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Abstract: In this paper, we obtain approximation theorems of classes of analytic func-
tions by shifts L(λ, α, s + iτ) of the Lerch zeta-function for τ ∈ [T, T + H] where
H ∈ [T27/82, T1/2]. The cases of all parameters, λ, α ∈ (0, 1], are considered. If the
set {log(m + α) : m ∈ N0} is linearly independent over Q, then every analytic function
in the strip {s= σ + it ∈ C : σ ∈ (1/2, 1)} is approximated by the above shifts.
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1. Introduction
Let s = σ + it be a complex variable and λ, α ∈ (0, 1] fixed parameters. The Lerch

zeta-function L(λ, α, s) is defined in the half-plane σ > 1 by the series

L(λ, α, s) =
∞

∑
m=0

e2πiλm

(m + α)s ,

and is analytically continued to the whole complex plane, except for a simple pole at the
point s = 1 with residue 1 for λ = 1. Notice that λ ∈ R can be arbitrary, but, by the virtue
of the periodicity of e2πiλm, it suffices to consider only the case λ ∈ (0, 1].

The function L(λ, α, s) was introduced independently by M. Lerch [1] and R. Lipschitz [2].
Clearly, for λ = 1, L(λ, α, s) reduces to the Hurwitz zeta-function

ζ(s, α) =
∞

∑
m=0

1
(m + α)s , σ > 1,

and
L(1, 1, s) = ζ(s)

is the Riemann zeta-function. Moreover, the equalities

L
(

1
2

, 1, s
)
= ζ(s)

(
1 − 21−s

)
and

L
(

1,
1
2

, s
)
= ζ(s)(2s − 1)

are valid. These remarks show that the Lerch zeta-function is a generalization of the
classical zeta-functions ζ(s, α) and ζ(s).
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The function L(λ, α, s), as other zeta-functions, satisfies the functional equation. We
denote by λ̃ the fractional part of λ. Then, for all s ∈ C,

L(λ, α, 1 − s) =(2π)−sΓ(s) exp
{

2πi
( s

4
− αλ

)}
L(−α, λ, s)

+ exp
{

2πi
(
− s

4
+ α(1 − λ̃)

)}
L(α, 1 − λ̃, s).

Here Γ(s) denotes the Gamma-function, and exp{a} = ea.
The above equation was proven by Lerch in [1]. Other proofs of this equation are

given by T.M. Apostol [3], F. Oberhettinger [4], M. Mikolás [5], and B.C. Berndt [6].
A generalization of L(λ, α, s),

Φ(z, α, s) =
∞

∑
m=0

zm

(m + α)s

with complex |z| ⩽ 1 and α ̸= −m, m ∈ N0, was introduced and investigated in [7]. In [8],
the function Φ(z, α, s) was studied as a function of the complex variables z, α, and s. This
was continued by J. Lagarias and W-C.W. Li in a series of works [9–12].

Dependence on two parameters ensures a certain advantage for the function L(λ, α, s)
compared with other similar functions defined by Dirichlet series. The arithmetic of the
parameters λ and α has a significant influence for analytic properties, and L(λ, α, s) is
considered as an interesting function useful in various branches of mathematics. Therefore,
the Lerch zeta-function is widely studied by many mathematicians. Numerous papers are
devoted to the problem of the approximation of analytic functions by shifts L(λ, α, s + iτ)
with τ ∈ R. Recall that the latter approximation property for the Riemann zeta-function
ζ(s) = L(1, 1, s) was discovered by S.M. Voronin [13], was successfully extended for other
zeta-functions, and has found applications in some natural sciences; see the informative
survey paper [14].

The first result on the approximation of analytic functions by shifts of the function
L(λ, α, s) is given in [15]. Let D = {s ∈ C : σ ∈ (1/2, 1)}. Suppose that the parameter α

is transcendental, K is a compact subset of the strip D with a connected complement, and
f (s) is a continuous function on K which is analytic inside of K. Then, for every ε > 0,

lim inf
T→∞

1
T
m

{
τ ∈ [0, T] : sup

s∈K
| f (s)− L(λ, α, s + iτ)| < ε

}
> 0. (1)

Here and below, m{•} stands for a Lebesgue measure on the real line.
The proof of the latter theorem is based on a probabilistic limit theorem on weakly

convergent probability measures in the space of analytic functions. Such a method was
proposed in [16]. Inequality (1) shows that there are infinitely many shifts L(λ, α, s + iτ)
approximating a given function f (s). Since f (s) is an arbitrary continuous function on K
and analytic inside of K, we have that the whole class of analytic functions is approximated
by shifts in one and the same function L(λ, α, s). In this sense, the function L(λ, α, s) with
transcendental α is universal.

It is not difficult to see that the transcendence of α in (1) can be replaced by the linear

independence over the field of rational numbers Q for the set L(α) def
={log(m + α) : m ∈

N0 = N∪ {0}}.
In general, a crucial role for universality theorems of the Lerch zeta-functions is played

by the parameter α and, more precisely, by the arithmetic nature of α. An universality
theorem for L(λ, α, s) is also known with the rational parameter α. We denote by (c, d) the
greatest common divisor of c, d ∈ N. Then in [17], the following result is contained. Let
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α = a/b, a < b, (a, b) = 1, a, b ∈ N, α ̸= 1/2, λ = r/q, r < q, (r, q) = 1, r, q ∈ N, and
(bl + a, bq) = 1 for all l = 0, 1, . . . q − 1. Let K and f (s) be as in (1). Then, for every ε > 0,

lim inf
T→∞

1
T
m

{
τ ∈ [0, T] : sup

s∈K

∣∣∣∣ f (s)− L
(

r
q

,
a
b

, s + iτ
)∣∣∣∣ < ε

}
> 0.

The latter result follows from a more general theorem for the periodic Hurwitz zeta-function

ζ(s; a) =
∞

∑
m=0

am

(m + α)s , σ > 1,

where a = {am : m ∈ N0} is a periodic sequence of complex numbers with the minimal
period q. The universality of L(λ, α, s) with algebraic irrational α is the most complicated
case and remains an open problem. This problem for the Hurwitz zeta-function L(1, α, s)
with a certain effectively described finite set of α for disks was solved in [18].

In [19], a certain approximation to universality of the function L(λ, α, s) with arbitrary
λ, α indicating good approximation properties of shifts L(λ, α, s + iτ) was proposed. We
recall the result of [19].

Suppose that the parameters λ ∈ (0, 1) and α ∈ (0, 1) are arbitrary numbers, and H(D)

is the space of analytic functions on D equipped with the topology of uniform convergence
on compacta. Then there is a closed non-empty set, Fλ,α ⊂ H(D), such that, for every
compact set K ⊂ D, f (s) ∈ Fλ,α, and ε > 0, Inequality (1) is valid. Moreover, the lower
density in (1) can be replaced by the density, i.e., the limit

lim
T→∞

1
T
m

{
τ ∈ [0, T] : sup

s∈K
| f (s)− L(λ, α, s + iτ)| < ε

}

exists and is positive for all but at most countably many ε > 0.
The above-mentioned universality theorems and other results are useful; however,

they are not effective in the sense that any concrete approximating shift, L(λ, α, s + iτ),
is not known. The cited results deal with a density of approximating shifts in intervals
of the length T as T → ∞. More informative approximation theorems are related to the
density of approximating shifts in narrow intervals. This observation leads to universality
theorems for zeta-functions in so-called short intervals, i.e., intervals of the length o(T) as
T → ∞. For the Riemann zeta-function, this was performed in [20] and improved in [21].
The purpose of this paper is to prove universality of the function L(λ, α, s) in short intervals.
We denote by K the set of compact subsets of the strip D with connected complements and
by H(K) with K ∈ K the set of continuous functions on K that are analytic inside of K. We
will prove the following theorems.

Theorem 1. Suppose that the set L(α) is linearly independent over Q, λ ∈ (0, 1], and
T27/82 ⩽ H ⩽ T1/2. Let K ∈ K and f (s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1
H
m

{
τ ∈ [T, T + H] : sup

s∈K
| f (s)− L(λ, α, s + iτ)| < ε

}
> 0. (2)

Moreover, the limit

lim
T→∞

1
H
m

{
τ ∈ [T, T + H] : sup

s∈K
| f (s)− L(λ, α, s + iτ)| < ε

}
(3)

exists and is positive for all but at most countably many ε > 0.
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Unfortunately, the used probabilistic method does not allow us to indicate some
concrete values of ε for which the limit (3) does not exists or exists but is equal to zero.

The next theorem shows good approximation properties of L(λ, α, s) with the arbitrary
parameters λ and α.

Theorem 2. Suppose that the parameters λ, α ∈ (0, 1] are arbitrary, and T27/82 ⩽ H ⩽ T1/2.
Then there is a closed non-empty set, Fλ,α⊂ H(D), such that, for every compact set K ⊂ D,
f (s) ∈ Fλ,α and ε > 0, Inequality (2) holds. Moreover, the limit in (3) exists and is positive for all
but at most countably many ε > 0.

The proofs of Theorems 1 and 2 are closely connected to the mean square

T+H∫
T−H

|L(λ, α, σ + it)|2 dt

for σ > 1/2.

2. Probabilistic Results
For a topological space, X, we denote by B(X) the Borel σ-field of X. We will consider

the weak convergence of probability measures on (H(D),B(H(D))). Recall that if

lim
n→∞

∫
X

g dPn =
∫
X

g dP

for every continuous bounded real function g on X, then we say that Pn converges weakly
to P as n → ∞; P and Pn, n ∈ N, are probability measures on (X,B(X)). The theory of the
weak convergence of probability measures is given in the monograph [22].

For A ∈ B(H(D)), we define

Pλ,α
T,H(A) =

1
H
m{τ ∈ [T, T + H] : L(λ, α, s + iτ) ∈ A}.

We will consider the weak convergence of Pλ,α
T,H as T → ∞ with H → ∞ and H = o(T).

We start investigations of Pλ,α
T,H with the weak convergence of probability measures on

a certain group. We put
Ω = ∏

m∈N0

{s ∈ C : |s| = 1}.

Thus, the set Ω consists of all functions ω : N0 → {s ∈ C : |s| = 1}. On Ω, the operation
of pairwise multiplication and the product topology can be defined, and Ω becomes an
Abelian topological group. Moreover, according to the well-known Tikhonov theorem, this
group is compact. Therefore, on (Ω,B(Ω)) the invariant Haar measure µ exists.

For A ∈ B(Ω), we set

PΩ
T,H,α(A) =

1
H
m
{

τ ∈ [T, T + H] :
(
(m + α)−iτ : m ∈ N0

)
∈ A

}
.

Lemma 1. Suppose that H → ∞ as T → ∞. Then, on (Ω,B(Ω)), there exists a probability
measure, PΩ

α , such that PΩ
T,H,α converges weakly to PΩ

α as T → ∞.
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Proof. We use the Fourier transform of PΩ
T,H,α. Since Ω is a compact Abelian group, the

Fourier transform of PΩ
T,H,α can be defined on the dual group Ω∗ (the group of characters)

of Ω [23]. It is well known that the group Ω∗ is isomorphic to the group

G def
=

⊕
m∈N0

Zm,

where Zm = Z for all m ∈ N. An element, k = (km : m ∈ N) ∈ G, where only a finite
number of km ∈ Z are distinct from zero, acts on Ω∗ by the formula

ω 7→ωk = ∏
m∈N0

ωkm(m),

where ω = (ω(m) : m ∈ N0) are elements of Ω. Therefore, the characters of the group Ω
are of the form

∏∗

m∈N0

ωkm(m),

where the star indicates that only a finite number of integers, km, are not zero. Hence, the
Fourier transform FT,H,α(k) of PΩ

T,H,α is given by

FT,H,α(k) =
∫
Ω

(
∏∗

m∈N0

ωkm(m)

)
dPΩ

T,H,α.

Thus, by the definition of PΩ
T,H,α,

FT,H,α(k) =
1
H

T+H∫
T

(
∏∗

m∈N0

(m + α)−ikmτ

)
dτ

=
1
H

T+H∫
T

exp

{
−iτ ∑∗

m∈N0

km log(m + α)

}
dτ. (4)

If
Lα(k)

def
= ∑∗

m∈N0

km log(m + α) = 0,

then, by (4),
FT,H,α(k) = 1. (5)

For k such that Lα(k) ̸= 0, (4) implies that

FT,H,α(k) =
1

iH
exp{−iTLα(k)} − exp{−i(T + H)Lα(k)}

Lα(k)
.

Thus, in this case, since H → ∞ as T → ∞,

lim
T→∞

FT,H,α(k) = 0.

From this, (4), and (5) we obtain

lim
T→∞

FT,H,α(k) = Fα(k),

where

Fα(k) =

{
0 if Lα(k) ̸= 0,
1 if Lα(k) = 0.

(6)
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Since the group Ω is compact, it is the Lévy group; see Theorem 1.4.2 of [23]. Therefore,
PΩ

T,H,α converges weakly to the measure PΩ
α and the Fourier transform is Fα(k).

Lemma 2. Suppose that H → ∞ as T → ∞ and that the set L(α) is linearly independent over Q.
Then PΩ

T,H,α converges weakly to the Haar measure µ as T → ∞.

Proof. We denote by 0 a collection consisting of zeros. Since the set L(α) is linearly
independent over Q,

Lα(k) = 0

if and only if k = 0. Therefore, by (6),

Fα(k) =

{
0 If k ̸= 0,
1 if k = 0.

Since the latter Fourier transform is the one of the Haar measure, the lemma is proved.

Lemmas 1 and 2 imply the corresponding limit theorems for probability measures in
the space H(D). Let γ > 1/2 be a fixed number, and

wn(m, α) = exp
{
−
(

m + α

n

)γ}
, m ∈ N0, n ∈ N.

We introduce the function

Ln(λ, α, s)=
∞

∑
m=0

e2πiλmwn(m, α)

(m + α)s

connected to the Lerch zeta-function. Since m 7→ wn(m, α) is exponentially decreasing for
any n and α, the series defining Ln(λ, α, s) is absolutely convergent in any half-plane σ > σ0

with finite σ0. Thus, Ln(λ, α, s) is an entire function for every fixed n and λ, α∈ (0, 1].
For A ∈ B(H(D)), we set

Pλ,α
T,H,n(A) =

1
H
m{τ ∈ [T, T + H] : Ln(λ, α, s + iτ) ∈ A}.

Lemma 3. Suppose that H → ∞ as T → ∞. Then, on (H(D),B(H(D))), there is a probability
measure, Pλ,α

n , such that Pλ,α
T,H,n converges weakly to Pλ,α

n as T → ∞.

Proof. Consider vλ,α,n : Ω → H(D) given by

vλ,α,n(ω) = Ln(λ, α, ω, s),

where

Ln(λ, α, ω, s) =
∞

∑
m=0

e2πiλmω(m)wn(m, α)

(m + α)s .

Clearly, the latter series is absolutely convergent in any half-plane σ > σ0. Hence, the
mapping vλ,α,n is continuous; therefore, it is (B(Ω),B(H(D)))-measurable. Thus, each
probability measure P on (Ω,B(Ω)) defines the unique probability measure Pv−1

λ,α,n on
(H(D),B(H(D))), where

Pv−1
λ,α,n(A) = P(v−1

λ,α,n A), ∀A ∈ B(H(D)),
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and v−1
λ,α,n A denotes the preimage of A. By the definitions of PΩ

T,H,n, Pλ,α
T,H and vλ,α,n,

we have

vλ,α,n

(
(m + α)−iτ : m ∈ N0

)
=

∞

∑
m=0

e2πiλm(m + α)−iτwn(m, α)

(m + α)s = Ln(λ, α, s + iτ)

and, for all A ∈ B(H(D)),

Pλ,α
T,H,n(A) =

1
H
m
{

τ ∈ [T, T + H] :
(
(m + α)−iτ : m ∈ N0

)
∈ v−1

λ,α,n A
}
= PΩ

T,H,α

(
v−1

λ,α,n A
)

.

Therefore, the relation Pλ,α
T,H,n = PΩ

T,H,nv−1
λ,α,n holds. This, the continuity of vλ,α,n, Lemma 1,

and Theorem 5.1 from [22] on the preservation of weak convergence under continuous
mappings show that Pλ,α

T,H,n converges weakly to PΩ
α v−1

λ,α,n as T → ∞.

Corollary 1. Suppose that H → ∞ as T → ∞ and that the set L(α) is linearly independent over
Q. Then Pλ,α

T,H,n converges weakly to the measure µv−1
λ,α,n as T → ∞.

Proof. The corollary is an immediate consequence of Lemmas 2 and 3.

For further investigations, we need some properties of the measure Pλ,α
n

def
= PΩ

α v−1
λ,α,n.

Recall that the sequence {Pn : n ∈ N} of probability measures on (X,B(X)) is tight if, for
every ε > 0, there is a compact subset K = Kε ⊂ X such that Pn(K) > 1 − ε for all n ∈ N.

Lemma 4. The sequence {Pλ,α
n , n ∈ N} is tight.

Proof. In [19], the measure

Pλ,α
T,n(A)

def
=

1
T
m{τ ∈ [0, T] : Ln(λ, α, s + iτ) ∈ A}, A ∈ B(H(D)),

was considered, and it was obtained that it weakly converges to the measure Pλ,α
n as

T → ∞ as well. Moreover, it was found that the sequence {Pλ,α
n } is tight; thus, the lemma

is true.

On the probability space (Ω,B(Ω), µ), we define the H(D)-valued random element

L(λ, α, ω, s) =
∞

∑
m=0

e2πiλmω(m)

(m + α)s , ω ∈ Ω, s ∈ D,

and denote by Pλ,α its distribution. In other words, for A ∈ B(H(D)),

Pλ,α(A) = µ{ω ∈ Ω : L(λ, α, ω, s) ∈ A}.

Notice that the series for L(λ, α, ω, s), for almost all ω with respect to the Haar measure µ, is
uniformly convergent on compact subsets of D; thus, it gives a well-defined H(D)-valued
random element.

Lemma 5. Suppose that λ ∈ (0, 1] and that the set L(α) is linearly independent over Q. Then the
measurePλ,α

n = µv−1
λ,α,n converges weakly to the measure Pλ,α as n → ∞.

Proof. The proof is given in Chapter 5 of [15]. To be precise, in [15], the case of transcen-
dental α is discussed; however, in order to conclude it suffices to assume that the set L(α)
is linearly independent over the field Q and which follows if α is transcendental.
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For the proof of a limit theorem for Pλ,α
T,H in short intervals, we need an approximation

of L(λ, α, s) by Ln(λ, α, s) in the mean in short intervals. For this, we use a mean square
estimate for L(λ, α, s) in short intervals.

Recall that the classical notation a ≪θ b, a ∈ C, b > 0, means that there exists a
constant, c = c(θ) > 0, such that |a| ⩽ cb.

Lemma 6 (See [24]). Suppose that λ, α ∈ (0, 1] and σ ∈ (1/2, 7/12] are fixed. Then, for
T27/82 ⩽ H ⩽ Tσ, the estimate

T+H∫
T−H

|L(λ, α, σ + it)|2 dt ≪λ,α,σ H

uniformly in H is valid.

A proof of the lemma uses the approximate functional equation for the function
L(λ, α, s), and, for the estimation of the mean squares of Dirichlet polynomials, applies a
method of exponential pairs proposed in [25] in the case of the Riemann zeta-function.

Lemma 7. Let λ ∈ (0, 1], σ ⩾ 1/2 and |t| ⩾ 2. Then

L(λ, α, σ + it) ≪λ,α,σ |t|1/2.

Proof. For λ = 1 the estimate

ζ(σ + it, α) ≪α,σ |t|1/2

can be found in [26]. For λ ∈ (0, 1), by Theorem 3.1.2 from [15],

L(λ, α, σ + it) = ∑
0⩽m⩽|t|

e2πiλm

(m + α)σ+it + Oλ(|t|−σ) ≪λ,α,σ |t|1/2.

Recall the metric in H(D) inducing its topology of uniform convergence on compacta.
There exists a sequence of compact subsets, {Kl : l ∈ N} ⊂ D, such that Kl ⊂ Kl+1 for all
l ∈ N,

D =
∞⋃

l=1

Kl ,

and every compact set K ⊂ D is contained in some Kl [27]. For g1, g2 ∈ H(D), we set

d(g1, g2) =
∞

∑
l=1

2−l
sups∈Kl

|g1(s)− g2(s)|
1 + sups∈Kl

|g1(s)− g2(s)|
.

Then d is the desired metric in H(D).

Lemma 8. Suppose that λ, α ∈ (0, 1] and T27/82 ⩽ H ⩽1/2. Then

lim
n→∞

lim sup
T→∞

1
H

T+H∫
T

d(Ln(λ, α, s + iτ), L(λ, α, s + iτ))dτ = 0.

Proof. Let

κn(s) =
1
γ

Γ
(

s
γ

)
ns.
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Then, for s ∈ D, the integral representation

Ln(λ, α, s) =
1

2πi

γ+i∞∫
γ−i∞

L(λ, α, s + z)κn(z)dz (7)

is valid; see Lemma 9 of [19]. By the definition of the metric d, it suffices to show that, for
any compact subset, K ⊂ D,

lim
n→∞

lim sup
T→∞

1
H

T+H∫
T

sup
s∈K

|Ln(λ, α, s + iτ)− L(λ, α, s + iτ)|dτ = 0. (8)

Let K be a fixed compact set of the strip D. Then there is ε > 0 satisfying 1/2 + 2ε ⩽ σ ⩽
1 − ε for all s = σ + it ∈ K. We shift the line of integration in (7) to the left. For this,
we apply the residue theorem. We take γ1 = 1/2 + ε − σ and γ = 1/2 + ε > 1/2. Then,
clearly, γ1 < −ε and γ1 ⩾ 2ε − 1/2. This shows that the integrand in (7) has, in the strip
γ1 ⩽ Re z ⩽ γ, a simple pole at the point z = 0, and a simple pole at the point z = 1 − s if
λ = 1. These observations, together with (7) and the residue theorem, for all s ∈ K, imply,
as in [19], that

Ln(λ, α, s)− L(λ, α, s) =
1

2πi

γ1+i∞∫
γ1−i∞

L(λ, α, s + z)κn(z)dz + Rn(s),

where

Rn(s) = Res
z=1−s

L(λ, α, s + z)κn(z) =

{
κn(1 − s) if λ = 1,
0 if λ ∈ (0, 1),

because Ress=1 L(1, α, s) = Ress=1 ζ(s, α) = 1. Hence,

sup
s∈K

|Ln(λ, α, s + iτ)− L(λ, α, s + iτ)|

≪
∞∫

−∞

∣∣∣∣L(λ, α,
1
2
+ ε + iu + iτ

)∣∣∣∣ sup
s∈K

∣∣∣∣κn

(
1
2
+ ε − s + iu

)∣∣∣∣du + sup
s∈K

|κn(1 − s − iτ)|

=

 − log2 T∫
−∞

+

log2 T∫
− log2 T

+

∞∫
log2 T

∣∣∣∣L(λ, α,
1
2
+ ε + iu + iτ

)∣∣∣∣ sup
s∈K

∣∣∣∣κn

(
1
2
+ ε − s + iu

)∣∣∣∣du

+ sup
s∈K

|κn(1 − s − iτ)|. (9)

For the Gamma-function, the bound that is uniform in σ ∈ [σ1, σ2] with arbitrary σ1 < σ2,

Γ(σ + it) ≪ exp{−c|t|}, c > 0, (10)

holds. Hence, for all s ∈ K,

κn

(
1
2
+ ε − s + iu

)
≪ε n1/2+ε−σ exp

{
− c

γ
|u − t|

}
≪K n−ε exp{−c1|u|}, c1 > 0. (11)
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Now, by the virtue of Lemma 7, we find − log2 T∫
−∞

+

∞∫
log2 T

∣∣∣∣L(λ, α,
1
2
+ ε + iu + iτ

)∣∣∣∣ sup
s∈K

∣∣∣∣κn

(
1
2
+ ε − s + iu

)∣∣∣∣du

≪K,λ,α n−ε

 − log2 T∫
−∞

+

∞∫
log2 T

(|u|1/2 + |τ|1/2
)

exp{−c1|u|}du

≪K,λ,α n−ε
(

1 + |τ|1/2
)

exp
{
−c2 log2 T

}
, c2 > 0.

From this, we get

I def
=

1
H

T+H∫
T

sup
s∈K

|Ln(λ, α, s + iτ)− L(λ, α, s + iτ)|dτ

≪K,λ,α

log2 T∫
− log2 T

 1
H

T+H∫
T

∣∣∣∣L(λ, α,
1
2
+ ε + iu + iτ

)∣∣∣∣dτ

 sup
s∈K

∣∣∣∣κn

(
1
2
+ ε − s + iu

)∣∣∣∣du

+
1
H

T+H∫
T

sup
s∈K

|κn(1 − s − iτ)|dτ +
1
H

n−ε exp
{
−c2 log2 T

} T+H∫
T

(
1 + |τ|1/2

)
dτ

def
= J1 + J2 + J3. (12)

The Cauchy–Schwarz inequality gives

1
H

T+H∫
T

∣∣∣∣L(λ, α,
1
2
+ ε + iu + iτ

)∣∣∣∣dτ ≪

 1
H

T+H+|u|∫
T−H−|u|

∣∣∣∣L(λ, α,
1
2
+ ε + iτ

)∣∣∣∣2 dτ


1/2

. (13)

Now, we will apply Lemma 6. For T27/82 ⩽ H ⩽ T1/2 and |u| ⩽ log2 T, as T → ∞, we
have T27/82 ⩽ H + |u| ⩽ T1/2 + log2 T ⩽ T1/2+ε. Therefore, Lemma 6 and (13) show that

1
H

T+H∫
T

∣∣∣∣L(λ, α,
1
2
+ ε + iu + iτ

)∣∣∣∣dτ ≪K,λ,α

(
1
H
(H + |u|)

)1/2
≪K,λ,α (1 + |u|)1/2.

Hence, in view of (12) and (11),

J1 ≪K,λ,α n−ε

log2 T∫
− log2 T

√
1 + |u| exp{−c1|u|}du ≪K,λ,α n−ε. (14)

Moreover, in view (10) again, for s ∈ K,

κn(1 − s − iτ) ≪ε n1−σ exp
{
− c

γ
|t + τ|

}
≪K n1/2−2ε exp{−c2|τ|}, c2 > 0.
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Thus, by (12),

J2 ≪K n1/2−2ε 1
H

T+H∫
T

exp{−c2τ}dτ

≪K n1/2−2ε 1
H

exp
{
− c2

2
T
} T+H∫

T

exp
{
− c2

2
τ
}

dτ


≪K n1/2−2ε exp

{
− c2

2
T
}

. (15)

Clearly,
J3 ≪ n−ε exp

{
−c2 log2 T

}√
T.

This, (11), (13), and (15) lead to the estimate

I ≪K,λ,α n−ε + n1/2−2ε exp
{
− c2

2
T
}
+ n−ε

√
T exp

{
−c2 log2 T

}
,

and this proves (8).

To prove a weak convergence for the measure Pλ,α
T,H , we use convergence in distribution

( D−→) for random elements, which means the weak convergence of distributions of the
corresponding random elements. We will deal with the following general statement.

Lemma 9 (See [22]). Let the metric space (X, ρ) be separable. Suppose that the X-valued random
elements Xnk and Yn, k ∈ N and n ∈ N, are defined on the same probability space (Ω̂,B, ν);

Xnk
D−−−→

n→∞
Xk, Xk

D−−−→
k→∞

X,

and, for every ε > 0,
lim
k→∞

lim sup
n→∞

ν{ρ(Yn, Xnk) ⩾ ε} = 0.

Then Yn
D−−−→

n→∞
X holds.

Now we state a limit theorem for Pλ,α
T,H .

Theorem 3. Suppose that the parameters λ, α ∈ (0, 1] are arbitrary, and T27/82 ⩽ H ⩽ T1/2.
Then, on (H(D),B(H(D))), there is a probability measure, Pλ,α, that Pλ,α

T,H is weakly convergent
to Pλ,α as T → ∞.

Proof. On a certain probability space, (Ω̂,B, ν), we define a random variable, θT,H , which
is uniformly distributed on [T, T + H]. Using θT,H , we introduce the H(D)-valued
random elements

Lλ,α
T,H,n = Lλ,α

T,H,n(s) = Ln(λ, α, s + iθT,H)

and
Lλ,α

T,H = Lλ,α
T,H(s) = L(λ, α, s + iθT,H),

and let Lλ,α
n = Lλ,α

n (s) have the distribution Pλ,α
n , where Pλ,α

n is the limit measure in Lemma 3.
Since Pλ,α

T,H,n is the distribution of the random element Lλ,α,n
T,H , by Lemma 3, we get

Lλ,α
T,H,n

D−−−→
T→∞

Lλ,α
n . (16)
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Lemma 4 asserts that the measure Pλ,α
n is tight. Therefore, by the Prokhorov theorem (see

Theorem 6.1 of [22]), Pλ,α
n is relatively compact. Hence, there exists a probability measure,

Pλ,α, and a sequence, nr, such that Pλ,α
nr converges weakly to Pλ,α as r → ∞. In other words,

Lλ,α
nr

D−−−→
r→∞

Pλ,α, (17)

which means that Lλ,α
nr converges in distribution to a random element with the distribution

Pλ,α. Note that this mixed notation is convenient and is widely used; see [22]. Moreover,
the above definitions and Lemma 8 imply that, for each ε > 0,

lim
n→∞

lim sup
T→∞

ν
{
d
(

Lλ,α
T,H,n, Lλ,α

T,H

)
⩾ ε
}

= lim
n→∞

lim sup
T→∞

1
H
m{τ ∈ [T, T + H] : d(Ln(λ, α, s + iτ), L(λ, α, s + iτ)) ⩾ ε}

⩽
1

Hε

T+H∫
T

d(Ln(λ, α, s + iτ), Ln(λ, α, s + iτ))dτ = 0. (18)

Relations (16) and (17) and the latter equality show that all hypotheses of Lemma 9 are
fulfilled. Thus, we have

Lλ,α
T,H

D−−−→
T→∞

Pλ,α,

and in other words, Pλ,α
T,H converges weakly to Pλ,α as T → ∞.

Theorem 4. Suppose that λ ∈ (0, 1], the set L(α) is linearly independent over Q, and
T27/82 ⩽ H ⩽ T1/2. Then Pλ,α

T,H converges weakly to the measure Pλ,α as T → ∞.

Proof. We repeat the proof of Theorem 3 with one difference: by Lemma 5,

Lλ,α
n

D−−−→
n→∞

Pλ,α, (19)

where Pλ,α is the distribution of the random element L(λ, α, ω, s). Therefore, the theorem
follows from (16), (18), (19), and Lemma 9.

3. Proofs of the Main Theorems
The proofs of Theorems 1 and 2 are standard and are based on the Mergelyan theorem [28]

and equivalents of weak convergence in Theorems 3 and 4. We start with Theorem 2
because Theorem 1 is a partial case of Theorem 2.

Proof of Theorem 2. Let P be a probability measure on (X,B(X)) and X be a separable
space. Recall that the support of P is a closed minimal set, S ⊂ X, such that P(S) = 1. The
set S consists of all elements x ∈ X such that P(G(x)) > 0 for every open neighbourhood,
G(x), of x.

Suppose that Fλ,α is the support of the measure Pλ,α in Theorem 3. Then, by the
definition of the support, Fλ,α ̸= ∅ is a closed set. For f ∈ Fλ,α, the compact set K ⊂ D,
and any ε > 0, we set

Gε, f =

{
g ∈ H(D) : sup

s∈K
| f (s)− g(s)| < ε

}
.

Then Gε, f is an open neighbourhood of an element of the support. Therefore,

Pλ,α(Gε, f ) > 0, (20)



Axioms 2025, 14, 472 13 of 15

and Theorem 3 in terms of open sets gives

lim inf
T→∞

Pλ,α
T,H(Gε, f ) ⩾ Pλ,α(Gε, f ) > 0.

Thus, the definitions of Pλ,α
T,H and Gε, f imply the first statement of the theorem.

To obtain the second statement of the theorem, we use Theorem 3 in terms of continuity
sets. Recall that A ∈ B(X) is a continuity set of the measure P if P(∂A) = 0, where ∂A
denotes the boundary of A. We observe that ∂Gε, f lies in the set{

g ∈ H(D) : sup
s∈K

| f (s)− g(s)| = ε

}
.

Hence, ∂Gε1, f ∩ ∂Gε2, f = ∅ for ε1 ̸= ε2. From this, we have Pλ,α(∂Gε, f ) > 0 for at most
countably many ε > 0. Therefore, the set Gε, f is a continuity set of the measure Pλ,α for all
but at most countably many ε > 0. Thus, by Theorem 3 in terms of continuity sets and (20),

lim
T→∞

Pλ,α
T,H(Gε, f ) = Pλ,α(Gε, f ) > 0

for all but at most countably many ε > 0. This and the definitions of Pλ,α
T,H and Gε, f imply

the second statement of the theorem.

Proof of Theorem 1. Differently from Theorem 2, the function f (s) is related to the set
K. Therefore, we have to involve the Mergelyan theorem in the approximation of ana-
lytic functions by polynomials. By that theorem, for any ε > 0, there is a polynomial,
pε, f (s), satisfying

sup
s∈K

| f (s)− pε, f (s)| <
ε

2
. (21)

Put

Gε,pε , f =

{
g ∈ H(D) : sup

s∈K
|g(s)− pε, f (s)| <

ε

2

}
.

By Lemma 6.1.7 from [15], it is known that the support of the measure Pλ,α is the whole
space H(D). Since pε, f (s) ∈ H(D) the set Gε,pε , f is an open neighbourhood of an element
of the support of Pλ,α. Thus,

Pλ,α(Gε,pε , f ) > 0. (22)

Let Gε, f be as in the proof of Theorem 2. By the virtue of (21), the inclusion Gε,pε , f ⊂ Gε, f

holds. Therefore, by (22), we have Pλ,α(Gε, f ) > 0, and Theorem 4 yields

lim inf
T→∞

Pλ,α
T,H(Gε, f ) ⩾ Pλ,α(Gε, f ) > 0.

The first statement of the theorem is proved.
The second assertion of the theorem follows from the same arguments as the ones

given in the proof of Theorem 2 with the measure Pλ,α in place of Pλ,α and Theorem 4 in
place of Theorem 3.

The theorem is proved.

Remark 1. Suppose that the set L(α) is linearly independent over Q, λ ∈ (0, 1], and
T27/82 ⩽ H ⩽ T1/2. Then, for every compact set K ⊂ D, the analytic function f (s) in D,
and ε > 0,
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lim inf
T→∞

1
H
m

{
τ ∈ [T, T + H] : sup

s∈K
| f (s)− L(λ, α, s + iτ)| < ε

}
> 0

Moreover, the limit

lim
T→∞

1
H
m

{
τ ∈ [T, T + H] : sup

s∈K
| f (s)− L(λ, α, s + iτ)| < ε

}

exists and is positive for all but at most countably many ε > 0.

Proof. We repeat the proof of Theorem 2 with Fλ,α = H(D).

4. Conclusions
Although universality theorems on the approximation of analytic functions by shifts

in zeta-functions are not effective in a certain sense, they have a series of theoretical and
practical applications. This will stimulate continued research in the field and improve
universality results. Usually, the main universality results are stated as theorems on the
positivity of the density of approximating shifts in an interval. Clearly, information of
such a kind is more useful if the interval is as short as possible. In this paper, we obtained
theorems on the approximation of analytic functions by shifts in the Lerch zeta-function
L(λ, α, s + iτ) in the interval [T, T + H] with T27/82 ⩽ H ⩽ T1/2 as T → ∞.

Based on the progress made in this article, the following open problems arise:
1. Improve the lower bound for H. This is closely connected to the mean square estimate

T+H∫
T−H

|L(λ, α, σ + it)|2 dt ≪λ,α H

for σ > 1/2.
2. Obtain approximation by shifts L(λ, α, s + iτk) in short intervals when τk runs over

a certain discrete set.
3. Extend approximation to the simultaneous kind for a tuple of analytic functions

( f1(s), . . . , fr(s)) by (L(λ1, α1, s + iτ), . . . , L(λr, αr, s + iτ)) in short intervals.
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