o UNIVEp
\g -l579~ )é\

Vilnius
University

Machine Learning-Based Diagnosis
of Cancer and Fibrosis with Second
Harmonic Generation Microscopy

Yaraslau Padrez

DOCTORAL DISSERTATION
2025

Natural Sciences

Physics N 002



https://doi.org/10.15388/vu.thesis.8§16
https://orcid.org/0000-0003-0852-6579

VILNIUS UNIVERSITY
CENTER FOR PHYSICAL SCIENCES AND TECHNOLOGY

Yaraslau Padrez

Machine Learning-Based Diagnosis of
Cancer and Fibrosis with Second
Harmonic Generation Microscopy

DOCTORAL DISSERTATION

Natural sciences,
Physics (N 002)

VILNIUS 2025


https://doi.org/10.15388/vu.thesis.816
https://orcid.org/0000-0003-0852-6579

This dissertation was prepared between 2021 and 2025 (State research
institute Center for Physical Sciences and Technology). The research was
supported by the Research Council of Lithuania with scholarships that were
granted for academic accomplishments twice: for the years 2022 (reg. Nr. P-
DAP-23-60) and 2025 (reg. Nr. P-DAP-25-153), and financial support for
research visit to the University of Eastern Finland (Joensuu, Finland) for four
weeks during the first semester in 2022 (reg. Nr. P-DAK-22-45).

Academic Supervisor — Dr. Renata Karpicz (State Research Institute Center
for Physical Sciences and Technology, Natural Sciences, Physics — N 002).
Academic Consultant — Dr. Danielis Rutkauskas (State Research Institute
Center for Physical Sciences and Technology, Natural Sciences, Physics —
N 002).

This doctoral dissertation will be defended in a public meeting of the
Dissertation Defense Panel:

Chairman: Prof. Dr. Vitalijus Karabanovas (National Cancer Institute,
Natural Sciences, Physics — N 002).

Members:

Prof. Dr. Raquel Cuevas-Diaz Duran (Tecnologico de Monterrey, Escuela de
Medicina y Ciencias de la Salud, Natural sciences, Biology — N 010),

Prof. Dr. Justinas Ceponkus (Vilnius University, Natural Sciences, Physics —
N 002),

Doc. Dr. Andrius Gelzinis (Vilnius University, Natural Sciences, Physics —
N 002),

Dr. Ilze Irbe (University of Latvia, Natural Sciences, Biophysics — N 011).

The dissertation shall be defended at a public meeting of the Dissertation
Defense Panel at 11:00 on the 17" of September 2025 in Room D401 of the
State research institute Center for Physical Sciences and Technology.
Address: Sauletekio av. 3, Vilnius, Lithuania
Tel. +370 5 264 8884; e-mail: office@ftmc.lt

The text of this dissertation can be accessed at the libraries of the Vilnius
University, as well as on the website of Vilnius University:
www.vu.lt/naujienos.ivykiu-kalendorius


mailto:office@ftmc.lt
http://www.vu.lt/naujienos.ivykiu-kalendorius

https://doi.org/10.15388/vu.thesis.816
https://orcid.org/0000-0003-0852-6579

VILNIAUS UNIVERSITETAS
FIZINIY IR TECHNOLOGIJOS MOKSLY CENTRAS

Yaraslau Padrez

Masininiu mokymusi grindZziama veézio
ir fibrozés diagnostika taikant antrosios
harmonikos generavimo mikroskopija

DAKTARO DISERTACIA

Gamtos mokslai,
Fizika (N 002)

VILNIUS 2025


https://doi.org/10.15388/vu.thesis.816
https://orcid.org/0000-0003-0852-6579

Disertacija rengta 2021-2025 metais Fiziniy ir technologijos moksly centre.
Mokslinius tyrimus rémé Lietuvos mokslo taryba skirdama stipendijas 2022
(reg. Nr. P-DAP-23-60) ir 2024 (reg. Nr. P-DAP-25-153) metais uz
akademinius pasiekimus, bei 2022 paskirdamas finansavimg stazuotei Ryty
Suomijos universitete (Suomijoje) (reg. Nr. P-DAK-22-45).

Moksliné vadové — dr. Renata Karpicz (Fiziniy ir technologijos moksly
centras, gamtos mokslai, fizika — N 002).

Mokslinis konsultantas — dr. Danielis Rutkauskas (Fiziniy ir technologijos
moksly centras, gamtos mokslai, fizika — N 002).

Gynimo taryba:

Pirmininkas: prof. dr. Vitalijus Karabanovas (Nacionalinis véZzio institutas,
gamtos mokslai, fizika — N 002).

Nariai:

Prof. dr. Raquel Cuevas-Diaz Duran (Tecnologico de Monterrey, Escuela de
Medicina y Ciencias de la Salud, Meksika, gamtos mokslai, biologija —
N 010),

Prof. dr. Justinas Ceponkus (Vilniaus universitetas, gamtos mokslai, fizika —
N 002),

Doc. dr. Andrius Gelzinis (Vilniaus universitetas, gamtos mokslai, fizika —
N 002),

Dr. Ilze Irbe (Latvijos universitetas, gamtos mokslai, biofizika — N 011).

Disertacija ginama vieSame Gynimo tarybos posédyje 2025 m. rugséjo mén.
17 d. 11:00 val. Valstybinio moksliniy tyrimy instituto Fiziniy ir technologijos
moksly centro D401 konferencijy saléje. Adresas: Saulétekio al. 3, Vilnius,
Lietuva), tel. +370 5 264 8884; el. pastas office@ftmc.It

Disertacija galima perzidiréti Vilniaus universiteto bibliotekoje ir Vilniaus
universiteto interneto svetainéje adresu: https://www.vu.lt/naujienos/ivykiu-
kalendorius


https://www.vu.lt/naujienos/ivykiu-kalendorius
https://www.vu.lt/naujienos/ivykiu-kalendorius

Acknowledgments

First and foremost, I would like to express my deepest gratitude to all
those people who have supported, inspired and guided me on this challenging
but rewarding journey.

My sincere gratitude goes to Elena Guseinova, my first physics teacher,
who laid the foundation for my scientific path with her belief in me and her
early encouragement.

I am grateful to my first academic supervisor, Dr. Dzmitry Bychanok, for
introducing me to the fascinating world of research. His guidance and
enthusiasm showed me that science can be both engaging and inspiring.

I would also like to thank Dr. Polina Kuzhir, whose recommendation led
me to Vilnius. Her management of the laboratory in Minsk, where I started
my research, played an important role in shaping my early scientific
endeavors.

Special thanks go to the research group from Romania led by Dr. Radu
Hristu. Their active participation in discussions, joint publications and general
support greatly enriched a large part of this dissertation.

My growth as a Python developer has been accompanied by useful
tutorials from Dr. Igor Timoshchenko, ranging from the simplest to the
extremely complex.

I thank my academic supervisor, Dr. Renata Karpicz, and my academic
advisor, Dr. Danielis Rutkauskas, for their academic supervision and guidance
throughout this process.

I owe immeasurable gratitude to Dr. Lena Golubewa. Her tireless support
from the beginning to the completion of this dissertation was simply
exceptional. Without her expertise, dedication and countless contributions,
this work — and the numerous articles that followed — would not have been
possible.

Yaraslau Padrez



ABBREVIATIONS AND NOTATIONS

Al — Artificial intelligence

ATC — Anaplastic thyroid carcinoma

AUC — Area under the receiver operating characteristic curve
aC — Correlation based on gray level co-occurrence matrix
CAF — Cancer-associated fibroblasts

CARS — Coherent anti-Stokes Raman scattering

CHI — Calinski-Harabasz index

CMOS — Complementary metal-oxide—semiconductor
CNN - Convolutional neural network

C-SVC — C-Support vector classification

DAB — Diaminobenzidine

DBI — Davies-Bouldin index

DFT — Discrete Fourier transform

DL — Deep learning

E — Energy based on gray level co-occurrence matrix
ECM — Extracellular matrix

ERR — Experimental error

FFT — Fast Fourier transform

FN — False negatives

FOS — First-order statistics

FP — False positives

FTC — Follicular thyroid carcinoma

GLCM - Gray level co-occurrence matrix

GLN — Gray-level non-uniformity based on gray level run length matrix
GLRLM - Gray level run length matrix

H — Entropy based on gray level co-occurrence matrix
H&E — Hematoxylin and eosin

HOS — Higher-order statistics

I — Inertia based on gray level co-occurrence matrix

IARC — International agency for research on cancer

IE — Index of expression

IHC — Immunohistochemistry

IQR — Interquartile range

L — Local homogeneity based on gray level co-occurrence matrix
LightGBM - Light gradient-boosting machine

LR — Logistic regression

LRE — Long run emphasis based on gray level run length matrix
MCT — Monocrotaline

MI — Mutual information

MIFS — Mutual information feature selector

ML — Machine learning

MLP — Multi-layer perceptron

MMP — Matrix metalloproteinase

MRI — Magnetic resonance imaging
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MTC — Medullary thyroid carcinoma

OI — Orientation index

PAH — Pulmonary arterial hypertension

PC — Principal component

PCA — Principal component analysis

PET — Positron emission tomography

PIA — Permutation importance analysis

PSG — Polarization state generator

PSHG — Polarization-resolved second harmonic generation
PTC — Papillary thyroid carcinoma

R2 — Coefficient of determination

RF — Random forest

RFECV-LinearSVC - Recursive feature elimination with cross-
validation with linear support vector machines estimator
RLN — Run length non-uniformity based on gray level run length matrix
ROC — Receiver operating characteristic

ROI — Regions of interest

RP — Run percentage based on gray level run length matrix
SC — Silhouette coefficient

SHG — Second harmonic generation

SNR — Signal-to-noise ratio

SOS — Second-order statistics

SRE — Short run emphasis based on gray level run length matrix
SVM — Support vector machines

TACS — Tumor-associated collagen signatures

THG — Third harmonic generation

TIMP — Tissue inhibitors of metalloproteinases

TME — Tumor microenvironment

TN — True negatives

TP — True positives

TPEF — Two-photon excitation microscopy

XGBoost — eXtreme gradient boosting

2D — Two-dimensional

U1 —Mean

o — Standard deviation

g1 — Skewness

g» — Kurtosis
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12 | INTRODUCTION

1 INTRODUCTION

Cancer is one of the leading causes of human mortality worldwide [1].
According to the International Agency for Research on Cancer (IARC) report
published in 2024 [2], about 20 million new cancer cases and about 9.7 million
cancer deaths were registered worldwide in 2022. In addition to the current
statistics, the IARC has also made a demographic prediction that the number
of new cancer cases will reach 35 million by 2050, which will lead to an
increase in mortality rates. Early diagnosis and the discovery of new markers
and characteristic features of cancer progression cannot prevent extreme
growth in cancer cases, but they could significantly reduce mortality rates,
prevent cancer recurrence and metastasis, and improve patients' recovery and
lives after treatment. With the technological advancement in instrumentation
and the incorporation of artificial intelligence (Al) in cancer data analysis, the
advancement in computerized image analysis of cancer tissue is becoming a
powerful tool that can efficiently complement the conventional analysis of
cancer tissue samples, which is traditionally performed by direct visual
inspection by experienced pathologists, and provide new insights for cancer
diagnosis [3].

Thyroid cancer is one of the most common malignant diseases of the
endocrine system and is characterized by the uncontrolled proliferation of
cells within the thyroid gland. Its incidence has steadily increased in recent
decades, with around 586,000 new cases reported worldwide in 2020 [4].
Papillary thyroid carcinoma (PTC) and follicular thyroid carcinoma (FTC) are
the most common well-differentiated carcinomas and together account for
approximately 88% of all thyroid tumors [5].

The encapsulation status of thyroid nodules, i.e. whether they are
surrounded by a fibrous collagen capsule, is a key histopathologic feature. The
presence and integrity of the capsule influences the assessment of tumor
invasiveness, malignant potential and prognosis. In PTC, the capsule may be
incomplete or infiltrative, whereas in FTC it is usually better developed.
Capsular invasion, in which tumor cells penetrate and traverse the entire
thickness of the capsule, is a key criterion for distinguishing between benign
and malignant follicular tumors [6]. However, classification of tumors based
on capsular invasion is challenging due to observer variability and complex
histologic criteria. In addition, standard histopathologic methods, which often
examine only limited areas of tissue sections, run the risk of overlooking
microinvasions.

While the prognosis for FTC is often worse than for PTC [9,10] and
complete thyroidectomy is required [11], low-risk PTC cases are often
overdiagnosed and overtreated [12]. Therefore, accurate differentiation
between FTC and PTC is essential to avoid unnecessary aggressive treatment
and minimize postoperative complications [13].
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13 | INTRODUCTION

Arterial hypertension is one of the most common concomitant diseases
in cancer patients [14] and is a frequent adverse effect of cancer treatment.
Cancer-related pulmonary arterial hypertension (PAH) has been observed in
patients undergoing treatment with, e.g., dasatinib or other tyrosine kinase
inhibitors [15]. PAH is a severe vascular disease characterized by increased
pulmonary arterial pressure leading to vascular remodeling and excessive
deposition of fibrillar collagen in the pulmonary arteries. These changes
contribute to vascular stiffening and disease progression [16].

Structural changes in collagen content and its distribution are the main
features of extracellular matrix (ECM) remodeling associated with
pathological conditions such as PAH. In thyroid cancer, collagen remodeling
also plays a critical role in tumor progression, with capsular changes
correlating with malignancy and invasiveness. Understanding these common
pathological mechanisms emphasizes the importance of collagen
determination for the diagnosis and monitoring of disease progression. Due to
the complexity and high overlap of the main pathological changes, PAH is
considered a cancer-like disease [17]. Understanding the relationship between
ECM remodeling in cancer and PAH with the progression, severity and degree
of these diseases, and using this data for accurate diagnosis, could enable
detailed pathological condition interpretation and more effective treatment of
both cancer and PAH.

Second harmonic generation (SHG) microscopy provides a label-free
method for visualizing fibrillar collagen, the primary structural component of
thyroid nodule capsules. SHG bioimaging is particularly effective for
assessing changes in collagen-rich tissue [18], as collagen produces a strong
SHG signal due to its non-centrosymmetric structure [19]. Previous studies
[20,21], have shown that SHG microscopy in conjunction with quantitative
image analysis can differentiate between benign and malignant thyroid
nodules. While conventional SHG imaging is based on scanning laser beams,
SHG wide-field microscopy allows visualization of whole histological slides
[22,23], enabling comprehensive analysis of collagen architecture.

SHG microscopy is particularly valuable when it comes to assessing the
structural anisotropy of tissue by using the polarization of light. Polarization-
resolved SHG microscopy (PSHG) has been used to quantitatively analyze
collagen microstructure in tissues [24-26], including the thyroid gland
[21,27,28]. While variants of SHG microscopy with laser beam scanning have
proven successful in biomedical imaging, wide-field SHG microscopy is
gaining recognition [23] for imaging whole histologic slides. Similar to the
related imaging technique, two-photon excited fluorescence microscopy, for
which wide-field variants also exist [31], wide-field SHG microscopy has
evolved from intensity-based applications [32] to quantitative analysis [33]
and even live imaging applications [34].

In addition to SHG imaging, texture analysis methods, including first-
order statistics (FOS), second-order statistics (SOS), and higher-order
statistics (HOS), provide quantitative descriptions of the properties of
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14 | INTRODUCTION

collagen networks [35,36]. These methods are widely used in medical imaging
such as computer tomography [37] and magnetic resonance imaging (MRI)
[38].

The interpretation of image data is limited when analyzed manually with
the traditional image processing pipeline. Taking advantage of large, scanned
areas and high spatial resolution of wide-field SHG microscopy, the
possibility of combining it with two-photon excited fluorescence microscopy
and adding Al to the diverse features extracted from the imaging data paves
the way for automated computerized image analysis of cancer tissue samples
with high accuracy and high throughput.

Machine learning (ML) approaches are increasingly being used to
automate and improve cancer tissue analysis and classification. Unsupervised
ML techniques are mainly aimed at image segmentation and detection of
specific patterns in image features based on the inherent relationships [39,40].
Supervised ML algorithms are mainly applied for solving classification
problems and have recommended themselves in disease diagnosing. The ML
classifiers, including deep learning (DL) models, have shown promising
results in discriminating different cancer types based on MRI, computer
tomography and SHG image analysis [41-44]. However, effective ML-based
classification requires high-quality data, as label noise (mislabeling of
samples) and feature noise (irrelevant or redundant parameters) can
significantly affect model performance [45]. Real-world image data rarely
fulfills this criterion, leaving room for further data-specific adaptations of ML
algorithms, architectures and strategies.

Quantitative insights into the capsular structures of thyroid nodules and
remodeling of the ECM are necessary to enable advances and accuracy in the
diagnosis of thyroid cancer and to understand the evolution of pathological
conditions. Large-scale wide field SHG microscopy as a label-free, collagen-
specific imaging technique can simplify the preparation of tissue samples by
eliminating the steps of tissue fixation and staining and allowing samples to
be measured immediately after surgical removal. In turn, the development of
ML-based methods for analyzing large-scale SHG images of cancer tissue
suggests an automated diagnostic approach that can complement traditional
visual inspection of cancer tissue samples, reducing the likelihood of
misdiagnosis and supporting optimal clinical decision making. Therefore,
detailed studies in this direction are crucial, as the simplicity, speed and
specificity of SHG wide-field microscopy combined with effective ML
methods of cancer analysis can enable accurate and timely diagnosis, curbing
the rise in cancer deaths, even though the number of cases is expected to
increase rapidly over the next decades.

1.1 Goal of the research work

The aim of the Thesis is to develop machine learning models that use
SHG large-scale scans of the tissue sections for the interpretation of the
pathological conditions and the diagnosis of diseases.
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15 | INTRODUCTION
1.2 Tasks for the research work

To achieve the goal set above, the following tasks were formulated and solved
within the framework of the Thesis:

1. To perform a statistical analysis of SHG intensity characteristics and
texture features of wide-field SHG scans of lung tissue samples from rats with
monocrotaline-induced PAH at different disease stages and samples from the
control group of rats, to reveal patterns in the features of SHG images and to
compare them with the results of immunohistochemical analysis.

2. To apply the unsupervised machine learning algorithm k-means
clustering for the analysis of 2D maps of parameters extracted from wide-field
PSHG images of whole thyroid nodule sections based on a cylindrical model
of collagen fiber hyperpolarizability, and to reveal patterns in the
ultrastructure of collagen fibers in the intact capsule and in regions of
invasion.

3. To perform the unsupervised machine learning-based analysis
(principal component analysis (PCA) and k-means clustering) of intensity and
texture features of wide-field SHG scans of collagen distribution in papillary
thyroid carcinoma sections to identify regions of capsular invasion and
propose a quantitative description of the intact capsule and areas of invasion.

4. To develop supervised ML models for the automatic differential
diagnosis of papillary and follicular thyroid carcinomas using wide-field SHG
imaging considering the effects of label noise and feature noise on the
predictive performance of these models.

1.3 Statements of the Thesis

1. Statistical analysis of wide-field SHG images of lung tissue sections
reveals and qualitatively and quantitatively describes characteristic changes in
collagen organization, morphology and collagen content associated with the
different stages of pulmonary arterial hypertension.

2. k-Means clustering of cylindrical model parameters extracted from
wide-field polarization-resolved SHG images of whole thyroid nodule
sections allows differentiation between areas of capsular invasion and
unaffected regions of the capsule surrounding cancer cells by revealing
patterns in the ultrastructure of collagen.

3. Unsupervised machine learning improves SHG image analysis, reveals
the textural heterogeneity of papillary thyroid carcinoma capsule, and enables
identification of capsular invasion, poorly distinguishable microinvasions and
regions requiring additional examination based on the specific sets of image
parameters.

4. A supervised machine learning model C-SVC enables differential
diagnosis of papillary and follicular thyroid carcinomas based on SHG
imaging, with an accuracy of 84.73%.

Yaraslau Padrez



16 | INTRODUCTION
1.4 Novelty and relevance

1. Based on the statistical parameters extracted from the SHG images of
the collagen network organization, in combination with the results of
immunohistochemical analysis, the specific phases of PAH progression were
revealed, and their quantitative description was proposed. These phases could
potentially be evaluated as checkpoints of PAH pathogenesis.

2. Unsupervised ML analysis of collagen ultrastructure and orientation-
related parameters extracted from the PSHG image sets of an entire thyroid
nodule section, enabled the creation of characteristic maps of the thyroid
nodules and their quantitative description, facilitating comparison between
different regions of the nodule capsule and highlighting areas of invasion
within the capsule.

3. Unsupervised ML analysis of the sets of wide-field SHG images of
entire thyroid nodules enabled to reveal the textural heterogeneity of the
collagen capsule surrounding PTC. The quantitative description of this
heterogeneity reflected in texture features and specific spatial distribution
across the collagen capsule sheds light on the changes in the collagen network
associated with cancer spread.

4. The developed supervised ML-based approach using large datasets of
SHG images of thyroid slices enables efficient discrimination between FTC
and PTC. The proposed data noise management strategy improves diagnostic
accuracy and demonstrates the feasibility of automated diagnosis of PTC and
FTC based on SHG microscopy.

The results of the Thesis pave the way for an automated and quantitative
SHG imaging-based diagnosis of PAH and have the potential to become an
additional objective technique of choice for the treatment of PAH-associated
fibrosis that is free from error-prone human decision-making. Moreover,
quantitative analysis enabled by both PSHG and wide-field SHG microscopy
may prove beneficial for the automated assessment of capsular invasion sites
in thyroid pathology, helping to reveal poorly distinguishable invasions and
highlighting areas of the PTC capsule that require closer and more careful
examination. Collagen ultrastructure data can provide insights into the
molecular basis of cancer progression, spread and metastasis. All this provides
a reliable basis for considering ML-assisted SHG microscopy as a new
efficient method for the diagnosis of thyroid cancer.
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2 LITERATURE OVERVIEW

2.1 SHG Microscopy

In recent years, the SHG has become an increasingly important nonlinear
optical contrast mechanism in biological and biophysical imaging
applications. SHG is a coherent process in which two photons of lower energy
are combined to produce a photon with exactly twice the incident frequency
(or half the wavelength) Figure 2.1. The conversion of radiation frequency
occurs through virtual states of the system without complete transfer of energy
into the system. This process was first demonstrated in biological systems by
Freund and colleagues in 1986 [46]. They used SHG to study the polarity of
collagen fibers in rat tail tendons. Although their work was performed at a
relatively low resolution (~50 micrometers), it served as an important proof
of concept and laid the foundation for modern SHG imaging techniques [47].

Excited state
Virtual state

Ground state

Figure 2.1 SHG energy diagram.

Since then, SHG imaging has evolved considerably, mainly due to
advances in technology. The development of commercially available ultrafast
lasers, combined with improvements in laser scanning and data acquisition
systems, has made SHG a widely used tool in both material science and
biomedical imaging. These innovations also reflect advances in other
nonlinear microscopy techniques, such as multiphoton fluorescence
microscopy, which have become routine in research laboratories.

Despite the advantages of classical optical microscopes, they have
difficulties in imaging large (opaque) or complex specimens due to the limited
penetration depth and scattering of the radiation [48]. SHG microscopy
overcomes these limitations and offers high-resolution imaging with deeper
tissue penetration. This renders SHG microscopy an exceptional imaging
instrument for biomedical applications that necessitate high-resolution, non-
destructive imaging.

The combination of reliable, robust ultrafast laser technologies and
turnkey microscope systems has made SHG microscopy more accessible and
further solidified its role in improving our understanding of biological and
material systems [49,50]. Continued improvements in hardware and software
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are expected to further enhance the utility of SHG microscopy for a wide range
of scientific and clinical applications.

SHG is an instantaneous, scattering-based process that preserves photon
energy and phase coherence. SHG microscopy typically uses a pulsed
femtosecond laser source or a picosecond laser source focused through a high
numerical aperture objective that generates a strong electric field in the focal
volume. The standard method for SHG imaging is to tightly focus the laser
light onto the sample with an objective lens, raster the focal volume over an
area in the sample, and reconstruct an image by linking the intensity of the
generated SHG signal detected by a detector to the position of the illumination
volume in the sample [51].

The signal intensity scales quadratically with the intensity of the incident
light and is very sensitive to molecular organization, making it a powerful tool
for quantifying structural anisotropy and spatial arrangement in biological
tissue [52].

2.1.1 Advantages/disadvantages of SHG microscopy

The following principal advantages of SHG microscopy can be
identified:

o High resolution and specificity: SHG microscopy offers high spatial
resolution (~300 nm — 500 nm lateral resolution and ~800 nm — 1200 nm
axial resolution [19,53,54]) and is therefore ideal for imaging structures in
the micrometer range. It can capture fine details of biological tissue, such
as collagen fibers, with excellent specificity due to its unique contrast
mechanism [53].

e Based on endogenous contrast: Unlike many fluorescence microscopy
techniques, SHG does not require exogenous fluorescent dyes or contrast
agents. SHG arises from the sample itself, but no additional dyes [55]. This
is particularly advantageous in biological studies where the introduction of
additional substances (reagents) can alter cellular processes and lead to
erroneous conclusions [46].

o Label-free imaging: SHG microscopy is a label-free imaging technique,
meaning it can image naturally occurring structures such as collagen,
myosin and other biomolecules without the need for chemical markers or
labels. This reduces the risk of interference with the natural behavior of the
sample [53].

o Free from photobleaching and instantaneous: in contrast to fluorescence
microscopy, SHG is not limited in time and is not limited by repetition rate
[56].

e [mproved imaging depth: SHG microscopy can penetrate deeper into tissue
compared to conventional fluorescence microscopy, since NIR-I (700-
1000 nm) and NIR-II (1000-1300 nm) spectral ranges are traditionally
employed for excitation [48,52,57]. Such excitation minimizes absorption
by water and biomacromolecules, limits scattering, and makes SHG
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microscopy particularly valuable for imaging thick samples or tissue in
vivo [48].

Optical slicing: SHG provides intrinsic optical slicing capabilities that
enable visualization of thick tissue sections without the need for physical
slicing. This is particularly useful for 3D imaging and reduces the
complexity of sample preparation [58].

Non-destructive: SHG microscopy uses near-infrared excitation light,
which causes significantly less photodamage and phototoxicity compared
to visible or ultraviolet light used in other imaging techniques. Therefore,
the SHG method is ideal for imaging living tissue over an extended period
of time or performing repeated measurements without compromising the
integrity of the samples [47,59].

On the other hand, the following disadvantages of SHG can be

highlighted:

Limited to non-centrosymmetric structures: SHG can only be generated in
non-centrosymmetric structures, i.e. it is not suitable for imaging all types
of biological macromolecules or tissue structures. This limits its
applicability to certain biomolecules such as collagen, myosin and several
other asymmetric structures [52].

Low-intensity signal: SHG microscopy generates signals with relatively
low intensity compared to fluorescence techniques, which require the use
of powerful pulsed laser sources and highly sensitive detection systems.
These hardware requirements can increase the overall cost and complexity
of SHG setups, potentially limiting wider application in standard
laboratory environments [60].

Technically demanding and resource-intensive: SHG microscopy requires
sophisticated instrumentation, including ultrafast mode-locked lasers,
advanced optical components and sensitive detection systems. It also
requires precise experimental conditions — such as the operation of a high-
power laser and careful optimization of the wavelength — which can be
difficult to maintain. These factors make SHG microscopy more complex
and costly compared to conventional imaging techniques, potentially
limiting its accessibility in resource-constrained laboratories [51,61].
Limited chemical information: While SHG provides excellent structural
information, it does not provide detailed chemical information about the
sample, unlike techniques such as Raman spectroscopy/microscopy, FTIR,
etc. This means that SHG alone cannot distinguish between different types
of biomolecules or provide insights into molecular composition [62].
Limited by scattering in dense tissues: Although SHG microscopy benefits
from lower scattering compared to linear fluorescence microscopy - due to
the use of near-infrared excitation and coherent signal generation - it is still
susceptible to scattering effects in very heterogeneous or optically dense
tissues. At greater imaging depths, scattering can affect signal strength and
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resolution, requiring additional optical corrections or signal processing
strategies [63].

e Low signal-to-noise ratio: The inherently weak SHG signal can lead to a
low signal-to-noise ratio, especially when imaging thick biological tissue
or structures with low SHG efficiency. In such cases, careful optimization
of sample preparation, imaging depth and optical alignment is crucial to
obtain high quality images [18].

It is also worth noting that the most important and unique feature of SHG
microscopy is the sensitivity of SHG signatures to physical structure [18]
(described in detail below). This can be considered both a disadvantage and
an advantage.

2.1.2  Physical principles of SHG microscopy

The fundamental physical principles governing SHG microscopy stem
from nonlinear optics, particularly second-order nonlinear light-matter
interactions.

The response of the material to the applied electric field E is described

by its total non-linear polarization P (neglecting permanent polarization)
according to the following equation [18]:

Equation 1: P= goX ™ - E+ 80)?(2):5')5 +eof®: EEE + -,

or alternatively:

2 3
SREEr + XGMEIEGEL + ),

Equation 2: P; = SO(X'('l)Ej +X ij

ij
where P is the induced polarization, P; (E;) is the i-th Cartesian coordinate of
the polarization (electric field), #™ is the n-th order non-linear susceptibility
tensor of rank (n+1), and E is the applied electric field, repeating indices imply
summation. For convenience, it will be assumed that 1/n! term from Taylor
series expansion is included within the susceptibility tensor [64]. The ™
corresponds to the next optical effects:

e I*-order processes, (1: absorption and reflection;

e 2"_order processes, #?): SHG, sum and difference frequency generation,
hyper-Rayleigh scattering;

e 3Worder processes, £3: multiphoton absorption, third harmonic
generation, coherent anti-Stokes Raman scattering, Kerr effect, self-phase
modulation, cross-phase modulation [55].

The nature of the second-order SHG imposes strict symmetry constraints
on the mappable harmonophores and their structure. The nonlinear
susceptibility tensor, £, is a bulk property and the quantity that can be
measured in an experiment. It represents the macroscopic nonlinear response
of the medium, which is composed of elementary harmonophores (scatterers)
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on a smaller scale. In collagen fibers, the peptide bonds along the collagen
fibers serve as elementary nonlinear scatterers and form the basis of the
contrast mechanism. These elementary harmonophores at the molecular level

are described by the first hyperpolarizability tensor, 3 (; jk)- This parameter
is defined in terms of the second-order non-linear dipole moment [53]:

Equation 3: d® = BEE

or alternatively:

E ; 4@ —p . F
quation 4: d;”" = Bk EjEy,

where d; (E;) is the i-th Cartesian coordinate of the induced second-order non-
linear dipole moment (electric field strength).

The molecular and the macroscopic properties of such molecules as
collagens are linked by the following formula:

Equation 5: §® =¥ N < ﬁ(z)s >,

where N is the density of the groups of molecules denoted as s and the
brackets denote an orientational average. The hyperpolarizability tensor f is
related to the dipole moment. If these dipole moments are non-randomly
aligned within the focal volume of the microscope stage, the bulk property
constraints are satisfied and the macroscopic characteristic ) is non-zero
and can be measured (Equation 5). Therefore, the maximum SHG contrast is
observed for well-aligned molecules that assemble into fibrils.

The intensities of the second harmonic in such media scale as follows
[65]:

2
Equation 6: SHGg;g & p*t (XS%‘) ’

where )(Sc} = Zijk)(i(jzk) ‘Ei(w)Ej(w)Ex(2w), p and T are the laser pulse
energy and pulse width, respectively.

The magnitude of the SHG intensity can be greatly enhanced when the
energy of the SHG signal (2Aw) is in resonance with an electronic absorption
band (hwg,). Within the two-level system model [66], the first
hyperpolarizability S;,,0—iever (dominant tensor component aligned with the
transition dipole moment direction, which enables simplified scalar
representation) and thus the SHG efficiency is defined as [67]:

3_82 Wgefgellige
213 [wEe—w?][wi—4w?]’

Equation 7: Bewo-tevel =
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where e is the electron charge and wge, fge and Ay g, are the energy difference,
the oscillator strength or the integral of the absorption spectrum and the
change in dipole moment between the ground state and the excited state,
respectively (for a two-level system with pg, and Apg, along the z-axis).
Other components (e.g., Bxxy) could be zero or smaller depending on
symmetry. Due to the denominator in this equation, the resonance-enhanced
SHG has a dependence on the wavelength of the incident light, which is
similar to the two-photon excitation spectrum.

2.1.3 Biomacromolecules suited for SHG microscopy

A crucial prerequisite for SHG is the absence of centrosymmetry in the
medium (Equation 6). In contrast to fluorescence-based imaging, SHG does
not occur in isotropic or centrosymmetric materials due to symmetry
constraints in the nonlinear susceptibility tensor. Common biological
structures that support SHG include collagen, myosin, and microtubules, as
these biological assemblies exhibit non-centrosymmetric organization.

Important biomacromolecules that exhibit SHG:

o Collagen: collagen fibers are the most commonly studied biomolecule in
SHG microscopy. They have a highly ordered, non-centrosymmetric triple-
helical structure, which makes them ideal sources of SHG in connective
tissues.

e Myosin: Found in muscle tissue, myosin filaments exhibit a non-
centrosymmetric organization that enables SHG imaging of sarcomere
structures in skeletal and cardiac muscles.

o Microtubules: As key components of the cytoskeleton, microtubules
consist of aligned tubulin dimers arranged in a non-centrosymmetric lattice
and contribute to SHG contrast in cellular imaging.

o Fibrillar proteins: In some cases, when highly ordered, actin filaments can
exhibit SHG properties, especially in structured tissues such as neurons or
contractile cells.

o Crystalline lipid structures: Certain lipid structures, such as myelin sheaths
surrounding nerve fibers, can generate SHG signals due to their anisotropic
molecular arrangement.

These biomacromolecules often form highly ordered structures that
enhance nonlinear susceptibility, and their molecular symmetry breaks at the
supramolecular level, enabling the generation of coherent SHG signals.
Furthermore, their biological significance makes SHG a valuable tool for the
study of tissue morphology, disease progression and dynamic cellular
processes.

It is also worth noting that the use of exogenous dyes (with high quadratic
hyperpolarizability) can produce SHG contrast in tissues that do not have
sufficiently high intrinsic hyperpolarizabilities for SHG. As shown in
Figure 2.2, a portion of the incident light at frequency (o) is converted to a
SHG signal at frequency (2w) when it interacts with molecules that do not
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exhibit inversion symmetry. The SHG reaction is further enhanced when the
virtual state matches the electronic energy levels of the molecules. In solutions
where the molecules are randomly aligned, there is usually no coherent SHG
signal because the electric fields of the emitted second-order light waves
cancel each other out by destructive interference. In contrast, when these
molecules are adsorbed on a surface, they tend to be more ordered, allowing
constructive interference and the detection of a measurable SHG signal [68].

Figure 2.2 (a) Molecular structure of D289. (b) Schematic representation of
the interaction between D289 molecules and a living tumor cell. Adapted with
permission from [68] Copyright © 2021, American Chemical Society.

2.2 SHG Microscopy of collagen fibers

SHG microscopy enables detailed visualization of the architecture of
collagen fibers in various tissues such as skin, cornea, tendons and bone. Its
optical sectioning capability reveals the orientation, density and bundling of
collagen fibers in three dimensions, which is crucial for understanding tissue
biomechanics and pathology.

Collagen is the most prominent endogenous SHG emitter in biological
tissues due to its abundant occurrence and unique molecular organization. Its
triple-helical structure forms fibrils that are highly ordered and non-
centrosymmetric, thus fulfilling the requirements for the generation of strong
SHG signals. SHG microscopy of collagen is often used to assess tissue
architecture and remodeling as well as pathological changes.
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2.2.1 Theoretical description of SHG microscopy of collagen fibers

The general case of three-wave mixing, from two fields with frequencies
w4 and w, to a third field with w; + w, can be defined at the bulk level as
follows [54]:

Equation 8: Pi(z) (w1 + wy) =
=& ij)(i(jzk)(_(wl + tw;); wy, wz)Ej(w1) Ex (wy),

or at the molecular level as:

Equation 9: dgz)(wl +wy) =
= 2 jk Bijk (— (w1 + w3); wq, w2)Ej(w1) Ey (w5).

Here and further in the text, all the frequency arguments of susceptibility
and hyperpolarizability tensors will be represented according to [69].

The dipole moment d(z) and the hyperpolarizability p;;; are the

molecular counterparts of the polarization P( ) and the susceptibility )(l Jk,

respectively. The generation of the second harmonic is a degenerate case of
three-wave mixing such that w; = w, = w. Therefore, from Equation 1,

Equation 10: PP (2w) = eg X jc x5 (—20; 0, 0) Ej (@) Ex (@) =
= eozk 2 (~20; 0, 0) B (@)Ej () =
=& ijXikj (—2w; w, W)Ej(w)Ey (w).
Hence,

Equation 11: )(lk)( 20; W, W) —)(U)( 20w; W, w).

Given this symmetry, a contracted notation can be used [54],

Equation 12: x;; )(a)) )(1(12,3( 20; W, ),

where i remains a spatial index with values from 1 to 3 and s from 1 to 6, with
the following relationships between s, j and &:

s 1 2 3 4 5 6
Equation13:j 1 2 3 2 3 1.
k 1 2 3 3 1 2
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A further simplification can be introduced if w; and w,, are far away from
any natural frequencies (outside resonance). In this case, susceptibility can be
assumed to be independent of frequency:

Equation 14: )(l-(jz,z(—(w1+w2)i W1, Wy) = Xi(jzk)'

As aresult, it could also freely interchange the indices, a condition known
as Kleinman symmetry. This symmetry follows from an assumption that there
is no dispersion, which is applicable to the middle of the visible — NIR range:

. 2 2 2 2 2 2
Equation 15: Xi(jlz = )(i(k])- = )(](-kg = X]('ik) = )(,(a-])- = )(,(cjz.

The general case of three-wave mixing has 27 independent elements in
the susceptibility tensor Equation §. Similarly, the SHG has 18 independent
elements in the contracted matrix, Equation 14. Finally, if Kleinman
symmetry holds, there are only 10 independent elements Equation 15.

Given the cylindrical symmetry of collagen fibers (see Figure 2.3a),
consider the properties of the susceptibility tensor under this simplification.
For a general rotation from the axes (x’,y’,z") to (x, y, z), the components of
the susceptibility tensor Equation 14 are modified to:

Equation 16: )(i(jz,z = Y jrr cos(81) cos(6}1) cos(Bryer) )(l.(,zj),k,,

where 6;; is the angle between the axes i’ and i. For the invariance under xy-
rotations around the longitudinal axis of the cylinder, it follows that:

@ _
Xzzz = X33
2 2
. Xéxzc = X;y)y = X13
Equation 17: ) ) @) @)
xxz — Xxzx = Xyyz = Xyzy = X15
2 2 2 2
Xiyy = Xizy = —Xysy = —Xyex = Xua

Angle 6 represent mean harmonophore orientation (Figure 2.3a).
According to the collagen model, 8 ranges from 49° to 57° with a maximum
disorder width § = 67° when # = 57°. P = 9.5 & and R = 1.5 A are helix
pitch and radius respectively [70].

At the same time, all the other components vanish. In the one-letter
notation of Mazely and Hetherington [71], there are therefore only four
independent elements for the cylindrical symmetry: y33, X13, X15 and Y14.

For molecules with a certain distribution of molecular orientation in the
axes (x',y',z") relative to the bulk axes (x,y,z), the bulk susceptibility is
derived from the molecular hyperpolarizability as follows:
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Figure 2.3 (a) Model of single helix collagen. (b) A beam of linear polarized
light propagating along the X axis of the laboratory coordinates (X, Y, Z),
focusing on a collagen fiber aligned in the XY plane. The red arrow
corresponds to the direction of light polarization.

Equation 18: x5 = Syt jrir < cos(8y) cos(8;51) cosBger) > Birjryer,

where the angle brackets correspond to the averaging over the molecules. Let
us consider a molecule with a single preferred axis of hyperpolarizability,
then:

Equation 19: B0, = f,

for which all other components vanish. Let us assume that the molecules are
distributed with a constant polar angle, 6,,» = 6, and a random azimuthal
angle, ¢. From Equation 17, it follows that

Equation 20:
( )(g; =x33=N C053(9)3
X2 = x13 =3 N cos(6) sin?(0) B
X2, = Jus = 3N cos(6) sin*(8) f = 113

)(g,)z = x14 = N cos(0) sin?(0) < cos(@) sin(p) > B =0

There are only two independent elements for the distribution of uniaxial
molecules in a cylindrically symmetric approximation (y33 and y13). The
characteristic polar angle 8 can be calculated from their ratio. Such an
arrangement can be achieved by a random distribution of molecules in a
monolayer [71] or by the formation of ordered structures such as the triple-
helical structure of collagen, which form cylindrical arrangements of
polypeptide spirals (Figure 2.3a).
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Assuming that the light propagates along the direction X and collagen is
aligned along the axis Z (Figure 2.3b), Equation 10 can be represented in the
transverse wave approximation (Ey(w) = 0):

Py(2w) = 0
Equation 21: Py(2w) = 2y15Ey(w)Ez(w)
P;Q2w) = )(31(Ey(0)))2 + )(33(EZ(0)))2

Using Ey(w) = E(w) sina and Ez(w) = E(w) cos a, where E(w) is
the electric field strength of the applied field (Figure 2.3b) [46], the SHG
intensity from Equation 6 can be changed according to Equation 21in the
following way:

2
Equation 22: 1(2w)~ [sin2 2a + (&sin2 a + %8 cos? a) ]

X15 X15

Typical dependence of the intensity (Equation 22) of the SHG signal of
collagen in rat tail tendon and their SHG images are presented in Figure 2.4.
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Figure 2.4 Polarization-resolved SHG of collagen in rat tail tendon and MT
in the retinal nerve fibers. Scale bars, 20 um. Reprinted from [72]
© copyright 2015, by permission of Informa UK Limited, trading as
Taylor & Francis Group

o

There are at least 28 types of collagen [73]. However, not all of them can
be visualized with SHG. Basically, collagen I and collagen type III give a
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signal, while collagen type IV, which is the major component of basement
membranes, cannot be visualized with SHG because its reticular, non-fibrillar
structure lacks the highly ordered, non-centrosymmetric arrangement required
for efficient SHG [19,74]. SHG microscopy is particularly sensitive to fibrillar
collagens due to their triple-helical, highly aligned structure, which facilitates
constructive interference of the emitted SHG signal [75]. In contrast, the more
amorphous and reticular architecture of collagen IV results in weak or
undetectable SHG signals. Therefore, SHG imaging is best suited for studying
the organization and remodeling of interstitial collagens such as types I and
11, which predominate in the extracellular matrix of connective tissue and
play a critical role in processes such as fibrosis, tumor progression, and wound
healing [76,77].

2.2.2 Collagen modification in fibrosis and cancer

Changes in collagen organization are a hallmark of various diseases,
including fibrosis and cancer. Fibrotic tissue typically exhibits increased
collagen deposition and altered fiber alignment, both of which are detectable
by SHG. Similarly, in the tumor microenvironment, collagen fibers can
become straighter and more directional, promoting tumor progression and
metastasis [78,79].

During carcinogenesis and cancer development, tumor cells overcome
the physical barrier formed by the basement membrane and the interstitial
matrix. This crucial step of invasion is accompanied by a profound remodeling
of the ECM, especially collagen fibrils [80]. Cancer-associated fibroblasts
(CAFs) are activated in response to tumor-derived signals and play a central
role in this process. These fibroblasts increase collagen deposition and
actively reorganize the fibrillar network, resulting in a denser, better aligned
collagen structure and contributing to increased matrix stiffness [81]. This
stiffening of the tumor microenvironment (TME) promotes
mechanotransduction signals in the tumor cells, which increases their invasive
and proliferative capabilities [82].

In parallel, tumor-associated macrophages (TAMs) and CAFs secrete
matrix metalloproteinases (MMPs) and other proteolytic enzymes that
degrade native collagen structures [83]. This controlled degradation, in
conjunction with the deposition of new collagen, leads to a dynamic
remodeling of the collagen matrix characterized by the alignment of collagen
fibers perpendicular to the tumor border. Such changes are observed in several
types of tumors and nowadays are classified as characteristic tumor-associated
collagen signatures (TACS) [79].

The TACS concept, originally introduced in 2006, describes a spatially
resolved classification of the collagen fiber organization around invasive
tumors, particularly in breast cancer, into three structurally distinct zones:
TACS-1, TACS-2 and TACS-3 [79]. TACS-1 is characterized by a dense,
tangled collagen matrix directly adjacent to the tumor mass, which represents
the earliest structural response of ECM to tumor development. TACS-2
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exhibits collagen fibers arranged in concentric, spherical shells around the
tumor, reflecting a transitional organization that may facilitate cell migration.
However, the most clinically significant form is TACS-3 — defined by
straight, linear collagen fibers-oriented perpendicular to the tumor border.
These fibers extend radially into the surrounding tissue, forming "highways"
that facilitate the directional migration of cancer cells into the stroma and
ultimately promote local invasion and metastasis [79,84]. The localization of
the TACS layers by linear protrusions of collagen emanating from the tumor
can be seen in Figure 2.5. In detail, TACS1 describes an increased collagen
deposition around the tumor, TACS2 — spherical alignment of layers around
the tumor, and TACS3 — the development of vertical collagen tracts away
from the tumor.

(@) (b)

(] I ]

TACS1 TACS2 TACS3
Figure 2.5 Illustration of TACS1-3: (a) schematic representation of a 3-
dimensional tumor, (b) magnified breakdown of the TACS layers from the
inside to the outside. Adapted from [85].

In a recent study based on multiphoton microscopic imaging in a broad
cohort of breast cancer tissue samples, a refined classification was proposed
that captures the dynamic evolution of collagen structures during tumor
progression [86]. The broader spectrum of 8 different collagen morphologies
does not replace the original TACS model but rather extends it by adding
complexity and clinical value by recognizing the gradual and multifactorial
nature of ECM remodeling during cancer progression [86]. This suggests that
a more detailed separation of collagen changes in different diseases is needed.

The altered organization of collagen fibers reduces the mechanical
constraints on migrating tumor cells, creating "highways" that facilitate
directional invasion into the surrounding tissue [87]. In addition, the
reorganized collagen network enhances integrin-mediated adhesion and the
tensile forces required for cell motility [88]. Cross-linking enzymes such as
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lysyl oxidase, which are upregulated in the TME, further stabilize and stiffen
the collagen matrix and reinforce these invasive pathways [89].

The evolution of collagen fibril organization during tumor progression is
a highly coordinated process that involves increased collagen deposition,
proteolytic remodeling, enzymatic cross-linking, and fiber realignment
Figure 2.6. These changes not only support tumor cell invasion, but also
create a tumor-friendly microenvironment that promotes immune evasion,
angiogenesis, and metastatic spread [82].

Tumor progression
Benign In situ Invasive 'S, rj*‘, '
tumor carcinoma carcnnoma\ N A

L—l L.Vh

@ Normal epithelial cell Normal fibroblast

@) Noninvasive cancer cell ‘)& CAF
@ = Invasive cancer cell @ TAM

Zzys Basement membrane - Collagen fiber
O  Lysyl oxidase —_— Collagen cross-links

Figure 2.6 Evolution of fibrillar collagen organization during tumor
progression. Reprinted from [90].

2.2.3 Collagen changes in PAH

Similar patterns of collagen remodeling and ECM dysregulation are
observed in non-malignant diseases characterized by abnormal tissue stiffness
and fibrosis, such as PAH. PAH is a rare but often fatal disease that contributes
significantly to high morbidity and mortality in both adult and pediatric
patients with lung disease [91]. A key pathological feature of all forms of
pulmonary hypertension is pulmonary arterial remodeling. This process
involves the deposition of ECM components such as fibronectin and collagen
as well as the proliferation, migration and hypertrophy of vascular smooth
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muscle cells. These changes lead to thickening and muscularization of the
pulmonary arteries and ultimately increase pulmonary vascular resistance in
PAH [92]. Although analysis of lung tissue of patients is complicated and
mainly impossible since tissue removal is a highly invasive approach, the
stages of the PAH progression can be successfully analyzed based on animal
models. To model pulmonary hypertension in animals, chemical reagent
monocrotaline (MCT) is wusually administered by subcutaneous or
intraperitoneal injections. This drug selectively damages the endothelial cells
of the pulmonary arteries and thus triggers the onset of pulmonary
hypertension [93], creating the conditions which mimic PAH.

2.2.4 Collagen changes in thyroid cancer

Thyroid cancer is the most common endocrine malignancy, accounting
for 3.4% of all cancers diagnosed annually [94]. It has a wide spectrum of
clinical behavior and histological subtypes. The most common forms include
PTC, FTC, medullary thyroid carcinoma (MTC) and anaplastic thyroid
carcinoma (ATC). Among these, PTC and FTC, collectively referred to as
differentiated thyroid carcinomas, account for more than 90% of cases and
generally have a favorable prognosis [95]. However, a subset of these tumors
exhibits aggressive behavior, including local invasion and distant metastasis,
which is strongly influenced by changes in the TME — particularly in the ECM.

Similar to other cancers, the progression of thyroid cancer is
accompanied by remodeling of the ECM. One of the major components of the
ECM in thyroid tumors is collagen, particularly types I and III. ECM
remodeling is accompanied by changes in collagen that include increased
deposition, fiber realignment, and cross-linking. Different collagen subtypes
are strongly associated with the development and progression of thyroid
cancer. In view of this, collagen subtypes are potential therapeutic targets and
biomarkers for cancer diagnosis [96].

In PTC, collagen remodeling is evident early in tumor development, with
increased deposition of types I and III collagen observed in both the
peritumoral and intratumoral regions [97]. A hallmark of PTC is the formation
of a collagen-rich capsule that initially serves as a physical barrier, separating
the tumor from the adjacent thyroid tissue. This fibrous capsule, composed
primarily of type I collagen, is often associated with a desmoplastic reaction
[97]. As the tumor progresses, the integrity of this capsule can be
compromised by enzymatic degradation and remodeling by MMPs and other
collagenases secreted by cancer cells and tumor-associated stromal cells.
Destruction of the capsule facilitates the spread of tumor cells into the
surrounding parenchyma and lymphatic vessels, contributing to the high
propensity for lymphatic spread observed in PTC [98].

In FTC, the collagen changes are more diffuse and the tumor nodules are
surrounded by a pronounced fibrotic encapsulation. Studies suggest that the
tumor capsule in FTC often contains a dense collagenous stroma that may
initially serve as a barrier to invasion. However, once this barrier is breached,
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aligned collagen pathways may serve as conduits for vascular infiltration and
hematogenous spread. Increased expression of collagen-modifying enzymes
such as lysyl oxidase has also been associated with the promotion of metastatic
potential in FTC [99].

2.3 SHG Microscopy for disease diagnostics

Alterations of collagen structure that could potentially serve as an early
diagnostic marker have been studied with SHG microscopy in a number of
types of cancer, such as breast [100], ovarian [101], skin [102], lung [103],
colonic [104], prostate [105], thyroid [21,106] and other kinds of tumors.

SHG imaging is label-free and non-destructive. It enables high-contrast
imaging without the need for external dyes or markers. Since no staining is
required, collagen architecture remains intact, which is crucial for subsequent
quantitative analyzes. These properties make SHG imaging a potential tool for
in vivo imaging, with the results obtained on tissue sections serving as proof-
of-concept for future experiments. In fact, there are already clinical variants
of SHG imaging systems (e.g. JenLab’s MPTFlex) already exist with
applications in skin pathology [107]. SHG imaging belongs to a family of
complementary nonlinear optical methods such as two-photon excitation
microscopy (TPEF), third harmonic generation (THG) and coherent anti-
Stokes Raman scattering (CARS), which generally require little or no
modification to the microscope and can be used in parallel to provide different
contrast sources on the same sample surface.

2.4 TImage analysis for medical purposes

Medicine is one of the most dynamic and rapidly evolving fields, driven
by the constant search for tools to improve diagnostic precision and
therapeutic monitoring. Medical imaging has evolved from simple mechanical
tools to sophisticated, technology-driven systems capable of visualizing the
intricate structures and functions of the human body. Modern imaging
encompasses a wide range of techniques, each based on different physical
principles and tailored to specific clinical applications. The general medical
image analysis workflow includes the following crucial steps: (i) extraction
and selection of meaningful features of images, (ii) image segmentation and
selection of regions of interest (ROIs), (iii) image classification based on the
specific patterns of the images and relation of the images to the some medical
condition (normal state, disease, type of the disease, stage of the disease, etc.).

2.4.1 Types of medical images

Common methods include ultrasound, which relies on the reflection of
sound waves to image soft tissue and blood flow; radiography and computer
tomography, which use ionizing radiation to capture internal anatomical
details; MRI, which uses magnetic fields and radio waves to image soft tissue
with high resolution, taking into account both functional and structural
aspects. Positron emission tomography (PET) allows imaging of metabolism
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by tracking radiotracers, while endoscopy provides direct visual access to
internal organs. Thermography is an external imaging modality for
dermatologic  assessments.  Histopathologic  techniques such as
immunohistochemistry (IHC) and hematoxylin and eosin (H&E) staining
remain essential for microscopic assessment of cell architecture and
biomolecular markers. Moreover, other forms of microscopy, such as SHG
microscopy for visualization of collagen fibers and tissue microarchitecture,
expand the toolkit of medical imaging [108].

In addition, all measurement and recording techniques such as
electroencephalography and magnetoencephalography, which are not
primarily used to generate images but produce data that can be displayed as
maps, can be considered forms of medical imaging [109].

2.4.2 Major medical image features applicable for diagnosis

To extract clinically relevant information from medical images, robust
analytical methods are required. Traditional quantitative methods start with
FOS and focus on the intensity values of individual pixels to derive features
(detailed descriptions in subsection FOS Analysis of PTC/FTC SHG
images). While these measures are simple, they often lack spatial context.

To capture more complicated spatial patterns, second-order statistics
such as the gray level co-occurrence matrix (GLCM) evaluate the frequency
of pixel intensity pairs in specific spatial relationships, providing insights into
texture properties (detailed descriptions in subsection SOS Analysis of
PTC/FTC SHG images). More advanced higher-order statistics such as the
gray level run length matrix (GLRLM) examine the length and distribution of
consecutive pixels with identical intensity and provide a detailed
characterization of texture (detailed descriptions in subsection HOS Analysis
of PTC/FTC SHG images), which is particularly valuable in the analysis of
pathological tissue [110].

In addition to spatial statistical methods, frequency domain analysis
using the fast Fourier transform (FFT) is used to assess image anisotropy by
calculating orientation indices (detailed descriptions in subsection FFT
Analysis of SHG images of rat lung tissue samples). This is particularly
effective in the analysis of fibrous tissue networks, such as collagen, where
orientation and organization play a crucial role in disease progression.

Texture analysis in particular has emerged as a crucial method due to its
balance of interpretability and diagnostic relevance. In contrast to purely
abstract features, texture descriptors often match histopathologic patterns
observed by clinicians, making them a valuable bridge between automated
analysis and expert interpretation [111].

2.4.3 ML for image segmentation

With the advent of ML, the automation of image segmentation tasks has
reached an unprecedented level of precision. Unsupervised learning
techniques such as k-means clustering allow images to be divided into
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meaningful regions without the need for extensive annotated datasets. These
methods group pixels based on feature similarity and effectively highlight
structures such as tumors, organs, and vascular networks in complex
anatomical landscapes [112].

The integration of DL has significantly improved segmentation
capabilities. Convolutional Neural Networks (CNNs), especially architectures
such as U-Net and its variants, have shown exceptional performance in
describing fine anatomical boundaries and complex tissue morphologies. In
contrast to conventional ML methods, DL models automatically learn
hierarchical feature representations directly from raw image data. This
eliminates the need to create features by hand and significantly improves
segmentation accuracy across different imaging modalities [113]. However,
despite these considerable advantages, DL approaches also have their
limitations. One major problem is the high computational cost, as training
deep neural networks requires powerful hardware and extensive memory
resources.

2.4.4 ML for image classification

In medical image analysis, classification tasks play a decisive role in
diagnostics and decision-making processes, e.g. in differentiating between
benign and malignant tumors or in identifying stages of disease progression.
Importantly, each classification task is unique as it is highly dependent on the
type of input data, the specific medical condition under investigation and the
goals of the clinical application. Therefore, there is no universal model that is
suitable for all tasks. Selecting the appropriate classification algorithm
requires a careful understanding of the data set and the problem at hand.

There are different types of classification tasks. Two very different types
of classification should be emphasized: Binary classification, when there are
only two possible outcomes, and multi-label classification, when there are
more than two possible outcomes.

When faced with a new classification problem, it is advisable to start with
well-established, classical machine learning algorithms such as Random
Forest (RF) [114], Logistic Regression (LR), eXtreme Gradient Boosting
(XGBoost) [115], Light Gradient-Boosting Machine (LightGBM) [116], C-
Support Vector Classification (C-SVC) [117] and Multi-Layer Perceptron
(MLP) [118]. Not only are these models relatively quick to train and easy to
tune, but they also offer a significant advantage in terms of interpretability. In
particular, many of these algorithms can provide insight into the importance
of features, allowing researchers and clinicians to understand which factors
most influence classification results.

DL models, especially CNNs, have shown top performance in many
image classification tasks. These models excel at learning complex, non-linear
patterns directly from raw data and often outperform classical approaches in
terms of accuracy, robustness to noise, and their ability to generalize to new,
unseen datasets [119]. However, DL models largely act as "black boxes".
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Unlike classical models, they do not readily reveal which features were most
influential in the predictions. While post-hoc interpretation tools such as Grad-
CAM [120] or integrated gradients exist, they do not yet offer the same level
of clarity or reliability as the feature importance measures of classical
algorithms. While DL is powerful, its opacity remains a limitation, especially
in clinical settings where explainability is critical.

2.4.5 Medical image quality

The quality of medical images is a critical factor influencing the accuracy
of diagnostic interpretations and the performance of ML models. Medical
imaging data is often affected by various sources of noise. These include label
noise (which stems from diagnostic ambiguities or inter-observer variability)
and feature noise (which stems from acquisition artifacts, patient motion, or
suboptimal imaging conditions).

Real-world clinical data also suffers from heterogeneity in imaging
protocols, equipment, and operator skills, which complicates model training
and deployment. To mitigate these challenges, advanced pre-processing
techniques such as denoising algorithms, artifact correction and data
augmentation are routinely used. In addition, harmonization strategies aim to
standardize data between different imaging centers and thus improve the
generalizability of models.

Newer DL-based approaches also offer robust solutions for noise
reduction and quality improvement. Techniques such as adversarial training,
self-supervised learning and noise-tolerant algorithms enable models to learn
effectively from imperfect data. Furthermore, the inclusion of expert
validation loops during training helps to correct mislabeled samples and
ensures that the models are trained on highly realistic data [112,113].

As medical imaging continues to evolve, adherence to strict standards for
image quality and data integrity remains essential to realize the full potential
of ML and DL in clinical practice.
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3 MATERIALS AND METHODS

3.1 Maternals
3.1.1 Rat PAH model

Pulmonary arterial remodeling in rats, including the modification of the
ECM, additional deposition of collagen, hypertrophy of vascular smooth
muscle cells, thickening and muscularization of the pulmonary arteries was
studied using MTC based PAH model.

PAH was chemically induced in the rats by injections of MCT (Sigma-
Aldrich) at a dose of 60 mg/kg according to the procedure described in the
study [121]. This drug selectively damages the endothelial cells of the
pulmonary arteries and thus triggers the onset of pulmonary hypertension [93].
The studies were performed on 64 outbred white rats (Wistar, male, 200 g —
250 g) purchased from the Experimental Animal Center of the Belarusian
Medical Academy for Postgraduate Education. Twelve animals were
separated into a control group and considered healthy animals, while 52
animals were sorted into a PAH group treated with MCT.

After the MCT injection, the rats in the PAH group were randomly
divided into four groups: 2 weeks, 4 weeks, 6 weeks and 8 weeks. Each group
consisted of 13 animals. The results were compared with the corresponding
data for healthy animals.

3.1.2  Preparation of the rat lung tissue sections

Sections of lung tissue were fixed in 10% neutral formalin for 48 hours.
They were then washed in a stream of water for 24 hours and dehydrated in
ethanol of increasing concentrations (70%, 80%, 90%, absolute ethanol). Then
the tissue samples were passed through ethanol-xylene, xylene, xylene-
paraffin and finally embedded in paraffin. Slices of 3 pm — 4 pm thickness of
the prepared tissue were stained with H&E [122].

3.1.3 Preparation of the papillary and follicular thyroid carcinoma
tissue sections

Tissue sections of PTC and FTC nodules were prepared according to
standard histologic procedure [123]. Proper alignment of thyroid tissue is
crucial for the preparation of tissue sections that provide valuable diagnostic
information and allow visualization of cellular and structural details required
for accurate histologic analysis [124]. Either the entire thyroid gland or one of
its lobes, which were surgically removed, were examined macroscopically to
identify important anatomical features such as the thyroid capsule, isthmus
and possible lesions. To demonstrate the relationship of a focal lesion to the
thyroid capsule, the thyroid gland was sliced perpendicular to the long axis of
each lobe. In our case, the tissue contained nodules, so these areas were
positioned so that they were cut at their longest extent to capture the full extent
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of the pathology. The prepared thyroid tissue blocks were embedded in
paraffin. Then, the formalin-fixed, paraffin-embedded tissue blocks were cut
into 4 pm — 7 pm thick sections, placed on glass slides, and stained with H&E.
Although H&E staining affects SHG imaging [125] and leads to a decrease in
average pixel intensity, this does not affect the quantitative analysis of SHG
data.

3.2 Experimental methods

3.2.1 Immunohistochemical study of rat lung tissue sections

Immunohistochemical study of the expression levels of molecular
markers (collagen I, III and metalloptotease (TIMP) -1) was carried out using
the following monoclonal antibodies: (i) polyclonal rabbit IgG for Collagen
type I (Abcam), (ii) polyclonal rabbit IgG for Collagen type III (Thermo
Fisher scientific), (iii) monoclonal mouse IgG1 for TIMP-1 (Thermo Fisher
scientific).

For THC studies, tissue samples were deparaffinized in xylol by two-step
washing for 10-15 minutes for each step. Then the slices were rehydrated in
alcohols of decreasing concentrations followed by washing in distilled water.
Then heat-induced epitope retrieval was performed in a microwave oven in
0.01 M citrate buffer pH 6.0 (Carl Roth GmbH) for 10 minutes, preheating the
retrieval buffer in accordance with the standard protocol as described in [126].
The IHC staining was performed according to the following protocol.
Incubation with primary antibodies was carried out in a humid chamber for
about 1-2 hours at 37°C or 24 hours at 4°C. Then, the slices were treated by
Polymer Helper and Polyperoxidase-Anti-Mouse/Rabbit IgG, containing a
complex of secondary antibodies and chromogen diaminobenzidine (DAB)
(Elabscience), at 37°C for 20 and 30 minutes, respectively. After each step,
the slices were rinsed in phosphate buffered saline. After staining with DAB,
sections were counterstained with H&E.

Then the slices were placed in absolute ethanol two times for 7 minutes,
afterwards in xylene two times for 10 minutes, and then the slices were
embedded in Canadian balsam (AppliChem). To control the activity of
primary antibodies (to exclude false positive and false negative results), one
negative and one positive control staining were performed in each
experimental series. As a negative control, the slices pretreated with 1%
bovine serum albumin solution (Helix) instead of incubation with the primary
antibody were used. For positive control, lung (TIMP-1), kidney (collagen I),
and ovarian (collagen III) tissues were examined.

DAB serves as a chromogen that enables the visualization of antibody-
antigen reactions in IHC. At the site where the antibody binds to the antigen
(collagen I, I and TIMP-1), a brown precipitate is formed in the tissue section
by DAB. The brown colored areas of the tissue sections reflect the degree of
protein expression in the tissue sample and can be quantified to determine the
index of expression.
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The quantitative assessment of the expression of biomolecular markers
was carried out by analyzing digital images obtained with Leica DMLS
microscope using the pre-installed software and a JVC digital camera (at 400x
magnification, at least 30 view areas). The positive pixel count algorithm and
software for morphometry AperiolmageScopel2.1.0.5 were applied.

The image analysis yielded data on the prevalence and intensity of the
brown color of the DAB reaction products in tissue slices. Digital images of
non-overlapping areas with clearly defined nuclei, cells and vessels of the
lungs were selected. The index of expression (IE) of biomolecular markers
was calculated using the Equation 23:

Number of positive pixels

Equation 23: IE = 100

Total number of pixels

3.2.2 Brightfield imaging

Lung tissue samples from healthy animals (control group) and from
animals with PAH at weeks 2, 4, 6 and 8 of disease progression were examined
by a combination of brightfield, TPEF and SHG microscopy of H&E-stained
samples simultaneously on a single, custom-built wide-field nonlinear
microscopy setup, described below. Bright-field color transmission images of
lung tissue samples were acquired using a DCC1645C-HQ Complementary
metal-oxide—semiconductor (CMOS) camera (Thorlabs).

Thyroid carcinomas tissue sections were imaged using a brightfield
Aperio LVI1 IVD Whole Slide Scanner (Leica Biosystems) with a 20x
objective. Labeling of the bright-field images and identification of the ROI of
capsular invasion were performed by experienced histopathologists.

3.2.3 Wide-field SHG and TPEF microscopy imaging

A custom-built wide-field non-linear microscopy setup based on a
modular microscope (Applied Scientific Instruments), described in detail in
[22], was used. A sample area of approximately 150 um x 150 um was
illuminated with a FemtoLux3 laser (Ekspla) featuring a 1030 nm wavelength,
circular polarization state, 262 fs pulse duration, 1 MHz pulse repetition
frequency, and 1.5 W of average power at the sample. The excitation
wavelength was chosen because its second harmonic can be easily detected by
standard CMOS detectors. The laser power remained constant during
measurements and was always set to the maximum generated by the laser. The
laser beam was expanded 4x with an adjustable beam expander VEX18
(Optogama) and focused onto the back focal plane of the illumination
objective using an achromatic lens with a 250 mm focal distance. The
resulting image was detected in the forward direction using a UPlanFL N
40%/0.75 objective (Olympus) and a Neo 5.5 sCMOS camera (Andor
Technology Ltd) with a pixel size of 6.5 pm, providing a lateral resolution of
approximately 0.5 um. The SHG signal was separated by a high-pass dichroic
mirror T9OOLPXXRXT (Chroma Technology GmbH) and a bandpass
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dielectric filter FFO1-513/13-25 (Semrock), while fluorescence signals were
separated using long-pass optical filters. The scheme of the SHG imaging
setup is shown in Figure 3.1.

sCMOS

~ Tube lens
Laser Beam expander  Lens Sample Filters )
Illumination || Detection Dichroic
objective U objective mirror

Figure 3.1 The scheme of the SHG imaging setup. Reprinted from [Paper C].

Tiled images of 150 um X 150 um of rat lung tissue sample areas were
obtained by scanning the sample with a motorized mechanical stage S551-
2201B (Applied Scientific Instruments). Both SHG and fluorescence image
integration times were 0.5 s for lung tissue samples, and scanning a tiled
image of 2.1 mm x 2.1 mm took approximately 2.6 minutes.

Large sample areas of thyroid tissue sections were scanned with the same
motorized stage. The camera integration time was 0.1 s. The overall
acquisition time of one sample was less than 40 minutes. In total, 5 sections
of whole PTC nodules and 5 FTC tissue sections were imaged for this work.

3.2.4 Polarization-resolved SHG imaging

For polarization-resolved wide-field SHG imaging, a custom designed
microscope, described in 3.2.3, was upgraded by integrating input laser
polarization control. This involved incorporating a polarization state generator
(PSG), which comprised a half-wave plate AHWP05M-980 (Thorlabs) and a
quarter-wave plate AQWP0O5M-980 (Thorlabs) positioned in motorized
rotation mounts PRM1 (Thorlabs). Prior to imaging, polarization state
calibration was conducted for each desired linear polarization state using a
polarimeter PAX1000IR1 (Thorlabs) in front of the illumination objective.
The input laser polarization control process resembled the one outlined
previously [127], resulting in values less than 0.1 for the ellipticity of the
linear polarization states. The LabVIEW code, specifically designed for
controlling the wide-field SHG microscope, was modified to facilitate the
automated control of the PSG. Polarization-resolved image stacks were
captured at various linear polarization angles ranging from 0° to 180° in 20°
increments. Each polarization state was imaged with an exposure time of one
second, with a 3-5 second delay time for switching between polarization states
based on the transitions. A single PSHG stack, covering a 300 pum x 300 um
area, was recorded within 45 seconds. To encompass the entire thyroid nodule,
a mosaic of 20x20 individual PSHG stacks was captured, taking
approximately 8 hours. Automated sample movement was ensured by a
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motorized XY stage S551-2201B (Applied Scientific Instruments). The
imaging duration was limited not by the camera exposure itself but by the
transition times between polarization states. While the recorded images were
2048 px x 2048 px only the central part of each stack of 1500 px x 1500 px
corresponding to 219 um x 219 um was retained after cropping to remove any
uneven illumination artifacts. The final mosaic covering the entire nodule was
assembled using a custom-written ImageJ macro.

3.3 Data preprocessing algorithms and ROI selection

3.3.1 ROI Selection in SHG images of lung tissue samples

Due to the high signal intensity, no specific preprocessing of the images
of lung tissue samples was performed. The selection of ROIs for analysis was
performed according to the following procedure. The square ROIs with a size
of 150 um X 150 um were selected so that they were no further than 500 pm
from the blood vessel wall (see Figure 3.2). This selection was made to detect
the remodeling of the collagen network in the lung tissue that accompanies the
progression of PAH and leads to the main manifestations of the disease in the
form of vasoconstriction, congestion, increase in blood pressure, etc. For each
experimental group (samples from healthy animals and from animals at
different stages of PAH progression), 50-80 non-overlapping ROIs were
selected (see Table 3-1, for the number of ROIs selected for each experimental

group).

Figure 3.2 Scheme of ROI selection in larg-scale SHG images of rat lung
tissue samples. Dashed red line indicates the annular region for ROI selection
around the vessel, blue squares indicate the ROIs. Dashed magenta line marks

the blood vessel wall. Adapted from [Paper A].

431,

Table 3-1 Number of ROIs selected for analysis. Adapted from [Paper A].

Experimental group  Number of ROIs

Control 48
PAH 2 weeks 78
PAH 4 weeks 52
PAH 6 weeks 43
PAH 8 weeks 47

All 268
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3.3.2  Preprocessing of non-polarized SHG images of PTC/FTC

For PTC and FTC samples, the schematic workflow of the SHG image
preprocessing is shown in Figure 3.3.

)
—

72 SHG images
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(G}
T
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Figure 3.3 PTC/FTC SHG image preprocessing workflow: a) SHG scanning
and cropping, b) thresholding and denoising, c¢) histogram normalization.
Reprinted from [Paper C].

Each SHG image of a 150 um x 150 um sample area was centrally
cropped to 117um X 117 um to reduce the impact of illumination
inhomogeneity due to the Gaussian laser beam intensity profile (Figure 3.3a).
Then, images were thresholded at 110 counts, with 100 counts representing
the electronic camera threshold, and an additional 10 counts allocated to
account for the camera-associated background noise (Figure 3.3D).

For the subsequent texture analysis, the usual 16-bit image conversion to
8-bits was not performed. Instead, the reduction of the number of considered
grey levels in an image was carried out in the following way. The 99™
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percentile was calculated for each image from a set to remove random
intensity outliers within each image [128]. Then the 99™ percentile of the
resulting distribution was calculated to exclude outlier images. The latter
appeared to be 838 and was set as the upper threshold for all images
(Figure 3.3¢). Such a procedure enabled preservation of valuable texture
information that is often lost during the 16-to-8-bit conversion.

3.3.3 PSHG Parameter map preprocessing

Each PSHG image stack was subjected to the processing steps described
in detail in [123]. The experimental data fitted pixel-by-pixel using a
theoretical curve that characterizes the changes in SHG intensity from
collagen with the linear polarization of the input laser. This model for
collagen, known as the single-axis molecule model [70], depicts the SHG
intensity as follows:

Equation 24. Isyg ~ [)(125 - sin® 2 (p—a)+
+(x31 - sin®(@ — @) + + x33 - cos? (¢ — a))?].

Here, a represents the polarization orientation of the excitation beam, ¢
denotes the in-plane orientation of collagen, and y;s5, Y31, X33 are the only
nonzero elements of the macroscopic nonlinear susceptibility tensor ()((2))
assuming cylindrical symmetry of collagen.

For polarization resolved SHG image analysis, the preprocessing was
performed differently due to the use of a modified experimental setup. The
maps of polarization-related parameters of 30000 px x 30000 px, including
X31/X15 X33/ X15 X33/ X31, and 8, were subjected to a filtering process to
exclude pixels with R? < 0.8. Subsequently, the maps were downsampled by
calculating average parameter values within image tiles measuring 100 px by
100 px.

3.4 Feature extraction algorithms
3.4.1 FFT Analysis of SHG images of rat lung tissue samples

The anisotropy of the collagen fiber network was quantified by the
orientation index (OI) of ROI images of lung tissue samples. The transformed
image from each ROI (Figure 3.4b) was binarized with a threshold of 0.38,
computed by the Otsu method [129]. Despite the presence of some residual
noise, a binary image with a significant elliptical structure was obtained
(Figure 3.4c). A predefined 2-D circular averaging filter for remaining noise
removal (radius = 3 px) was applied (Figure 3.4d). The received ellipse was
approximated by second order curve using a least squares fitting method
(Figure 3.4e) [130].
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Figure 3.4 FFT processing and ellipse parameters calculation: a — image of a
selected ROI, b — the result of FFT of the SHG image, ¢ — result of
binarization, d — 2-D circular averaging filter implementation, e — second
order curve approximation. Reprinted from [Paper A].

Ol is calculated through the long-to-short ellipse axis ratio obtained via
FFT analysis of the ROI [131] by the following formula:

Equation 25: 01 = [1 - (M)].

long axis

That is the O = 0 and OI = 1 correspond to the randomly and perfectly
oriented collagen fibers, respectively.

3.4.2 FF-PSHG Analysis of PTC samples

FF-PSHG analysis [132] was employed to extract the collagen's
biophysical parameters based on the proposed model. In brief, the FF-PSHG
calculates the Discrete Fourier Transform (DFT) coefficients for each pixel in
the PSHG image set, which are then utilized to determine the free parameters
of the collagen model. Through this pixel-by-pixel fitting approach, three
images were computed depicting ratios of y® elements (x31/X1s> X33/X15
and y33/x31), one revealing the collagen's angular distribution (¢), and
another showing the orientation of the dominant axis of the hyperpolarizability
tensor (6,). The latter was previously correlated with the helical pitch angle
of the collagen triple helix and can be defined as follows [70]:

X33/X1s

Equation 26: cos? 8, = PyS——
33/A15

Three assessment methods for the fitting inherent to the FF-PSHG
analysis were used to eliminate pixels unsuitable for statistical testing: the
coefficient of determination (R?), a signal-to-noise ratio (SNR) [133] and an
experimental error (ERR). All were determined on a pixel-by-pixel basis,
resulting in the generation of corresponding maps. SNR and ERR were
calculated based on DFT coefficients having biophysical significance
according to the collagen model [134].

3.4.3 FOS Analysis of PTC/FTC SHG images

FOS describes the distribution of pixel intensity values in an image
without considering their spatial arrangement. The calculated FOS parameters
are the following: mean (y,), standard deviation (o), skewness or asymmetry
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(g1), and kurtosis (g,) of the intensity distribution histogram. FOS parameters
are extracted from the gray level histogram (inter-pixel correlations were
ignored).

The different FOS parameters yield collagen content [135], its
uniformity, and density [136]. Specifically, p; and o relate to the amount of
collagen and homogeneity of its distribution in the sample. The g, value is a
measure of asymmetry of the distribution of pixel intensities. The g, value
indicates how closely the distribution of pixel intensities resembles the normal
distribution. Strong SHG signals usually result in a wide distribution of pixel
intensities, and consequently, low value of g, [135]. Detailed description and
mathematical expressions of FOS parameters, as well as their relationship to
the collagen fiber content and spatial organization are presented in 7able 3-2.

Table 3-2 FOS parameters description with assignment to the collagen
texture. Adapted from [Paper C)|.

Assignment to the collagen

Parameter Mathematical expression Description texture (examples)
High p, — high collagen
N—1 content (amount of collagen
Mean = i z I A mean value of image fibers is proportional to the
TTNZ L intensity. detected SHG signal) [137].
Lj=0 Low i, — thin and sparse
fibrillar organization [35].
Overall contrast of the
_ 2 A deviation of the image image [137].Low ¢ —
Stagde}rd z:?.’1510(1 [ “1) intensity from the mean homogeneous, high o —
deviation o=l =—m-—— 1 h 1
N value. eterogeneous collagen
distribution in ROIL
High g, (right-skewed
A measure of the degree of  intensity distribution) —
asymmetry of the pixel presence of several thick
Uz i Z’i"’].—:lo(]l.yj - ll1)3 intensity distribution, i.e., an ﬁbn‘ls'[35]. g, allows
Skewness g1 = A =0 B T E— extent of darker (left detection of edges of fibers
H, 2 skewness) or brighter (right  or level of difference from
skewness) pixels compared ~ background [137], positive
to the mean value [35,137] for darker and glossier
surfaces [137].
A measure of the pixel
intensity histogram
sharpness.
>0 — leptokurtic distribution ~ Low kurtosis — developed
g, = -3+ M_‘z* = (positive g,, wide tails) collagenous networks
Kurtosis Ha . =0 — mesokurtic distribution  covering large areas and
B Zf"j‘:lo([i}j - ) (the pixel intensity generating strong SHG
=-3+07* T distribution coincides with signals (a wide distribution
the normal distribution) of pixel intensities) [35].
<0 — platykurtic distribution
(negative g,, narrow
tails) [35,137]
Note: yy, = %ZiN,j;%)(li,i - ul)k — the k™ moment about the mean y,, where I;j — intensity of a pixel, N2 — number of

pixels for a square image.

3.4.4 SOS Analysis of PTC/FTC SHG images

SOS has to do with the relative positions of the different gray levels
within an image. The SOS parameters are obtained from the GLCM, which
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represents the occurrence of two pixels with certain gray level values i and j
at a distance d and at an angle 6 relative to each other. For a rectangular image
with M rows and N columns, having M xN pixels, the GLCM is defined by the
following equation [138]:

Equation 27: GLCM; ;(6,d) =
Lif I(x,y) =i
= ¥=125=1 1if I(x+dcos(8),y +dsin(0)) =j.
0 otherwise.

To eliminate the dependence of GLCM on the chosen direction 6, the
GLCM was averaged over 4 directions of 8 € {0°,45°,90°,135°}:

Equation 28: si;(d) = %Zg GLCM;;(0,d).

The direction-averaged GLCM was calculated for 5 values of the distance
d €{1,3,6,9,12}. The step size of 3 px was chosen because it is
commensurate with the optical resolution of the experimental setup. The
texture parameters calculated from the GLCM are the following: energy or
uniformity or angular second moment (£), contrast or inertia (/), correlation
(0), local homogeneity or inverse difference moment (L), and entropy (H)
[139]. Detailed description and mathematical expressions of SOS parameters,
as well as their relationship to the collagen fiber content and spatial
organization are presented in
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Table 3-3 SOS parameters description with assignment to the collagen texture.

Adapted from [Paper C].

Assignment to the collagen

Parameter Mathematical expression Description texture (examples)
A measure of how often similar
pixel values are found together
Ng—1 at the distance d. Low E — less
_ 2 smooth ROI (uniformly Low E — disordered fibers, low
Energy E(d) = Z [s:(@] distributed s(d), no dominant  uniformity [143].
Lj=0 levels of brightness, gray levels
are equally probable [35]) [140—
142].
High I — highly dense collagen
A measure of the local intensity ~ bundles (“a collagen network
variation (heterogeneity). High /  with well-formed fiber
Ng—1 value — high variability of gray ~ containing large amounts of
Inertia 1(d) = Z (i— j)zsi']’ (d) levels between neighboring collagen’ [144]), foci of collagen
i7=0 pixel at the distance d (high- synthesis, no preferential
contrast ROI). Low / — alignment of orientation [35],
homogenous ROI [35,140-142].  wavy fibers or randomly
arranged fibers [143].
A metric of periodicity
(correlation between gray levels
of neighboring pixels at the
distance d in two different High C — the presence of
. Cd) : directions) [35]. C = 0 for periodic structures (e.g., spatially
Correlation Zi,f:o () (} - Iiy)si, i@ completely uncorrelated gray ordered collagen fibers) [143] or
- 0.0 levels (no regular structure). one or several repeated
xTy
C = %1 for patterns [35].
positively/negatively correlated
levels (texture structures are
repeated) [140-142]
A measure of the local High L — dense or thick collagen
L(d) = homogeneity of an image. If the  fibers [35]. Low L — spreading of
Local Ng—1 1 L value increases, the incidence  the network of thin and
homogeneity = Z ——5;(d) of pixels’ pairs co-occurrence is  disordered collagen fibers and
5o 1+@E=-DN enhanced. High L — the image is ~ the development of
homogeneous [140-142]. fibrosis [145].
A degree of fiber
A measure of how random the organization [137]. Low H -
. . . . poorly separated fibers,
pairs of pixels at distance d in homogencous local collagen
the GLCM are distributed S colag
_ . SR morphology [35]. High H —
H(d) = (spatial organization inside X L
Ne—1 X bright and distinct but not
G ROI). High H — rough, coarse- .
Entropy . . necessarily ordered collagen
=— sij(d) log[s;j(d)|  grained textures, high structural fibers standing out from a
i7=0 complexity [35]. Low H —

smooth or homogeneous
images [35], high regularity
degree [140-143].

homogeneous background,
structural complexity [143];
Extensively disorganized
collagen fibers [145], disordered
collagen network [144].

Note: s;,;(d) = ¥ GLCM; ;(6,d) . 0% = £}

i=0

(i~ m)? 2% sij(d), o = 5]

N iR s (d), py = X0 RS sy (d).

3.4.5 HOS Analysis of PTC/FTC SHG images

Ng-1
0

X 2 -
(] - Hy) Z?I:GO 1Si,j(d): Hx =

HOS describes the properties of groups of pixels with different gray level
values occurring at specific locations relative to each other. The HOS
parameters were calculated from the GLRLM, which represents the
occurrence of a group of pixels of a certain size (run length) j with the same
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gray level 7 in a certain direction @ [146]. For the same rectangular image
(M N dimension):

Equation 29: GLRLM(g,7|6) = XL, 33, 6(1:,9) - 6(L;j(6),7).

Here, g represents the gray level g € {1,2, ...,Ng}, where N is the total
number of gray levels; r is the length of a consecutive run of pixels with the
same gray level r € {1,2,...,N,.}, where N, is the maximum run length;
&(x,y) is the Kronecker delta function, which equals 1 if x =y and 0
otherwise; L; j(6) is the length of a continuous run of pixels with the same
gray level g, starting from position (7, j) in the direction 6.

To eliminate directionality, GLRLM averaged over 4 directions:

Equation 30: p; j = %29 GLRLM(0).

The texture parameters calculated from the GLRLM are the following:
short run emphasis (SRE), long run emphasis (LRE), gray-level non-
uniformity (GLN), run length non-uniformity (RLN), and run percentage (RP)
[139]. Detailed description and mathematical expressions of HOS parameters,
as well as their relationship to collagen fiber content and spatial organization
are presented in 7able 3-4.

Yaraslau Padrez



54 | MATERIALS AND METHODS

Table 3-4 HOS parameter description with assignment to the collagen texture.
Adapted from [Paper C].

Extracted

Assignment to the collagen

parameter Mathematical expression Description texture (examples)
A measure of the
Ne=1Ng dlstrlbut{on of short runs High SRE — a fragmented
Short Run 1 Di,j (emphasizes short runs of
. SRE = — Z Z —= X collagen network; small and fine
Emphasis (SRE) T, j2 pixels) [146]. The SRE
Rz = e bundles of fibers [144].
J value is high for fine-
grained textures [147,148].
A Measure of the High LRE'f the presence of more
I long runs in the image,
Ne—1 N, distribution of long runs -
G R R corresponding to coarse features,
Long Run LRE = ! z z j*p (emphasizes long runs of possibly due to large collagen
. =— i . . s
Emphasis (LRE) Tr o & pixels) [146]. The LRE is bundles present in the network,

large for coarse structural
textures [147,148].

with a certain level of orientation
of bundles [144]

Gray Level
Nonuniformity

(GLN)

A measure of the similarity
of gray level values
throughout the image. The
GLN is small for gray levels
that are alike throughout the
image [147].

High GLN — regions of structural
complexity or heterogeneity (for
PET images, not collagen) [149].
Low GLN — a homogeneous
image, a low amount of collagen,
a loose network of the curled
morphology [144].

A measure of the similarity

Run Length Ng (Ne—1 2 of the length of runs. The High RLN (in PET images of
Nonuniformity RLN = — z Dij RLN is small if the run neuroblastoma) — high intratumor
(RLN) =\ =0 lengths coincide throughout  heterogeneity [149].

the image [146,147].

A measure of the

homogeneity and the

1 N1 Ne distribution of runs of an
Run Percentage RP = T_P Z Z Pij 1mage in a specific High RP — a large portion of the
(RP) i=0 j=1 direction. The largest RP image is covered by runs [144]
Tr corresponds to the case g Y '
T, when the length of runs is 1

for all gray levels in specific
direction [147].

1
Note: p; j = 229 GLRLM; ;(0); T = ¥;5

Ng—1 Ny

j=1Pij3

Tp is the number of pixels in an image.

3.4.6 Statistical analysis of image parameter distributions for rat

lung tissue samples

The statistical significance of the difference between the distributions of
various parameters calculated on images from healthy control group and PAH
animals was performed by statistical analysis of variance (one-way ANOVA)
by applying an unpaired two-tailed Student’s T-test.

3.5 Unsupervised ML
3.5.1

Since the magnitudes of the different intensity and texture parameters are
widely disparate, in order to be able to use the calculated distributions in the
joint analysis, they were standardized using the Robust Scaler algorithm
according to the formula:

Data standardization and Pearson’s correlation
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. > —Medi
Equation 31: X = w,
IQR

where X is the parameter, Median is the median value of the distribution of
the parameter, interquartile range (IQR) is the (1, 99) percentile range, and X
is the standardized parameter.

To simplify the analysis, first, redundant parameters with strong
correlations were determined and then excluded from further analysis. For
that, Pearson’s correlation was calculated for all combinations of parameters
according to the formula:

Equation 32: Corr(X,Y) = Cov(X,Y)’

0%y

where Corr(X,Y) is a correlation matrix, Cov(X, ¥) is the covariance matrix,
and oy and oy are the variances of the parameter distributions X and Y,
respectively. The Pearson’s correlation is a measure of the strength of the
linear relationship between two continuous variables and ranges from -1 to
+1. A value of -1 indicates a perfect negative linear correlation, 0 - no
correlation, and +1 - a perfect positive correlation. Correlation coefficients
between 0.36 and 0.67 (absolute values) indicate moderately (positively or
negatively) correlated variables [150]. Parameters with Corr()?, 17) =09
were excluded from further analysis.

3.52 PCA

PCA is a non-parametric method for extracting valuable data from the
original dataset. PCA was applied to the remaining set of intensity and texture
parameters. PCA was performed using a singular value decomposition [151]
of the data to project it into a low-dimensional space. PCA comprises a linear
transformation of the original data set of correlated variables into a low-
dimensional set of representative variables that together capture most of the
information present in the original data by calculating the so-called principal
components (PCs) [152—155]. The PCA is based on three main concepts: (i)
eigenvalues of the covariance matrix of the original variables, which represent
the data variance along each new dimension; (ii) orthogonal eigenvectors,
which form a basis of the new data space and are expressed in terms of
loadings related to the original variables; and (iii) scores, which represent the
coordinates of the observations (data) in a new low-dimensional space. The
number of PCs reflecting the most of the variability in the original data set
was determined according to Kaiser’s Rule with Jolliffe threshold [153]:

Equation 33: A; > 22&1 Ais

where 4; are the eigenvalues of the covariance matrix Cov(X,Y), T= 0.7 is
the threshold value, and # is the number of eigenvalues.
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3.5.3 k-Means clustering

k-Means clustering belongs to a group of unsupervised ML algorithms
and allows data to be categorized into classes by grouping observations with
similar sets of parameters. Each observation is considered as a point in the
multidimensional space of parameters and the grouping of observations is
achieved by minimizing the distance between points in the multidimensional
Euclidean space [156]. In our case, each tile SHG image corresponds to one
such observation.

The clustering of the data was performed with k-means based on Lloyd's
algorithm [157]. The algorithm "k-means++" [158] was used to initialize the
centroids of the clusters. The maximum number of iterations for a single run
was set to 300. The efficiency of clustering and the meaningful number of
clusters was assessed from the clustering metrics of [151] Silhouette
coefficient (SC), Davies-Bouldin index (DBI), and Calinski-Harabasz index
(CHI) Table 3-5.

Table 3-5 Metrics used for the evaluation of clustering algorithm efficiency.
Adapted from [Paper C)|.

Metrics Silhouette Coefficient Davies-Bouldin index Calinski-Harabasz index
A measure of similarity of an
object to its cluster in
comparison with other
clusters. It is composed of A measure of clusterin alit
U P A measure that compares u o & quaity
. two scores: . based on the ratio of the sum of
Algorithm . the distance between - .
. The mean distance between a . . between-clusters dispersion and
description L clusters with the size of o . .
sample and all other points in of within-cluster dispersion for all
the clusters themselves.
the same class, clusters.
The mean distance between a
sample and all other points in
the next nearest cluster.
Best >0
est s=1 —0 (dense and well separated
separation
clusters)
Not separated s=-1 >>0 Low values

data

Overlapping
clusters

3.6 Supervised ML

The schematic workflow outlining dataset preparation, strategies of
handling with feature noise and label noise, model optimization, training,
testing and generalization is shown in Figure 3.5.

Yaraslau Padrez



57 | MATERIALS AND METHODS

(a) Dataset preparation and stages of feature/labelnoise reduction

FOS, SOS, HOS
feature
extraction

Initial feature vector
{341}

RFECV-
LinearSVC
Condition:
Rank=1

 SHGimages
PTC/FTC

N

Feature noise reduction L noise reduction
[©) :
All features Ty Tissue-related

)

Q

MIFS
Condition:
MI >0.001

\\ Capsularcollagen

\‘,7 i e :
Feature selection . Feature cluster ratio “n | | selected features |
: i o H

(b) 4PTC/4FTC <— 5PTC/5FTC samples —> 1PTC/1FTC

Tre “Validation (Test)” “Global Test”
(selected features)l (unknown data)
GS-CV train-validation Data for Test
pata 1. 70% 1. 30% —
splitting 2. 80% 2. 20% 3 PTC True labels
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Y T -
Training Validation |

: &M Model generalization
on new data

Figure 3.5 The schematic workflow of (a) dataset preparation, feature
extraction, feature selection, and label noise reduction, and (b) optimization
and generalization of the ML classification models. An asterisk indicates that,
for PIA (feature importance analysis for C-SVC and MLP), the validation set
was used. Numbers 1-3 correspond to dataset preparation with label noise
reduction approaches without feature noise reduction (feature selection).
Numbers 4-6 correspond to dataset preparation with feature selection followed
by label noise reduction approaches. Feature selection consists of RFECV-
LinearSVC for reducing redundant features and mutual information feature
selector (MIFS) for removing target-irrelevant features. MI — mutual
information parameter. Reprinted from [Paper D].

3.6.1 Managing label noise

Since the most obviously mislabeled data relates to the SHG images of
glass slide, glass-related SHG images were excluded from further
consideration except for the multiclass classification, where these data were
added as a separate class.

Label noise reduction was done according to the following label
correction approaches:

I. Al tissue-related data (original dataset excluding images of glass and
intensity outliers) was used, assuming that collagens in capsule and
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surrounding tissue contain features relevant to target (label PTC or FTC)
and reflect the tumor progression.

II. Only capsular collagen-related data was used with assumption that
surrounding tissue does not contain any noticeable features of tumor
progression. The capsular collagen was separated by applying the same
algorithm (as in approach I) to all tissue-related data.

III. Multi-class classification, in which glass and non-capsular collagen data
from both PTC and FTC were sorted in one class, with an assumption
that these data are not relevant to the target (label PTC or FTC) and are
identical in both carcinomas. An assumption that PTC and FTC collagen
capsules may be heterogeneous in intensity and texture features extracted
from SHG images was made. To take this into account, PCA and multi-
cluster k-means were applied to segment both carcinomas according to
patterns in texture features. The detailed description is provided in
section 4.4.

Prior to further analysis, the datasets of the standardized features from
the selected SHG images were reset to the original, non-standardized values.
The scaling of the validation and the global test sets is further performed with
the scaling parameters that are determined during the optimization of the ML
classifiers made on the training set.

3.6.2 Managing feature noise

The feature noise reduction process aimed to remove redundant and non-
target-related features was done through a two-step feature selection approach
Figure 3.5a. First, Recursive Feature Elimination with Cross-Validation with
LinearSVC estimator (RFECV-LinearSVC) was applied to remove redundant
features. RFECV-LinearSVC feature selection enables the best classification
performed on texture features of images compared to other feature selection
techniques, including subgroup-based multiple kernel learning, RFE with
naive Bayes/bagged trees/RF and LDA classifiers, etc. [159]. This method
ranks features in descending order by recursively considering feature subsets
of decreasing sizes [159]. Feature scores were averaged across cross-
validation folds, and the optimal number of features was selected to maximize
the cross-validation score. Only features with Rank = 1 were selected for
further analysis [160].

Next, Mutual Information Feature Selector (MIFS) [161] was used to
identify features relevant to the target labels (PTC or FTC) after RFECV-
LinearSVC selection. MIFS allows measuring feature-target relations and
significantly improves the classification results when applied together with
feature selectors which use feature importance scores for selection [42].
Mutual information (MI) measures the dependency between features and
labels, with MI = 0 indicating independence. Features with higher MI values
are considered more relevant to a label [162]. A selection threshold of
MI>0.001 (in nat units) was applied.
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Feature selection was applied independently on the training sets for
each label noise reduction approach (subsection 3.6.1) prior to optimizing the
classifiers by stratified k-fold cross-validation (subsection 3.6.5). The most
discriminative and target-relevant feature sets, selected by RFECV-
LinearSVC and MIFS, were then used for the classifiers’ optimization.

To estimate whether feature noise and/or label noise hamper the
performance of the classification models, both initial datasets containing all
features and datasets treated with RFECV-LinearSVC and MIFS were used in
label correction approaches I-11I (see Figure 3.5a).

3.6.3 Data separation

A total of 23652 SHG images were obtained for PTC and 21708 for
FTC, ensuring that the initial datasets were balanced. One complete PTC and
one complete FTC sample were set aside as unknown data (global test set) for
the final validation and generalization of the trained ML classifiers.

The dataset of feature vectors from SHG images, representing 4 PTC
and 4 FTC samples, was randomly split into a training set and a validation set
using three different ratios: 70/30%, 80/20%, and 90/10%. Data was split in a
stratified manner. Each training dataset was scaled using the Robust scaler
algorithm with (1, 99) percentiles [128].

Since different strategies for managing label noise (see subsection
3.6.1) affect the number of SHG images available for analysis, these splits
were applied separately for each label correction approach. The number of
SHG images used for feature extraction in each approach and their
corresponding splits are summarized in 7able 3-6.
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Table 3-6 Distribution of SHG images between training and validation
datasets for each approach. Adapted from [ Paper D).

Number of images per class (in

Dataset Number of ) Class corresponding train/validation split)
Dataset volume classes Split set name
70/30 80/20 90/10
. PTC 7947 9096 10251
train
FTC 5635 6426 7211
. In total: 13582 15522 17463
1. Tissue-related 19403 2 o PTC 3433 2284 1129
FTC 2388 1597 812
In total: 5821 3881 1941
train PTC 3240 3695 4135
FTC 2146 2461 2790
In total: 5386 6156 6926
II. Capsular-related 7695 2 et PTC 1351 396 256
FTC 958 643 314
In total: 2309 1539 771
PTC 4521 5197 5848
. FTC 2456 2789 3131
train
Non- 5666 3035 3420
capsular
III. Capsular- In total: 9643 11021 12399
related, preliminary 13777 3
separated PTC 1953 1277 626
validation FTC 1034 701 359
Non- 149 778 393
capsular
In total: 4134 2756 1378

3.6.4 ML Classifiers
The ML classifiers used in the study are listed in Table 3-7.

Table 3-7 ML classifiers. Reprinted from [Paper D]

Type ML model Abbreviation Reference
Random Forest RF [114]
Ensemble Extreme Gradient Boosting XGBoost [115]
Light Gradient-Boosting Machine LightGBM [116]
Logistic Regression LR [163]
Monolithic C-Support Vector Classifier C-SVC [117]
Multilayer Perceptron MLP [118]

All models have been developed in the Python platform libraries scikit-
learn 1.6.1 [151]. Depending on the task, all data were labelled either
"PTC/FTC" or "PTC/FTC/Non-target" and the developed models aimed at
either binary or multi-class classification, respectively.

3.6.5 Hyperparameter tuning

The hyperparameters are top-level parameters of the ML classifier that
control the model development process and must be optimized before training
the best/final model [164]. Since the default hyperparameter values for a given
dataset are rarely optimal, a systematic search was conducted to determine the
best configurations for each algorithm. The tuning process involved
determining appropriate ranges for the most influential hyperparameters of
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each model, followed by an exhaustive or grid-based search to evaluate their
impact on performance. The specific hyperparameters tuned for each
algorithm are described in detail below:

RF: Three hyperparameters make a key contribution to model
performance: the number of trees in the forest (n_estimators), The
maximum depth of the tree (max_depth) and The number of features to
consider (max_features) [165,166]. To find the best RF model, the
following parameter grid was defined: the number of trees varied from 100
to 600 with a step of 50, the maximum depth of the tree varied from 10 to
100 with a step of 10 and the number of features varied from 2 to 34 with
a step of 2.

XGBoost: Four crucial hyperparameters were selected for initialization
and evaluation based on their effectiveness [167,168]: The number of
gradient boosted trees (n_estimators) varied from 100 to 600 with a step of
50. The step size shrinkage (learning rate), which used in update to
prevents overfitting varied from 0.1 to 0.9 with a step of 0.1. The minimum
loss reduction (min_split loss) varied from 0 to 10 with a step of 1 to obtain
better control of algorithm. Maximum depth of a tree (max_depth) varied
from 0 to 5 with a step of 1. When 0 means no limit on depth. Increasing
this value makes the model more complex.

LightGBM: Since LightGBM uses the leaf-wise tree growth algorithm,
the three most important hyperparameters have been optimized within the
following predefined ranges: The number of boosting trees to be set
(n_estimators) was varied from 100 to 600 in step 50; the maximum
number of tree leaves for the base learners (num_leaves) was varied from
70 to 180 in step 10; the boosting learning rate was varied from 0.05 to
0.25 in step 0.05.

LR: In order to use all four regularization terms r(w) via the penalty
argument available in Scikit-learn (None,ly,l,, ElasticNet), the
regularized logistic regression was solved using the SAGA algorithm
[169]. The inverse of the regularization strength (C) and the tolerance for
the stopping criterion (tol) ranged from 0.0001 to 10 on a logarithmic scale.
C-SVC: As C-SVC highly depends on the kernel [170] four kernels ('rbf',
'linear', 'poly’, 'sigmoid') were checked. The strength of the regularization,
which is inversely proportional to Regularization parameter (C) ranged
from 0.0001 to 1000 on a logarithmic scale. Tolerance for stopping
criterion (tol) ranged from 0.0001 to 1 on a logarithmic scale.

MLP: The number of hidden layers and the neurons they contain is the
most important hyperparameter for MLP, as it determines the architecture
of the neural network. Many hidden layers lead to overtraining of the
model and more than two hidden layers are not necessary [171]. Therefore,
MLPs with one and two hidden layers were considered. The number of
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neurons in each layer varied from 10 to 100 in steps of 10. Four activation
functions were considered for the hidden layer: Identity (f(x) = x),
logistic (f(x) = L ), tanh (f(x) = tanh(x)) and ReLu (f(x) =

1+exp(—x)
Max(0,x)). The Adaptive Moment Estimation algorithm was used for
weight optimization. The parameter for the penalty (regularization term)
(alpha) was varied from 0.001 to 5. This range was divided into 20 values
on a logarithmic scale (a geometric progression).

The hyperparameters of each ML model, tuned and used in this study, are
detailed in 7able 3-8. Hyperparameters not listed in 7able 3-8 were set to their
default values.

Hyperparameter tuning was performed using either grid search or halving
grid search. Grid search considers all possible combinations of
hyperparameters and was used for models with a small number of
hyperparameters (LR, C-SVC and LightGBM). Halving grid search, based on
the successive halving algorithm [172], was used for models with larger
hyperparameter combinations (RF, XGBoost and MLP) [173].

Since the imbalance of the PTC/FTC ratio could not be excluded after
separation of the tissue-related data, a stratified 10-fold cross-validation [152]
was performed for both tuning algorithms. The input dataset was equally
divided into 10 stratified subsets, with 9 subsets used for training and the
remaining subset used for validation. Each subset preserved the original class
distribution. The training/validation process was repeated 10 times, with the
validation subset changing each time [174]. Stratified 10-fold cross-validation
can handle multi-class problems, so it was also applied in the
"PTC/FTC/Normal tissue" classification [151], ensuring carcinoma-specific
cluster ratios were preserved in both training and validation sets. The
hyperparameter values for all optimized classifiers are summarized in Table
S3 (Supplementary Material 1 of Paper D).

The ML models with the highest accuracy were considered optimized
and were retrained using the entire training dataset. The schematic workflow
for model optimization, training, and testing is shown in Figure 3.5b.
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Table 3-8 The ranged hyperparameters for tuning of the classifiers.
Reprinted from [Paper D].

The most important

Model hyperparameters Ranges of hyperparameters
The inverse of the "C": [0.0001, 0.001, 0.01, 0.1, 1, 10];
regularization strength
LR Penalty argument "penalty": ['11', '12', 'elasticnet’, None];
The tolerance for the "tol": [0.0001, 0.001, 0.01, 0.1, 1, 10].
stopping criterion
Regularization parameter "C": [0.0001, 0.001, 0.1, 1, 10, 100, 1000];
C-SVC Kernel : "kernel": ['rbf', 'linear', 'poly’, 'sigmoid'];
The tolerance for stopping "tol": [0.0001, 0.001, 0.01, 0.1, 1]
criterion e Co T T e
"hidden_layer_sizes": [(10), (20), (30), (40), (50), (60), (70), (80),
(90), (100), (10, 10), (10, 20), (10, 30), (10, 40), (10, 50), (10, 60),
(10, 70), (10, 80), (10, 90), (10, 100), (20, 10), (20, 20), (20, 30), (20,
40), (20, 50), (20, 60), (20, 70), (20, 80), (20, 90), (20, 100), (30, 10),
(30, 20), (30, 30), (30, 40), (30, 50), (30, 60), (30, 70), (30, 80), (30,
. 90), (30, 100), (40, 10), (40, 20), (40, 30), (40, 40), (40, 50), (40, 60),
Fhef“;sg‘;{l";};‘drde? (40, 70), (40, 80), (40, 90), (40, 100), (50, 10), (50, 20), (50, 30), (50,
naeyersns o :achehi(‘i’ e 40), (50, 50), (50, 60), (50, 70), (50, 80), (50, 90), (50, 100), (60, 10),
1 v : p (60, 20), (60, 30), (60, 40), (60, 50), (60, 60), (60, 70), (60, 80), (60,
mp  ° 90), (60, 100), (70, 10), (70, 20), (70, 30), (70, 40), (70, 50), (70, 60),
(70, 70), (70, 80), (70, 90), (70, 100), (80, 10), (80, 20), (80, 30), (80,
40), (80, 50), (80, 60), (80, 70), (80, 80), (30, 90), (80, 100), (90, 10),
(90, 20), (90, 30), (90, 40), (90, 50), (90, 60), (90, 70), (90, 80), (90,
90), (90, 100), (100, 10), (100, 20), (100, 30), (100, 40), (100, 50),
(100, 60), (100, 70), (100, 80), (100, 90), (100, 100)];
"alpha": [0.0001, 0.00018, 0.00031, 0.00055, 0.00097, 0.00172,
Regularization term 0.00305, 0.00538, 0.00951, 0.01682, 0.02973, 0.05253, 0.09285,
0.16409, 0.29000, 0.51252, 0.90579, 1.60082, 2.82915, 51;
Activation functions "activation": ['identity', 'logistic', 'tanh', 'relu'].
Number of trees in the "n_estimators": [100, 150, 200, 250, 300, 350, 400, 450, 500, 550,
forest 6001;
RF Maximum depth of a tree "max_depth": [10, 20, 30, 40, 50, 60, 70, 80, 90, 100];
Number of features to "max_features": [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,
consider 32, 34].
Step size shrinkage 'learning_rate": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9];
Minimum loss reduction 'min_split loss": [0, 1,2, 3,4,5,6,7,8,9,10];
XGBoost  Maximum depth of a tree 'max_depth": [0, 1, 2, 3, 4, 5];
Number of gradient '_estimators': [100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600]
boosted trees —
. 'n_estimators": [50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550,
Number of boosting trees 60_0]'
LightGBM  Boosting learning rate 'learning_rate': [0.05, 0.1, 0.15,0.2, 0.25];

Maximum number of tree

'num_leaves":[70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170].
leaves for the base learners —

3.6.6 Classifier performance evaluation

The performance of the developed models was estimated using the
confusion matrix.

In binary classification, samples labelled as PTC were treated as the
positive class, and samples labelled as FTC as the negative class. In this
context, false positives (FP) and false negatives (FN) refer to incorrect
predictions, while true positives (TP) and true negatives (TN) refer to correct
predictions for PTC and FTC, respectively. The model performance was
quantitatively compared using accuracy, precision, recall, and Fl-score,
which were calculated from the confusion matrix elements according to [175].
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The accuracy, precision, recall, and F1-score metrics were calculated using
fixed thresholds, set to 0.5 for the predicted class probabilities in the current
study. To evaluate the performance of the developed binary classification
models across a range of thresholds for sensitivity and specificity, Receiver
Operating Characteristic (ROC) analysis was performed [176]. The
performance of the classifier was represented by the area under the ROC curve
(AUC) values [175].

In multiclass classification, evaluation metrics included accuracy,
precision "macro" (unweighted mean of precision for each label), recall
"micro" (global recall calculated by counting the total TP, FN and FP), F1
"weighted" (average weighted F1 score for each label by the number of true
instances for each label) [151].

3.6.7 Feature importance analysis and interpretation

To identify the features which contribute most to the classifiers’ decision-
making, a feature importance analysis was performed. Since the texture
features of SHG images are expected to be correlated [177], there is no single
universal approach for estimating the most important features. For instance,
multicollinearity may affect the results of permutation importance analysis
(PIA) if applied to LR model or tree-based classifiers. Thus, feature
contribution to decision-making was treated independently using model-
specific approaches, as detailed in Table 3-9.

Table 3-9 Algorithms for feature importance analysis. Adapted from
[Paper D].

Model Function Feature importance analysis method

For binary classification — module of the coefficients of the features in the decision
LR built-in function. For multi-class — mean of modules of the coefficients of the features in the
decision function

RF built-in The impurity-based feature importances (also known as the Gini importance)

Feature importance - the number of times a feature is used to split the data across all

XGB ilt-i . . )
GBoost built-in trees (for multi-class the feature importance is "averaged" over all targets)

LightGBM  built-in Feature importances contain numbers of times the feature is used in a model
MLP extemal Permutation feature importance
algorithm
C-SVC extemal Permutation feature importance
algorithm
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3.7 Computation

The calculations were performed in Python v3.9 with an Intel i7-
13700KF CPU with 16 cores and 24 threads; 32 GB random-access memory;
Nvidia GeForce RTX 3060 Ti graphics card with 4864 cores.

3.8 Ethical statement

The animal experiments were conducted in accordance with the
principles of bioethics. The study adhered to the requirements of the European
Convention for the Protection of Vertebrate Animals used for Experimental
and other Scientific Purposes and to legal, scientific and methodological
guidelines and reference materials for the husbandry, feeding, removal from
the experiment and subsequent disposal of the animals. The permit was issued
by the Ethics Committee of the Belarusian Academy of Postgraduate
Education (approval number 4 dated 23.09.2020).

The use of the thyroid tissue samples for research purposes was approved
by the Carol Davila University Central Emergency Military Hospital,
Bucharest, Romania (protocol number 380/09.06.2020). Written informed
consent was obtained from patients, and all samples were anonymized before
analysis. All experiments were performed according to the relevant guidelines
and regulations and in accordance with the Declaration of Helsinki.
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4 RESULTS AND DISCUSSION

4.1 Statistical intensity and texture-based analysis of fibrosis
progression in PAH in rats

This section is dedicated to the quantitative and qualitative analysis of
the development of fibrosis accompanying the progression of MCT-induced
PAH in rats based on the wide-field SHG images of lung tissue sections. The
results, presented in this section, were published in Paper A and presented in
Conferences 1 and 2.

The development of sensitive, label-free and fast imaging techniques
with high resolution and robust statistical image analysis is of paramount
importance in early diagnosis of PAH progression. Wide-field SHG
microscopy of lung tissue in combination with quantitative analysis of SHG
images may significantly simplify the detection of fibrosis progression during
PAH, allow objective assessment of the stage of the pathology and overcome
an error-prone human judgment as in the case of histological analysis.

To demonstrate this, SHG images of rat lung tissue samples were scanned
as described in subsections 3.2.1, 3.2.2, 3.2.3 and then analyzed over the
manually selected ROIs. ROI images were quantitatively characterized using
FFT and texture analysis, where texture analysis consisted of FOS and SOS
Figure 4.1.

Selection of regions of interest . )
A% i 2 TR Anisotropy of collagen fiber
: ;&. orientation

& : Fast Fourier Transform (FFT)

Orientation Index (Ol)

Texture analysis

Amount of collagen Topology of collagen fibers
First Order Statistics (FOS) Second Order Statistics (SOS)
Mean, Standard Deviation, Inertia, Energy, Homogeneity,

Skewness, Kurtosis Entropy, Correlation

Figure 4.1 Procedures of SHG image analysis. Reprinted from [Paper 4]

Additionally, SHG image analysis data were compared to the results of
IHC. The distributions of the parameters obtained from IHC, FFT, SOS and
FOS are further represented by Beeswarm boxplots. The 75" and 25%
percentiles are labeled as the top and bottom of each rectangular box,
respectively. The median is shown inside the box. The whiskers are shown as
1.5 times the IQR below and above the box.

4.1.1 IHC Analysis of rat lung tissue

Type I and III fibrillar collagen accounts for over 90% of collagens in the
lung parenchyma [178]. The remodeling of ECM during fibrosis is
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characterized by fluctuations in its content [179], and the increased collagen
levels may indicate the stage of progression of the pathology [180].
Metalloproteinases (MPP) are responsible for collagen degradation [181], and
the imbalance of MPP levels may contribute to fibrosis development in PAH
[182]. TIMP-1 is an inhibitor of all types of MPP, which are responsible for
the degradation of most fibrillar collagens. An elevated circulating level of
TIMP-1 therefore indicates a disruption of collagen degradation and the
associated accumulation.

Quantitative analysis of IHC makes it possible to show the changes in the
expression levels of collagen I and I1I as well as TIMP-1, which are molecular
markers of fibrosis development associated with the progression of PAH. The
corresponding IEs are shown in Figure 4.2; the statistical significances for the
comparison of all experimental groups are summarized in Table S2
(Supplementary Material of Paper A).
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Figure 4.2 Expression indices (IEs) of collagen I, collagen III and TIMP-1
during PAH progression. Statistical difference: # p < 0.001 for collagen [; * p
< 0.001 and ** p < 0.01 for collagen III; & p < 0.001 and && p < 0.01 for
TIMP-1 compared to the corresponding control groups. Reprinted from
[Paper A)

The expression of collagen I in the lung tissue of rats increased
significantly in all experimental groups (2, 4, 6 and 8 weeks of PAH
progression) compared to the control group. The expression of collagen III is
periodic. A significant increase is observed after 2 weeks of PAH progression
(p <0.001). Thereafter, a normalization of collagen III levels to control levels
is recorded, with a further slight increase after 6 weeks of PAH progression
(Figure 4.2).
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The expression of TIMP-1 is time-dependent with a 2-fold increase after
2 weeks of PAH progression in rats compared to the control group of healthy
animals. However, in contrast to the increase in collagen I and III levels in the
later stages of PAH, TIMP-1 expression is downregulated to control levels
throughout the remaining observation period.

In addition, fibrogenesis begins after 2 weeks of MCT-induced PAH
(Figure 4.2). The maximum increase in TIMP-1 expression in the 2™ week of
the experiment (p <0.001 vs. all groups) promotes fibroblast synthesis activity
and a change in the balance between collagen I and III synthesis. Further
progression of PAH (6-8 weeks) is characterized by a decrease in MPP
inhibitor expression (p <0.001), an increase in type III collagen synthesis from
7.0 to 10.41 (p <0.001) from the 4™ to the 8" week of the experiment (p
<0.001). As a result of ECM remodeling, a favorable environment for the
initiation of fibrogenesis in the vessel wall is created in the local
microenvironment of the pulmonary arteries.

4.1.2 SHG/TPEF Imaging of rat lung tissue

The combination of SHG and TPEF imaging allows visualization of both
the fibrotic structures and the outer tissue, providing a complete picture of the
branching and enlargement of collagen fibers in the tissue [183]. Endogenous
TPEF signal often originates from metabolic compounds present in tissue
sections, such as nicotinamide adenine dinucleotides, flavins, tryptophan and
tyrosine in proteins, serotonin, phycoerythrin, etc. [184,185]. It is important
to note that the H&E staining used for brightfield microscopy also contributes
to the TPEF signal, as eosin is fluorescent and this has already been
demonstrated for TPEF visualization of tissues [186]. The images of H&E-
stained lung tissue sections are shown in Figure 4.3, where SHG of collagen
is colored yellow and TPEF is colored red. In the control sample, it can be
seen that collagen surrounds the wall of the blood vessels (marked with arrows
in Figure 4.3) but is not present in the lung tissue. The H&E images of the
PAH samples show only a thickening of the blood vessel walls compared to
the control sample, while the SHG/ TPEF images show a clear collagen
overproduction. Figure 4.3 shows that collagen content increases over time
and that highly assembled long fibers form dense networks both around the
blood vessels and in the surrounding tissue, extending deep into the alveolar
region (marked with arrows). This confirms our previous findings [187] and
the IHC data indicating a significant increase in collagen expression after 4-8
weeks of PAH progression.
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Figure 4.3 Brlghtﬁeld images, TPEF images, SHG images and comblned
TPEF and SHG images of H&E-stained rats lung tissue of control group and
of rats on the 2", 4™ 6" and 8" week of PAH progression. Image size is
450 pm x 450 pm. Adapted from [Paper A]

4.1.3 Anisotropy of collagen fiber orientation of rat lung tissue

Information about the anisotropy of collagen fiber orientation is extracted
from SHG images using FFT. The temporal dependence of the OI is shown in
Figure 4.4. The lower the OI, the worse the arrangement of the collagen fibers.
An isotropic collagen structure is characterized by O/ = 0 and a circular FFT
image [188]. In contrast, the higher the OI, the more pronounced the
anisotropy of collagen fiber orientation. The lung tissue of healthy rats was
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found to have a lower OI than the tissue during PAH progression. This
suggests that PAH is associated with collagen fiber arrangement. In the second
week of PAH-associated fibrosis development, O increases significantly,
indicating elongation of fibers and their expansion in lung tissue. The
subsequent decrease in O/ indicates a reorganization of the collagen fibers and
the formation of a more isotropic collagen network.
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Figure 4.4 OI values calculated on SHG images of control samples (0 weeks)
and during PAH progression. The statistical significance of the difference
between the different distributions is p<0.1*, and p<0.001***. Adapted from
[Paper A].

4.1.4 Intensity and texture analysis of SHG images of rat lung tissue

The distributions of y; and o are shown in Figure 4.5a-b. The increase
in both parameters in the early phase of disease progression (2 weeks)
indicates an increase in collagen production and an increasing heterogeneity
of collagen distribution in the tissue. Both parameters decrease in the 4™ and
6" week and then increase sharply in the final stage of PAH progression in the
8" week. The decrease in collagen content after week 2 may indicate that the
organism is struggling to dampen the effects of rapid PAH progression and
restore the balance between collagen synthesis and degradation. This
hypothesis is supported by the IHC data and confirms the evolution of the
levels of collagen I, collagen III and TIMP-1.
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Figure 4.5 FOS parameters determined inform SHG images of control
samples and during the PAH progression: (a) — Mean, (b) — Standard
Deviation, (¢) — Skewness, (d) — Kurtosis. The statistical significance of the
difference of different distributions relative to the control is p < 0.1 *, p <0.01
** p <0.001 *** Adapted from [Paper A].

The values for g, and g, remained constant throughout the experiment
and were consistent with the control group, with the exception of the 6™ week
of PAH progression, when an increase in these parameters was observed (see
Figure 4.5¢-d).

The SOS parameters are extracted from the GLCM and provide
information on collagen distribution, spatial fiber organization, uniformity,
etc. All calculated SOS parameters are shown in Figure 4.6.

The value of [ increases at an early stage of PAH progression (week 2),
indicating an increase in the number of areas of high contrast compared to the
control. This is probably related to the formation of high-density collagen
bundles and the appearance of foci of collagen synthesis. A subsequent
decrease in contrast indicates a homogenization of collagen distribution in the
4" and 6™ week of PAH progression. However, the final phase of PAH is
accompanied by a significant increase in the number of high-contrast areas
and is due to the thickening of the collagen bundles. A low E in the 2" and 8™
week thus indicates the order and spread of the collagen fibers. The calculated
C is in the range of 0.9-1.0, indicating the presence of some periodic
structures, both in the healthy rats of the control group and in the rats with
PAH at different stages of progression. Examples of such periodic structures
are shown in Figure 4.6f.
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Figure 4.6 SOS parameters calculated on images of control samples of healthy
lung tissue and at different stages of PAH progression: (a) — inertia, (b) —
energy, (c) — correlation, (d) — homogeneity, (e) — entropy, (f) — typical SHG
collagen structures (scale bar 15 pm). The statistical significance of the
difference of distributions relative to the control is p <0.1 *, p <0.01 ** p <
0.001 ***), ROI size is 150 um x 150 pm. Adapted from [Paper A].

These data suggest that despite the changes in fiber orientation anisotropy
(Figure 4.4), collagen packing in fibers characterized by periodicity is not
significantly disrupted during PAH progression, as indicated by the small
variations in correlation values. Nevertheless, the latter are significantly
distinguishable Figure 4.6c. The development of the H values Figure 4.6d
correlates with the data discussed above. The low H of the control samples
and lung tissue at week 6 of PAH-associated fibrosis development suggests
that the fibers in the selected area are less clearly separated compared to other
stages of disease progression. This could be caused, for example, by fiber
swelling during inflammation in the 6™ week of PAH progression [189]. High
H values in the 2™, 4" and 8" week of PAH are caused by bright and distinct,
but not necessarily ordered, collagen fibers that stand out from a homogeneous
background. A decrease in L values during PAH progression Figure 4.6¢
indicates the expansion of the network of thin and disorganized collagen fibers
and the development of fibrosis. These data agree well with the £ values and
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confirm the growth of collagen fibers in the lung tissue both near and far from
the blood vessel walls.

The significance of the differences between all statistical parameters of
the ROIs of the experimental groups of animals with PAH and the control
group of healthy animals is shown in 7able 4-1.

Table 4-1 The significance difference between statistical parameters of ROIs
of experimental groups of animals with PAH and control group of healthy
animals, performed by one-way ANOVA applying an unpaired two-tailed
Student’s T-test. Adapted from [Paper A]

Hy 4 g1 g2 1 C E L H o1

Con. -

PAH2 <0,1 0,551 0,285 0,308 0,717 <0,001  <0,001 <0,01 <0,001 <0,1

Con. -

PAH4 0,366 0,669 0,302 0,691 0,615 <0,001 <0,1 <0,1 <0,1 0,510

Con. —

PAH6 <0,01 <0,1 <0,01 <0,01 <0,1 <0,1 <0,1 <0,1 <0,1 0,687

giﬁ&é <0001 <001 0566 0926 <01 <0001 <0001 <0001 <0,001 0418
PAH 2 -

PAH 4 0,245 0,912 0,792 0,382 0,704 0,869 <0,1 0,130 0,127 <0,1
PAH 2 -

PAH 6 <0,001  <0,001 <0,1 0,627 <0,001 <0,001 <0,001 <0,001 <0,001 <0,1
P}?:IH287 <0,01 <0,001 0,532 0,297  <0,001 0,260 <0,1 <0,1 <0,1 <0,001
PAH 4 -

PAH 6 <0,001  <0,001 <0,1 <0,1 <0,01 <0,001  <0,001 <0,001 <0,001 0,810
PAH 4 -

PAH 8 <0,01 <0,01 0,634 0,637 <0,01 0,259 <0,01 <0,001 <0,01 <0,1
PAH 6 —

PAH 8 <0,001 <0,001 <0,01 <0,01 <0,001 <0,001 <0,001 <0,001 <0,001 0,162

Physiologically, the observed collagen changes during the 5-week period
of PAH progression are associated with, among other things, a gradual
accumulation of inflammatory markers in lung tissue, including monocyte
chemoattractant protein 1 (MCP-1) and interleukin-6 (IL-6), as shown in
[190]. Treatment with silibinin (C-X-C chemokine receptor type 4 inhibitor)
reduces PAH symptoms in the first two weeks due to downregulation of gene
expression of inflammatory markers in the pulmonary arteries but not in the
lung tissue. In later stages of PAH, however, silibinin no longer succeeds in
relieving symptoms. At this point, it becomes an irreversible condition as
MCP-1 and IL-6 accumulate in the tissue. Elevated MCP-1 induces collagen
synthesis by lung fibroblasts and also recruits monocytes to the site of
inflammation [191]. Elevated IL-6 induces the production of collagen I by
dermal fibroblasts [192] and contributes to the deposition of ECM [193].

Based on the SHG image analysis results and considering the
physiological background and the results of IHC analysis, the following stages
of development/progression of PAH can be proposed:

I. The pathology develops rapidly at the beginning: in the 2" week, the p;,
o, OI, I and H increase, but the £ and L decrease, indicating the initiation
of collagen accumulation, stretching of collagen fibers and their spread
in the lung tissue.
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II. The organism tries to regulate the progression of the disease: In the 4™

week, the decrease in p; and o as well as the high H values indicate a

possible inflammation-related disruption of the collagen structure as well

as the activation of the collagen degradation system, which is supposed
to correct the imbalance between collagen synthesis and degradation.

III. The phantom recovery of the organism at week 6, as the y; and o
decrease and H is low; however, an increase in g; and g, indicate a
significant redistribution of collagen, suggesting a thickening of collagen
fibers and deep penetration into lung tissue, and thus could represent a
"point-of-no-return" in PAH pathogenesis;

IV. Finally, total tissue failure occurs at the 8" week of pathology, which is
the result of a significant increase in collagen content and thickening of
collagen bundles, characterized by the increase in 4, 0, I, H and decrease
in £ and L.

Overall, SHG imaging provides a complete picture of morphologic
collagen changes during PAH-associated fibrosis progression. The evolution
of the different FOS and SOS parameters indicates the same characteristic
changes in collagen fiber structure and network organization that are also
consistent with the results of IHC. This is beyond the scope of the present
work, but with the collection of further data from a larger number of samples,
SHG image analysis could also provide reliable signatures for the different
stages of PAH pathogenesis.

This was summarized in the first statement of the thesis: Statistical
analysis of wide-field SHG images of lung tissue sections reveals and
qualitatively and quantitatively describes characteristic changes in collagen
organization, morphology and collagen content associated with the different
stages of pulmonary arterial hypertension.

4.2 ML-based analysis of collagen ultrastructure in PTC
capsular invasion based on wide-field PSHG microscopy

This section describes the application of PSHG for studying changes in
collagen ultrastructure in the areas of capsular invasion and intact collagen
capsule around PTC utilizing single-axis molecule model of collagen fibers
and demonstrates the advantages of using unsupervised ML algorithms for
PSHG image analysis. The results from this section were published in Paper B
and presented at Conference 6.

4.2.1 Wide-field PSHG imaging of thyroid nodule section

To illustrate the ability of PSHG wide-angle imaging to quantitatively
assess capsular invasion, a PTC node was selected in which differential
analysis was performed between invasion-proximal areas and control areas on
the same histologic slide. An expert pathologist evaluated the overall
appearance Figure 4.7a of the histologic slide and diagnosed the nodule as an
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apparently encapsulated papillary thyroid microcarcinoma with capsular
microinvasions. The nodule shows a trabecular and microfollicular growth
pattern, accompanied by nuclei that are enlarged, elongated or angulated
(irregular contour of the nuclear membrane). The nuclei are clustered,
overlapping, vesicular and have clarified chromatin, commonly referred to as
"Orphan Annie's eyes" type nuclei. The nucleoli are displaced at the periphery,
and occasionally incisions and pseudo-inclusions are seen, resulting from
invaginations of the cytoplasm into the nucleus. The cytoplasm appears
amphophilic and moderately rich. In addition, the collagenous nodular capsule
appears thickened with extensive subcapsular calcifications (i.e., the irregular
clumps of basophilic material present mainly on the left and upper left side of
the nodule). The surrounding thyroid parenchyma consists of normal-sized
follicles characterized by cuboidal and flat epithelia, fibrous septa, and a
minimal diffuse lymphocytic inflammatory infiltrate.

Control and invasion regions were selected for further analysis: two
regions were selected as control regions within the nodule capsule (i.e. Ctri-1
and Ctrl-2), while Ctrl-1 was selected near the subcapsular calcifications,
Ctrl-2 is located within a normal capsule, away from the calcifications. Two
other ROIs with focal tumor infiltration were identified as /nv-/ and Inv-2 in
Figure 4.7a.

PR(d)

r e e 73 4 398 /P T poR T
Figure 4.7 Wide-field PSHG imaging of an entire thyroid nodule. (a) H&E-
stained tissue image acquired with a whole slide scanner. Annotations
represent areas of the nodule capsule away from potential invasion sites (ROI1
and ROI2) and nodule capsule invasion sites (ROI3 and ROI4). (b)
corresponding wide-field SHG image generated as the intensity average over
the PSHG image stack. (c) the orientation map of collagen around the nodule
capsule. (d) helical pitch angle map (8,). (¢)-(g) x® elements ratios maps for
X31/X1s, X33/ X1s and ys3/x31, respectively. Reprinted from [Paper B]

The PTC node was imaged with a wide-field PSHG microscope. The
individual wide-field PSHG tiles were stitched together to form a complete
PSHG image set depicting the entire PTC node Figure 4.7b. The application
of FF-PSHG analysis to the polarization-resolved image set facilitated the
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generation of several maps, including the collagen orientation map
Figure 4.7c, the helical tilt map Figure 4.7d, and maps depicting the ratio of
x@ elements Figure 4.7f-g for further quantitative analysis.

The results of the FF-PSHG analysis for the ROIs highlighted in
Figure 4.7a, which correspond to both the control areas and the invasion sites
of the nodule capsule, are shown in Figure 4.6.

orientation helical pitch
X1 X33/%s A33/%31 angle angle

2 3 & D) 2730 & D 2 3 5- 90 35 5 50 5
Figure 4.8 Quantitative analysis of wide-field PSHG image stacks. The
collagen orientation maps, the helical pitch angle and ratios for the y®
elements are displayed for the ROIs of interest: (a) Ctrl-1; (b) Ctrl-2; (c) Inv-
1; (d) Inv-2. Reprinted from [Paper B

4.2.2  Unsupervised ML analysis of wide-field PSHG of thyroid
nodule section

To further visually improve the identification of potential microinvasion
sites, analysis using unsupervised ML techniques was performed.
Classification of the data from the maps of all polarization-related parameters,
with the exception of ¢, resulted in segmentation of the data into £ = 6 clusters.
The total number of downsampled images classified by k-means was 90000.
The data from these averaged parameter maps were standardized using the
Robust Scaler algorithm. The choice of the number of clusters was made on
the basis of two validation metrics SC and BDI (see Figure 4.9a).

The separation into two clusters is trivial as it allows a simple separation
of collagenous and non-collagenous areas (Figure 4.9b), although such binary
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k-means segmentation is quite commonly used for the characterization of
PSHG images of cancer tissues [194]. The segmentation into several clusters
makes it possible to recognize the differences in the collagen structures. The
next optimal set of SC and DBI corresponds to k = 6 (Figure 4.9a): The local
DBI minima at k = 6 and k=9 are the same, but the SC for £ = 6 is higher than
that for k= 9.

(I

g

—

2 3 4 5 6
Number of clusters

Figure 4.9 (a) The dependence of the evaluation metrics for k-means
clustering on the number of clusters k. The green rectangle marks the SC and
DBI corresponding to the appropriate number of clusters for image
segmentation. (b) The resulting cluster map of the entire nodule for k = 2.
Cluster 1 (yellow) corresponds mainly to the non-collagenous area, cluster 2
(navy blue) corresponds to the collagen-containing areas. Adapted from
[Paper B]

The distribution of the downsampled images between the clusters and
their affiliation to collagenous and non-collagenous regions is summarized in
Table 4-2.

The resulting cluster map for the entire nodule shows the spatial
distribution of the characteristic combinations of parameter values
representing the different clusters Figure 4.10a.

Table 4-2 Distribution of downsampled images in clusters. Adapted from
[Paper B]

The number The number of images in  The number of images in the
ofthe cluster the corresponding cluster  corresponding cluster, %

Collagen 1 20356 22.62
related 3 13558 15.06
clusters 5 19867 22.07
Non collagen 2 9362 10.40
clusters 6 26706 29.67
Outliers 4 151 0.17
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Figure 4.10 Clustering map for data of polarization-related parameters. (a)
whole thyroid nodule; (b) Ctrl-1; (c) Ctrl-2; (d) Inv-1; (e) Inv-2. Reprinted
from [Paper B]

These combinations or centroids obtained by k-means Figure 4.11 can be
used to characterize the local properties of the collagen and provide an
interpretation of the clustering. Clusters 1, 3 and 5 were assigned to
collagenous areas, while 2 and 6 were assigned to non-collagenous areas
mainly related to follicles with glandular secretions, cells, etc. Cluster 4
corresponds to the outlier values of PSHG parameters and comprises 0.2% of
all data (Figure 4.11).

From the visual analysis of the whole capsule, cluster 1 mainly forms the
capsule and is also distributed outside the capsule; cluster 3 is mainly located
in the inner part of the capsule and is only found in some specific areas; cluster
5 mainly lines the inner and outer sides of the capsule and such collagens
probably form numerous septa surrounding groups of follicles. Further
examination of cluster formation within the intact capsule in ROIs Ctr/-1 and
Ctrl-2 Figure 4.10b,c and within the microinvasion sites in ROIs /nv-1 and
Inv-2 Figure 4.10d,e reveals distinct quantitative differences in cluster
formation (7able 4-3). A notable feature of invasion is the increased
occurrence of cluster 3 and decreased occurrence of clusters 1 and 5.
Consequently, a quick visual inspection of the cluster map facilitates the
identification of regions within the nodule capsule that may warrant suspicion
of invasion.

Table 4-3 Percentages of collagen-related clusters in intact capsule and at sites
of invasion. Adapted from [Paper B]

The number of the cluster ~ Control [%]  Invasion [%]

1 47.1 32.7
3 31.1 50.7
5 21.8 16.6
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Figure 4.11 The centroids of each cluster for (a) THETA values, (b) CHI3331
values, (c) CHI3115 values, (d) CHI3315 values. Multiplication symbols (x)
represent mean values, solid horizontal lines (==) are the median values.
Adapted from [Paper B].

The mean helical pitch angles of the collagens in clusters 1, 3 and 5 are
42.5°, 43.9° and 37.9°, respectively, indicating severe changes in the
molecular structure of the collagen in the invaded capsule compared to the
control areas (Figure 4.11). Such changes in the triple helix structure may
influence the interaction of collagen with normal and cancer cells [195].
Recently, collagens with a tightly packed triple helix (with a helical pitch
angle of 43.9° [195] as in cluster 3) were shown to have a higher binding
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efficiency to cancer cells compared to normal cells and thus may promote
cancer progression and metastasis [196].

A higher angular expansion was observed in the vicinity of suspicious
and invasion sites. Conversely, other parameters related to collagen structure
studied here show their potential in highlighting collagen changes at the pixel
level (i.e., the ratio of y® eclements and the helical pitch angle). The
biological significance of susceptibility ratios should be interpreted with
caution and depending on several factors, including the theoretical model of
collagen, image resolution, and others. If all collagen molecules within the
fibrils are aligned in the same direction, the second-order susceptibility should
reflect the first-order hyperpolarizability, a tensor that describes the response
of the molecule to the applied electric field in terms of second-order nonlinear
optical effects. Therefore, the susceptibility ratio should be similar to that of
first-order hyperpolarizability. Furthermore, the pitch angle of the collagen
molecule can be estimated by relating the ratio of the y® elements to the
orientation angle of the emitting dipole. Care should be taken when
interpreting the results and checking whether the original assumptions (e.g.
Kleinman symmetry) are fulfilled. In this study, although the x31/x1s
distributions are close to unity, there is considerable variation, suggesting that
the absolute results should be taken with a grain of salt. One of the ¥(2)-
element ratios, namely yx33/x31, provides insight into the anisotropy of
collagen fibrils within the focal volume and is known as an anisotropy
parameter [197]. In the literature, y33/x3;values between 1.2 and 2.6 are
reported, depending on the tissue type (lower values for organized collagen in
tendons with straight fibrils within the focal plane) and the spatial resolution
used [198]. Conversely, collagen showed higher susceptibility values in
tissues in which the molecule is oriented at a larger angle within the fibril
[199]. Although the interpretation of the obtained susceptibility ratios in a
biological context is challenging without the consideration of numerous
variables, the differences between the susceptibility ratios may provide more
meaningful insights into the changes occurring with pathology under
consistent technical conditions.

This was summarized in the second statement of the thesis: k-Means
clustering of cylindrical model parameters extracted from wide-field
polarization-resolved SHG images of whole thyroid nodule sections allows
differentiation between areas of capsular invasion and unaffected regions of
the capsule surrounding cancer cells by revealing patterns in the
ultrastructure of collagen.

4.3 ML-based diagnostics of capsular invasion in thyroid
nodules with wide-field SHG microscopy

This section demonstrates the application of the unsupervised ML
algorithms for detailed analysis of the wide-field SHG images of collagen
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capsules surrounding PTC, which enables the interpretation of changes in
collagen structure within the capsule and the detection of areas of
microinvasion or areas requiring additional investigation. The results from
this section were published in Paper C and presented at Conferences 3, 4, 5,
8 and 10.

4.3.1 Wide-field SHG imaging of thyroid nodule sections

SHG microscopy approach enabled large-scale imaging collagen
distribution in whole PTC nodules. An example of an SHG image of an entire
nodule is shown in Figure 4.12a.

For comparison, a bright-field image is presented in Figure 4.12b. PTC
can be seen as a lump of cancer cells surrounded by a collagen capsule.
Healthy thyroid tissue comprising follicles is outside the capsule. Dark purple
formations inside the PTC nodule and the wall of the capsule are
calcifications. There are also 2 sites of capsular invasion that were annotated
by the pathologist. By comparison, in the SHG image, collagen structures are
visible with much better contrast and in more detail. The capsule appears to
be rather heterogeneous and of varying thickness. At the same time, almost no
SHG signal was detected inside the capsule, since there are almost no collagen
structures in that area. Also, at sites of the noted capsular invasion, the
integrity of the capsule is clearly compromised by the cancer cell escape
pathways. Some collagen structures that are not visible in the bright-field can
be seen inside the calcifications. ROIs containing calcifications are shown in
Figure 4.13.

1mm RN ey s 1mm

Figure 4.12 Images of an H&E-stained section from an entire nodule of
encapsulated PTC. (a) SHG image of collagen distribution tiled from the wide-
field SHG images. (b) Bright-field image. The different tissue structures are
designated as: 1 — carcinoma cells, 2 — normal thyroid follicles, 3 —
calcifications. White boxes indicate invasions annotated by the pathologist.
The white dashed circle designates the capsule of the PTC nodule. Reprinted
from [Paper C].
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Figure 4.13 Calcifications in the PTC nodule: (a, d, g) — bright-field images
of a H&E-stained sections; (b, e, h) — SHG images; (c, f, i) — merged bright-
field and SHG images of the same area. Arrows mark the clear boundary
between calcification and H&E-stained tissue in the brightfield images and

the corresponding areas in the SHG images. Reprinted from [Paper C].

Micro- and macrocalcifications are considered a distinct diagnostic
feature of PTC [200], although some authors suppose their association with
benign conditions [201]. Round or oval calcifications that are concentrically
laminated and less than 1 mm in diameter are psammoma bodies, larger
calcifications are referred to as macrocalcifications [202]. Figure 4.13 shows
the brightfield image of an H&E-stained tissue section containing
calcifications and the corresponding SHG images. Conventional H&E-
staining of the tissue limits visual analysis of the calcifications (dark purple,
Figure 4.13a,d,g). SHG imaging reveals specific collagen structures within
the calcifications. Outside the capsule, collagen network of fibrous septa
around the follicles is clearly visible. The colloid inside the follicles is seen as
patches of uniformly low intensity, which is most probably due to a blead-
through from the TPEF of the Eosin stain.
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4.3.2 Intensity and texture parameters of wide-field SHG imaging of
thyroid nodule sections

From each recorded SHG image the following intensity and texture
parameters were calculated: u,, g, g1, g2 (FOS); E, I, C, L, H (SOS); SRE,
LRE, GLN, RLN, RP (HOS).

Interpretation of each parameter and examples of their assignments to
collagen structures are collected in 7able 3-2, Table 3-3 and Table 3-4. To
address possible long-range order of the collagen structure, the GLCM-related
parameters were calculated with a few values of the distance parameter d = 1,
3,6,9, and 12 px. Therefore, 34 features were extracted from each individual
SHG image, and with the total of 20736 recorded images this resulted in a data
set of 34x20736 parameter values. The obtained parameter distributions were,
first, standardized using the Robust Scaler algorithm. Then, the parameter
correlation matrix (Table S3 in Supplementary Material of Paper C) to
identify parameters that could be correlated and therefore redundant were
calculated. Here, SOS parameters calculated with different values of d turned
out to be strongly correlated.

The local homogeneity L with d =1 and 3 px exhibited strong correlation
with virtually all parameters in the set, while L with d =6, 9, and 12 px were
moderately correlated with other parameters and highly correlated with each
other. Excluding parameters with C orr()? , 7) = 0.9 left only 13 features left
(Table 4-4) to be considered in further analysis.

Table 4-4 Correlation of intensity and texture parameters. Adapted from

fiy g1 J2 E, C, H, I Cs Le Co LRE GLN RLN

0.34 0.20 0.74 0.83  -0.08 0.58 | -027 -0.31 0.87 0.18

-0.28 007 -062 -043 0.14 -0.65 0.23 0.51 -0.60 -0.53

-0.18 0.80 -0.12 -0.07 -0.26 -0.17 -0.08 -0.28 -0.02 021 -024 -0.23

E; 034 -028 -0.12

-0.07 0.39 032 -0.19 0.50 = -026 -0.29 0.33 0.31

¢, 020 007 -007 -0.07

-0.08 0.17 0.75 = -0.22 0.45 0.41 0.08 -0.29

H,y 0.74 -0.62 -0.26 039  -0.08 0.79  -0.51 089 -0.73 -0.68 0.86 0.51

I 083 -043 -0.17 0.32 0.17

-0.24 0.55 -045 -0.39 0.70 0.13

Cs -0.08 0.14  -0,08 -0.19 0.75  -0.51

-0.52 0.89 0.66 = -023 -0.42

Lg 0.58 -0.65 -0.28 0.50 -0.22 0.89 0.55 -0.70  -0.74 0.78 0.74

Co -0.27 023 -0.02 -0.26 045 -0.73 -045 0.89 0.76  -0.43

LRE -0.31 0.51 021  -0.29 041 -0.68 -0.39 0.66 -0.74

GLN 0.87 -0.60 -0.24 0.33 0.08 0.86 0.70  -0.23 0.78

RLN 0.18 -0.53 -0.23 031 -0.29 0.51 0.13  -0.42 0.74

Note: Corr(X,Y) [0, 0.36) — low correlated (painted green), [0.36, 0.67) — moderately correlated (painted yellow), and
[0.67, 0.9) — strongly correlated (pained orange) [150]. Subscripts for SOS parameters correspond to the GLCM distance
d.
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4.3.3 ML-based analysis of parameters of wide-field SHG imaging of
thyroid nodule sections

The main phases of the whole cycle of data analysis are schematically
shown in Figure 4.14. In total, 4 (FOS) + 5x5 (SOS) + 5 (HOS) = 34 intensity
and texture parameters were considered in the image analysis.

To classify the recorded SHG images into different categories according
to their intensity and texture parameters, a method of unsupervised machine
learning of the k-means was employed. The cluster analysis was performed in
two stages: first, to delineate the collagen capsule of the PTC from the
surrounding tissue, and then to reveal the possible differences of the collagen
structure between the areas of annotated capsular invasion and the intact
capsule. The results of the clustering were also validated by the pathologist to
exclude the under- or over-clustering. Prior to the k-means, the data was
processed with the PCA to reduce the complexity of the available parameter
set and also to be able to trace back which parameters have the most weight
in separating the images to different classes. This way, the clustering was
performed on the PCs rather than on the parameters directly.

In the first stage of the analysis, according to the Kaiser-Jolliffe rule [203]
(Figure 4.15¢) the first 4 PCs that cover 89% of the total data variance
(Figure 4.15a) could be considered sufficient for a reduced data set.

Input Data standardization Pearson’s correlation
34featuresx b mm ’ Robust Scaler (IQR =_1%-99%} . > Correlation matrix:
20736 samples g X = Median oy Cou(E,7)
T0R R(X,¥) =
TR0y
[ ]
|
Results x 2: o
. Metrics graph v
. PCs plots (PCA visualization) .. .
+  K-mean clustering Images Principal con’:ponent analysis (PCA)
- Main features distribution . 1 . - -
by clusters {Centroids) COV[X‘ Y) = NZ(Xi - ch’an)(yi — Vmean)
i=1
Output:
é = Cumulative Sum of variances graph | Number of
n Re-clustering |. Explained variance ratio graph significant
: el |4 Feature contribution PCs table PCs
L] []
1. Capsular analysis: = = = -
.. =
2. Capsular collagen analys:s.=> -
Selection collagen clusters after K-mean v
" - 2
é K-mean clustering: rfélj? Tzt Zxee, [T — 1l
n
r= = m = mu| K-mean evaluation metrics:
: . . _ b-a
. Silhouette Coefficient, S = ————
. es-Bouldin index. DB = lzk R Number of
Davies-Bouldin index, = di=1 r{lzajx ij clusters
. . . . _w(By) | neg—k
Calinski-Harabasz index, CH = rowe  ho1

Figure 4.14 Sequence of data processing and ML-based analysis. Reprinted
from [Paper C).
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Figure 4.15 The number of PCs needed to explain variance: (a, b) —
cumulative explained variance; (c, d) — the proportion of explained variance;
(e, f) — eigenvalues plotted as a function of PCs. The PCA of the entire data
set corresponds to (a), (c), (e). The PCA of the collagen-related data
corresponds to (b), (d), (f). The dashed lines in (¢) and (f) are Kaiser-Jolliffe
thresholds for the selection of PCs to be retained. Reprinted from [Paper C].

The loadings that represent the contributions of the different features in
the selected PCs are presented in 7able 4-5. PC1 is responsible for 46.8% of
the total data variance and, as will be shown below, it separates the SHG
images of collagen from the rest of the tissue. Parameters with the relative
weight in the PC1 larger than 5% are E,, ZG, ﬁl, GLN, RLN, C’g, and LRE.
This implies that the data distribution along the PC1 is mainly due to the
differences in the SHG image texture: roughness, short- and long-range order
in the distribution of pixel intensities, structural complexity (7able 3-3). On
the other hand, since the relative weight of fi; to PC1 is less than 5%, the
intensity of the SHG signal associated with the collagen content plays a minor
role in this regard.

The largest loadings of the PC2 correspond to El, C~9, C~3, LRE, and C~1.
This implies that the separation along the PC2 occurs between regularly
structured and uniform images such as arrays of collagen fibers versus glass
or disordered collagen.

The FOS intensity parameters fi;, §;, and §, have a major contribution
to PC3 and PC4, and as will be shown further, determine the segmentation
within the collagen capsule. Then, the number of clusters & of the k&~-means was
determined as follows. The k-means metrics were calculated for different
values of k =2-10 (Figure 4.16a, ¢, e).
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Table 4-5 Loadings of the PCs of the PCA of the whole dataset. Adapted
from [Paper C].

PC 1 (46.8%) PC 2 (18.3%) PC 3 (14.5%) PC 4 (9.4%)
Featu Loadi Rgl ’ Featu Loadi Re} ’ Featu Loadi Re} . Featu Loadi Re} )
‘e ng weig e ng weig e ng weig ‘e ng weig
ht, % ht, % ht, % ht, %
E, 0.512 26.2 E, 0.774 59.9 g2 0.601 36.2 g2 0.475 22.6
Le 0.376 14.2 Cy 0.349 12.2 E, 0.509 25.9 iy 0.474 22.5
H, 0.345 11.9 Cs 0.332 11.0 d1 0.406 16.5 [ 0.026 0.1
GLN 0.259 6.7 LRE 0.246 6.0 RLN 0.271 74 I 0.015 0.0
RLN 0.224 5.0 ¢, 0.235 5.5 LRE 0.236 5.6 GLN 0.015 0.0
I 0.188 3.5 iy 0.038 0.1 L 0.107 1.1 g1 -0.019 0.0
iy 0.176 3.1 g1 0.020 0.1 H, 0.102 1.0 H, -0.031 0.1
¢, -0.091 0.8 I -0.013 0.0 I 0.099 1.0 LRE -0.045 0.2
Jo -0.135 1.8 GLN -0.044 0.2 iy 0.020 0.0 [ -0.135 1.8
g1 -0.197 3.9 g2 -0.050 0.3 Cy -0.058 0.3 Le -0.326 10.6
[ -0.218 4.8 Le -0.111 1.2 GIN  -0.113 13 Co -0.357 | 127
LRE -0.288 8.3 RLN -0.119 1.4 Cs -0.134 1.8 E, -0.379 14.4
Co -0.312 9.8 H, -0.146 2.1 C; -0.137 1.9 RLN -0.387 15

Note: Loadings of PCs are arranged in descending order. The loadings with the relative weight above 5% are highlighted
green.
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Figure 4.16 Evaluation metrics for k-means clustering: (a, c, e) — clustering
of the entire dataset; (b, d, f) — clustering of collagen-related SHG images. The
rectangles show the optimal selection of the number of clusters according to
the combination of metrics: red rectangles correspond to the trivial data
segmentation; blue rectangles correspond to the number of clusters used for
k-means. Reprinted from [Paper C]|.

The best combination of high SC and low DBI was achieved with k£ =3
(Figure 4.16a, e red rectangles). However, such clustering is trivial since it
categorizes SHG images into outliers, those of the glass slide, and then the
rest without separating the capsule (Figure 4.17).
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Figure 4.17 k-Means clustering of all examined PTC nodule sections with
trivial clustering (k = 3). The arrow shows the outlier tile image (colored
yellow). The size of the cluster maps is 8.4 mm x 8.4 mm. Reprinted from

[Paper C)].

With larger k£ = 4-8 the SC and DBI are both fairly constant, while the
CHI monotonously increases with increasing k. We, therefore, settled for k =
8, which is the number of clusters that appears to be appropriate to account for
all the different outliers, sample areas without tissue, and also to segregate the
remaining tissue images into different physically meaningful categories.

The detailed results of the k-means clustering with k = 8 for the PTC
nodule sections are shown in Figure 4.18¢, f, i, [.

Of the 8 clusters, two (clusters 6 and 7) encompass the outlier data that
are scarce and characterized by extreme values of individual parameters as
compared to the rest of the dataset. SHG images of the glass slide and cancer
cells generating background levels of SHG signal fall into cluster 5.

Then, by looking at the localization of the different clusters in the
samples (Figure 4.18), it appears that the rest of the clusters, albeit somewhat
conditionally, could be assigned to collagen around large vessels near the
capsule (cluster 0, 93 SHG images, Figure 4.18), the collagen capsule
surrounding the PTC nodule and collagen spreading to normal tissue (clusters
1 and 2), normal follicles (cluster 3), and possibly inflamed tissue (cluster 4).

The SHG images of clusters 0, 3-7 are shown in Figure S7 Supplementary
Material of Paper C.

The centroids of the standardized parameters attributed to the different
clusters are presented in Figure 4.19¢. The score plots of the different pairs of
PCs are shown in Figure 4.19a-f. The 3D score plot of the first three PCs is
presented in Visualization 1 [Paper C]. The data points are colored the same
as their assigned clusters in the clustering maps (Figure 4.18). It appears that
the collagen-related clusters 0-2 are well separated from the remaining clusters
3-5 along the PC1 (Figure 4.19¢, ¢, e).

According to PC1 loading (7able 4-5), the separation of the capsule from
the rest of the tissue is mainly due to the variance in SOS parameters related
to coarseness/smoothness of the SHG image and the long-range order
parameters. Indeed, as it follows from cluster centroids (Figure 4.19g),
collagen-related clusters are characterized by high positive values of E;, L,
H,, GLN and negative value of LRE, while for the other clusters these
parameters have opposite signs. In terms of image morphology, high E;
indicates the presence of dominant levels of brightness. High Ly implies
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frequent occurrence of pixel pairs of the same gray level at a distance d = 6
pX.

4 ' B 1 mm :"'k*-.. _ e . 'I' -- :
Figure 4.18 k-Means clustering of the analyzed PTC nodule sections: (a, d, g,
j) — bright-field images; (b, e, h, k) — SHG images; (c, f, i, ]) — k-means
clustering, k = 8. Adapted from [Paper C].

High H, indicates coarse texture, and high GLN means significant non-

uniformity in the grey level runs and complexity of the texture.
Unsurprisingly, in contrast to this, non-collagenous clusters of thyroid colloid
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and glass are characterized by high LRE, indicating long pixel runs and large
homogeneous areas.
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Figure 4.19 k-Means clustering of an SHG image of PTC nodule sections
based on PCA. (a)-(f) Score plots. (g) Centroids of standardized parameters of
all clusters. The red and blue dashed rectangles mark the parameters with the
major positive and negative contributions, respectively, to the data separation
along the PC1. The data points in (a)-(f) and the clusters in Figure 4.18c, f, i, [
have the same color as the clusters in (g) and are categorized identically.
Adapted from [Paper C].

The reconstructed original, unstandardized parameters can be found in
Figure S8 Supplementary Material of Paper C.

4.3.4 ML-based analysis of parameters of wide-field SHG imaging
of collagen capsules.

To focus on the specific changes in the collagen capsule around PTC, two
collagen clusters (1 and 2) mainly related to the capsule were selected and
their additional clustering was performed. All other data (clusters 0, 3-7) were
excluded from the analysis and colored black in the resulting cluster maps.

The parameters of the selected SHG images were re-standardized within
the limits of a new, reduced data set and PCA was repeated. Four PCs covering
86.9% of the data variance were selected using the Kaiser-Jolliffe rule (see
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Figure 4.15b, d, f) and used for clustering. The PC loadings for the new dataset
are shown in 7able 4-6.

Table 4-6 Loadings of the PCs for PCA of the collagen-related dataset.

Adapted from [Paper C)]
PC 1 (46.7%) PC 2 (19.4%) PC 3 (14.3%) PC 4 (6.5%)
Featu Loadi Re} i Featu Loadi Re} . Featu Loadi Re} i Featu Loadi Re.l i
weig weig weig weig
re ng ht, % re ng ht, % re ng ht. % re ng ht, %
GLN 0.440 19.4 RLN 0.559 31.2 Cs 0.601 36.2 Cy 0.475 22.5
H, 0.353 12.4 E, 0.340 11.6 Co 0.509 26.0 LRE 0.474 224
i 0.337 11.3 Le 0.339 11.5 ¢, 0.406 16.5 Cs 0.026 0.1
Le 0.291 8.5 Cy 0.156 2.4 g1 0.271 73 iy 0.015 0.0
[ 0.239 5.7 GLN 0.002 0.0 g2 0.236 5.6 L 0.015 0.0
¢, 0.230 5.3 [0 -0.035 0.1 LRE 0.107 1.1 E, -0.019 0.0
I 0.230 5.3 J» -0.132 1.8 E, 0.102 1.0 Hy -0.031 0.1
Co 0.136 1.8 g1 -0.165 2.7 L 0.099 1.0 I -0.045 0.2
E, 0.122 1.5 iy -0.183 3.4 RLN 0.020 0.0 GLN -0.135 1.8
RLN 0.009 0.0 LRE -0.209 4.4 iy -0.058 0.3 J1 -0.326 10.6
LRE -0.272 7.4 H, -0.260 6.8 I -0.113 1.3 J» -0.357 12.8
J» -0.306 9.4 ¢, -0.317 10.0 H, -0.134 1.8 [ -0.379 14.3
g1 -0.346 12.0 I -0.377 14.2 GLN -0.137 1.9 RLN -0.387 15.0

Note: Loadings of PCs are arranged in descending order.

k-Means clustering was performed according to the previously described
procedure. The number of clusters £ = 5 was estimated based on the most
optimal set of cluster metrics (see Figure 4.16b, d, f). The cluster maps of
collagen distribution in all 4 analyzed PTC sections, the score plots and the
corresponding centroids are shown in Figure 4.20. The relevant 3D score plot
of the first three PCs is presented in Visualization 2 [Paper C]. The centroids
of the non-standardized parameters are shown in Figure S9 Supplementary
Material of Paper C.

Cluster maps reveal significant heterogeneity of the collagen structure in
the capsule surrounding PTC (Figure 4.20a-d). The capsule consists mainly
of three clusters (1-3). Cluster 1 (green in Figure 4.20) forms the core part of
the capsule and is virtually absent in normal tissue with follicles. Although it
tends to form a continuous core of the entire capsule, there are clearly
recognizable areas where it is replaced by cluster 2 or 3 (red and brown in
Figure 4.20, respectively) or their mixture. Cluster 4 (yellow in Figure 4.20)
is adjacent to the capsule from the outside. Cluster 5 (dark blue in Figure 4.20)
is located almost entirely outside the capsule and probably comprises the septa
of normal follicles. Calcifications are represented by collagens mainly
assigned to clusters 2, 4 and 5 (marked with arrows in Figure 4.20a-d).

PCA allowed revealing the main structural and textural characteristics of
collagen, which determined the segmenting of the capsule into clusters.
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Figure 4.20 k-Means clustering of collagen-related clusters only. (a-d) Cluster
maps of 4 analyzed PTC nodule sections. (¢) Centroids composed of
standardized parameters corresponding to each cluster. (f-k) Score plots. The
reconstructed original, unstandardized parameters can be found in Figure S9
Supplementary Material of Paper C. The colored circles indicate the position
of the centroid of the cluster (center of mass of the cluster) in PC space; the
colored semicircles on the abscissa and ordinate axes mark the projections of
the centroids. The size of the cluster maps is 8.4 mm % 8.4 mm. The data points
in (f)-(k) and the clusters in (a)-(d) have the same color as the clusters in (¢)
and are categorized identically. Reprinted from [Paper C).

PC1 separates clusters 1 and partially cluster 2 from other clusters. The
data are mainly segmented by the significant influence of GLN, H;, fi;, L, C3,
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Cy, I, with positive sign and LRE, §,, §; with negative sign in the PCI
loadings (7able 4-6). High centroid value of entropy H; and the non-
uniformity of runs of grey levels GLN of clusters 1 and 2 (Figure 4.20¢)
indicate coarse-grained textures and the presence of clearly separated
elongated fibers. High mean fi; values, high local homogeneity Lg and inertia
I, indicate high collagen content, high contrast of the image, and are probably
related to the presence of highly dense collagen bundles [35]. High
correlations C3, C; indicate the periodicity (regularity) of the collagen fibers.
Negative values of LRE denote the absence of large repetitions of pixels with
the same grey levels, which usually originate from empty glass or uniformly
distributed collagens that occupy the entire imaged area. The non-
standardized values g, and g, are positive for all clusters, so that the gray
level distributions are leptokurtic and right-skewed [204] in all cases.
However, the g, value for cluster 1 is smaller than for the other clusters,
indicating a broader intensity distribution which can be explained by a higher
heterogeneity of the images. Although cluster 2 has high values of the
correlations of distant and neighboring pixels C3, Cy, C; indicating similarity
of cluster 2 to tight collagen of cluster 1, the g; and g, values are higher
indicating collagen disorder (or degradation). Clusters 3-5 consist of low-
contrast fibers that produce an SHG signal with a narrower leptokurtic right-
skewed intensity distribution, and form disordered (complex) networks that
only partially cover the scanned area or contain evenly distributed collagen
(cluster 3, Figure 4.21).

Cluster 1 Cluster 3 Cluster 4 Cluster 5

/ ST "
i R
ot

% 00 pm » E
Figure 4.21 SHG images of typical collagen structures related to clusters
separated by k-means in PTC capsule. Images consist of nine randomly
selected SHG tile images from the datasets corresponding to each cluster.
Reprinted from [Paper C].

PC2 separates cluster 3 (brown) and partially cluster 2 (red) from the
other clusters (Figure 4.20f, i, j) due to the large values of PC2 loadings of
RLN, E,, Lg and H,, C;, I, , with positive and negative signs, respectively
(Table 4-6). Cluster 3 is characterized by high positive values for RLN, E;, L¢
and negative values for Hy, C;, and I, (Figure 4.20¢). Structurally, this
indicates that cluster 3 consists of collagen fibers with high variability of
length and dominant levels of brightness.

Collagen networks have lower contrast and are more uniform. Such
parameter values may indicate fragmentation of collagen fibers and an
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increased level of collagen degradation in cluster 3. In contrast to cluster 3,
cluster 2 is partially separated by PC2. It is characterized by a more uniform
distribution of the lengths of collagen fibers (lower RLN values), a lower
uniformity in fiber spatial distribution (more disordered network) (lower E/)
and the presence of some elongated, clearly separated fibers (higher values of
Le, Hy, Cy, 1), although the fibers are mainly fragmented (Figure 4.21).

PC1 and PC2 cover 66.1% of the data variance and reveal the main
differences in collagen structures within the capsule. PC3 allows only partial
separation of clusters 2 and 5 from clusters 1, 3 and 4 (Figure 4.20g, i, k),
although all the clusters overlap significantly, and direct interpretation of the
morphological features is complicated. PC4 does not reveal any significant
data separation (Figure 4.20h, j, k).

Comparison of the clustering maps of collagen distribution in whole PTC
capsules and H&E-stained BF images annotated by the pathologist revealed a
correlation between the spatial distribution of clusters and the invasive/non-
invasive areas in all tissue samples. Areas with dominant cluster 1 surrounded
by clusters 2 and 3 were not labeled as invasion in any of the samples
examined (white doubled rectangles, Figure 4.22). Most of the annotated
invasions (rectangles with solid line, Figure 4.22) are mainly composed of
cluster 2 or 3 (or both) with minor inclusions of clusters 4 and 5 and with some
rare inclusions of cluster 1 which do not form the continuous core. There are
two exceptions, which can be seen in Figure 4.22 (marked with an asterisk),
where cluster 1 forms a continuous barrier. However, these annotations can
be classified as invasions that have not yet occurred [205]. During primary
analysis, some of the areas represented by clusters 2 and/or 3 and missing
cluster 1 were not categorized as invasion areas by the pathologist
(Figure 4.22, dotted rectangles). These areas were marked as suspicious areas
requiring additional analysis. Subsequent examination of one of these
suspicious areas, revealed by ML-assisted wide-field SHG microscopy,
allowed clarification of the diagnosis and classification of this area as a
microinvasion (marked with arrows in Figure 4.22). An additional
examination of two exceptions among the annotated invasion clusters proved
the relationship of these clusters to microinvasions.

The presence and dominance of collagen structures classified as cluster
1 (Figure 4.20e, Figure 4.21) were thought to be associated with a non-
invasive capsule and corresponding collagen structures may prevent invasion
(double rectangle, Figure 4.22) [206].
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Figure 4.22 Annotations of invaded, affected, and non-affected areas in PTC
collagen capsules. (a, d, g, j) Bright-field image of H&E-stained tissue section.
(b, e, h, k) SHG image. (c, f, i, 1) Cluster map. White rectangles denote the
following specific regions in the PTC sections: capsular invasion annotated
by pathologist (solid), suspicious or affected by PTC progression, annotated
by k-means (dotted), non-invaded, annotated by k-means (double). Adapted
from [Paper C).

Dense packing of long, aligned collagen fibers in the area of
carcinogenesis has been shown to be one of the mechanisms for preventing
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tumor growth, as the alignment of collagen fibers facilitates the motility of the
key players in the anti-cancer immune response, CD8+ T cells [207], and their
infiltration into cancer cells. If the alignment of the fibers is disturbed and the
collagen fiber network is tangled, the movement of CD8+ T cells is impeded
[208], which promotes tumor growth. One could hypothesize that the latter is
reflected in the replacement of cluster 1 collagens in the cluster maps with
collagens classified as cluster 2 and cluster 3, indicating the development of
invasion or highlighting areas that are suspicious (or susceptible) to invasion.
Clusters 2 and 3 are represented by a sparse network of thin fibers. Collagen
degradation, fiber realignment, random orientation and fragmentation were
shown to support the migration of invading cancer cells and promote
metastasis. Such remodeling is associated with the activity of cancer-
associated fibroblasts [209] and TAM [210], which create a pro-invasive and
immunosuppressive microenvironment [211].

Our findings indicate that analyzing images of entire tissue sections from
surgically removed thyroid nodules provides a comprehensive picture of the
PTC progression. ML-enhanced SHG wide-field microscopy of the entire
PTC nodule sections, in contrast to previously published SHG imaging of
small-size areas [20,212,213], allowed for revealing the local heterogeneity of
capsular collagen, closely related to the invasion or the susceptibility of the
capsule to invasion. Data segmentation within the collagen clusters occurs
mainly along PC1 and PC2. PCl1 isolates tight collagen of the inner core which
is associated with encapsulated PTC (cluster 1), while PC2 isolates
disordered, fragmented collagen which is associated with already invaded or
suspicious parts of the capsule (clusters 2 and 3). This shows that the proposed
approach, in addition to traditional analysis, can help to clarify and/or confirm
a diagnosis, identify overlooked, poorly distinguishable invasions, and
highlight suspicious areas that require closer examination.

Identification of areas of invasion in thyroid nodules is critical for both
diagnosis and treatment, as it has significant implications for determining the
nature of the nodule and subsequent clinical decisions.

The primary benefit of identifying invasion is to differentiate between
benign and malignant thyroid nodules [214]. Benign nodules typically do not
invade the surrounding tissue, whereas malignant nodules, such as papillary
or follicular thyroid carcinomas, often show invasive characteristics. The
presence of areas of invasion is a key histopathologic criterion for the
diagnosis of malignancy in follicular adenomas and carcinomas of the thyroid.
These two pathologies share the same cytologic features, and differentiation
can only be made by identifying capsular and/or vascular invasion.

On the other hand, the extent of invasion can provide information about
the aggressiveness of the tumor [215]. Tumors that invade far into surrounding
tissue such as muscles or vascular structures are often more aggressive and are
associated with a poorer prognosis. This information is important for
predicting outcomes and planning appropriate treatment strategies.
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In terms of treatment, the presence and extent of areas of invasion are
critical to the surgical approach [216]. For example, a nodule with localized
invasion may require a more extensive resection than just a lobectomy, in
which case a total thyroidectomy is required. Cases of extensive invasion,
such as extrathyroidal extension or lymph node metastases, may require
adjuvant therapies such as radioactive iodine ablation to target the residual
malignant tissue. This would not be the case for fully encapsulated nodes with
no signs of invasion.

Finally, the presence of invasion also affects the monitoring of patients
after surgery and possible adjuvant therapies. For invasive or high-risk
tumors, more aggressive surveillance is required to early detect recurrence or
metastases.

Thus, any progress in increasing the accuracy of invasion identification
increases the quality of diagnosis, treatment and patient survival. The results
and the ML-based approach proposed in the current study make an important
contribution to this progress.

Although traditional histopathology remains the golden standard for the
diagnosis of capsular invasion, SHG microscopy used in this study offers
several technical benefits for data accumulation. SHG microscopy provides
information on the collagen within the thyroid nodule capsule. Not only the
collagen capsule, but also the cellular context both inside and outside the
nodule are important for malignant/benign classification using random forest
[20] and DL approaches, as recently shown using optical microscopy datasets
[217]. Hence, adding cellular context to the collagen capsule might improve
the classification strategy. In the context of nonlinear optical imaging, this
might come straightforward as SHG-related techniques can be easily
implemented with SHG imaging: THG, TPEF and CARS. Such approaches
have already been applied to demonstrate qualitative characteristic of various
thyroid pathologies [218]. The next step would be to find suitable
classification approaches dealing with such multidimensional data. In this
context one of the possible approaches is related to image fusion techniques.
For example, a fusion autoencoder [219] would take a stack of SHG, THG,
and TPEF images as inputs and provide feature maps with the fused
information. Subsequently, a classifier would divide the feature maps into
benign and malignant categories.

To sum up, the proposed approach of automated ML-based selection of
collagen-related SHG images and the findings on the heterogeneity of the PTC
capsule can very likely form the basis for the development of new effective
models of automatic diagnosis based on unsupervised ML algorithms with
further extension to supervised ML models. The results of the current research
indicate that the traditional approach with manual selection of ROIs for
training the supervised ML models is inconsistent due to the heterogeneity of
PTC capsules. Their heterogeneity, which cannot be completely detected
during manual inspection, can cause the largest error in the set of selected
ROIs of the "intact" (control) capsule, as they contain both normal and
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unidentified 'suspicious' areas of the capsule. As a result, the supervised ML
model cannot be trained correctly because one of the data sets for training
(intact' capsule) is ambiguous. The approach proposed in the present study,
potentially complemented with "cellular context" from THG, TPEF and
CARS can be an efficient method for automated approach for cancer
diagnosis.

This was summarized in the third statement of the thesis:
Unsupervised machine learning improves SHG image analysis, reveals the
textural heterogeneity of papillary thyroid carcinoma capsule, and enables
identification of capsular invasion, poorly distinguishable microinvasions and
regions requiring additional examination based on the specific sets of image
parameters.

4.4 Supervised ML for thyroid carcinoma diagnosis using wide-
field SHG microscopy

The results from this section were demonstrated in Paper D and in
Conferences 7 and 9.

All FTC and PTC samples were imaged using the SHG microscopy setup
and the combined images of all samples are shown in Figures S1, S2 from
Paper D. To ensure diverse sample description, 34 intensity and texture
features (4 FOS, 25 SOS and 5 HOS) extracted from each 117 ym X 117 um
SHG image tile were used for further analysis. However, not all the features
are necessarily highly discriminative and relevant to the target, which may
affect the classification results. To evaluate the impact of feature redundancy
and irrelevance on classification, feature selection was performed using
RFECV-LinearSVC followed by MIFS. The results of feature selection for
each label correction approach are shown in Table 4-7.

Table 4-7 Features selected by RFECV-LinearSVC and MIFS within each
label correction approach. Adapted from [Paper D]

Excluded by

Label correction Split Excluded by RFECV-LinearSVC; MIFS: No. of
approach P (excluded fi, No.) ] remained f;
(excluded fi, No.)
70/30 En, Cr: (2) Ciz, Iy, (C;;, 13, Cs; 27
I Tissue-related 5575 RLN, Ir, H1, Cr. (4) Cro. Co 15, Cio(9) %6
90/10 RLN, E12, 1o, Ls, Es, H1, Er; (7) Ci2, Cs, I35 (3) 24
70/30 LRE, L1z, Es, Eo, He, Es, I, E1, 1115 (9) (0) 25
GLN, LRE, L2, Ci2, E12, Eo, Hs, Es, I3, E3,
1. Capsule-related 80/20 En (1) 0) 22
90/10 LRE, E12, Es, pui; (4) (0) 30
1L Multi-class, 70/30 Eq, Es; (2) (0) 32
accounts for 80/20 Is; (1) ©0) 33
capsular 90/10 Io, Eo, Es, E3; (4) (0) 30

heterogeneity
Footnote: Lower index indicates the step (in px) used for calculating GLCM. f; — features.

AIl FTC and PTC samples were imaged using the SHG microscopy setup
and the combined images of all samples are shown in Figures S1, S2 from
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Paper D. To ensure diverse sample description, 34 intensity and texture
features (4 FOS, 25 SOS and 5 HOS) extracted from each 117 yum % 117 um
SHG image tile were used for further analysis. However, not all the features
are necessarily highly discriminative and relevant to the target, which may
affect the classification results. To evaluate the impact of feature redundancy
and irrelevance on classification, feature selection was performed using
RFECV-LinearSVC followed by MIFS. The results of feature selection for
each label correction approach are shown in Table 4-7.

4.4.1 Tissue-related wide-field SHG images of PTC and FTC

The tissue-related SHG images were separated from the non-tissue-
related images using PCA of the texture feature vectors extracted from SHG
images. Binary k-means clustering, based on the first five PCs covering more
than 92% of data variance, enabled segmentation of the tissue section image
into tissue- and non-tissue related SHG images [177]. A typical SHG image
segmentation is shown in Figure 4.23. Such clustering separates tissue and
non-tissue related points in two well-defined clusters. As previously shown
[16], tissue- and non-tissue-related data points (glass) have projections with
opposite signs on PC1 in the score plots and can be clearly visualized
(Figure 4.23).

(a) SHG scans (b) Segmentation (1) (c) Segmentation (I1)

PTC (Tissue-related) PTC (Capsular)
.2 : _‘;:“ BN !

"

- 3 B
@ FTC (Tissue-related)
e

@

Figure 4.23 Typical SHG and brightfield images of PTC and FTC nodule
sections (a) and the result of the separation of tissue-related (b) or capsule-
related (¢) SHG images based on k-means clustering performed on the PCs
PC1-PC5. The images separated for the analysis are colored yellow in (b) and
(c). Reprinted from [Paper D)

Either complete or reduced feature vectors (via RFECV-
LinearSVC/MIFS) of tissue-related SHG images were used for classifier
optimization.

The predictive performance results of all ML classifiers are summarized
in Table S5 and Figures Slal-18 in Paper D. The highest accuracy values
were achieved with a 90/10 (training/validation) data split and classifier
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optimization using the complete feature vectors (7able 4-8 "I. Tissue-related",
Figure 4.23). All ensemble ML models (RF, XGBoost, and LightGBM) show
signs of overfitting, suggesting data leakage, which led to overly optimistic
results on the training dataset but poor performance on the validation dataset.
Although the LR classifier had relatively satisfactory accuracy, its other
metrics were significantly worse than those of the other models. MLP and C-
SVC demonstrated the best performance on the wvalidation set
(Figure 4.24a - c), with C-SVC surpassing MLP in all metrics. The lower
recall and F1-score values for MLP indicate a higher rate of false negatives
(PTC predicted as FTC) and false positives (FTC predicted as PTC) as
compared to C-SVC.

Table 4-8 Numerical estimation of the optimized model performance (based
on maximized accuracy) obtained for data split training/validation 90/10 for
MLP and C-SVC models. Reprinted from [ Paper D].

g - = < < 8
S 2 g =] 3= 9 5 = =) 52 52 3 =
3§ = 22 iE ¢ ¢ < ig Zg i ¢
§ < = g a2 ~ ) 5y E Q
MLP 75.88 76.77 0.588 0.781 0.671 0.850 54.57 56.82 62.40 +++
Tisls.ue— MLP* 78.007  79.007 0.687 0763  0.723  0.862 63.94  44.69] 4991  1++]
related C-SVC 81.71 87.09 0.767 0.789 0.778 0.881 72.13 45.09 48.84 ++
C-SVC* 80.31} 82.85] 0.736 0.780 0.757 0.870 70.76] 42.01) 46.13 |
MLP 81.94 83.95 0.745 0.798 0.771 0.898 64.67 38.05 40.91 ++
Carlllgule MLP* 80.00 82.15 0.707 0.781 0.742 0.881 67.89 44.93 46.61 ++1
_related C-SVC 82.07 88.36 0.770 0.785 0.778 0.901 71.35 43.28 46.19 ++
C-SVC* 82.20 87.61 0.748 0.802 0.774 0.886 65.69 52.74 56.16 +++1

Footnote: * — indicates that feature selection was performed prior to the optimization of the hyperparameter
configurations of the used classifiers; good accuracy validation/training, good Recall/Precision/F1/AUC,
poor for real test set; +++ good accuracy validation/training, "classified" for real test set. The arrow (1)
indicates the improvement of the model performance and (]) indicates the decrease in the model
performance after the removal of redundant and irrelevant features.

On the unknown test set, MLP demonstrates correct classification rates
slightly above 50% (Figure 4.24¢), while C-SVC exhibited low discriminative
power for PTC but performed well in distinguishing FTC (Figure 4.24d).
Visual inspection of the classified PTC images revealed that the normal tissue
surrounding the circular PTC capsule was frequently misclassified as FTC,
resulting in false negatives. Restricting the analysis area closer to the PTC
capsule improved the classification performance, increasing the proportion of
true positives to 48.84% for C-SVC and 62.40% for MLP.

Two distinct regions within the collagen capsule of PTC were
consistently classified as FTC by both C-SVC and MLP. Optical and SHG
images of the capsule suggest that these areas correspond to calcifications
(Figure 4.13, Figure 4.18 and Figure 4.22).

Calcifications are more frequently observed in PTCs than in FTCs and
are generally accepted as a reliable indicator of PTC [202]. Calcifications of
sizes less than 1 mm are called microcalcifications and can be referred to as
stromal calcification, bone formation, or psammoma bodies, whereas
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calcifications > 1 mm are macrocalcifications. Calcifications are believed to
form due to necrosis, haemorrhage and subsequent fibrosis within the tumour.
Collagen I serves as a scaffold for mineralisation — deposition of mineral salts
[220], such as calcium carbonate phosphates [221], calcium hydroxyapatite
[202], or other calcium compounds within the fibrous extracellular matrix.
Mineral deposits do not generate SHG [222,223], indicating that SHG signal
detected in PTC samples originate from fibrillar collagens which favoured the
formation of macrocalcifications.

(b) C-SvC Predlclid labels (c) MLP Predlc(i-d labels
\

© O
S = 963 166 et 995 134
2o o o
=2 2 3
g &) £
oo ) S
E = S
o 189 o 334
w w
0.0 = !
00 02 04 06 08 10 PTC FTC - PTC FTC
False positive rate
(d) C-SVC: FTC 72.13%; (e MLP: FTC 54.57%;
csuc g8 PTC 45.09% MLP (62.40%) PTC 56.82%

— PTC* 48.84%

Figure 4.24 Performance of the best developed ML models optimized on the
basis of accuracy: (a) ROC curves of all ML models, (b) confusion matrix for
C-SVC; (c¢) confusion matrix for MLP; (d) C-SCV classification on new
dataset (test set); (¢) MLP classification on new dataset (test set). Blue colored
tile images mark images classified as PTC, yellow — classified as FTC. The
percentage for PTC indicates the proportion of correctly predicted PTC tiles
in the PTC sample that includes the surrounding tissue. An asterisk marks the
percentage of correctly predicted PTC tiles in the PTC sample excluding the
surrounding tissue. White circles mark the areas with calcifications. Reprinted
from [Paper D].

The areas of the PTC capsule which are associated with calcifications
(Figure 4.13, Figure 4.18 and Figure 4.22) were classified as FTC
(Figure 4.24) indicating that the collagen texture features in calcifications
resemble those of either normal tissue or FTC. This introduces another
potential source of data errors, categorized as mislabelling: despite being a
characteristic feature of PTC, calcifications possess texture features that align
with other targets. One possible solution is to create an additional class for
calcifications and perform multi-class classification. However, due to limited
sample size, attempting to separate the dataset this way would result in
unbalanced data.
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Both C-SVC and MLP classify the samples based on a combination of
approximately half of all features, as indicated by the PIA of C-SVC and MLP
(Figure 4.25). PIA reveals how the model’s accuracy is disrupted when one
feature is randomly changed, providing insight into the model’s reliance on
specific features [114]. C-SVC uses more texture features for training than
MLP and significantly more than the tree models. Consequently, C-SVC may
be better suited to reveal hidden relationships between the texture features of
SHG images within PTC and FTC samples.
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Figure 4.25 PIA of C-SVC and MLP models. Reprinted from [Paper D].

Adding a feature selection step prior to the optimization and training of
the classifiers, results in the removal of both redundant features (from 2 to 7
features) and irrelevant features to the target (from 3 to 5 features), indicating
that data is corrupted by both feature and label noise (7able 4-7). However,
the performance of the classifiers decreases in all cases, indicating that there
is another, more significant source of noise beyond feature noise, e.g. label
noise (Table S5 and Figures S1bl1-18 in Paper D). The proportion of
mislabelled data is likely considerable, and the classification models mainly
fail in handling this mislabelled data.

This noise may originate from non-capsular collagen structures in the
tissue surrounding the PTC and FTC nodules, as well as from calcifications.
Removing normal tissue surrounding the neoplasm from the analysis is
considered as a possible approach to increase the classification accuracy. The
perinodular tissue may contain signatures of tumour progression, such as
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collagen network remodelling induced by increased MMP9 secretion from
macrophages recruited to the tumour growth sites [224], providing additional
information for classification models. However, since these changes may be
similar in both carcinoma types [225], labelling surrounding tissues as PTC or
FTC could lead to mislabelling and misclassification.

4.4.2 Capsule-related SHG images of PTC and FTC

To minimize data overlap between PTC and FTC samples caused by
surrounding tissue, only SHG images of nodule capsules were selected. To
automate label noise reduction, capsule images separation was performed
using an unsupervised ML approach [177]: PCA was performed to the SHG
dataset, followed by binary k-means clustering on the acquired PCs. A typical
result is shown in Figure 4.23c. While neither manual labelling nor this
method ensures perfect capsule separation, k-means clustering based on
feature variance differences provides a more objective segmentation than
visual inspection. Further analysis was performed on the capsule-related SHG
images.

Filtering out non-capsule SHG images significantly reduced the
training/validation datasets and caused slight but manageable class imbalance
(Table 3-6). Compared to the tissue-related SHG image dataset, RFECV-
LinearSVC significantly reduced the number of features, while MIFS
removed none. The absence of features removed by MIFS indicates that all
features selected with RFECV-LinearSVC were relevant for distinguishing
PTC and FTC capsules.

While feature selection can improve model performance, a significant
dataset reduction may negatively impact classifier performance [226]. Thus,
classifier performance results are presented below for both the full and
reduced feature set.

The predictive performance of all ML models trained on the full feature
set is summarised in Table S6 and Figures S2a-1-18 in Paper D. Unlike the
all-tissue approach, accuracy remains consistent across 70/30, 80/20 or 90/10
(train/validation) splits, with two best (MLP and C-SVC) shown in Table 4-8
"II. Capsule-related". Overall, models perform better than those trained on all
tissue-related data (Figure 4.26a). However, ensemble models (RF, XGBoost
and LightGBM) remain overfitted, showing overly optimistic results on the
training dataset but failing on the validation dataset. RF achieves satisfactory
accuracy, but low recall and F-1 score. Feature importance analysis (Figure
S2a-13 in Paper D) shows that low coefficients were assigned to most
features, leading to the classification of PTC and FTC capsules as identical in
the unknown dataset.

For MLP and C-SVC, accuracy on the validation set improves to 81.94%
and 82.07% respectively (7Table 4-8 "II. Capsule-related", Figure 4.26). In
addition, the recall and F-1 score metrics increase for the MLP model,
indicating enhanced performance when trained on capsule-related datasets.
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datasets for a split of (90/10): (a) ROC curves of all ML models, (b) confusion
matrix for C-SVC; (c¢) confusion matrix for MLP; (d) C-SVC classification
performed on the new data set (test set); () MLP classification performed on
the new data set (test set); (f) C-SCV (trained on a reduced set of features)
classification performed on the new data set (test set); (g) MLP (trained on a
reduced set of features, 70/30) classification performed on the new data set
(test set). Blue colored tile label images classified as PTC, yellow — classified
as FTC. Percentage for PTC indicates the portion of correctly predicted PTC
tiles in the PTC sample, which includes surrounding tissue. Asterisk marks
the portion of correctly predicted PTC tiles in the PTC sample excluding
surrounding tissue. White circles mark the areas of calcifications. Reprinted
from [Paper D].

Both MLP and C-SVC not only showed improved performance on the
validation set, but also correctly classified FTC samples in the global test
dataset (Figure 4.26d, ¢). The C-SVC model’s classification results for PTC
were similar to those from the all-tissue-related datasets (Figure 4.26d),
suggesting that C-SVC is able to manage the overlap in all tissue-related
datasets and focus solely on the patterns associated with the capsular collagen.
In contrast, the MLP classification accuracy for PTC decreases when trained
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with the capsule-related datasets compared to the all tissue-related datasets
(Figure 4.264d).

PIA reveals that C-SVC is better at identifying feature relevance and
addressing feature multicollinearity (Figure 4.27). While the importance of
individual features changed between tissue-related and capsule-related
datasets, the model’s overall performance remained stable. In contrast, MLP
struggles with the capsule-related datasets and/or suffered from high feature
multicollinearity. The very small fluctuations in MLP accuracy in response to
random changes in feature values revealed by the PIA may indirectly indicate
this issue (Figure 4.27).
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Figure 4.27 PIA of the performance of (a) C-SVC (90/10) and (b) MLP
(70/30) classifiers, optimised based on the complete (red) and reduced (blue)
feature sets. Reprinted from [Paper D].

Feature selection with RFECV-LinearSVC slightly decreased accuracy
for all classifiers, but significantly improved performance on the unknown
global test dataset for all splits (7able 4-7 Features selected by RFECV-
LinearSVC and MIFS within each label correction approach. "II. Capsule-
related", Table S6 in Paper D, rows marked with asterisks). The only
exception is the LR classifier, which showed no change in performance
between full and reduced feature sets, suggesting that feature redundancy is
not the reason for the model's failure. The tree classifiers and C-SVC benefited
most from feature selection, with C-SVC reaching 65.69% and 56.16%
accuracy for FTC and PTC, respectively, on the training/validation split,
outperforming all previous approaches (Figure 4.26f). MLP, which appeared
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to be sensitive to the size of the training dataset, showed improved
classification, reaching 57.50% and 60.28% for PTC and FTC, respectively,
on the global test set (Figure 4.26g). The classification results for all
classifiers are summarized in Figures S2b-1-18 in Paper D.

PIA of C-SVC and MLP, trained on the reduced feature sets
(Figure 4.27), showed that the features important to C-SVC before feature
selection, remained significant after feature selection. Increased contributions
from HOS (RP, RLN, GLN) and SOS (d = 6 px, 9 px) more likely explains the
improvement in C-SVC performance. The exclusion of features E,,, Es and y;
by RFECV-LinearSVC had minimal effect. Although LRE contribution was
relatively high in all previous approaches, its removal with RFECV-
LinearSVC did not affect the classification performance.

For MLP, removing redundant features (L2, Eis912, I3, Hs and u;)
increased the contribution of almost all remained SOS parameters and SRE.
Both C-SVC and MLP classifiers focused on HOS (RP, RLN, GLN and SRE)
and SOS, suggesting that these features capture the main structural differences
in PTC and FTC capsular collagen networks, while FOS parameters provided
no valuable information.

To sum up, ML training and testing using capsular collagen-related SHG
images selected by two-step binary clustering improved the accuracy of MLP
and C-SVC estimated on the validation set, with accuracies reaching 81.94%
and 82.07%, respectively. Feature selection, performed prior to classifier
optimization (excluding LR), significantly improved performance on the
global test set.

However, accurate PTC classification remains challenging, despite
improvements with label and feature denoising. This could be due to the high
heterogeneity of collagen features along the PTC capsule and similarity
between certain PTC and FTC capsule segments, leading to higher accuracy
in identifying FTC and lower accuracy for PTC (Figure 4.26d-g). While FTC
tends to have a more uniform capsular structure, some PTC capsule areas may
share structural similarities with FTC, possibly due to common stromal
response pathways or similar collagen alignment, density, or biochemical
properties. Histopathological studies have shown that thyroid tumour capsules
are heterogenous, with variations in collagen composition and structure
influenced by tumour subtype, growth patterns, and interaction with host
tissue. Further supporting these observations, advanced imaging techniques,
such as SHG microscopy bundled with Al methods for image analysis, can
provide quantitative insights into these variations.

4.4.3 Multiclass classification based on the specific ratio of clusters
describing PTC and FTC

The tissue surrounding the nodules in both carcinoma types does not
provide relevant information for classification based on SHG image texture
features. However, texture features like LRE, E;», Es, w1, removed during
feature selection when only capsule collagen was considered, likely explain
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the differences between the adjacent tissue and the nodules. This suggests that
adjacent tissue could form an additional class, helping address mislabelling in
the tissue-related approach.

Segmentation based on intensity and texture features was performed as
described in [177] to prove the similarity of perinodular tissue. PCA and
multi-class k-means clustering results (Figure 4.28) show that while capsular
collagen is heterogeneous in both PTC and FTC, adjacent tissue is separated
in one class (coloured magenta, Figure 4.28b-c).
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Figure 4.28 PCA analysis of the feature datasets of PTC and FTC samples and
their clustering using k-means: (a) score plots of PC1 vs. PC2, PC3 vs. PC1
and PC3 vs. PC2 for all data and separately for PTC and FTC; (b) cluster map
of random PTC and FTC samples. The numbers indicate the percentage of
each cluster in the corresponding data set. The second number in parentheses
is the percentage of each cluster within the capsule. The ‘magenta’ cluster was
assigned to normal collagen surrounding normal tissue follicles and was
therefore excluded from the ‘capsular collagen’ class and added to a separate
class combining glass and normal tissue images present in both PTC and FTC
samples. Reprinted from [Paper D].

Both carcinoma capsules consist of the same clusters, which complicates
classification of PTC and FTC capsules even when adjacent tissue is excluded
from the analysis (e.g., Figure 4.26d-g). Despite shared cluster composition,
the cluster ratios differ between carcinoma types. PCA score plots
representing all data (Figure 4.28a) and examples of segmented SHG scans
(Figure 4.28b-c) show that FTC capsules are dominated by brownish and
yellow clusters, while PTC capsules are more heterogeneous. The former
likely explains the better classification of FTC by C-SVC classifier in previous
approaches, while the latter probably led to a higher error rate for PTC.

The higher heterogeneity of collagen capsules surrounding PTC nodules,
compared to FTC nodules may be due to differences in growth rates of the
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nodules. PTC tends to grow more slowly, while FTC exhibits increased
aggressiveness and a higher tendency for metastasis [227]. FTC often presents
with larger nodules at diagnosis [228], contributing to its faster growth.
Furthermore, FTC has a tendency for hematogenous spread, contrasting with
the lymphatic spread more commonly associated with PTC [227], which
influences clinical management and prognosis.

These differences may enhance classification results, as both the clusters
and their ratios describe the capsules of PTC and FTC nodules.

Prior to the stratified 10-fold cross-validation for model optimization, the
ratio of clusters, which was identified for the whole train dataset via k-means,
was fixed. SHG images of adjacent tissue and glass were added to a "non-
target" class to avoid preprocessing steps aimed at the removal of SHG images
which are irrelevant to the target and thus that could introduce label noise. The
"FTC", "PTC" and "non-target" classes were balanced prior to classifier
optimization, though some data disproportion remained. This reduced dataset
size compared to both all-tissue and capsular-related approaches could affect
the classifier performance Table 3-6.

Multi-class classification, which includes all SHG images and tends to
correct the mislabelling by adding a "non-target class", also lead to a slight
reduction in redundant features, with all remaining features being relevant for
the target.

The results of classifier optimization for all data splits are shown in Table
S7 and Figures S3al-18 in Paper D. The 70/30 split results for MLP and C-
SVC shown in Table 4-9, Figure4.29 and Figure 4.30 are more
representative, since this split includes more data in the validation set and
preserves cluster ratios.

Table 4-9 Numerical estimation of the optimized model performance (based
on maximized accuracy) obtained for data split training/validation 70/30 for
datasets considering the ratio of clusters in PTC and FTC samples for MLP
and C-SVC models. Reprinted from [Paper D].

N E 0 = = N
e E g 8 g B3 B = £
g8 T . 28 g ) £% £7 g
ML model 52 B 4 g = i g2 g= £
She] s L g = 2 oL SN ®] S
<3 2 A~ B = < E < E &}

2 2 [~ = = =
MLP 81.76 83.16 0.816 0.817 0.811 42.98 63.73 +
MLP* 81.32 83.98 0.810 0.813 0.814 65.12 50.22 it
C-SVC 84.73 89.30 0.843 0.847 0.847 63.70 52.23 -t
C-SVC* 84.80 89.50 0.844 0.848 0.847 68.65 51.66 it

Confusion matrices (Figure 4.29) show improved performance of all
ensemble classifiers (RF, XGBoost, LightGBM) when considering the cluster
ratios within the capsules of each type, though RF and LightGBM are still
overfitted (Table S7 in Paper D). LR performs well with non-target data but
fails in classification of PTC and FTC capsules. Although it successfully
separates non-target data from capsular collagen, it makes many false
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positives. MLP classifies PTC better than FTC (Figure 4.29), while C-SVC
outperforms other classifiers achieving 84.73% accuracy on the validation set
(Figure 4.29, Table 4-9).
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Figure 4.29 Confusion matrices calculated for all classifiers developed with a
70/30 split (optimized by maximum accuracy) for datasets considering the
ratio of clusters in PTC and FTC samples. Reprinted from [Paper D].

The C-SVC classifier performs better on the unknown test set compared
to the all tissue and capsule-related approaches without feature selection
(Figure 4.30a), but worse than the capsule-related approach with feature
selection (Figure 4.26f). On the contrary, the performance of the MLP has
deteriorated.

Feature selection in a multi-class label correction approach resulted in
removal of few features and had little impact on the classification performance
of practically all classifiers (Table S7, Figures S3b1-18 in Paper D). However,
C-SVC generalization performance was significantly improved and correct
predictions increased up to 68.65% and 55.26% for FTC and PTC,
respectively (Figure 4.30b).

Areas of calcification are still misclassified as FTC, as their texture and
intensity features resemble those of FTC capsules rather than PTC capsules.
To address this, a "calcifications" class could be added, but due to limited data,
this isn’t feasible at this stage.

PIA shows that C-SVC (Figure 4.30c) relies on the full feature set, with
high x; and ¢ (FOS) contributions distinguishing non-target class from PTC
and FTC capsules. Low PIA scores for w and o in the capsule-related
approach and higher PIA scores in other approaches support this conclusion.
PIA performed for the best C-SVC classifiers in all three approaches, suggest
that SOS parameters calculated based on GLCM with steps d = 3-12 px cover
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the main differences between the PTC and FTC capsules, although they are
not completely discriminative.
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Figure 4.30 Performance of C-SVC classifier optimized for datasets
considering the ratio of clusters in PTC and FTC samples: (a) classification of
a global test set based on the complete set of features; (b) classification of a
global test set based on the reduced set of features; (c) PIA. Blue coloured
pixels in (a) and (b) mark images classified as PTC, yellow — classified as
FTC. White circles and arrows mark the areas of calcifications.
Training/validation data split was 70/30. Reprinted from [Paper D].

While multi-class classification did not significantly improve test
accuracy for the global test data, unsupervised ML segmentation highlighted
differences in PTC and FTC capsules and adjacent tissue, explaining classifier
performance variations. Adjacent tissue lacks detectable signatures of PTC or
FTC progression and can either be removed from the analysis by binary -
means (II approach) or considered as a separate class in multi-class
classification (III approach). Similar heterogenous collagen patterns in PTC
and FTC capsules complicate classification, while calcifications in PTC,
which differ in texture features from the PTC capsule are misclassified as FTC
by all classifiers. The lower heterogeneity of FTC as compared to PTC
capsules allows C-SVC to distinguish between PTC and FTC, while other
classifiers struggle with overfitting or data size reduction (MLP). PIA shows
PTC and FTC capsule differences are mainly described by SOS (GLCM, d =
3-12 px) and HOS (excluding LRFE), while FOS features only distinguish
capsules from adjacent tissue.

This was summarized in the fourth statement of the thesis: A
supervised machine learning model C-SVC enables differential diagnosis of
papillary and follicular thyroid carcinomas based on SHG imaging, with an
accuracy of 84.73%.
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5 CONCLUSIONS

1. Wide-field SHG microscopy combined with quantitative image
analysis is a robust and label-free method to assess fibrotic remodeling in
PAH. Time-dependent changes in collagen content and morphology were
detected in lung tissue from MCT-treated rats. FOS analysis showed
progressive collagen accumulation, while SOS analysis indicated a
densification of the perivascular collagen network with subsequent expansion
into the alveolar region. FFT analysis also showed a dynamic modulation of
fiber orientation characterized by initial alignment followed by
disorganization late in the disease. These results emphasize the potential of
SHG-based approaches for non-destructive assessment of fibrosis in PAH and
related lung diseases.

2. The application of wide-field PSHG microscopy to images of whole
sections of thyroid nodules on histologic slides allowed the extraction of
quantitative parameters describing collagen orientation and ultrastructure
within the nodule capsule. Using a cylindrical collagen model, regions of
capsular invasion can be effectively distinguished from non-invasive areas by
statistical analysis and unsupervised ML. This method allows objective and
reproducible assessment of collagen ultrastructure alterations in capsular
invasion in thyroid neoplasms and can serve as a basis for the development of
automated diagnostic tools in thyroid pathology.

3. A method combining wide-field SHG microscopy, texture analysis and
unsupervised machine learning is developed to quantitatively assess collagen
capsule structure in PTC. The two-step k-means clustering revealed
pronounced heterogeneity within the capsule and delineated regions with
distinct structural features corresponding to intact, invaded and potentially
pre-invasive sites. In particular, the approach identified areas of subtle
microinvasion that were not detected on initial histopathologic examination.
The ability of the proposed unsupervised ML method to detect such regions
highlights its potential as a complementary diagnostic tool to improve
accuracy, reduce observer variability and support the development of
automated classification systems.

4. The supervised ML algorithms applied to SHG-derived intensity and
texture features enable efficient differential diagnosis of PTC and FTC.
Although the classification task is complicated by feature redundancy and
labeling inaccuracies, caused by the inclusion of adjacent tissue,
calcifications, and intertumoral capsule similarity, significant improvement of
the classifier performance was achieved through specific data processing and
application of unsupervised segmentation to exclude non-informative regions.
The C-SVC classifier achieved the highest validation accuracy, indicating its
robustness to noise and bias.
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7 SANTRAUKA

7.1 Ivadas

Vézys yra viena pagrindiniy zmoniy mirtingumo priezasCiy visame
pasaulyje [1]. Remiantis 2024 m. paskelbta Tarptautinés vézio tyrimy
agentiiros (IARC) ataskaita [2] , 2022 m. visame pasaulyje uZregistruota apie
20 milijony naujy vézio atvejy ir apie 9,7 milijono mirCiy nuo vézio. Be
dabartinés statistikos, IARC taip pat pateiké demografing prognoze, kad iki
2050 m. naujy vézio atvejy skaiCius pasieks 35 milijonus, o tai padidins
mirtinguma. Ankstyva diagnozé ir naujy vézio progresavimo zymeny bei
budingy pozymiy atradimas negali uzkirsti kelio dideliam vézio atvejy
augimui, taciau tai gali Zymiai sumazinti mirtinguma, uzkirsti kelig vézio
atsinaujinimui ir metastazéms, pagerinti pacienty atsigavimag ir gyvenimg po
gydymo. Tobulg¢jant technologinei jrangai ir dirbtinio intelekto jtraukimui }
vézio duomeny analize, kompiuterizuotos vézio audiniy vaizdy analizés
pazanga tampa galingu jrankiu, galin€iu efektyviai papildyti jprasting vézio
audiniy méginiy analizg, kurig tradiciskai atlieka patyrg patologai vizualinés
apzitiros metu, ir suteikti naujy vézio diagnostikos jzvalgy [3].

Skydliaukés vézys yra viena labiausiai paplitusiy piktybiniy endokrininés
sistemos ligy, kuriai biidingas nekontroliuojamas skydliaukés Iasteliy
dauginimasis. Pastaraisiais deSimtmeciais Sios ligos atvejy skaiCius nuolat
did¢jo, o 2020 m. visame pasaulyje uzregistruota apie 586 000 naujy atvejy
[4]. Papiliné skydliaukés karcinoma (PTC) ir folikuliné skydliaukés
karcinoma (FTC) yra dazniausios gerai diferencijuojamos karcinomos, kurios
kartu sudaro apie 88% visy skydliaukés naviky [5].

Skydliaukés mazgy kapsulés biisena, t. y., faktas, ar juos supa skaiduliné
kolageno kapsulé, yra pagrindinis histopatologinis pozymis. Kapsulés
buvimas ir vientisumas turi jtakos naviko invazyvumo, piktybiskumo
potencialo ir prognozés vertinimui. PTC atveju kapsulé gali biiti nepilna arba
infiltraciné, o FTC atveju ji paprastai biina geriau i$sivysciusi. Kapsuliné
invazija, kai naviko lastelés prasiskverbia per visa kapsulés storj, yra
pagrindinis kriterijus, leidziantis atskirti gerybinius ir piktybinius folikulinius
navikus [6]. Taciau naviky klasifikavimas pagal kapsulés invazija yra
sudétingas dél stebétojo kintamumo ir sudétingy histologiniy kriterijy. Be to,
standartiniai histopatologiniai metodai, kuriais daznai tiriami tik riboti audiniy
pjuviai, sukelia mikroinvazijy nepastebéjimo rizika.

Nors FTC prognozé daznai yra blogesné nei PTC [9,10] ir jai yra
reikalinga visiska tiroidektomija [11], mazos rizikos PTC atvejai daznai yra
per daznai diagnozuojami ir gydomi [12]. Todél tikslus FTC ir PTC
diferencijavimas yra butinas, siekiant iSvengti nereikalingo agresyvaus
gydymo ir sumazinti pooperacines komplikacijas [13].

Arteriné hipertenzija yra viena daZniausiy gretutiniy véziu serganciy
pacienty ligy [14] ] ir yra daznas vézio gydymo Salutinis poveikis. Dasatinibu
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ar kitais tirozino kinazés inhibitoriais gydomiems pacientams buvo pastebéta
su véziu susijusi plauciy arteriné hipertenzija (PAH) [15]. PAH yra sunki
kraujagysliy liga, kuriai budingas padidéjes plauciy arterinis slégis, dél kurio
atsiranda kraujagysliy persitvarkymas ir per didelis fibrilinio kolageno
kaupimasis plauciy arterijose. Sie pokyéiai prisideda prie kraujagysliy
sustingimo ir ligos progresavimo [16].

Kolageno kiekio ir jo pasiskirstymo strukttriniai poky¢iai yra
pagrindiniai tarplastelinés matricos (ECM) remodeliacijos, susijusios su
tokiomis patologinémis biiklémis kaip PAH pozymiai. Skydliaukés vézio
atveju kolageno remodeliacija taip pat vaidina svarby vaidmenj naviko
progresavime, o kapsulés poky¢iai koreliuoja su piktybiskumu ir invazyvumu.
Siy jprasty patologiniy mechanizmy supratimas pabrézia kolageno nustatymo
svarbg diagnozuojant ir stebint ligos progresavimg. D¢l pagrindiniy
patologiniy pokyc¢iy sudétingumo ir didelio persidengimo PAH laikoma j vézj
panasia liga [17]. Supratimas apie rysj tarp ECM remodeliacijos sergant véziu
ir PAH su Siy ligy progresavimu, sunkumu ir laipsniu bei $iy duomeny
panaudojimas tiksliai diagnozei nustatyti galéty padéti iSsamiai interpretuoti
patologing bukle ir veiksmingiau gydyti tiek vézj, tiek PAH.

Antrosios harmonikos generacijos (SHG) mikroskopija suteikia metoda
be zZymekliy fibriliniam kolagenui - pagrindiniam skydliaukés mazgy kapsuliy
struktiriniam komponentui, vizualizuoti. SHG biovaizdavimas yra ypaé
efektyvus vertinant kolageno turtingy audiniy pokycius [18], nes kolagenas
sukuria stipry SHG signalg dél savo necentrosimetrinés strukttiros [19].
Ankstesni tyrimai [20,21] parodé, kad SHG mikroskopija kartu su kiekybine
vaizdy analize gali atskirti gerybinius ir piktybinius skydliaukés mazgus. Nors
iprastas SHG vaizdavimas yra grindziamas skenuojanciais lazerio spinduliais,
plataus lauko SHG mikroskopija leidzia vizualizuoti iStisas histologines
ploksteles [22,23], leidziant atlikti i$samig kolageno architektiiros analize.

SHG mikroskopija yra ypac vertinga vertinant audiniy strukttiring
anizotropija naudojant $viesos poliarizacijg. Poliarizaciné SHG mikroskopija
(PSHG) buvo naudojama kiekybiskai analizuojant audiniy kolageno
mikrostruktiira [24-26], iskaitant skydliauke [21,27,28]. Nors SHG
mikroskopijos variantai su lazerinio spindulio skenavimu pasirodé esa
sékmingi biomedicininiame vaizdavime, plataus lauko SHG mikroskopija
sulaukia pripazinimo [23] dél visy histologiniy ploksteliy atvaizdavimo.
Panasiai kaip ir susijusi vaizdavimo technika - dviejy fotony suzadinta
fluorescenciné mikroskopija, kuriai taip pat galimi plataus lauko variantai
[31], plataus lauko SHG mikroskopija iSsivysté i§ intensyvumu pagrjsty
taikymo sri¢iy [32] iki kiekybinés analizés [33] ir net tiesioginio vaizdavimo
taikymo sri¢iy [34].

Be SHG vaizdavimo, tekstiiros analizés metodai, jskaitant pirmos eilés
statistikg (FOS), antros eilés statistika (SOS) ir aukStesnés eilés statistika
(HOS), pateikia kiekybinius kolageno tinkly savybiy aprasymus [35,36]. Sie
metodai placiai naudojami tokioje medicininéje diagnostikoje kaip
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kompiuteriné tomografija [37] ir magnetinio rezonanso tomografija (MRI)
[38].

Vaizdo duomeny interpretavimas yra ribotas, kai jie yra analizuojami
rankiniu biidu naudojant tradicinj vaizdy apdorojimo kanalg. Naudojantis
dideliais nuskaitytais plotais ir didele erdvine plataus lauko SHG
mikroskopijos skiriamaja geba, galimybé derinti jj su dviejy fotony suzadinta
fluorescencine mikroskopija ir pridéti dirbtinj intelekta prie jvairiy i$§ vaizdo
duomeny iSgauty savybiy atveria kelig dideliu tikslumu ir naSumu
pasizyminciai automatizuotai kompiuterizuotai vézio audiniy méginiy vaizdy
analizei.

Masininio mokymosi (ML) metodai vis dazniau naudojami vézio audiniy
analizei ir klasifikavimui automatizuoti ir tobulinti. Nepriziirimos masininio
mokymosi (ML) technikos yra daugiausia skirtos vaizdy segmentavimui ir
specifiniy vaizdy ypatybiy modeliy aptikimui, remiantis budingais rySiais
[39,40]. Prizitrimi ML algoritmai daugiausia taikomi klasifikavimo
problemoms spresti ir yra rekomenduojami ligy diagnostikai. ML
klasifikatoriai, jskaitant gilaus mokymosi (DL) modelius, parodé daug
zadanCius rezultatus atskiriant skirtingus vézio tipus pagal MRT,
kompiutering tomografija ir SHG vaizdy analize [41-44]. Taciau efektyviam
ML pagrindu veikian¢iam klasifikavimui reikalingi auksStos kokybés
duomenys, nes zymekliy triukSmas (neteisingas pavyzdziy zyméjimas) ir
pozymiy triukSmas (nesvarbiis arba pertekliniai parametrai) gali reikSmingai
paveikti modelio nasuma [45]. Realaus pasaulio vaizdy duomenys retai
atitinka $j kriterijy, todél lieka vietos tolesniam ML algoritmy, architekttiry ir
strategijy pritaikymui konkrec¢iam duomeny tipui.

Kiekybineés jzvalgos apie skydliaukés mazgy kapsulés struktiras ir ECM
remodeliavimg yra biitinos norint pasiekti pazangos ir tikslumo diagnozuojant
skydliaukés vézj bei suprasti patologiniy bukliy evoliucijg. Didelés apimties
plataus lauko SHG mikroskopija, kaip Zymekliy nereikalaujanti ir kolagenui
specifiné vaizdavimo technika, gali supaprastinti audiniy méginiy paruos$ima,
paSalindama audiniy fiksavimo ir dazymo etapus bei leisdama méginius
iSmatuoti i karto po chirurginio pasalinimo. Savo ruoztu, didelio masto SHG
vaizdams analizuoti i§ vézio audiniy skirty ML pagristy metody kiirimas rodo
automatizuota diagnostikos metoda, kuris gali papildyti tradicinj vizualinj
vézio audiniy méginiy patikrinima, sumazinant klaidingos diagnozés tikimybe
ir palaikant optimaly klinikiniy sprendimy priémima. Todél iSsamis tyrimai
Sia kryptimi yra labai svarbiis, nes SHG plataus lauko mikroskopijos
paprastumas, greitis ir specifiSkumas kartu su efektyviais vézio analizés ML
metodais gali diagnozuoti tiksliai ir laiku, taip sumazinant mir¢iy nuo vézio
skai¢iy, nors tikimasi, kad atvejy skaiCius per ateinancius deSimtmecius
sparciai didés.
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7.2 Disertacijos tikslai

Disertacijos tikslas yra sukurti masininio mokymosi modelius, kurie
naudoja SHG didelio masto audiniy pjiiviy skenavima patologinéms biikléms
interpretuoti ir ligoms diagnozuoti.

7.3 Disertacijos uzdaviniai

Siekiant aukSc¢iau iSkelto tikslo, disertacijos rémuose buvo suformuluoti ir
iSspresti Sie uzdaviniai:

1. Atlikti su monokrotalinu sukeltu PAH sergancCiomis Zziurkémis
skirtingose ligos stadijose atlikty SHG skenavimy ir kontrolinés grupés
ziurkiy plauc¢iy audiniy méginiy plataus lauko SHG intensyvumo
charakteristiky ir tekstiiros ypatybiy statisting analize, atskleisti SHG vaizdy
ypatybiy modelius ir palyginti juos su imunohistocheminés analizés
rezultatais.

2. Taikyti nepriziirimg masininio mokymosi algoritmg A-vidurkiy
klasterizavimag i§ viso skydliaukés mazgo pjuviy plataus lauko gauty PSHG
vaizdy 2D parametry zemélapiy analizei, remiantis cilindriniu kolageno
skaiduly hiperpoliarizuotumo modeliu, atskleisti kolageno skaiduly
ultrastruktiiros modelius nepazeistoje kapsuléje ir invazinése srityse.
skenavimy, skirty kolageno pasiskirstymui papilinés skydliaukés karcinomos
pjuviuose, intensyvumo ir tekstliros ypatybiy analize (pagrindiniy
komponenciy analize (PCA) ir k-vidurkiy klasterizacijg), siekiant nustatyti
kapsulés invazines sritis ir pasiiilyti kiekybinj nepazeistos kapsulés ir
invaziniy sri¢iy apraSyma.
karcinomy automatinei diferencinei diagnostikai, naudojant plataus lauko
SHG vaizdavimg, atsizvelgiant | Zyméjimo ir pozymiy triukSmo poveik]j Siy
modeliy prognozavimo naSumui.

7.4 Ginamieji teiginiai

1. Plataus kampo SHG plauciy audinio pjuviy vaizdy statistiné analize
atskleidzia ir kokybiSkai bei kiekybiskai apibiidina budingus kolageno
organizacijos, morfologijos ir kolageno kiekio poky¢ius, susijusius su
skirtingais PAH etapais.

2. I$ plataus lauko poliarizacijos budu iSskaidyty SHG vaizdy i§ viso
skydliaukés mazgy pjiviy iSgauty cilindriniy modeliy parametry k-vidurkiy
klasterizacija leidzia atskirti kapsulés invazines sritis nuo nepaZzeisty vézio
lasteles supanciy kapsulés sriciy, atskleidziant kolageno ultrastruktiiros
modelius.
atskleidzia papilinés skydliaukés karcinomos kapsulés teksturinj
heterogeniskumg ir leidzia nustatyti kapsulés invazijg, papildomo tyrimo
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reikalaujancias sunkiai atskiriamas mikroinvazijas ir sritis, remiantis
konkreciais vaizdo parametry rinkiniais.

v —

tikslumu diferencijuoti papilines ir folikulines skydliaukés karcinomas,
remiantis SHG vaizdavimu.

7.5 Darbo naujumas ir aktualumas

1. Remiantis i§ SHG kolageno tinklo organizacijos vaizdy gautais
statistiniais parametrais kartu su imunohistocheminés analizés rezultatais,
buvo nustatytos specifinés PAH progresavimo fazés ir pasiiilytas jy kiekybinis
apraSymas. Sios fazés galéty bati jvertintos kaip PAH patogenezés
kontroliniai taskai.

2. Neprizitrima kolageno ultrastruktiiros ir su orientacija susijusiy
parametry, iSgauty i§ viso skydliaukés mazgy pjiivio PSHG vaizdy rinkiniy,
ML analizé¢ leido sukurti budingus skydliaukés mazgy Zemélapius ir jy
kiekybinj apra§yma, palengvinant skirtingy mazgy kapsulés sriciy palyginima
ir i§rySkinant invazines sritis kapsuléje.

ML analizé leido atskleisti PTC supancios kolageno kapsulés tekstiirinj
heterogeniskuma. Kiekybinis Sio heterogeniSkumo aprasSymas, atsispindintis
tekstiros ypatybése ir kolageno kapsulés specifiniame erdviniame
pasiskirstyme, atskleidzia su vézio plitimu susijusius kolageno tinklo
poky¢ius.

FTC ir PTC naudojant didelius skydliaukés pjiviy SHG vaizdy duomeny
rinkinius. Sitloma duomeny triukSmo valdymo strategija pagerina
diagnostikos tikslumg ir parodo SHG mikroskopija pagrjstos automatizuotos
PTC ir FTC diagnostikos jgyvendinamuma.

Disertacijos rezultatai atveria keliag automatizuotai ir kiekybinei SHG
vaizdavimu pagristai PAH diagnozei ir turi potencialo tapti papildomu
objektyviu PAH sukeltos fibrozés gydymo metodu, apsaugotu nuo klaidingy
sprendimy priémimo. Be to, tieck PSHG, tiek plataus lauko SHG
mikroskopijos jgalinta kiekybiné analizé gali biiti naudinga automatizuotam
kapsulés invaziniy viety vertinimui skydliaukés patologijoje, padedant
atskleisti sunkiai atskiriamas invazijas ir iSrySkinant PTC kapsulés sritis,
kurias reikia istirti atidziau ir kruopsciau. Kolageno ultrastrukttiros duomenys
gali suteikti jZvalgy apie véZzio progresavimo, plitimo ir metastaziy molekulinj
pagrinda. Visa tai suteikia patikima pagrindg laikyti ML pagalba atlieckama
SHG mikroskopija nauju efektyviu skydliaukés vézio diagnostikos metodu.

7.6 Metodika

Buvo tiriami dviejy tipy audiniy méginiai: (i) Plauc¢iy audiniy méginiai
1§ ziurkiy, kuriy monokrotalino (MCT) sukelta PAH buvo skirtingose PAH
stadijose, ir 1§ sveiky ziurkiy (kontroliné grupé) ir (i) zmogaus skydliaukés
audiniy méginiai su PTC ir FTC pjiviais.
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Visi eksperimentai buvo atlikti pagal atitinkamas gaires ir reglamentus,
vadovaujantis Helsinkio deklaracija ir gavus rastiskg pacienty sutikima
(skydliaukés méginiai). Visi méginiai buvo formalinu fiksuoti, parafinu jlieti
3-5 um storio pjuviai, padéti tarp dviejy stikliniy ploksteliy. Visi audiniy
meéginiai buvo nudazyti hematoksilinu ir eozinu (H&E).

Ziurkiy plau¢iy audiniy pjiviai buvo eksperimentikai analizuojami
imunohistochemijos (IHC) vaizdavimo metodu siekiant atskleisti 1 ir III
kolageno bei metaloptotazés raiskos lygiy pokycius (TIMP)-1, kurie yra su
PAH progresavimu susij¢ molekuliniai fibrozés vystymosi Zymenys. Siekiant
kiekybiskai jvertinti biomolekuliniy zymeny raiska, teigiamy pikseliy
skaiciavimo algoritmas buvo pritaikytas aiSkiai apibrézty branduoliy, lasteliy
ir kraujagysliy nepersidengianciy sriciy plauciy ekspresijos indekso (IE)
apskai¢iavimui. Be to, audiniy kolageno tinklai buvo vaizduojami naudojant
specialiai sukurtg plataus lauko SHG mikroskopijos sistemg. Taip pat buvo
atliktas dviejy fotony suzadinimo fluorescencijos (TPEF) vaizdavimas,
siekiant vizualizuoti plau¢iy audinio pjuviy nekolagenines sritis.

Skydliaukés pjuviai buvo vaizduojami naudojant tg pacig specialiai
pagamintg plataus lauko SHG mikroskopijos jrangg su lazeriniu suzadinimu
ir apskritimine poliarizacija arba tiesine poliarizacija, jei SHG vaizdavimas
buvo atlickamas poliarizacijos btidu. IS viso buvo gauti atitinkamai 23652 ir
21708 150x150 um? dydzio PTC ir FTC SHG vaizdai.

Vaizdy analiz¢ buvo atlikta naudojant neprizitirimus ir priziirimus ML
metodus, pagristus intensyvumo ir teksttiros ypatybémis, iSgautomis i§ plataus
lauko SHG vaizdy. Intensyvumo ir tekstiiros funkcijos apémé greitaja Furjé
transformacija (FFT), FOS, SOS (apskaiciuotg pagal pilkojo lygio bendro
pasireiSkimo matrica (GLCM) 1, 3, 6, 9, 12 veiksmams) ir HOS (apskai¢iuota

v —

apémé PCA ir k-vidurkiy klasterizacija bei buvo pritaikytas viso audinio SHG
skenavimui  segmentuoti, siekiant  atskleisti  kolageno  tekstiiry
Forest (RF) [114], logisting regresija (LR), eXtreme gradient stiprinimg
(XGBoost) [115], Sviesos gradienta stiprinantj aparata (LightGBM) [116], C
atramos vektoriy klasifikacija (C-SVC) [117] ir Daugiasluoksnj perceptrona
(MLP) [118], kurie buvo pritaikyti PTC ir FTC klasifikavimui pagal i§ SHG
vaizdy tekstiros iSgautas ypatybes. Klasifikatoriy optimizavimas buvo
atliktas naudojant tinklelio paieska kartu su 10 karty kryZzminiu patvirtinimu.
Siekiant jvertinti funkcijy pertekliaus ir nereikSmingumo poveikj
klasifikavimui, funkcijy parinkimas buvo atliktas naudojant rekursinj funkcijy
eliminavimg su kryzminiu patvirtinimu ir tiesiniu SVC jver¢iu (RFECV-
LinearSVC), po kurio seké abipusés informacijos funkcijy parinkiklis (MIFS).
Funkcijy svarbos analizé atlikta naudojant permutacijos svarbos analize (P1A)
arba funkcijy svarbos analize, jterpta i klasifikatoriy bibliotekas.

Skaic¢iavimai buvo atliekami su Python v3.9, Intel 17-13700KF CPU su
16 branduoliais ir 24 gijomis; 32 GB laisvosios prieigos atmintimi; Nvidia
GeForce RTX 3060 Ti grafikos plokste su 4864 branduoliais.
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7.7 Rezultatai

7.7.1 Statistiné ziurkiy PAH fibrozés progresavimo intensyvumo ir
tekstiiros analize

Sis skyrius skirtas kiekybinei ir kokybinei fibrozés, lydin¢ios MCT
sukeltos PAH progresavimg Ziurkéms, vystymosi analizei, remiantis plataus
lauko SHG plau¢iy audinio pjiiviy vaizdais. Siame skyriuje pateikiami
rezultatai buvo skelbiami Paper A ir pateikiami 1 ir 2 konferencijose.

Jautriy, zZymekliy nereikalaujanciy ir greity didele skiriamaja geba ir
patikima statistine vaizdy analize pasizyminciy vaizdavimo metody ktirimas
yra nepaprastai svarbus ankstyvai PAH progresavimo diagnostikai. Plataus
lauko plauciy audinio SHG mikroskopija kartu su kiekybine SHG vaizdy
analize gali Zymiai supaprastinti fibrozés progresavimo nustatymg PAH metu,
leisti objektyviai jvertinti patologijos stadijg ir apsaugoti vertinimg nuo
klaidingy sprendimy priémimo, kaip histologinés analizés atveju.

Siekiant tai jrodyti, ziurkiy plauciy audiniy méginiy SHG vaizdai buvo
nuskaityti ir analizuojami rankiniu btidu pasirinktose dominanciose srityse
(ROIs). ROI vaizdai buvo kiekybiskai apibiidinti naudojant FFT ir teksttiros
analize, kur tekstiiros analize sudaré FOS ir SOS 7.7 paveikslas.

Selection of regions of interest . )
g . Anisotropy of collagen fiber

orientation
Fast Fourier Transform (FFT)
Orientation Index (Ol)

Texture analysis

Amount of collagen Topology of collagen fibers
First Order Statistics (FOS) Second Order Statistics (SOS)
Mean, Standard Deviation, Inertia, Energy, Homogeneity,
Skewness, Kurtosis Entropy, Correlation

7.1 paveikslas SHG vaizdy analizés procediiros. Perspausdinta i§ [ Paper A].

Be to, SHG vaizdavimas buvo derinamas su TPEF vaizdavimu, kad bty
galima vizualizuoti tiek fibrozines struktiiras, tiek iSorinj audinj ir taip gauti
i8samy kolageno skaiduly i$siSakojimo ir padidéjimo audinio viduje vaizda.
Endogeninis TPEF signalas daznai kyla i§ tokiy metaboliniy junginiy kaip
nikotinamido adenino dinukleotidas, flavinai, lipopigmentai, porfirinai ir t. t.
Misy atveju vienalaikei Sviesaus lauko mikroskopijai taikomas H&E
dazymas taip pat prisideda prie TPEF signalo. H&E dazyty plauciy audinio
pjuviy vaizdai pateikiami 7.2 paveiksle su geltonos spalvos kolageno SHG ir
raudonos spalvos TPEF.
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Brightfield TPEF SHG Merge

Control

PAH 2

PAH 4

R LR g A1 - 5 <
7.2 paveikslas. Kontrolinés grupés ziurkiy ir 2, 4, 6 ir 8 savaités PAH
progresijos ziurkiy plauciy audinio Sviesaus lauko vaizdai, TPEF vaizdai,
SHG vaizdai ir kombinuoti TPEF bei SHG vaizdai. Atvaizdo dydis yra
450 pm x 450 pm. Paimta i§ [Paper A].

Kontroliniame méginyje kolagenas supa kraujagyslés sienele (pazyméta
rodyklémis 7.2 paveiksle), bet jo néra plauciy audinyje. H&E dazyty PAH
vaizduose matyti tik kraujagysliy sieneliy sustoréjimas lyginant su kontroliniu
méginiu, o SHG/TPEF vaizduose — reikSmingas kolageno padaugéjimas.
7.2 paveiksle galima matyti, kad kolageno kiekis laikui bégant did¢ja, o labai
susiformavusios ilgos skaidulos sudaro tankius tinklus tiek aplink
kraujagysles, tiek aplinkiniuose audiniuose, taip giliai plisdamos alveoliy
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srityje (pazyméta rodyklémis 7.2 paveiksle). ). Tai rodo reikSmingg kolageno

ekspresijos padid¢jimag po 4-8 savaiciy PAH progresavimo.

Kiekybiné IHC analizé leidzia atskleisti I ir III kolageno bei TIMP-1,
kurie yra plau¢iy arterinés hipertenzijos (PAH) progresavimo lydinciy
fibrozés vystymosi molekuliniai zymenys, raiSkos lygiy pokycius. I8
apskaiCiuoty IE matyti, kad kolageno I raiSka ziurkiy plauciy audinyje
reikSmingai padidéjo visose eksperimentinése grupése (2, 4, 6 ir 8 PAH
progresavimo savaitémis), lyginant su kontroline grupe. III kolageno raiska
yra periodiska su reikSmingu padidéjimu po 2 savai¢iy nuo PAH
progresavimo; véliau kolageno III lygis normalizuojasi iki kontroliniy verciy,
0 po 6 savaiciy nuo PAH progresavimo dar Siek tiek padidéja. TIMP-1 raiska
priklauso nuo laiko; po 2 savaifiy PAH progresavimo ziurkéms ji padidéja
dvigubai, lyginant su sveiky gyviny kontroline grupe. Taciau, prieSingai nei
vélesnése PAH stadijose padidéjes I ir 111 kolageno kiekis, TIMP-1 raiska per
likusj stebéjimo laikotarpj sumazéja iki kontroliniy verciy.

Remiantis SHG vaizdy analizés rezultatais ir atsizvelgiant i fiziologinj
fong bei IHC analizés rezultatus, galima pasiilyti Siuos PAH vystymosi /
progresavimo etapus:

L. Pradzioje patologija vystosi greitai: 2 savait¢ [, 0, OI, I ir H padidé¢ja,
o E ir L sumazgja, rodant kolageno kaupimasi, kolageno skaiduly
tempima ir jy plitima plauciy audinyje.

II. Organizmas bando reguliuoti ligos progresavima: 4 savait¢ (L, ir 0 bei
auk$ty A reikSmiy sumazéjimas rodo galimg su uzdegimu susijusj
kolageno struktiiros sutrikima ir kolageno skaidymo sistemos aktyvacija,
kuri turéty istaisyti kolageno sintezés ir skaidymo disbalansg.

III. Organizmo fantominis atsigavimas 6 savaite, nes i, ir 0 sumazejimas ir
H yra zemi; taliau g, ir g, padidéjimas rodo reikSmingg kolageno
persiskirstymg, reiSkiantj kolageno skaiduly sustor¢jima ir gily
jsiskverbimg j plauciy audinj, todél tai galéty buiti PAH patogenezés
"negrjzimo taskas";

IV. Galiausiai, 8 patologijos savaitg¢ jvyksta visiSkas audiniy
nepakankamumas, o tai yra reik§mingo kolageno kiekio padidéjimo ir
kolageno pluoSty sustor¢jimo rezultatas, apibudinamas u,, o, I, H
padidéjimu bei £ ir L sumazéjimu.

Apskritai SHG vaizdavimas pateikia iSsamy morfologiniy kolageno
poky¢iy vaizdg PAH sukeltos fibrozés progresavimo metu. Skirtingy FOS ir
SOS parametry evoliucija rodo tuos pacius biidingus kolageno skaiduly
struktiiros ir tinklo organizacijos poky¢ius, kurie taip pat atitinka THC
rezultatus. Tai nepatenka j Sios disertacijos apimtj, taciau surinkus daugiau
duomeny i§ didesnio méginiy skaiciaus, SHG vaizdy analiz¢ taip pat galéty
pateikti patikimas skirtingy PAH patogenezés etapy Zymas.

Tai buvo apibendrinta pirmajame disertacijos teiginyje: Plataus
lauko SHG plauciy audinio pjiviy vaizdy statistiné analizé atskleidZia ir
kokybiskai bei kiekybiskai apibudina budingus kolageno organizacijos,
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morfologijos ir kolageno kiekio pokycius, susijusius su skirtingais PAH
etapais.

7.7.2 ML pagrindu atlikta PTC kapsulés invazijos kolageno
ultrastruktiiros analizé, pagrjsta plataus lauko PSHG
vaizdavimu

Siame skyriuje apraomas PSHG taikymas tiriant kolageno
ultrastruktiiros pokycius kapsulés invazijos ir nepazeistos kolageno kapsulés
aplink PTC srityse naudojant vienos asies kolageno skaiduly molekulinj
modelj ir jrodant nepriziirimy ML algoritmy naudojimo PSHG vaizdy
analizei privalumus. Sio skyriaus rezultatai buvo paskelbti Paper B ir pateikti
6 konferencijoje.

Siekiant dar labiau vizualiai pagerinti galimy mikroinvazijos viety
identifikavimg, buvo atlikta analizé naudojant nepriziirimus ML metodus.
Duomeny klasifikavimas i§ visy su poliarizacija susijusiy parametry
zemélapiy, iSskyrus ¢, lémé duomeny segmentavimag j & = 6 klasterius.
Bendras k-vidurkiais klasifikuoty sumazinto atrankos vaizdy skaicius buvo
90000. Siy vidutiniy parametry Zzemélapiy duomenys buvo standartizuoti
naudojant "Robust Scaler" algoritma.

Gautas viso mazgo klasterio Zemélapis rodo skirtingy klasteriy
charakteristiky parametry reikSmiy deriniy erdvinj pasiskirstymg
7.3a paveikslas.

7.3 pavezkslas Su poliarizacija susijusiy parametry duomeny klasterizavimo
zemelapis. (a) visas skydliaukés mazgas; (b) Ctrl-1; (c) Ctrl-2; (d) Inv-1; (e)
Inv-2. Perspausdinta i$ [ Paper B].

Vizualiai analizuojant visg kapsule, ja daugiausia sudaro 1 klasteris, kuris
pasiskirstes ir uz jos riby; 3 klasteris daugiausia yra vidingje kapsulés dalyje
ir aptinkamas tik kai kuriose specifinése vietose; 5 klasteris daugiausia
padengia viding ir iSoring kapsulés puses, o tokie kolagenai tikriausiai sudaro
daugybe folikuly grupes supanciy pertvary. Tolesnis klasteriy susidarymo
nepazeistoje kapsulgje tyrimas ROIs Ctrl-1 ir Ctrl-2 7.3b,c paveikslai ir
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mikroinvazijos vietose ROIls Inv-1 ir Inv-2 7.3de paveikslai atskleidzia
aiskius kiekybinius klasteriy formavimosi skirtumus 7-/ lentelé. Svarbus
invazinis bruozas yra padidéjes 3 klasterio paplitimas ir sumazéjes 1 bei 5
klasteriy paplitimas. Todél greita vizualiné klasterio Zemélapio apzitra
palengvina mazgo kapsulés sri¢iy, kurios gali sukelti jtarimg dél invazijos,
nustatyma. 1, 3 ir 5 klasteriy kolageny vidutiniai spiraliniai zingsnio kampai
yra 42.5°, 43.9° ir 37.9° atitinkamai; tai rodo didelius kolageno molekulinés
strukttiros pokycCius pazeistoje kapsulgje, lyginant su kontrolinémis sritimis
7.3 paveikslas. Tokie trigubos spiralés struktiiros pokyc¢iai gali turéti jtakos
kolageno saveikai su normaliomis ir vézio lgstelémis [195]. Neseniai buvo
irodyta, kad kolagenai su sandariai uzdaryta triguba spirale (su 43.9° spiraliniu
zingsnio kampu [195] kaip 3 klasteryje) pasizymi didesniu jungimosi prie
véziniy lgsteliy efektyvumu, lyginant su normaliomis Igstelémis, ir todél gali
skatinti vézio progresavima ir metastazes [196].

7-1 lentelée Su kolagenu susijusiy klasteriy procentiné dalis nepazeistoje
kapsulé¢je ir invazijos vietose. Paimta i$ [ Paper B].

Klasterio numeris ~ Kontrolé [%]  Invazija [%]

1 47,1 32,7
3 31,1 50,7
5 21,8 16,6

Didesnis kampinis iSsiplétimas pastebétas jtartiny ir invazijos viety
aplinkoje. PrieSingai, kiti Cia tirti su kolageno struktiira susije parametrai rodo
potencialg iSrySkinti kolageno pokycius pikseliy lygmenyje (t. y., )((2)
elementy ir spiralinio zingsnio kampo santykis). Jautrumo santykiy biologing
reikSme reikéty interpretuoti atsargiai ir atsizvelgiant j kelis veiksnius,
iskaitant teorinj kolageno modelj, vaizdo skiriamaja geba ir kitus veiksnius.
Jei visos kolageno molekulés fibrilése yra iSsidésCiusios ta pacia kryptimi,
antros eilés jautrumas turéty atspindéti pirmos eilés hiperpoliarizuojamuma —
tenzoriy, apibtidinantj molekulés atsakg j veikiantj elektrinj laukg antros eilés
netiesiniy optiniy efekty pavidalu. Todél jautrumo santykis turéty biiti panasus
1 pirmos eilés hiperpoliarizuotumo santykj. Be to, kolageno molekulés
zingsnio kampa galima jvertinti susiejant )((2) elementy santykj su
emituojancio dipolio orientacijos kampu. Reikia atsargiai interpretuoti
rezultatus ir tikrinti, ar yra tenkinamos pradinés prielaidos (pvz., Kleinmano
simetrija). Nors Siame tyrime X, /x5 skirstiniai yra artimi vienetui, yra
dideliy skirtumy ir absoliutiis rezultatai turi buiti vertinami atsargiai. Vienas i$
)((2) elemento santykiy, tai yra, ¥,,/x31, suteikia jzvalgy apie kolageno
fibriliy anizotropija zidinio tiiryje ir yra zinomas kaip anizotropijos parametras
[197]. Literataroje nurodomas X, /X3 reikSmes nuo 1,2 ir 2,6, priklausomai
nuo audinio tipo (maZesnés organizuoto kolageno vertés sausgyslése su
tiesiomis fibrilémis Zidinio plokStumoje) ir naudojamos erdvinés skiriamosios
gebos [198]. PrieSingai, kolagenas parodé didesnes jautrumo vertes
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audiniuose, kuriy molekulé yra orientuota didesniu kampu fibrilgje [199].
Nors gauty jautrumo santykiy interpretavimas biologiniame kontekste yra
sudétingas neatsizvelgiant | daugybe kintamyjy, jautrumo santykiy skirtumai
gali suteikti prasmingesniy jZvalgy apie patologijos pokycius, vykstancius
esant pastovioms techninéms saglygoms.

Tai buvo apibendrinta antrajame disertacijos teiginyje: is plataus
lauko poliarizacijos budu isskaidyty SHG vaizdy is viso skydliaukés mazgy
pjuviy isgauty cilindriniy modeliy parametry k-vidurkiy klasterizacija leidzia
atskirti kapsulés invazines sritis nuo nepazeisty vézio lgsteles supanciy
kapsules sriciy, atskleidZiant kolageno ultrastruktiiros modelius.

7.7.3 Kapsulings invazijos skydliaukés mazgeliuose diagnostika ML
pagrindu naudojant plataus lauko SHG mikroskopija

v —

iSsamiai PTC supanciy kolageno kapsuliy plataus lauko SHG vaizdy analizei,
kuri leidzia interpretuoti kolageno struktiiros pokycius kapsuléje ir aptikti
mikroinvazijos sritis arba sritis, kurioms reikalingas papildomas tyrimas.
Rezultatai buvo paskelbti Paper C ir pateikti 3, 4, 5, 8 bei 10. konferencijose.

I8 kiekvieno uzfiksuoto SHG vaizdo buvo apskai¢iuoti Sie intensyvumo
ir tekstliros parametrai: [, g, g1, g2 (FOS); E, I, C, L, H (SOS); SRE, LRE,
GLN, RLN, RP (HOS).

Pagrindiniai viso duomeny analizés ciklo etapai schematiskai
pavaizduoti 7.4 paveiksle. 1§ viso vaizdo analizéje buvo atsizvelgta j 4 (FOS)
+5 x5 (SOS) + 5 (HOS) = 34 intensyvumo ir tekstiiros parametrus.

Norint klasifikuoti jraSytus SHG vaizdus j skirtingas kategorijas pagal juy
vidurkiy masininio mokymosi metodas. Klasteriné analizé buvo atlikta dviem
etapais: pirma, atskirti PTC kolageno kapsule nuo aplinkiniy audiniy, o tada
atskleisti galimus kolageno struktiiros skirtumus tarp anotuotos kapsulés
invazijos sri¢iy ir nepazeistos kapsulés. Patologas taip pat patvirtino
klasterizacijos rezultatus, kad biity atmestas nepakankamas arba per didelis
klasterizavimas. lki k-vidurkiy duomenys buvo apdoroti naudojant PCA,
siekiant sumazinti turimy parametry rinkinio sudétingumg ir atsekti, kurie
parametrai turi didziausig reikSme atskiriant vaizdus j skirtingas klases. Tokiu
biidu klasterizavimas buvo atlickamas kompiuteriuose, o ne tiesiogiai su
parametrais.

I$samils k-vidurkiy klasterizavimo rezultatai, kai k = 8, PTC mazgy
pjuviams pavaizduoti 7.5¢, f, i, [ paveiksle.

IS 8 klasteriy du (6 ir 7 klasteriai) apima iSskirtinius duomenis, kurie yra
reti ir pasizymi kraStutinémis atskiry parametry vertémis, lyginant su likusiu
duomeny rinkiniu. Stiklinés plokstelés ir foninius SHG signalo lygius
generuojanciy vezio lasteliy SHG vaizdai patenka j 5 klasterj.
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Tada, nagrinéjant skirtingy klasteriy lokalizacija méginiuose
(7.5 paveikslas), atrodo, kad likusius klasterius, nors ir Siek tiek salyginai,
galima priskirti kolagenui aplink didelius indus $alia kapsulés (0 klasteris, 93
SHG vaizdai, 7.5 paveikslas), PTC mazga supanciai kolageno kapsulei ir
kolageno plitimui | normaly audinj (1 ir 2 klasteriai), normaliems folikulams
(3 klasteris) ir galimai uzdegiminiam audiniui (4 klasteris).

Input Data standardization Pearson’s correlation
34 features x |g g m ’ Robust Scaler (IQR = 1%-99%}. . b Correlation matrix:
20736 samples ¥ X — Median = o Cov(X,Y)
= ~I0R R(X,V)=—-"-+
030y
[ ]
[ |
Results x 2: o
. Metrics graph v
. PCs plots (PCA visualization) L. .
+  K-mean clustering images Principal component analysis (PCA)
N
. Main features distribution _ o 1 - - — =
by clusters (Centroids) Cov(X,¥) = HZ(Xi = Xmean) (Vi = Ymean)
i=1
Output:
é » Cumulative Sum of variances graph | Number of
= Re-clustering |+ Explained variance ratio graph significant
: el |+ Feature contribution PCs table PCs
L] []
. |
1. Capsular analysis: = = = -
2. Capsular collagen analysis:=—Jp .
Selection collagen clusters after K-mean v
. . ~ 2
f K-mean clustering: iy 21 Zxec 1% — 1l
I
n
e == mmn | K-mean evaluation metrics:
. _ _ b-a
. Silhouette Coefficient, § = max(ap)
. es-Bouldin index. DB = 12" R.. Number of
Davies-Bouldin index, = L Li= r{l%x 1) clusters

(AL} | hg—k
i) k=1

. Calinski-Harabasz index, CH =

7.4 paveikslas Duomeny apdorojimo seka ir ML pagrindu atlikta analizé.
Perspausdinta i$ [ Paper C].

Siekiant sutelkti démesj j specifinius kolageno kapsulés aplink PTC
poky¢ius, buvo atrinkti du daugiausiai su kapsule susij¢ kolageno klasteriai (1
ir 2) ir atliktas jy papildomas klasterizavimas. Visi kiti duomenys (0, 3—7
klasteriai) nebuvo jtraukti ] analiz¢ ir gautuose klasteriy Zemélapiuose
pazyméti juoda spalva.

Pakartotiniai kapsulinio kolageno pasiskirstymo klasteriniai Zemélapiai,
baly diagramos ir atitinkami centroidai pavaizduoti 7.6 paveiksle.
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7 5 pavezkslas Analizuoty PTC mazgy pjuviy klasterlzacgos k—Vldurklal (a
d, g, j) — Sviesaus lauko vaizdai; (b, e, h, k) — SHG vaizdai; (c, f, i, 1) —
klasterizacijos k-vidurkiai, k = 8. Paimta i§ [ Paper C].

Klasteriy Zemélapiai atskleidzia reikSminga kolageno struktiiros
heterogeniskumg kapsuléje aplink PTC (7.6a-d paveikslas). Kapsulg
daugiausia sudaro trys klasteriai (1-3). 1 klasteris (zalias 7.6 paveiksle) sudaro
pagrinding kapsulés dalj ir jo praktiSkai néra normaliuose audiniuose su
folikulais. Nors jis paprastai sudaro iStisinj visos kapsulés branduolj, yra
aiskiai atpazjstamy sri¢iy, kur jj pakei¢ia 2 arba 3 klasteris (atitinkamai
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raudonas ir rudas 7.6 paveiksle) arba jy miSinys. 4 klasteris (geltonas
7.6 paveiksle) yra Salia kapsulés i§ iSorés. 5 klasteris (tamsiai mélynas
7.6 paveiksle) beveik visas yra uz kapsulés riby ir tikriausiai sudaro normaliy
folikuly pertvaras. Kalcifikacijas rodo kolagenai, daugiausia priskirti 2, 4 ir 5
klasteriams (pazyméti rodyklémis 7.6a-d paveiksle).
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7.6 paveikslas Tik su kolagenu susijusiy klasteriy klasterizacijos k-vidurkiai.
(a-d) 4 analizuoty PTC mazgy pjuviy klasteriy zemélapiai. (e) Centroidai,
sudaryti i§ standartizuoty ir kiekvieng klaster] atitinkan¢iy parametry. (f-k)
Tasky grafikai. Spalvoti apskritimai rodo klasterio centroido (klasterio masés
centro) padétj PC erdvéje; spalvoti puslankiai abscisiy ir ordinaciy asyse zymi
centroidy projekcijas. Klasteriy zemélapiy dydis yra 8.4 mm x 8.4 mm. (f)-(k)
punktuose pateikti duomeny taskai ir (a)-(d) punktuose pateikti klasteriai yra
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tokios pat spalvos kaip (e) punktuose pateikti klasteriai bei yra identiskai
suskirstyti j kategorijas. Perspausdinta i§ [Paper C].

Kalbant apie gydyma, invazijos sri¢iy buvimas ir mastas yra labai
svarbiis chirurginiu pozitriu [216]. Pavyzdziui, mazgas su lokalizuota
invazija gali pareikalauti platesnés rezekcijos nei vien lobektomija ir tokiu
atveju bus reikalinga visiska tiroidektomija. ISplitusios invazijos, pvz.,
iSplitimo | skydliauke ar metastaziy limfmazgiuose, atvejais gali prireikti
adjuvantinio gydymo, pvz., radioaktyviojo jodo abliacijos, siekiant paveikti
likusj piktybinj audinj. Tai nebiity taikoma visiskai kapsule apimty mazgy be
invazijos pozymiy atveju. Galiausiai, invazijos buvimas taip pat turi jtakos
pacienty steb&jimui po operacijos ir galimiems adjuvantiniams gydymo
btudams. Invaziniy arba didelés rizikos naviky atveju reikalinga agresyvesné
stebésena, kad bty galima anksti nustatyti recidyva ar metastazes. Taigi, bet
kokia pazanga didinant invazijos nustatymo tikslumg pagerina diagnozes ir
gydymo kokybe bei pacienty isgyvenamuma. Siame tyrime pateikti rezultatai
ir siilomas ML pagrjstas metodas svariai prisideda prie Sios pazangos.

Nors tradiciné histopatologija iSlicka auksiniu kapsulés invazijos
diagnostikos standartu, Siame tyrime naudojama SHG mikroskopija suteikia
keletg techniniy privalumy duomeny kaupimui. SHG mikroskopija suteikia
informacijos apie kolageng skydliaukés mazgo kapsuléje.

Apibendrinant galima teigti, kad sitlomas automatinio ML pagrindu
veikiancio su kolagenu susijusiy SHG vaizdy atrankos metodas ir iSvados apie
PTC kapsulés heterogeniskuma labai tikétinai gali tapti naujy veiksmingy
ktirimo pagrindu, o véliau juos i$plésti j prizitirimus ML modelius. Dabartinio
tyrimo rezultatai rodo, kad tradicinis metodas, kai ROI pasirenkami rankiniu
heterogeniskumo. Jy heterogeniSkumas, kurio negalima visiskai aptikti
rankinio patikrinimo metu, gali sukelti didziausig paklaida pasirinkty
"nepazeistos" (kontrolinés) kapsulés ROI rinkinyje, nes juose yra ir normaliy,
negalima apmokyti teisingai, nes vienas i§ mokymo duomeny rinkiniy
("sveika" kapsulé) yra dviprasmiskas. Siame tyrime sitilomas metodas,
potencialiai papildytas THG, TPEF ir CARS "lgsteliniu kontekstu", gali buti
efektyvus automatizuotas véZzio diagnostikos metodas

Tai buvo apibendrinta trefiajame disertacijos teiginyje:
papilinés skydliaukés karcinomos kapsulés tekstirinj heterogeniskumg ir
leidzia nustatyti kapsulés invazijg, papildomo tyrimo reikalaujancias sunkiai
atskiriamas mikroinvazijas ir sritis, remiantis konkreciais vaizdo parametry
rinkiniais.
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7.7.4 Priziurimas ML skydliaukés karcinomos diagnozei naudojant
plataus lauko SHG mikroskopija

Sios skyriaus rezultatai buvo pateikti Paper D ir 7 bei 9 konferencijose.

Visi FTC ir PTC méginiai buvo vaizduojami naudojant SHG
mikroskopijos jrenginj. Siekiant uZztikrinti jvairiapusj imties apraSyma, 34
intensyvumo ir tekstiros pozymiai (4 FOS, 25 SOS ir 5 HOS), paimti i$
kiekvieno 117 um x 117 um SHG vaizdo, buvo naudojami tolimesnei
analizei. Taciau ne visi pozymiai yra labai gerai diferencijuojami ir svarbis
tikslui, o tai gali turéti jtakos klasifikavimo rezultatams. Norint jvertinti
pozymiy pertekliaus ir nereikSmingumo jtaka klasifikacijai, pozymiy atranka
buvo atlikta naudojant RFECV-LinearSVC, po kurio seké MIFS. Kiekvieno
zymeklio taisymo metodo funkcijy pasirinkimo rezultatai pavaizduoti
7-2 lenteléje.

7-2 lentelé RFECV-LinearSVC ir MIFS parinktos funkcijos kiekviename
etikeCiy taisymo metode. Paimta i$ [ Paper D].

. MIFS
o RFECV-LincarSVC nejtraukti; Likusiy f;
Zymeklio taisymo metodas Padalijimas nejtraukti; (nejtraukiant /; skaicius
(nejtraukiant f;, No.) ! No) | b ’
70130 En, Cr (2) C’Z’CIS o g; L 27
1. Susijgs su audiniais 80/20 RLN, Iy, H, C1; (4) Ciz, C;‘Z)]j’ G 26
90/10 RLN, E;2, 19,(%6, Es, Hi, E1; Ci, Cs, I (3) 24
LRE, L2, Ei2, E9, Hs, Es, I3,
70/30 . 9) (0) 25
11. Susijgs su kapsule GLN, LRE, L2, C12, E12, E9,
80/20 Hs, Es, 13, E3, E1, 15 (12) © 22
90/10 LRE, Ep2, Es, ui; (4) (0) 30
Eg, Es; (2 2
111. Daugiaklasis, atsizvelgia i 70/30 2 £6 2) O 3
kapsulés heterogeniskuma 80/20 fs; (1) © 3
90/10 Iy, E9, Es, E3; (4) (0) 30

I$nasa: Apatinis indeksas rodo zingsnj (px), naudojama GLCM skai¢iavimui. f; — pozymiai.

Su audiniais susij¢ SHG vaizdai buvo atskirti nuo su audiniais nesusijusiy
vaizdy naudojant i§ SHG vaizdy i§gauty tekstiiros pozymiy vektoriy PCA.
Dvejetainis k-vidurkiy klasterizavimas, pagrjstas pirmaisiais penkiais
kompiuteriniais skai¢iais, apimanciais daugiau nei 92 % duomeny dispersijos,
leido segmentuoti audinio pjuvio vaizda j su audiniais ir ne audiniais
susijusius SHG vaizdus [177]. Toks klasterizavimas atskiria su audiniais ir ne
audiniais susijusius taSkus j dvi aiSkiai apibréztas grupes. Klasifikatoriaus
optimizavimui buvo naudojami pilni arba redukuoti audiniy SHG vaizdy
pozymiy vektoriai (per RFECV-LinearSVC/MIFS).

Didziausios tikslumo vertés buvo pasiektos naudojant 90/10
(mokymo/patvirtinimo) duomeny padalijima ir klasifikatoriaus optimizavima
naudojant pilnus pozymiy vektorius (7-3 lentelé "1. Susijes su audiniais"). Visi
ML modeliai (RF, XGBoost ir LightGBM) demonstruoja perteklinio
pritaikymo pozymius, rodancius duomeny nutekéjima, dél to mokymo
duomeny rinkinyje gauti pernelyg optimistiniai rezultatai, taciau patvirtinimo
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duomeny rinkinyje gauti prasti rezultatai. Nors LR klasifikatoriaus tikslumas
buvo gana patenkinamas, kiti jo rodikliai buvo gerokai blogesni nei kity
modeliy. MLP ir C-SVC pademonstravo geriausius rezultatus patvirtinimo
rinkinyje, o C-SVC pranoko MLP visuose rodikliuvose. Mazesnés MLP
atkiirimo ir F1 balo vertés rodo didesnj klaidingai neigiamy (PTC,
prognozuojamas kaip FTC) ir klaidingai teigiamy (FTC, prognozuojamas kaip
PTC) rezultaty daznj, lyginant su C-SVC. RFECV-LinearSVC ir véliau MIFS
taikymas, siekiant atrinkti svarbias funkcijas ir nejtraukti nereikalingy
funkcijy, pagerino MLP rodiklius ir sumazino C-SVC rodiklius.

7-3 lentelé Optimizuoto modelio nasumo skaitmeninis jvertinimas (remiantis
maksimaliu tikslumu), gautas atliekant 90/10 duomeny skaidymo mokyma /

patvirtinimg MLP ir C-SVC modeliams. Perspausdinta i$ [ Paper D].

< « % B s s .
2 24 w4 w <. w " @ = @ = 0 =2
2% T EE £z £ g o £ & ££& 3
S E g EEs 3§ £ £ = > 2% 2% 2% g
g o g 3 £ A S =] £ - = 7 2 5 2 e 2
> g = =g =4 = < =R &) =0 =¥ a
N> S ] ] < EE EE =9
k7 =% £ [ o, =
E = = By & &
T MLP 7588 76.77 0588 0781 0.671 0850 5457 5682 6240  +it
Susijes  MLP* 78.00] _ 79.00] _ 0.687 _ 0.763 0723 0.862 __ 63.94 _ 44.69) 4991 _ {1+t
su C-SVC___ 8171 8709 0767 0789 _ 0.J78 088l 7213 4509 _ 4884  ++
.
WM csver  8031L 8285, 0736 0780 0757 0870 70.76) 4201 46.13 !
L MLP 8194 _ 8395 0745 0798 0771 _ 0898 6467 _ 3805 _ 4091 ++
Susijes _MLP* 80.00 8215 0707 0781 0742 0.881 _ 67.89 4493 4661 _ +1]
su C-SVC___ 8207 __ 8836 0770 _ 0.785 _ 0.778 0901 __ 7135 __ 4328 _ 46.19 __ ++
kapsule ~C-SVC* 8220 87.61 0748 0.802 0774 _ 0.886 _ 65.69 5274 _ 56.16 _ +++]

Isnasa: * — rodo, kad funkcijy parinkimas buvo atliktas prie§ optimizuojant naudojamy klasifikatoriy
hiperparametry konfigiiracijas; geras tikslumo patvirtinimas / mokymas, geras atkiirimas / artumas / F1 /
AUC, prastas realiam testy rinkiniui; +++ geras tikslumo patvirtinimas / mokymai, "klasifikuojamas"
realiam testy rinkiniui. (1) rodyklé rodo modelio naSumo pageré¢jima, o (|) rodyklé rodo modelio nasumo
sumazéjimg pasalinus nereikalingas ir nereikSmingas funkcijas.

Nezinomo testo rinkinyje MLP teisingo klasifikavimo rodiklis yra Siek
tiek didesnis nei 50%, o C-SVC pasizymejo maza PTC atskyrimo galia, taciau
gerai atskyré FTC. Vizualiné klasifikuoty PTC vaizdy patikra parodé, kad
normalus audinys aplink apskrita PTC kapsul¢ daznai buvo klaidingai
klasifikuojamas kaip FTC, todél buvo gauti klaidingai neigiami rezultatai.
Analizés srities apribojimas aréiau PTC kapsulés pagerino klasifikavimo
naSumg, padidindamas teisingy teigiamy rezultaty dalj iki 48,84% C-SVC
atveju ir 62,40% MLP atveju.

Siekiant sumazinti aplinkiniy audiniy sukelta PTC ir FTC méginiy
duomeny persidengimg, buvo atrinkti tik mazgy kapsuliy SHG vaizdai.
Siekiant automatizuoti zymekliy triuk§mo mazinima, kapsulés vaizdy
atskyrimas buvo atliktas naudojant neprizitirimg ML metoda [177]: PCA buvo
atliktas SHG duomeny rinkiniui, o véliau buvo atliktas dvejetainis k-vidurkiy
klasterizavimas su gautais PC. Nors nei rankinis Zenklinimas, nei $is metodas
neuZztikrina tobulo kapsuliy atskyrimo, pozymiy dispersijos skirtumais
pagristas k-vidurkiy klasterizavimas suteikia objektyvesnj segmentavima nei
vizualinis patikrinimas. Tolesné analizé atlikta su kapsulémis susijusiais SHG

vaizdais.
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Nekapsuliniy SHG vaizdy filtravimas Zymiai sumaZzino mokymo /
patvirtinimo duomeny rinkinius ir sukélé nedidelj, bet valdomag klasés
disbalansg. Lyginant su audiniais susijusiu SHG vaizdy duomeny rinkiniu,
RFECV-LinearSVC Zenkliai sumazino pozymiy skaiciy, o MIFS nepasalino
né vieno. MIFS paSalinty pozZymiy nebuvimas rodo, kad visos RFECV-
LinearSVC parinktos savybés buvo svarbios PTC ir FTC kapsuliy atskyrimui.
Skirtingai nuo visy audiniy metodo, tikslumas iSlieka pastovus esant
70/30, 80/20 arba 90/10 (mokymo/patvirtinimo) padalijimams, o du geriausi
(MLP ir C-SVC) yra pavaizduoti 7-3 lenteleé "II. Susijes su kapsule". Apskritai
modeliai veikia geriau nei tie, kurie buvo apmokyti naudojant visus su
audiniais susijusius duomenis (7.7a paveikslas). Taciau kiti modeliai (RF,
XGBoost ir LightGBM) islieka per daug pritaikyti.

(a) (b) C-sSvC Predicted labels (c) MLP Predicted labels
Is \

o™
8 390 66 e 307 59
2o o
= 2 0
@ 2 2
o =0 =
o ¥ g 3
2 = =
=

.9 80

w

"00 02 o4 08 08 10 N PTC FTC = PTC i FTC
False positive rate

(d) C-SVC: FTC 71.35%; (e) MLP: FTC 64.67%;
35 CSVC (46:19%) PTC 43.28% P PTC 38.05%
1 | — PTC*46.19% | — PTC*40.91%

(f) C-SVC: FTC65.69%; (8 MLP: FTC 60.28%;
= PTC52.74% i PTC 54.00%
PTC* 56.16% PTC* 57.50%

7.7 paveikslas Kapsuléms skirty duomeny rinkiniy, kai santykis (90/10), ML
modeliy nasumas: (a) Visy ML modeliy ROC kreivés, (b) C-SVC painiavos
matrica; (¢) MLP painiavos matrica; (d) C-SVC klasifikavimas, atliktas su
nauju duomeny rinkiniu (testo rinkiniu); () MLP klasifikavimas, atliktas su
nauju duomeny rinkiniu (testo rinkiniu); (f) C-SCV (apmokytas su sumazintu
pozymiy rinkiniu) klasifikavimas, atliktas su nauju duomeny rinkiniu (testo
rinkiniu); (g) MLP (apmokytas su sumazintu pozymiy rinkiniu, 70/30)
klasifikavimas, atliktas su nauju duomeny rinkiniu (testo rinkiniu). Mélynos
spalvos zymekliy vaizdai klasifikuojami kaip PTC, geltonos — kaip FTC. PTC
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procentin¢ dalis rodo teisingai numatyty PTC plyteliy dalj PTC méginyje,
jskaitant aplinkinius audinius. Zvaigzdute Zymima teisingai numatyty PTC
plyteliy dalis PTC méginyje, i$skyrus aplinkinius audinius. Balti apskritimai
zymi kalcifikacijy vietas. Perspausdinta i§ [Paper D].

MLP ir C-SVC atveju patvirtinimo rinkinio tikslumas atitinkamai pageréja
iki 81,94% ir 82,07% (7-3 lentele "11. Susijes su kapsule", 7.7 paveikslas). Be
to, MLP modelio atk@irimo ir F-1 baly rodikliai padidéja, o tai rodo geresnj
naSuma, kai jis apmokomas su kapsulémis susijusiais duomeny rinkiniais.

Tiek MLP, tiek C-SVC ne tik pagerino savo rezultatus patvirtinimo
rinkinyje, bet ir teisingai klasifikavo FTC méginius visuotiniame bandymy
duomeny rinkinyje (7.7d, e paveikslas). MLP klasifikavimo tikslumas PTC
atveju sumazéja, kai apmokoma naudojant su kapsulémis susijusius duomeny
rinkinius, lyginant su visais su audiniais susijusiais duomeny rinkiniais
(7.7d paveikslas).

Funkcijy pasirinkimas naudojant RFECV-LinearSVC Siek tiek sumazino
visy klasifikatoriy tiksluma, taCiau Zymiai pagerino naSuma neZinomame
visuotiniame bandymy duomeny rinkinyje visiems skaidymams (7-3 lentelé
"I. Susijes su kapsule", Zvaigzdutémis pazymétos -eilutés). Medziy
klasifikatoriai ir C-SVC gavo daugiausia naudos i$ poZymiy atrankos, o C-
SVC pasieké atitinkamag 65,69% ir 56,16% tikslumg FTC ir PTC atveju
mokymo / patvirtinimo padalijime, pranokdamas visus ankstesnius metodus
(7.7f paveikslas). MLP, kuris buvo jautrus mokymo duomeny rinkinio
dydziui, pademonstravo geresne klasifikacija, pasiekdamas atitinkamai
57,50% ir 60,28% PTC ir FTC klasifikacijoms visuotiniame testy rinkinyje
(7.7g paveikslas).

Tikslus PTC klasifikavimas iSlieka sudétingas, nepaisant su Zymekliy ir
pozymiy slopinimu susijusiy patobulinimy. Tai gali biiti dél didelio kolageno
ypatybiy heterogeniskumo PTC kapsuléje ir tam tikry PTC ir FTC kapsulés
segmenty panasumo, dé¢l kurio FTC identifikavimas yra tikslesnis, o PTC —
silpnesnis (7.7d-g paveikslas).

Abiejy tipy karcinomos mazgus supantis audinys nesuteikia svarbios
klasifikacijos informacijos pagal SHG vaizdo tekstiiros ypatybes. Taciau tokie
tekstiros pozymiai kaip LRE, E12, Es, 1, paSalinti atliekant pozymiy atranka,
kai buvo atsizvelgta tik j kapsulés kolageng, greiCiausiai paaiskina skirtumus
tarp gretimy audiniy ir mazgy. Tai rodo, kad gretimi audiniai galéty sudaryti
papildoma klase, padedancia spresti klaidingo zenklinimo problemg taikant su
audiniais susijusj metoda.

Siekiant jrodyti perinodulinio audinio panasumg, segmentavimas pagal
intensyvumo ir teksttiros pozymius buvo atliktas, kaip aprasyta [177]. PCA ir
daugiaklasio k-vidurkiy klasterizavimo rezultatai (7.8 paveikslas) rodo, kad
nors kapsulinis kolagenas yra nevienalytis tick PTC, tiek FTC, gretimi
audiniai yra atskirti vienoje klaséje (rausvai raudona spalva, 7.8b-c¢
paveikslas).
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7.8 paveikslas PTC ir FTC im¢iy pozymiy duomeny rinkiniy PCA analiz¢ ir
ju klasterizavimas naudojant k-vidurkius: (a) PC1 ir PC2, PC3 ir PC1 bei PC3
ir PC2 tasky grafikai visiems duomenims ir atskirai PTC bei FTC; (b)
atsitiktiniy PTC ir FTC méginiy klasteriy Zemélapis. Skaiciai rodo kiekvieno
klasterio procenting dalj atitinkamame duomeny rinkinyje. Antrasis skaicius
skliausteliuose yra kiekvieno klasterio procentiné dalis kapsuléje. Rausvai
raudonos spalvos klasteris buvo priskirtas normaliam kolagenui, supanciam
normalius audiniy folikulus, todél buvo pasalintas i§ "kapsulinio kolageno”
klasés ir pridétas prie atskiros klasés, kurioje derinami stiklelio ir normalaus
audinio vaizdai, esantys tieck PTC, tick FTC méginiuose. Perspausdinta i$
[Paper D].

Abi karcinomos kapsulés sudarytos i$ ty paciy klasteriy, todél PTC ir
FTC kapsuliy klasifikavimas apsunkinamas net ir tada, kai gretimi audiniai
nejtraukiami j analize (pvz., 7.7d-g paveikslas). Nepaisant bendros klasteriy
sudéties, klasteriy santykiai skiriasi priklausomai nuo karcinomos tipo. Visus
duomenis atspindintys PCA tasky grafikai (7.8a paveikslas) ir segmentuoty
SHG skenavimy pavyzdziai (7.8b-c paveikslas) rodo, kad FTC kapsulése
vyrauja rusvos ir geltonos spalvos sankaupos, o PTC kapsulése —
heterogeniskesnés. Pirmasis variantas greiciausiai paaiskina geresnj FTC
klasifikavimg naudojant C-SVC Kklasifikatoriy ankstesniuose metoduose, o
antrasis variantas tikriausiai 1émé didesnj PTC klaidy lyg;.

Sie skirtumai gali pagerinti klasifikavimo rezultatus, nes tiek klasteriai,
tiek jy santykiai apibiidina PTC ir FTC mazgy kapsules. Todé¢l pries
stratifikuotg 10 karty kryzminj patvirtinimg modelio optimizavimui buvo
fiksuotas klasteriy santykis, kuris buvo nustatytas visam mokymo duomeny
rinkiniui naudojant k-vidurkius. Gretimy audiniy ir stiklelio SHG vaizdai
buvo prideéti prie "netikslines" klasés, siekiant i§vengti iSankstinio apdorojimo
veiksmy, kuriais sickiama pasalinti SHG vaizdus, kurie néra svarbiis taikiniui
ir todél gali sukelti Zymekliy triuk§mg. "FTC", "PTC" ir "netikslinés" klasés
buvo subalansuotos pries klasifikatoriaus optimizavima, nors iSliko tam tikra
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duomeny disproporcija. Sis sumazintas duomeny rinkinio dydis, lyginant su
visy audiniy ir kapsulés metodais, gali turéti jtakos klasifikatoriaus veikimui.
MLP ir C-SVC 70/30 paskirstymo optimizavimo rezultatai pateikiami
7-4 lenteléje. Sis paskirstymas apima daugiau duomeny patvirtinimo rinkinyje
ir i8saugo klasteriy santykius, todél yra reprezentatyvesnis. Klasifikatoriy
naSumas yra panaSus ] ta, kuris gautas taikant "su kapsulémis susijusj"
zymekliy metodg. Funkcijy atrankos taikymas reikSmingai nepagerina
klasifikavimo tikslumo; tai reiskia, kad atsizvelgiant j klasteriy santykius
mokymo metu, sumazéja funkcijy perteklius, o visos likusios funkcijos iSlieka
svarbios tikslui.

7-4 lentelé Optimizuoto modelio naSumo skaitmeninis jvertinimas (remiantis
maksimaliu tikslumu), gautas duomeny skaidymo mokymui / patvirtinimui
70/30 duomeny rinkiniams, atsizvelgiant j klasteriy santykj PTC ir FTC
imtyse MLP ir C-SVC modeliams. Perspausdinta i$ [ Paper D].

= < 2 = S S
g g g = E g £ g3 g3 s
g ES g £E £ EE Eg 2
ML modelis S £ 32 & z 5% g Z 8 Z 8 E
2 25 g £E \) 235 235 £

E 5 = g 3 < — == HE

= = Z = & &
MLP 81.76 83.16 0.816 0.817 0.811 42.98 63.73 ++
MLP* 81.32 83.98 0.810 0.813 0.814 65.12 50.22 +++
C-SVC 84.73 89.30 0.843 0.847 0.847 63.70 52.23 +++
C-SVC* 84.80 89.50 0.844 0.848 0.847 68.65 51.66 +++

Nors daugiaklasé¢ klasifikacija reikSmingai nepagerino visuotiniy
bandymy duomeny tikslumo, neprizitirima ML segmentacija iSryskino PTC ir
FTC kapsuliy bei gretimy audiniy skirtumus, paaiSkindama klasifikatoriaus
veikimo skirtumus. Gretimame audinyje néra aptinkamy PTC arba FTC
progresavimo pozymiy ir ji galima pasalinti i§ analizés taikant dvejetainj k-
vidurkj (Il metodas) arba laikyti atskira klase daugiaklaséje klasifikacijoje (I1I
metodas). Panasiis heterogeniniai kolageno modeliai PTC ir FTC kapsulése
apsunkina klasifikavima, o PTC kalcifikacijos, kurios tekstiros savybémis
skiriasi nuo PTC kapsulés, visy klasifikatoriy yra klaidingai klasifikuojamos
kaip FTC. Mazesnis FTC heterogeniskumas, lyginant su PTC kapsulémis,
leidzia C-SVC atskirti PTC ir FTC, o tuo tarpu kitiems klasifikatoriams sunku
atlikti perteklinj pritaikymg arba sumazinti duomeny dydj (MLP).

Tai buvo apibendrinta ketvirtajame disertacijos teiginyje:

diferencijuoti papilines ir folikulines skydliaukés karcinomas, remiantis SHG
vaizdavimu.

7.8 I8vados

1. Plataus lauko SHG mikroskopija kartu su kiekybine vaizdy analize yra
patikimas ir be Zymekliy veikiantis metodas fibroziniam PAH remodeliavimui
jvertinti. MCT gydyty ziurkiy plauciy audinyje buvo nustatyti nuo laiko
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priklausantys kolageno kiekio ir morfologijos pokyciai. FOS analizé parodé
progresuojantj kolageno kaupimasi, o SOS analizé — perivaskulinio kolageno
tinklo tankéjimg ir vélesn] jo iSplitimg j alveoliy sritj. FFT analizé taip pat
parod¢ dinamine¢ skaiduly orientacijos moduliacija, kuriai budingas pradinis
issidéstymas, po kurio vélyvoje ligos stadijoje seka dezorganizacija. Sie
rezultatai pabrézia SHG pagristy metody potencialg neardomajam fibrozes
vertinimui sergant PAH ir susijusiomis plauciy ligomis.

2. Plataus lauko PSHG mikroskopijos taikymas vaizduojant iStisus
skydliaukés mazgy pjivius histologiniuose preparatuose leido iSskirti
kiekybinius parametrus, apibiidinancius kolageno orientacija ir ultrastruktiirg
mazgo kapsuléje. Naudojant cilindrinj kolageno modelj, kapsulés invazines
sritis galima veiksmingai atskirti nuo neinvaziniy sriiy statistine analize ir
nepriziarimu ML. Sis metodas leidZia objektyviai ir atkuriamai jvertinti
kolageno ultrastruktiiros pokyc¢ius kapsulés invazijos metu skydliaukeés
navikuose ir gali biiti pagrindas kuriant automatines diagnostikos priemones
skydliaukés patologijai diagnozuoti.

v —

masininj mokymasi apjungiantis sukurtas metodas yra skirtas kiekybiniam
kolageno kapsulés struktiiros PTC jvertinimui. Dviejy pakopy A-vidurkiy
klasterizacija atskleidé rysky kapsulés ir apibrézty sri¢iy heterogeniskuma su
skirtingais struktiiriniais poZymiais, atitinkanciais nepazeistas, invazijos
apimtas ir potencialiai prieSinvazines vietas. Visy pirma, $§iuo metodu buvo
nustatytos mazai pastebimos mikroinvazijos sritys, kurios nebuvo aptiktos
gebéjimas aptikti tokias sritis pabrézia jo, kaip papildomos diagnostikos
priemonés, potenciala, siekiant pagerinti tiksluma, sumazinti stebétojo
kintamumg ir paremti automatizuoty klasifikavimo sistemy ktirima.

tekstliros pozymiams, leidzia efektyviai diferencijuoti PTC ir FTC diagnoze.
Nors klasifikavimo uzduotj apsunkina pozymiy perteklius ir dél gretimy
audiniy jtraukimo, kalcifikacijy ir tarpnavikiniy kapsuliy panasumo
atsirandantys zymeéjimo netikslumai, klasifikatoriaus naSumas gerokai
pageréjo taikant specialy duomeny apdorojima ir neprizitirima segmentavima,
siekiant paSalinti neinformatyvias sritis. C-SVC klasifikatorius pasické
didziausig patvirtinimo tiksluma, jrodantj jo atsparumg triuk§Smui ir
SaliSkumui.

7.9 Autoriaus indélis

Doktorantas atliko didziaja dalj eksperimentinio darbo, jskaitant plataus
lauko SHG ir TPEF vaizdy duomeny rinkimg, formalig analiz¢ ir moksliniy
publikacijy raSymg. Doktorantas taip pat atliko visus skaifiavimus,
apskai¢iavimus ir vizualizacija, analiz¢ ir interpretacija. Plataus lauko SHG
nustatymo modifikacija PTC méginiy PSHG vaizdavimui ir PSHG vaizdy
duomeny rinkinio gavimui atliko Dr. Danielis Rutkauskas (Fiziniy ir
technologijos moksly centras, Vilnius, Lietuva) ir Dr. Radu Hristu
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(Mikroskopijos-mikroanalizés ir informacijos apdorojimo centras, Bukaresto
nacionalinis mokslo ir technologijy politechnikos universitetas, Bukarestas,
Rumunija). Plauciy audinio pjuviy paruo$img ir imunohistocheminj dazyma
atliko Dr. Nadezda Amaegberi (Baltarusijos valstybinis universitetas,
Minskas, Baltarusija), Dr. Tatyana Vladimirskaja ir Olga Yatsevich
(Baltarusijos medicinos magistrantiiros akademija, Minskas, Baltarusija).
PTC ir FTC mazgy audiniy pjuvius paruos$é¢ Dr. Lucian George Eftimie
(Centriné universitetiné skubios pagalbos karo ligoniné, Bukarestas,
Rumunija; Nacionalinis kiino kultiros ir sporto universitetas, Bukarestas,
Rumunija).
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