−RC1x preparations (with pheophytin ex-
change) at 6 K. f) absorption difference RC−RC2x preparations (with pheo-
phytin exchange) at 6 K. g) absorption at 298 K. h) linear dichroism at 298 K.
i) circular dichroism at 298 K. Experimental data for a) taken from Ref. [158],
for b), c), e), f) and i) taken from Ref. [159], for d) taken from Ref. [160], for g)
taken from Ref. [161].
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Figure 3.3: Fit of Stark spectrum of the PSII RC at 77 K. Open circles denote
experimental values (data taken from Ref. [150]), red line corresponds to cal-
culations with a) Chl+D1Pheo−D1 CT state, b) P+D2P−D1 CT state, c) both CT states.
The parameters for CT states were fitted separately in a) and b). For c) calcula-
tions were made by taking parameters corresponding to the best fit from a) and
b), and were not further adjusted. Blue dashed line denotes calculations without
any CT states.

Abs 6 K and 298 K, 2.0 for Abs 77 K, 5.0 for Abs RC−RC1x/RC2x 6 K, 0.05
for LD 6 K, 0.005 for CD 6 K and 298 K, 0.01 for LD 298 K). Smaller weights
were chosen for some spectra due to the poorer quality of the fit. Before calcu-
lating the differences, the calculated spectra were normalized in the following
way: absorption spectra were normalized by setting the maximum amplitudes to
unity, CD/LD spectra were normalized in such a way that the difference between
experimental and calculated spectra would be the smallest, and absorption dif-
ference RC and RC1x/RC2x spectra were normalized to unity separately (this
was done also to the experimental data) and then subtracted. Fitting was per-
formed using R software [99] with a differential evolution algorithm [162] as
implemented in Ref. [163].

We obtain excellent fits for all the absorption experiments, and good qualita-
tive fits for CD. Note, however, that the experimental CD spectrum of the PSII
RC is non-conservative, while our theoretical approach can give only conser-
vative spectra in the Qy region. There is some quantitative difference for the
calculated LD spectra, with positive feature at ∼ 680 nm having less amplitude
than in the experimental data. Overall, our results are of similar quality to pre-
vious works on the PSII RC [106, 110].

We have adjusted the CT state parameters (its energy, coupling with molecu-
lar states, disorder values and multiplicative factor describing coupling with low
frequency vibrations) from the fits of the Stark spectrum measured at 77 K [150],
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3.2. Spectroscopy of PSII RC

with results given in Fig. 3.3. During the fitting procedure both the experimental
and the simulated Stark spectra were normalized with respect to the absorption
spectrum. We tried including either P+D2P−D1 or Chl+D1Pheo−D1 CT states in our
model. We found that a better fit was obtained with the Chl+D1Pheo−D1 state. Re-
sults with the P+D2P−D1 state are also reasonable but are somewhat worse – the
amplitude of the ∼ 680 nm feature is underestimated, and a negative feature at
∼ 700 nm appears, which is absent in the experimental data. Therefore, we hold
that Chl+D1Pheo−D1 should be the primary CT state, contrary to the conclusions
obtained previously [106]. We also note that calculations without any CT states
roughly reproduce the amplitude of the ∼ 670 nm feature but severely under-
estimate the amplitude of the ∼ 680 nm feature. This is a clear indication that
CT states significantly influence the Stark spectrum of the PSII RC, much more
than in previous calculations [106].

In previous theoretical works on the PSII RC, fitting of the relaxed fluores-
cence was employed to obtain the model parameters [105, 106, 110]. In our
view, this approach is problematic and could lead to erroneous results. Since a
normal RC performs charge separation with high efficiency, it should barely
fluoresce. Thus, the majority of the fluorescence may originate from those
RCs that cannot perform charge separation, due to their particular realization
of static disorder that provides an unfavorable energy landscape. Fits of the
relaxed fluorescence would then depend not on the normal RC, but only on a
specific subensemble. A better approach to calculations of the fluorescence of
the RC may be to simulate the time-resolved fluorescence, and then integrate
over all times. Unfortunately this requires including all the relevant CT states in
the model, and thus is out of scope of the present study.

3.2.2 Calculations of independent spectra

Having performed the fits and obtained the optimal values of the parameters, we
checked our model by calculating other linear spectra, for which experimental
results are available in literature.

We calculated the CD spectra of different PSII RC preparations (normal RC,
RC1x and RC2x) at 6 K. The comparison of calculations with experimental
data (taken from. Ref. [159]) is presented in Fig. 3.4. Our simulations qual-
itatively reproduce the changes observed in the CD spectra upon the increase
of exchanged Pheo (going from RC to RC1x to RC2x). First, the main positive
feature at ∼ 680 nm loses a significant amount of amplitude. Second, a positive
feature at ∼ 675 nm appears. Third, the negative feature at ∼ 670 nm loses its
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Figure 3.4: Comparison of 6 K CD spectra of different PSII RC preparations
(with partial exchange of Pheos). Experimental data (taken from. Ref. [159])
denoted by symbols on the left, simulations denoted by lines on the right.
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Figure 3.5: Comparison of 6 K LD spectra of different PSII RC preparations
(with partial exchange of Pheos). Experimental data (taken from. Ref. [159])
denoted by symbols on the left, simulations denoted by lines on the right.

amplitude. Fourth, a negative feature at ∼ 655 nm appears.
We also calculated LD spectra at 6 K of RC, RC1x and RC2x preparations.

Comparison with experimental data is presented in Fig. 3.5. Again, our simula-
tions qualitatively reproduce the main changes upon the increase of exchanged
Pheo – appearance of negative feature at ∼ 655 nm, lack of changes in negative
feature at ∼ 670 nm and increase of amplitude of positive feature at ∼ 680 nm.
Nonetheless, we have to note that the overall amplitudes of both the negative fea-
ture at ∼ 655 nm and the positive feature at ∼ 680 nm are considerably smaller
in our simulations.

In Fig. 3.6 we compare the calculated triplet minus singlet absorption differ-
ence spectrum of the PSII RC with experimental data [159]. Calculations were
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Figure 3.6: Triplet minus singlet absorption difference spectrum at 10 K. Open
circles denote experimental values (data taken from Ref. [159]), black line cor-
responds to calculations, which were performed assuming triplet localized at
ChlD1.
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Figure 3.7: Comparison of experimental and calculated RC6−RC5 absorption
difference spectra at 4 K (left, experimental data taken from Ref. [164]) and 77
K (right, experimental data taken from Ref. [165]). Experimental data denoted
by open circles, red lines denote calculations done by neglecting ChlzD1, blue
lines – neglecting ChlzD2.

performed assuming triplet localized at ChlD1, and ignoring its couplings and
dipole strength. We obtain good agreement with experimental data, similar to
other works [106, 110, 119].

We calculated absorption difference spectra of normal RC preparations (here
called RC6) and the so-called RC5 preparations, which lack one of the periph-
eral chlorophylls [164, 165]. Comparison with experimental data is presented
in Fig. 3.7. Experimental spectra were calculated by normalizing both RC6 and
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Figure 3.8: Comparison of experimental and calculated RC5−RC5 with PheoD1
reduced absorption difference absorption difference spectra at 77 K (left) and
277 K (right). Experimental data (taken from Ref. [166] denoted by open circles,
black lines denote calculations.

RC5 absorption at the ∼ 678 nm peak and subtracting the spectra, then normal-
izing with respect to the RC6 spectra. Simulated spectra were obtained by cal-
culating normal RC6 spectra, then calculating the spectra without the ChlzD1/D2

pigment, subtracting, and normalizing with respect to the RC6 spectra. Our cal-
culations are consistent with ChlzD2 being lost in the RC5 preparations, with
both peak position at ∼ 666 nm and its half-width agreeing with experimental
data. The amplitude of the ∼ 666 nm peak is higher in the calculations, which
could be related to differences in the low temperature experimental absorption
spectra, as the amplitude of the ∼ 672 nm peak varies in different reports [158–
160, 164].

In Fig. 3.8 we show a comparison of experimental and calculated
RC5−RC5Pheo−D1

absorption difference spectra (here RC5Pheo−D1
means RC5 with

reduced PheoD1) , with experimental data taken from Ref. [166]. Calculations
were done assuming that in RC5 preparations the ChlzD2 is lost, consistent with
our RC6−RC5 absorption difference calculations. When calculating spectra
with reduced PheoD1, we neglected the couplings and dipole strength of this
pigment. In addition, as suggested in Ref. [110], we took the electrochromic
shifts into account. This was done by assuming a negative charge localized at
the geometric center of the four nitrogen atoms of PheoD1, and then calculat-
ing the interaction of that charge with the static dipole moments of the other
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Figure 3.9: Comparison of experimental and calculated absorption difference
spectra corresponding to the CT state P+D1Pheo−D1. Experimental data denoted
by open circles, black lines denote calculations. a) 10 K (curve 2 from Fig. 2
of Ref. [167]). b) 77 K (EADS corresponding to 20 ns component of 660 nm
excitation from Ref. [143]). c) 298 K (DADS corresponding to non-decaying
component of 400 nm excitation from Ref. [161]).

pigments. That is,

∆εn∗ =
1

4πϵ0ϵr
(−e)

(
®RPheoD1 − ®Rn

)
· ∆ ®µn��� ®RPheoD1 − ®Rn

���3 . (3.5)

Here ϵr is the relative dielectric constant, which was assumed to be equal to
2.5 in our calculations. The CT state was neglected in the calculations for the
reduced PheoD1, since we expect that due to its huge energy shift, it would effec-
tively decouple from the ME states. As seen from Fig. 3.8, we obtain excellent
agreement for 77 K data, with both the main negative feature at ∼ 682 nm and
the positive feature at ∼ 673 nm reproduced. In calculations for 277 K we still
reproduce the main negative feature, but obtain a larger amplitude for the posi-
tive one than it is in the experimental data.

We also calculated the absorption difference spectrum corresponding to the
CT state P+D1Pheo−D1 taken from pump–probe measurements [143, 161, 167].
This state is the final CT state in the PSII RC preparations lacking the quinone
acceptors. Comparison of the experimental data with simulations is presented
in Fig. 3.9 for 10, 77 and 298 K. In calculations of the absorption with the CT
state, we neglected the couplings and dipole strength of the involved pigments
and accounted for the electrochromic shifts. The effective dielectric constant ϵr
was assumed to be equal to 2.5, as before. We obtain good agreement between
experiment and calculations for all temperatures. It is important to note that
agreement was obtained only by assuming an angle of 15◦ between the NB to
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Figure 3.10: Experimental and simulated 2D spectra of the PSII RC at 77 K.
Left column shows experimental data, middle column shows calculations based
on the model and expressions presented in this thesis (Sections 3.1 and 2.5,
respectively), right column shows calculations from our previous work [P2],
which were based on the modified Redfield theory. Rows correspond to waiting
times equal to 50 fs, 1 ps and 10 ps.

ND axis towards the NC atom for the static dipole moments of both Chls and
Pheos.

3.2.3 2D spectroscopy of PSII RC

In this subsection, we report preliminary calculations of the 2D spectra of the
PSII RC based on the model presented in this chapter. We used expressions
given in Section 2.5. For simplicity, however, we neglected the CT state and
considered only MEs.
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Comparison of the simulated spectra with experimental data1 is presented in
Fig. 3.10. Note that the model parameters were not adjusted to fit the 2D spectra
better, but just taken from the fits of linear spectra. There we also present our
previous calculations, which were based on the mR theory and included several
CT states [P2].

A few things can be noted. First, our current model does not give the upper
cross-peak (at ω1 ≈ 14700 cm−1 and ω3 ≈ 14900 cm−1), which is absent in
experimental data, but is present in calculations based on our previous model.
Indeed, in that work [P2] the model parameters of the fit were specifically ad-
justed to fit the 2D spectra, but that upper cross-peak could not be avoided.

Second, the overall peak pattern looks somewhat better in the new simula-
tions, especially considering later waiting times (1 or 10 ps). The peak intensi-
ties, however, differ. But that is not surprising, as in our current calculations we
did not include any CT states, thus only energy transfer, and not charge separa-
tion, was present.

Third, our current model gives smaller homogeneous broadening than is ob-
served in experiment. This implies that the reorganization energy values ob-
tained from the fits of the optical spectra will have to be slightly adjusted.

Thus, our preliminary calculations appear to be an improvement over our
previous work. Adjusting the homogeneous broadening and adding CT states to
match the experimental kinetics should provide even better agreement with the
experimental data.

3.3 Comparison with other models

3.3.1 Site energies

We obtained our site energies from the fit of nine linear spectra, and then veri-
fied them by calculating more independent spectra. In this subsection, we will
compare our results to other works. We have to note, however, that direct com-
parison of the site energies can sometimes be misleading, due to the type of
spectral density employed and the amount of reorganization energy included in
different models. Therefore, comparing the site energies relatively, e. g. be-
tween the corresponding pigments of different branches of the RC, is a better
approach.

1Experiments were performed by S. Seckin Senlik at the lab of Jennifer P. Ogilvie, University
of Michigan, USA.
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Figure 3.11: The excited state energy distributions showing the energies of the
states that each pigment or CT state participate in. See text for more details.
Black lines denote the present model, blue lines denote our previous work [P2]
and red lines denote recent work from Müh et al. [119].

Our model finds that the lowest site energy is of the ChlD1 pigment, in agree-
ment with many previous works [P2, 106, 110, 119]. This is consistent with the
triplet minus singlet absorption difference spectrum calculations, which can be
well described assuming that at low temperatures, the triplet is localized at the
ChlD1 pigment. On the other hand, some works assign a considerably higher
energy for this pigment [168, 169]. Our fitting shows that the latter assignment
is not consistent with the experimental data.

Another somewhat controversial issue is the assignment of the PheoD1/D2

energies. We find that PheoD2 has the second lowest energy, while that of
PheoD1 is considerably higher. This is in general agreement with the find-
ings of Ref. [119], although contrary to other reports in the literature [170].
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Since we can accurately reproduce not only absorption difference spectra
RC−RC1x/RC2x, but also the absorption difference corresponding to the re-
duced PheoD1 and the CT state P+D1Pheo−D1, we hold that our assignment accu-
rately reflects the system.

In previous work, the energies of the special pair pigments have mostly been
found to be the highest of the pigments in the RC [P2, 105–107, 110]. Our find-
ings suggest high, but not necessarily the highest energies for these pigments,
with ChlD2 having a similar energy to PD1 and ChlzD2 to PD2. Due to a relatively
large resonance coupling between the special pair pigments it is rather difficult
to pinpoint their energies from a specific experiment. Having simulated the
absorption difference spectra corresponding to the P+D1Pheo−D1 CT state and ob-
tained good agreement with experimental data, our energy for the PD1 pigment
should be accurate.

Regarding the peripheral chlorophylls, our results are in general agreement
with other works [P2, 106, 110, 119]. Nonetheless, previous models often
suggested very similar energies between the two Chlz molecules, while in the
present work we found a somewhat larger energy for ChlzD2, which suggests that
it is the pigment lost in the RC5 preparations [164, 165]. This is in agreement
with the assignment from Ref. [119].

A convenient way to compare the site energies is to present the excited state
energy distributions that show the energies of the eigenstates in which each pig-
ment or CT state participate. These distributions are defined as:

DA (ω) =
⟨

Ntot∑
e

��ψe,A
��2 δ (

ω −
(
ωeg − λee,ee

) )⟩
dis

. (3.6)

Here λee,ee =
∑

A
��ψe,A

��4 λA is the eigenstate reorganization energy. For our
model, these distributions are presented in Fig. 3.11. In addition, we also present
distributions from our previous model [P2] and from Ref. [119], where the en-
ergies of the sites were obtained by taking into account electrostatic interactions
as calculated from the structural data.

It can be seen that there is good agreement between our current model and
that of Ref. [119]. We note that this agreement is because Eq. (3.6) accounts
for differences in reorganization energy, thus even though our model has higher
state energies it also has larger reorganization energies and the combined result
is very similar to Ref. [119]. The only noticeable difference is in the special
pigment energy distributions, which are somewhat blueshifted in our model.

On the other hand, the differences between the excited state distributions
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of the present model and our previous work [P2] are larger, though the overall
pattern is somewhat similar. The largest differences are for ChlD2, PheoD1 and
both Chlzs. One main difference is that the energy distributions for our previous
work show more structure. This is because of the differences in disorder values
between both models. Our previous work [P2], following previous models based
on the mR theory [105–107], assumed about three times smaller disorder than in
the current model. Taking into account that presently we used a more advanced
lineshape theory, a spectral density suitable for low temperature calculations and
that the disorder value that we obtain is very similar to Refs. [110, 111, 119],
we believe that our current values are more accurate and that disorder in the
previous works [P2, 105–107, 130] might have been severely underestimated.
These differences in disorder are expected to have significant influence to the
time-resolved spectroscopic data and will have to be investigated more closely
in the future.

3.3.2 Stark spectrum and CT states

In this thesis we extended the ctR theory to describe the Stark spectrum. This
was done using the perturbative expansion in terms of the strength of the static
electric field. Our expressions thus significantly improve upon Ref. [106], where
the Markovian approximation and the mR lineshapes were used. Even though
here we presented only the term corresponding to the RWA, other terms can be
easily formulated. Nonetheless, our approach, though straightforward to com-
pute, is computationally expensive, involving a double time integral over a triple
sum. This means that it scales rather badly for larger systems. Additionally, the
Stark spectrum is sensitive to the CT states and our results indicate that they pos-
sess very large disorder. Thus, Stark spectrum calculations need a large number
of realizations to converge. We performed our fits with 25000 realizations, and
the obtained spectra were still somewhat noisy. The Stark spectra presented
in this chapter (Fig. 3.3) were calculated using 600000 realizations. For com-
parison, 5000 realizations are sufficient to achieve good convergence for the
absorption spectrum at 77 K. Although this suggests that our determined CT
state parameters might possess some uncertainty, they still should be reason-
ably accurate.

Several conclusions can be made from our calculations of the Stark spectrum
of the PSII RC. First, our results show that CT states influence the Stark spectrum
more than was obtained previously [106]. Without the CT states we cannot
obtain a reasonable agreement with experimental data. This implies that the
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3.3. Comparison with other models

coupling between the ME states and the CT states is somewhat larger than was
estimated before [106]. If so, this should affect calculations of the time-resolved
spectroscopic data.

Second, our results indicate that if the Stark spectrum is mostly influenced
by a single CT state, it is probably Chl+D1Pheo−D1 rather than P+D2P−D1, contrary
to what was previously concluded [106]. Although agreement between theory
and experiment is poorer with the P+D2P−D1 state than with Chl+D1Pheo−D1, inclu-
sion of the P+D2P−D1 state does provide better agreement than when CT states are
neglected entirely. The agreement that we obtain with the single Chl+D1Pheo−D1
state (Fig. 3.3a) is good but not excellent. It is likely that instead of a single
state, more CT states are coupled to the ME states strongly enough to influence
the Stark spectrum. We did not try to fit the experimental Stark spectrum with
2 CT states because the fit would have been very poorly constrained (fitting a
single spectrum with eight free parameters). Instead we chose to make separate
optimizations with the individual Chl+D1Pheo−D1 and P+D2P−D1 states. Using the
parameters obtained from the individual optimizations, if we include both CT
states (see Fig. 3.3c) we obtain improved agreement of the ∼ 680 nm feature (if
compared to Fig. 3.3a) but at a cost of an appearance of a negative feature at
∼ 700 nm.

Third, we have obtained very large disorder of the CT state (σChl+D1Pheo−D1
=

550 cm−1), which is clearly visible in its energy distribution in Fig. 3.11. Our
value of disorder is considerably larger than previous estimates [P2, 105–107].
This result is in line with previous suggestions that disorder might control dif-
ferent charge separation pathways in the PSII RC.

Overall, we would like to suggest that calculations of the Stark spectrum of
the PSII RC should be made not to extract the values of the system parameters
(due to the computational expense), but to constrain them. Thus, models which
include a number of CT states needed to calculate the charge separation dynam-
ics [P2, 107] should be tested against the experimental Stark spectrum using the
level of theory developed in this thesis. Since each CT state necessarily adds a
number of parameters to the model, their values could be severely constrained
by their sensitivity to the Stark spectrum.

We would also like to draw attention to our calculations of the absorption
difference spectra corresponding to the CT state P+D1Pheo−D1 at different temper-
atures (Fig. 3.9). The good agreement between theory and experiment implies
that even at room temperature the relaxed pump–probe spectra correspond to
this specific state. Therefore, the energy gap between this state and all the other
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3. Microscopic model of PSII RC

CT states should be relatively large, a few times more than the thermal energy
at room temperature. This information should be useful in simulating time-
resolved spectroscopic data.

3.4 Effect of vibrations to charge transfer
In Ref. [P4] a very high quality of 2D data on the PSII RC was reported, where
an excellent signal-to-noise ratio allowed to reveal highly oscillatory nature of
the spectral features. Oscillations in the 2D data were a hot topic for quite some
time, as in a Nature paper by Engel et al. in 2007 [13] the data on the FMO
complex from purple bacteria were presented, showing oscillatory features. It
was suggested, though without theoretical calculations, that energy might travel
through the FMO in wavelike manner, utilizing the electronic quantum coher-
ence. Even though in later years the focus shifted more on vibrational coher-
ences [134, 171, 172], the general question remained – can either vibrational or
electronic coherences influence energy transfer in a biological molecular sys-
tem?

For this reason, the findings of Ref. [P4] were of particular interest, as in the
PSII RC not only energy, but charge transfer occurs. Thus, the question turned
to whether or not coherence can influence charge separation?

From the analysis of the 2D data it was demonstrated that major oscillation
frequencies corresponded to 91, 127, 251, 337 and 730 cm−1. Simulations in
terms of the so-called Fourier maps [171] demonstrated that the oscillatory fea-
tures corresponding to 91, 251, 337 and 730 cm−1 were mostly related to vibra-
tional effects, while that of 127 cm−1 was due to vibronic (combined electron-
vibrational) effects.

To qualitatively investigate the effects of underdamped vibrations to the
charge transfer dynamics, we performed calculations of the density operator
evolution for a three state system – two states represent the special pair mole-
cular excitations and the last corresponds to the P+D2P−D1 CT state. The energies
and couplings were taken from Ref. [P2], but we reduced the coupling between
the special pair molecules to 120 cm−1 in the present modeling. The system
Hamiltonian is (in cm−1):

ĤS =
©­­«

15280 120 45
120 15210 45
45 45 15200

ª®®¬ . (3.7)
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Figure 3.12: Evolutions of the P+D2P−D1 CT state population with different spec-
tral densities (shown in the last column) including single vibrational modes at
frequencies 91 cm−1 (first row), 251 cm−1 (second row), 339 cm−1 (third row),
and 730 cm−1 (last row). Simulations were performed for the special pair het-
erodimer and P+D2P−D1 state included in the model. Population evolution was cal-
culated using the HEOM theory. Red lines denote incoherent (strongly damped)
mode and black line denotes coherent (weakly damped) mode. Blue lines in
the figures of spectral density mark optical excitonic splittings (at 272 cm−1,
211 cm−1 and 61 cm−1).
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3. Microscopic model of PSII RC

Each state is coupled to a two mode environment, thus the spectral density is

C′′ (ω) = 2λLγω
ω2 + γ2 +

2λHωW2Γ(
ω2 −W2)2

+ Γ2ω2
. (3.8)

The first mode corresponds to Debye spectral density and its parameters are
λL = 40 cm−1 and γ = 40 cm−1 as in Ref. [P2]. The second mode corre-
sponds to coupling with specific frequency vibration. Its damping parameter
is either Γ = 10 cm−1, representing weakly damped vibration, or Γ = 100 cm−1,
representing strongly damped vibration. Following the experimental data, we
performed calculations for four vibrational modes. The reorganization ener-
gies for the specific modes were based on the Huang-Rhys factors of specific
modes in Ref. [105]. obtained from the FLN data. For W = 91 cm−1 mode
we have λH = 4 cm−1 (based on 97 cm−1 mode from FLN), for W = 251 cm−1

we have λH = 27 cm−1 (based on 213 and 260 cm−1 modes from FLN), for
W = 339 cm−1 we have λH = 37 cm−1 (based on 298, 342 and 388 cm−1 modes
from FLN) and for W = 730 cm−1 we have λH = 51 cm−1 (based on 700, 722,
742, 752 and 795 cm−1 modes from FLN). Additionally, CT state has 1.5 times
bigger reorganization energy as in Ref. [P2].

We calculate density operator evolution using the HEOM approach [173],
which is exact for a Gaussian bath. We thus avoid perturbative calculations and
can be sure that our results are correct for all the parameters used.

All calculated evolutions of the CT state populations and corresponding
spectral densities are presented in Fig. 3.12. The main results are the following.
First, the 91 cm−1 vibrational mode has very little effect to the charge separation
dynamics, as it has very small reorganization energy. Second, for both 251 and
339 cm−1 vibrations, we can observe different evolutions, depending on the na-
ture of the vibrational mode. If the mode is weakly damped, sudden increases
in CT state populations can be observed. In both of these cases the vibrational
frequency is close to the excitonic resonances in the system. Note that the ob-
served effect is stronger for 77 K, which is not surprising, since coherences sur-
vive longer at lower temperatures. For vibrational mode of 730 cm−1, no such
speed up is observed, which should be related to the fact that this frequency is
not close enough to any excitonic resonance.

The observed speed up effect is not a simple transfer rate increase, which
would be expected from the traditional Redfield transfer rate formula, which says
that the transfer rate is proportional to the value of spectral density at frequency,
corresponding to the energy difference between the states, see Eq. (2.49). We
should emphasize that the Redfield formula is dependent on the Markov ap-
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3.5. Conclusions

proximation, which is valid, when the bath relaxes much slower than all the
timescales of system dynamics. In case of long lived coherent vibration, this
assumption is not true, and conversely, the Redfield formula does not give an
accurate picture of transfer rates.

3.5 Conclusions
In this chapter, we revisited the spectroscopic properties of the PSII RC using
the ctR theory for optical lineshapes. We constructed a model based on the tight-
binding Hamiltonian (based on the theory of Chapter 2), including a single CT
state. The parameters of the model were obtained by fitting nine linear spectra
(absorption, LD and CD), and then further tested by calculations of other in-
dependent spectra. Our simulations are in a good to excellent agreement with
all the calculated spectra. The parameter values of our model differ from pre-
vious models based on the mR theory and are mostly in agreement with recent
structure based estimations, which accounted for the electrostatic effects.

Additionally, we used the ctR theory expressions, derived in Section 2.4 to
calculate the Stark spectrum of the PSII RC. Comparison with experimental data
leads to the third statement of the thesis: By using the ctR theory the char-
acteristics of the PSII RC were determined from a fit of multiple spectroscopic
data. The primary CT state is identified to be Chl+D1Pheo−D1 from the fits of the
Stark spectrum.

We also presented some preliminary calculations of the 2D spectra of the
PSII RC, using our model and the ctR theory expressions given in Section 2.5.
Our resent results appear to better match the experimental data than our previous
model, but to improve the agreement even more additional steps are needed,
which were identified.

Finally, we reported a proof of concept demonstrations of how the presence
of vibrations could influence the rate of charge separation in the PSII RC. It
was found that noticeable effects can be obtained only when the frequency of
vibration is close to the energy gaps in the system. Nonetheless, the mechanism
is not of Redfield type, as exact resonance conditions are not needed.

Most of this chapter is based on [p9], with results often compared to [P2].
Section 3.4 is adapted from the author’s contributions to [P4].
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Afterword

Thou wilt say it brought me good luck and victory in battle.
But it brought not to me, as to Zeldornius, this last best

luck of all: that earth should gape for me when my great
deeds were ended.

Lord Brandoch Daha in “The Worm Ouroboros”
by E. R. Eddison

In this thesis, several things were accomplished. First, a pedagogical in-
troduction to the 2D optical spectroscopy was made, followed with a report on
the analysis of the experimental 2D spectroscopy data of the FCP complex, a
major light-harvesting antenna from diatoms. Second, a tight-binding Hamil-
tonian was presented and the ctR theory was developed to describe linear and
non-linear optical spectra of photosynthetic molecular complexes. Third, the
ctR theory then was applied to construct a microscopic model of the PSII RC.

This thesis is not unified by a single system, a single spectroscopic technique
or even a single theoretical approach. Instead, at least, according to the author’s
perspective, this thesis shows a unity of purpose. Methods, theories, techniques,
and even concrete systems are but tools. The real goal is learning. The real
purpose is to enrich the knowledge of oneself and of mankind even with a tiny
bit. Whether the author succeeded in that, let the reader judge.

115





Appendix A

Cumulant expansion

Cumulant expansion is a specific form of a resummation technique, which al-
lows one to estimate higher order terms from lower order terms. It is mostly used
in probability theory [174], but it can be applied for any function. Consider a
function A (x) which we expand in powers of x:

A (x) = A0 (1 + A1x + A2x + . . . ) . (A.1)

Alternatively, we can make an exponential ansatz

A (x) = A0 exp (F (x)) (A.2)

and expand function F (x):

F (x) = F1x + F2x2 + . . . (A.3)

Then we have

A (x) = A0 exp
(
F1x + F2x2 + . . .

)
= A0

(
1 + F1x + F2x2 +

1
2

(
F1x + F2x2

)2
+ . . .

)
= A0

(
1 + F1x +

(
F2 +

1
2

F2
1

)
x2 + . . .

)
. (A.4)

In this way, we establish relationships between the coefficients of different ex-
pansions:

F1 = A1; (A.5)

F2 = A2 −
1
2

A2
1. (A.6)

With this, a second order cumulant expansion of A (x) would be

A2c (x) = A0 exp
(
A1x +

(
A2 −

1
2

A2
1

)
x2

)
. (A.7)
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Appendix A. Cumulant expansion

So, by performing the cumulant expansion we approximate the higher order
terms from the Taylor expansion.

Now we turn to the second order cumulant expansion of Eq. (2.42), which
we repeat here for convenience:

φe1 (t) = TrB

[
eiĤBt ⟨e1 |e−iĤt |e1⟩ ρ̂eq

B

]
. (A.8)

First, we rewrite the matrix element of the evolution operator as

⟨e1 |e−iĤt |e1⟩ = ⟨e1 |e−i(ĤS+ĤB)t exp+
©­«−i

t∫
0

dτĤI
SB (τ)

ª®¬ |e1⟩.

= e−εe1 te−iĤBt ⟨e1 | exp+
©­«−i

t∫
0

dτĤI
SB (τ)

ª®¬ |e1⟩ (A.9)

Here the positive time ordered exponential is defined by its expansion [86]:

exp+
©­«−i

t∫
0

dτĤI
SB (τ)

ª®¬ = Î − i
t∫

0

dτĤI
SB (τ)

−
t∫

0

dτ2

τ2∫
0

dτ1ĤI
SB (τ2) ĤI

SB (τ1) + . . . (A.10)

Thus,

φe1 (t) = e−εe1 tTrB

[
⟨e1 | Î |e1⟩

− i
t∫

0

dτ⟨e1 |ĤI
SB (τ) |e1⟩

−
t∫

0

dτ2

τ2∫
0

dτ1⟨e1 |ĤI
SB (τ2) ĤI

SB (τ1) |e1⟩ + . . .
]

= e−εe1 tTrB

[
ÎB

− i
t∫

0

dτF̂I
e1e1 (τ)

−
t∫

0

dτ2

τ2∫
0

dτ1F̂I
e1e1 (τ2) F̂I

e1e1 (τ1)+
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Appendix A. Cumulant expansion

−
Ntot∑

e2,e1

t∫
0

dτ2

τ2∫
0

dτ1eiωe1e2 (τ2−τ1)F̂I
e1e2 (τ2) F̂I

e2e1 (τ1) + . . .
]

= e−εe1 t

(
1 − 0

−
t∫

0

dτ2

τ2∫
0

dτ1Ce1e1,e1e1 (τ2 − τ1)

−
Ntot∑

e2,e1

t∫
0

dτ2

τ2∫
0

dτ1eiωe1e2 (τ2−τ1)Ce1e2,e2e1 (τ2 − τ1) + . . .
)

= e−εe1 t (
1 − ge1e1,e1e1 (t) − ξe1 (t) + . . .

)
= exp

(
−εe1t − ge1e1,e1e1 (t) − ξe1 (t)

)
. (A.11)

In these lines we used Eqs. (2.22), (2.13), (2.21), (2.23) and (2.44). In the last
equality, the second order cumulant expansion was performed (thus it should
not be an equality in a strict sense).

Cumulant expansion of the response functions corresponding to the Stark
spectra (Section (2.4)) and the 2D spectra (Section (2.5)) are performed in the
same manner, just more terms are obtained. In those derivations a few more
expressions are needed. First, we need a property of trace operation:(

Tr
(
Â
))∗
= Tr

(
Â†

)
. (A.12)

Second, a more complicated double time integral over the correlation function
is

t4∫
t3

dτ2

t2∫
t1

dτ1C (τ2 − τ1 + T) =

g (t3 + T − t2) − g (t3 + T − t1) − g (t4 + T − t2) + g (t4 + T − t1) . (A.13)

Additionally, the lineshape function of negative times can be expressed as

gαβ,γδ (−t) = g∗γδ,αβ (t) . (A.14)

Finally, there is the symmetry of the lineshape function indices:

gαβ,γδ (t) = gβα,γδ (t) = gαβ,δγ (t) = gβα,δγ (t) . (A.15)
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