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ABSTRACT

We present two models of sparse dynamic networks that display transitivity—the tendency for nodes

sharing a common neighbour to be neighbours of one another. Our first network is a continuous time

Markov chain G = {Gt = (V , Et), t ≥ 0} whose states are graphs with the common set of nodes

V = {1, . . . , n}. The transitions are defined as follows. Given t, the node pairs {i, j} ⊂ V are assigned

independent exponential waiting times Aij. At time t + minij Aij the pair {i0, j0} with Ai0j0 = minij Aij
toggles its adjacency status. To mimic clustering patterns of sparse real networks we set intensities aij of

exponential times Aij to be decreasing functions of the degrees of common neighbours of nodes i and j in

Gt . Our second network G′
= {G′

t = (E′
t , V), t ≥ 0} is the affiliation network based on a latent Markov

chain H = {Ht = (V ∪ W , Et), t ≥ 0} whose states are bipartite graphs with the bipartition V ∪ W , where

W = {1, . . . , m} is an auxiliary set of attributes/affiliations. Nodes i1, i2 ∈ V are adjacent in G′
t whenever

i1 and i2 have a common neighbour in Ht . We analyse geometric properties of both dynamic networks at

stationarity and show that networks possess high clustering. They admit tunable degree distribution and

clustering coefficients.

KEYWORDS: dynamic network; stationary network; network Markov chain; clustering coefficient.

1. INTRODUCTION
Many real networks, especially those depicting human interaction, like social networks of friend-

ships, collaboration networks, citation networks, and other show clustering, the propensity of nodes

to cluster together by forming relatively small groups with a high density of ties within a group.

Clustering is closely related to network transitivity, the tendency for two nodes sharing a common

neighbour to be neighbours of one another thus forming a closed triangle of connections. Locally,

in a vicinity of a node, this tendency can be quantified by the probability that two randomly

selected neighbours of the node are adjacent. The network average of this probability, called the

(average) local clustering coefficient, is used to quantify the network transitivity. Another popular

measure of network transitivity, the global clustering coefficient, is the (conditional) probability that

a randomly selected ordered triple of nodes (u, v, w) forms closed triangle of connections given that

u and v are neighbours of w. In many social networks, both clustering coefficients are on the order
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of tens of percent, while the edge density, the probability that two randomly selected nodes are

adjacent, is of much smaller order [1]. Often the edge density scales as n−1
, where n is the number

of nodes in the network. We call networks with such edge densities sparse.

Mathematical modelling of sparse networks displaying clustering/transitivity has attracted con-

siderable attention in the literature, see e.g. [2, 3] and references therein. We briefly review several

approaches to modelling of clustered networks. In order to enhance the number of closed triangles

in an evolving locally tree-like network Holme and Kim [4] suggested inserting additional edges

that close desired fraction of open triangles (paths of length two). Newman [5] generalized the

configuration random graph model by prescribing network nodes numbers of closed triangles they

participate in. In this way, a predefined number of closed triangles can be introduced into configu-

ration random graph. Bollobás et al. [6] built a clustered network by taking a union of randomly

located small dense subgraphs of variable sizes. Guillaume and Latapy [7] noted an underlying

bipartite structure present in many social networks, where nodes (actors) sharing a common hobby

or affiliation are more likely to become friends, and where each hobby/affiliation defines a tightly

connected cluster of actors related to it. They suggested modelling a clustered network by first

linking actors to affiliations and then connecting actors that share common affiliations. We call such

networks affiliation networks. A related class of network models called random intersection graphs

represents nodes by finite sets of attributes randomly assigned to nodes; two nodes are adjacent if

their attribute sets intersect [8–11], see also [12, 13]. Another source of clustered network models

are random geometric graphs, where nodes are randomly selected points of a metric space and where

adjacency relation depends on mutual distances between nodes: the closer the nodes the higher the

probability of a link joining them [14–16]. We remark that network models mentioned above admit

(asymptotic) power law degree distributions.

The present paper is devoted to the modelling of sparse and clustered dynamic networks using

Markov chains. By dynamic network, we mean a collection of random graphs {Gt = (V , Et), t ≥ 0}

sharing the same set of nodes V = {1, . . . , n} and having random edge sets Et , t ≥ 0. We present

two stationary random processes {Gt , t ≥ 0} with tunable degree distribution and tunable non-

vanishing clustering coefficients. Our study is build upon earlier work on dynamic network Markov

chains [17–19]. We mention that network Markov chain of [19] is composed of

(n
2
)

independent

Markov chains defining the adjacency status of each node pair {i, j} ⊂ V individually (we refer to

Section 2 for details). The network admits tunable edge density and degree distribution, but since

the edges are inserted/deleted independently of each other it does not show clustering. Grindrod et

al [17] and Užupytė and Wit [18] introduced transitivity into the network Markov chain by relating

the birth/death rate of an edge to the number of triangles it closes/opens (cf. [4]). More preciselly,

they set the birth (death) rate of an edge i ∼ j to be an affine function of the number of common

neighbours of nodes i and j. Here i ∼ j means that i and j are adjacent. A drawback of the models of

[17, 18] is that for large n they have a little control over the edge density and clustering strength.

In the present paper, we suggest a remedy to this drawback. Inspired by clustering patterns

observed in real networks, where the number of closed triangles incident to a node negatively

correlates with the degree of the node ([20–23]) we set the birth rate of an edge i ∼ j to be a

decreasing function of the degrees of common neighbours of i and j. We show below that such

a modification leads to a stationary dynamic network model admiting tunable edge density and

clustering coefficients.

Another dynamic clustered network considered in this paper is a stationary affiliation network

built upon an underlying bipartite graph valued Markov chain with independent edges. Now the

clustering property is caused by the bipartite structure as noted in [7]. We analyse the degree

sequence and global clustering coefficient at stationarity using the tools developed for random

intersection graphs [8]. We note that earlier work on dynamic affiliation network models ([24–26])

addresses the case where the network size n = n(t) increases with time. Clearly, such networks do

not admit stationary distributions.

Finally, we mention the related recent work by Milewska et al. [27], where a sparse and clustered

dynamic affiliation network is constructed using 2
n

independent two state Markow chains: each
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subset of V = {1, . . . , n} (there are 2
n

of them) defines a two state Markow chain (active state and

passive state) having exponential holding times with intensities depending on the size of the subset

and weights of nodes in it. Furthermore, each active subset defines active clique on the nodes of the

subset. The union of cliques that are active at time t defines the instance of the dynamic network at

time t. The stationary distribution of this network is given by a random intersection graph.

The rest of the paper is organized as follows. In Section 2, we formally define the network Markov

chain and analyse geometric properties of the network analytically and by numerical simulations.

In Section 3, we define stationary affiliation network and show the degree distribution and global

clustering coefficient. Proofs of the results of Section 3 are given in Supplementary Appendix.

2. NETWORK MARKOV CHAIN
Let G = {Gt = (V , Et), t ≥ 0} be a continuous time Markov chain, whose states are graphs on the

node set V and transitions are defined as follows. Given Gt (the state occupied at time t), the update

takes place at time t′ := t + minij Aij, where Aij = Aij(Gt), {i, j} ∈ V are independent exponential

waiting times with intensities aij = aij(Gt) defined below. The pair {i0, j0} with Ai0j0 = minij Aij
changes its adjacency status: the edge i0 ∼ j0 is inserted if it is not present at time t; the edge i0 ∼ j0 is

removed if it is present at time t. Thus, at time t′ the Markov chain jumps to the state Gt′ = (V , Et′),

where the edge sets Et and Et′ differ in the single edge i0 ∼ j0.

Let us define the intensities aij for {i, j} ⊂ V . Let α, β , λ, µ ≥ 0 and let λi, µi, 1 ≤ i ≤ n, be

positive numbers. Given graph G = (V , E) we assign clustering weights νij(G, α) and νij(G, β) to

each node pair {i, j} ⊂ V , where

νij(G, s) =

∑
v∈Nij

(dv(G))−s
, s ≥ 0. (2.1)

For s = 0 we have νij(G, 0) = |Nij|. Here Nij = Nij(G) stands for the set of common neighbours

of nodes i and j in G; dv(G) denotes the degree of node v in G. Furthermore, each node pair {i, j} is

assigned intensity

aij(G) =

{
λiλj + λνij(G, α) for {i, j} ̸∈ E,(
µiµj − µνij(G, β)

)
+

for {i, j} ∈ E.

(2.2)

Here x+ stands for max{x, 0}. A standard argument shows that the chain G has unique stationary

distribution. Chain G starting with random graph G0 having such a distribution is called stationary

network in what follows.

Let us now explain all elements of the model. (The novel part which is in the νij term will be

discussed last.) For λ = µ = 0 transitions of the chain G are defined by the transitions of

(n
2
)

independent Markov chains describing adjacency dynamic of each node pair {i, j} ⊂ V separately.

(The Markov chain of the node pair {i, j} has two states i ∼ j and i ̸∼ j, where state i ∼ j (i and j are

adjacent) has exponential holding time with the intensity µiµj and the state i ̸∼ j (i and j aren’t

adjacent) has exponential holding time with the intensity λiλj.) The stationary network of G has

independent edges and, hence, it lacks the clustering property. Assuming, in addition, that µi is the

same for each node i ∈ V (µi ≡ const) we obtain a dynamic network considered in [19]. Let us

mention that weights λi strongly correlate with respective node degrees di(Gt), i ∈ V and are useful

in modelling the degree distribution of Gt for large t. In particular, for λ = µ = 0 and µi ≡ c
the stationary network reproduces Chung-Lu random graph model [28] if we modify the Markow

chain to allow multiple parallel edges (we refer to [19] for detailed discussion on the relation with

Chung–Lu model [28]). Finally, we remark that large values of λi and µi (in concert) enhance the

variability over time of links incident to node i ∈ V .

Grindrod et al. [17] introduced the term λνij(G, 0) to enhance the triadic closure effect. We

mention that [17] considers the (discrete) jump chain G∗
= {G∗

k = (V , E∗

k), k = 0, 1, 2, . . . }

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/13/4/cnaf008/8221424 by Barbara Aronson user on 03 August 2025

https://academic.oup.com/comnet/article-lookup/doi/10.1093/comnet/comnet/cnaf008#supplementary-data


4 · Bloznelis and Marma

related to G defined by (2.2), where λi = const1, µi = const2 do not depend on i and where

µ = 0. More precisely, G∗
represents the list of distinct states visited by the chain G arranged in

the chronological order. That is, G∗
0 = G0, G∗

1 = Gt1 , G∗
2 = Gt2 , . . . , where t1 < t2 < . . . are

the subsequent jump times of continuous chainG. Užupytė and Wit [18] complemented the model

of [17] by adding the ‘triadic protection’ term µνij(G, 0) aimed at reducing the deletion rate of the

edges belonging to the closed triangles. They consider the continuous chainG defined by (2.2) with

λi = const1, µi = const2.

It has already been mentioned that for large n dynamic networks of [17, 18] permit little control

over the edge density, which becomes very sensitive to parameters µ and λ. To overcome such

disadvantage we suggest choosing clustering weights νij(G, s) that are decreasing functions of the

degrees of common neighbours of i and j. An intuition behind this choice is based on the plausible

assumption that for i, j being friends of an individual with a large number of acquaintances makes

less impact on the mutual relations between i, j than being friends with a person having just a few

contacts. Moreover, [21–23], see also [20], note that in some sparse and clustered real networks the

fraction of closed triangles incident to a node scales as a negative power of the degree of that node.

Findings of [20–23] motivated our choice of the clustering weights (2.1).

We are most interested in sparse networks, where the number of nodes n is large. In the simplest

case, where λ = µ = 0 and where λi = const1 and µi = const2 are the same for each i (we write,

for short, λiλj = λ0 and µiµj = µ0) each node pair toggles its adjacency status independently and

the expected holding time of an edge (respectively, non-edge) is µ−1
0 (respectively, λ−1

0 ). By the law

of large numbers the probability that i and j are adjacent in Gt is asymptotically µ−1
0 /(µ−1

0 +λ−1
0 ) =

λ0/(µ0 + λ0) as t → ∞. Hence a snapshot Gt of the stationary network has the distribution of

the binomial random graph with the edge density λ0/(µ0 + λ0). Furthermore, a sparse network is

obtained if one chooses µ0 = n and λ0 = c, where c > 0 denotes a number independent of n (think

of a sequence of network Markov chains with the number of nodes n → ∞). More generally, for

λ = µ = 0, µiµj ≡ n and

∑n
i= 1 λi ≤ cn uniformly in n one can obtain a sparse stationary

network having independent edges and the degree sequence strongly correlated with the sequence

of weights {λi}, [19].

The simulation study of Section 2.1 below shows that network Markov chain (2.2) with clus-

tering weights νij(G, α), νij(G, β), where α, β > 0, can produce highly clustered sparse stationary

dynamic networks with tunable edge density and clustering coefficients. These empirical findings

are supported by a limited analytical study (given in Section 2.2 below) showing upper and lower

bounds of the order n−1
on the average edge density. In addition, we establish a lower bound of

the order n on the average number of closed triangles and in a special case of α = 2 we relate the

average edge density to the average local clustering coefficient.

Before proceeding further, we introduce some notation. Given a graph G = (V , E) we denote

by 1v(G) the number of closed triangles incident to a node v ∈ V . The total number of closed

triangles is denoted N1(G) =
1
3
∑

v∈V 1v(G) The total number of 2-paths is denoted N3(G) =∑
v∈V

(dv(G)
2

)
. For a node v ∈ V of degree dv(G) ≥ 2 we denote CL

v(G) = 1v(G)
(dv(G)

2
)−1

the local

clustering coefficient of v (= probability that two randomly selected neighbours of v are neighbours

to each other). In the case where dv(G) ≤ 1 we put CL
v(G) = 0. The average local clustering

coefficient and the global clustering coefficient are denoted

C̄L(G) =
1

n

∑
v∈V

CL
v(G) and CGL(G) =

3N1(G)

N3(G)
.

We put CGL(G) = 0 when N3(G) = 0. The average degree and the average edge density are

denoted d̄(G) = n−1 ∑
v∈V dv(G) and e(G) =

(n
2
)−1

|E| respectively. Finally, we denote by IA the

indicator function of an event (or set) A.
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Figure 1. Edge densities in stationary graphs. (a) Heatmap shows edge density of simple triadic model for

various values of λ and µ, while the other model parameters are fixed: α = β = 0, λiλj ≡ 1,

µiµj ≡ 1000, n = 1000. (b) Heatmap shows edge density of general triadic model for various values of λ
and µ, while the other model parameters are fixed: α = 2.75, β = 2.5, λiλj ≡ 1, µiµj ≡ 1000, n = 1000.

2.1. Numerical simulations
The aim of the simulation study is twofold: testing the clustering properties of sparse network

(2.2) equipped with clustering weights νij(G, α), νij(G, β), where α, β > 0 and comparison of the

clustering properties for α, β > 0 and α = β = 0 (the case α = β = 0 corresponds to the setup

of [17, 18]).

To address both questions simultaneously we consider a simplified model (2.2), where we assume

that λiλj ≡ const1 := λ0 and µiµj ≡ const2 := µ0, see (2.3) below. Recall that for λ = µ = 0,

the edges are inserted/deleted independently of each other and the ratio µ0/λ0 defines the network

edge density 1/(1 + µ0/λ0) at stationarity. Hence, tuning the ratio µ0/λ0 one can achieve the

desired edge density. Here we assume that the ratio µ0/λ0 is fixed and address the question about

tuning parameters λ and µ for achieving desired values of clustering coefficients.

In the simulations we put the number of nodes n = 1000, µ0 = n and λ0 = 1 (for λ = µ = 0

such network is sparse at stationarity). We only consider two instances of values of the pair (α, β):

the choice of parameters α = 2.75 and β = 2.5 is referred to as ‘general triadic model’ below; the

choice of parameters α = β = 0 is referred to as ‘simple triadic model’. Given (α, β) we generate

network Markov chains for different values of (µ, λ) from the range that features variability of the

local clustering coefficient (our target parameter). For each choice of (µ, λ) we sample network

snaphot Gt out of (approximately) stationary distribution and evaluate the edge density e(Gt)
(Fig. 1) and local clustering coefficient C̄L(Gt) (Fig. 2). To generate an approximately stationary

network we run the respective Markov chain starting from an empty graph until 3n2 jumps (edge

changes) occur. Further simulation steps do not change values of e(Gt) and C̄L(Gt) beyond the

rounding error.

In Figs 1 and 2 values of parameters µ and λ are depicted on the vertical and horizontal axis,

respectively. Evenly spaced labels on each axis depict values of geometric sequences with the

common ratio 1.35. The colours are put on logarithmic scale and the same scale is applied across

different images.

As we can see from Figs 1 and 2, ‘general triadic model’ admits tunable (average) local clustering

coefficient while the edge density remains reasonably small (recall that the ratio µ0/λ0 remains
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Figure 2. Average local clustering coefficients in stationary graphs. (a) Heatmap shows average clustering

coefficient of simple triadic model for various values of λ and µ, while the other model parameters are

fixed: α = β = 0, λiλj ≡ 1, µiµj ≡ 1000, n = 1000. (b) Heatmap shows average clustering coefficient

of general triadic model for various values of λ and µ, while the other model parameters are fixed:

α = 2.75, β = 2.5, λiλj ≡ 1, µiµj ≡ 1000, n = 1000.

fixed). On the other hand, ‘simple triadic model’ shows a swift jump from a sparse graph to the

complete graph. Hence while trying to achieve the desired values of the clustering coefficient we are

losing control over the edge density.

In Fig. 3a, we examine several clustering characteristics of the stationary network generated by the

‘general triadic model’ with µ = 15000 and λ = 20000. Given integer k ≥ 2, let g(k) denote the

number of nodes v of degree d(v) = k. Let f (k) =
1

g(k)
∑

v: d(v)=k CL
v(G) denote the average value

of the local clustering coefficient over the set of nodes of degree k. We put f (k) = 0 for g(k) = 0.

We call f the ‘local clustering coefficient curve’. The fact that f is mostly decreasing tells us that the

local clustering coefficient negatively correlates with node degree, a phenomenon observed in many

sparse real networks ([20–23]). The ‘general triadic model’ reproduces this network property (see

[12, 16, 22, 29, 30] for several other models of clustered networks having this property). We also

mention that the edge density 0.004 is by two orders less than the average local clustering coefficient.

Hence the network is sparse and highly clustered.

Lastly, we touch on the question of the component structure. One may wonder whether the high

values of the clustering coefficients are caused by a few (perhaps one) relatively small, but dense

subgraphs. Figure 3b shows that this is not the case. The stationary network generated by ‘general

triadic model’ admits a large connected component collecting a fraction of nodes. For simplicity

we put µ = 0 (no triad protection). Hence the only remaining parameter to vary is λ. On the

horizontal axis, we depict values of
λ
n . We recall that the number of nodes n = 1000 remains fixed.

2.2. Analytical results
Let f be a real valued function defined on the set of graphs with the node set V . For example, it

can be the number of edges f (G) = |E| of graph G = (V , E), or the number of closed triangles

f (G) = N1(G), etc. For a stationary Markov chain G, the function t → Ef (Gt) is a constant.

Hence
∂
∂tEf (Gt) = 0. This identity, when applied to properly chosen function f , can give useful

information about average characteristics of the network at stationarity. We explore two instances.

Choosing f (G) = |E| we show lower and upper bounds for the average edge density et := Ee(Gt);
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Figure 3. Clustering versus degree and the largest component size. (a) Downward curve shows negative

relation between local clustering coefficient and degree in general triadic model with parameters α = 2.75,

β = 2.5, λiλj ≡ 1, µiµj ≡ 1000, µ = 15000, λ = 20000, n = 1000. (b) Blue (orange) curve shows

relation between the size of the largest component (average clustering coefficient) and the fraction λ/n in

general triadic model with parameters α = 2.75, β = 2.5, λiλj ≡ 1, µiµj ≡ 1000, µ = 0, n = 1000.

choosing f (G) = N1(G) we infer about the number of closed triangles. In what follows term

triangle is used for the closed triangle exclusively.

Since for stationary G the average edge density et and average clustering coefficient EC̄L(Gt) do

not depend on t, we sometimes drop the subscript t and write e = et and C̄L
= EC̄L(Gt). We ob-

serve that, by symmetry, the probability distribution of bivariate random variable (dv(Gt), 1v(Gt))
is the same for all v ∈ V . Furthermore, for a stationary network this distribution does not depend

on t either. We denote by (d, 1) a bivariate random variable having the same distribution as

(dv(Gt), 1v(Gt)).

To make calculations feasible we assume for the rest of the section that the products λiλj and

µiµj in (2.2) do not depend on i, j. In this case (2.2) reads as follows

aij(G) =

{
λ0 + λνij(G, α) for {i, j} ̸∈ E,(
µ0 − µνij(G, β)

)
+

for {i, j} ∈ E,

(2.3)

where λ, λ0 > 0 and µ, µ0 > 0.

In Proposition 2.1 below we establish upper and lower bounds on the average edge density of the

stationary Markow chain G defined by (2.3).

Proposition 2.1 We have that

e ≥
λ0

λ0 + µ0
. (2.4)

For α, β ≥ 2 we have

e ≤
λ0 +

1
n−1 max{λ, µ}

λ0 + µ0
. (2.5)

For α, β ≥ 1 and λ0 + µ0 > max{λ, µ} we have that

e ≤
λ0

λ0 + µ0 − max{λ, µ}
. (2.6)
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An important conlcusion to draw from inequalities (2.4), (2.5), (2.6) is that for
µ0
λ0

of the

order n and max{λ, µ} of the order µ0 the network Gt is sparse and has average edge

density of the order n−1
as n → +∞.

Proof of Proposition 2.1. Equation
∂
∂tE|Et| = 0 implies

E
∑

{i,j}/∈Et

aij(Gt) = E
∑

{i,j}∈Et

aij(Gt). (2.7)

In view of (2.3) we can write the latter identity in the form

E
(

λ0

((
n
2

)
− |Et|

)
+ ν′

t + ν′′
t − µ0|Et|

)
= 0, (2.8)

where

ν′
t = λ

∑
{i,j}/∈Et

∑
v∈Nij

1

dα
v

and ν′′
t =

∑
{i,j}∈Et

min

µ0, µ
∑
v∈Nij

1

dβ
v

 (2.9)

account for the contribution of the clustering weights λνij(Gt , α) and µνij(Gt , β). Here we

write, for short, Nij = Nij(Gt) and dw = dw(Gt). By the linearity of expectation, we obtain

from (2.8) that

λ0 − (λ0 + µ0)et +

(
n
2

)−1
E(ν′

t + ν′′
t ) = 0. (2.10)

The inequalities ν′
t ≥ 0, ν′′

t ≥ 0 imply λ0 − (λ0 + µ0)et ≥ 0. We arrived to lower bound

(2.4).

Let us show upper bounds (2.5), (2.6). We estimate

ν′
t ≤ λ

∑
{i,j}/∈Et

∑
v∈Nij

1

dmin{α,β}
v

,

ν′′
t ≤ µ

∑
{i,j}∈Et

∑
v∈Nij

1

dβ
v

≤ µ
∑

{i,j}∈Et

∑
v∈Nij

1

dmin{α,β}
v

.

Combining these inequalities we obtain

ν′
t + ν′′

t ≤ max{λ, µ}

∑
1≤i<j≤n

∑
v∈Nij

1

dmin{α,β}
v

= max{λ, µ}

∑
v∈V: dv≥2

1

dmin{α,β}
v

(
dv
2

)

≤ max{λ, µ}
1

2

∑
v∈V

d2−min{α,β}
v .

For min{α, β} = 2 we have ν′
t + ν′′

t ≤
n
2 max{λ, µ}. Invoking this inequality in (2.10) we

obtain (2.5). For min{α, β} = 1 we have ν′
t + ν′′

t ≤ max{λ, µ}|Et|. Now (2.10) yields

(2.6). End of the proof.
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The next Proposition 2.2 relates the average edge density to average local clustering coefficient in

the special case of α = 2 and µ = 0. In this special case, we consider a slightly modified version

of (2.3) that includes the ‘correction term’

~ij(G) =
1

n − 1

(
I{di(G)=0} + I{dj(G)=0}

)
+

1

n − 2

(
I{di(G)=1} + I{dj(G)=1}

)
and replaces νij(G, 2) by related quantity ν∗

ij(G) =
∑

w∈Nij(G)

(dw(G)
2

)−1
. We set

aij(G) =

{
λ0 + λν∗

ij(G) + λ~ij(G) for {i, j} ̸∈ E,

µ0 for {i, j} ∈ E.

(2.11)

The reason for such a modification is that it admits a closed form expression for the average edge

density.

Proposition 2.2 For a stationary network Markov chain defined by (2.11) we have that

e =
λ0 +

2
n−1λ(1 − C̄L)

λ0 + µ0
. (2.12)

Noting that C̄L
≤ 1 we obtain from (2.12) the upper and lower bounds for the average

edge density

λ0

λ0 + µ0
≤ e ≤

λ0 +
2

n−1λ

λ0 + µ0
.

Letting n → +∞ and choosing
µ0
λ0

,
λ
λ0

and
µ
λ0

of the order n we have that e is of the order

n−1
. Hence the model produces a sparse dynamic network.

Proof of Proposition 2.2. Equation (2.7) implies

E
∑

{i,j}/∈Et

λ0 + λ~ij + λ
∑
w∈Nij

1(dw
2
)
 = µ0E|Et|. (2.13)

Here we write, for short, ~ij = ~ij(Gt), Nij = Nij(Gt) and dw = dw(Gt). Invoking the

identities∑
{i,j}/∈Et

1 =

(
n
2

)
− |Et|,

∑
{i,j}/∈Et

~ij =

∑
w∈V

I{dw=0} +

∑
w∈V

I{dw=1},

∑
{i,j}̸∈Et

∑
w∈Nij

1(dw
2
) =

∑
w∈V: dw≥2

(dw
2
)
− 1w(Gt)(dw

2
) =

∑
w∈V: dw≥2

(1 − CL
w(Gt))

and dividing both sides of (2.13) by

(n
2
)

we have

λ0(1 − e) +
2λ

n − 1

(
P{d ≤ 1} + P{d ≥ 2} − C̄L

)
= µ0e,

where d denotes the degree of a randomly selected node. We have arrived to (2.12). End of
the proof.
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Our next result establishes a lower bound on the average number of triangles.

Proposition 2.3 Let 0 < α ≤ 2. For a stationary network Markov chain defined by (2.3)

we have

E1 ≥
λ

4(λ0 + µ0 + λ)
P{d ≥ 2}. (2.14)

An important conlcusion to draw from inequality (2.14) is that choosing
µ0
λ0

,
λ
λ0

and
µ
λ0

of

the order n one can obtain a sparse stationary dynamic network with the property that the

average number of triangles incident to a node of degree at least two (formally, the

conditional expectation E(1|d ≥ 2) =
E1

P{d≥2} ) is bounded from below by a constant.

Note that dv(Gt) ≤ 1 implies 1v(Gt) = 0. Hence 1v(Gt) = 1v(Gt)I{dv(Gt)≥2} and

1 = 1I{d≥2}.

Proof of Proposition 2.3. Equation
∂
∂tEN1(Gt) = 0 implies

E
∑

{i,j}/∈Et

|Nij(Gt)|aij(Gt) = E
∑

{i,j}∈Et

|Nij(Gt)|aij(Gt). (2.15)

Here the left sum evaluates the average birth rate of triangles: connecting a pair of

non-adjacent nodes i, j by an edge creates |Nij(Gt)| new triangles. The right sum evaluates

the average death rate of triangles: deletion of an edge {i, j} ∈ Et eliminates |Nij(Gt)|
triangles from Gt . Furthermore, for {i, j} ∈ Et we have aij(Gt) ≤ µ0. Hence the sum on the

right of (2.15)∑
{i,j}∈Et

|Nij(Gt)|aij(Gt) ≤

∑
{i,j}∈Et

|Nij(Gt)|µ0 =

∑
v∈V: dv(Gt)≥2

1v(Gt)µ0. (2.16)

In the last identity we use the observation that 1v(Gt) counts edges whose both endpoints

are adjacent to v. Similarly for the sum on the left of (2.15)

∑
{i,j}/∈Et

|Nij(Gt)|aij(Gt) ≥

∑
v∈V: dv(Gt)≥2

((
dv(Gt)

2

)
− 1v(Gt)

) (
λ0 +

λ

dα
v (Gt)

)
. (2.17)

Here we use the observation that

(dv(Gt)
2

)
− 1v(Gt) counts pairs {i, j} of neighbours of v

that are non-adjacent ({i, j} /∈ Et). Inequality (2.17) follows from the fact that

aij(Gt) ≥ λ0 +
λ
dα
v

for each v ∈ Nij(Gt).

Invoking (2.16) and (2.17) in (2.15) we obtain

E
∑

v∈V: dv(Gt)≥2

((
dv(Gt)

2

)
− 1v(Gt)

) (
λ0 +

λ

dα
v (Gt)

)
≤ E

∑
v∈V: dv(Gt)≥2

1v(Gt)µ0.

Recall that the probability distribution of bivariate random variable (dv(Gt), 1v(Gt)) is

the same for all v ∈ V . Collecting the terms 1v(Gt) on the right and dividing both sides by

n we have

λ0

2

E (d(d − 1)) +
λ

2

E(d1−α(d − 1)I{d≥2}) ≤ (λ0 + µ0)E1 + λE
(

1v
I{dv≥2}

dα
v

)
.
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Next we upper bound λE
(
1vd−α

v I{dv≥2}
)

≤ λE1 and obtain

λ

2

E
(

d1−α(d − 1)I{d≥2}
)

≤ (λ0 + µ0 + λ)E1.

Furthermore, using inequality
1
2 ≤

d−1
d ≤

d−1
dα−1 , which holds for 0 < α ≤ 2 and d ≥ 2

we lower bound the left side by
λ
4EI{dv≥2} and obtain inequality equivalent to (2.14)

λ

4

P{d ≥ 2} ≤ (λ0 + µ0 + λ)E1.

End of the proof.

3. DYNAMIC AFFILIATION NETWORK
Let H = {Ht = (V ∪ W , Et), t ≥ 0} be a continuous time Markov chain, whose states are bipartite

graphs with the bipartition V ∪ W , where V = {1, . . . , n} and W = {1, . . . , m}. Transitions

of H are defined as follows. Given Ht (the state occupied at time t), the update takes place at

time t′ := t + min(i,u)∈V×W Biu when the pair (i0, u0) with Bi0u0 = min(i,u)∈V×W Biu changes its

adjacency status. Here Biu = Biu(Ht), are independent exponential waiting times with intensities

biu = biu(Ht) defined below. Thus, at time t′ chain H jumps to the state Ht′ = (V ∪ W , Et′), where

the edge sets Et and Et′ differ in the single edge i0 ∼ u0. Markov chain H defines dynamic affiliation

network G′
= {G′

t = (E′
t , V), t ≥ 0}: for each t any two nodes i, j ∈ V are adjacent in G′

t whenever

i and j have a common neighbour in Ht .
Now we define intensities biu. We fix µ> 0 and assign positive weights yi and xu to i ∈ V and

u ∈ W that model activity of actors and attractiveness of attributes. For a bipartite graph H =

(V ∪ W , E) we set

biu(H) =

{
yixu for (i, u) ̸∈ E,

µ for (i, u) ∈ E.

(3.1)

Clearly, H has a unique stationary distribution defined by the weight sequences {yi}ni= 1, {xu}mu= 1
and µ. Furthermore, H comprises of n × m independent continuous Markov chains describing

adjacency dynamic of each node pair (i, u) ⊂ V × W separately, where the Markov chain of a pair

(i, u) has two states i ∼ u and i ̸∼ u whose exponential holding times have intensities µ and yixu
respectively. Thus, at stationarity, a snaphot Ht represents a random bipartite graph, where edges

are inserted independently with probabilities

P{i ∼ u} =
yixu

yixu + µ
=: piu, (3.2)

for (i, u) ∈ V × W . We assume in what follows that dynamic affiliation network G′
is defined by a

stationary Markov chain H satisfying (3.2). In this case, probability distributions of random graphs

G′
t and H′

t do not depend on t and with a little abuse of notation we write, for short, G′
= G′

t and

H = Ht .
The random graph G′

is closely related to the inhomogeneous random intersection graph

introduced in [31] and generalised in [32, 33]. The difference between G′
and the random graph

of [32, 33] is that in the latter graph node weights X1, . . . , Xm and attribute weights Y1, . . . , Yn are

sampled independently at random from given probability distributions PX and PY . Moreover, ratio

(3.2) is replaced by min{1,
YiXu√
nm }. In particular, the distribution of the random graph of [32, 33] is

invariant under permutations of the nodes. This is not the case for G′
, where variable node weights

are non-random.
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It has been shown in [32, 33] that letting n, m → +∞ so that m = m(n) is asymptotically

linear in n the inhomogeneous random intersection graph admits asymptotic degree distribution

(including a power law) and displays clustering. Namely, [33] evaluates the conditional probability

P{u ∼ v|u ∼ w, v ∼ w} =
(EX3)(EY)3

(EX3)(EY)3 + (EX2)2(EY2)2(EY)2
√

m/n
+ o(1), (3.3)

where u, v, w ∈ V is arbitrary but given triple of nodes. Here X and Y denote random variables with

distributions PX and PY . We remark that the probability in (3.3) is related to the global clustering

coefficient. In fact, it is an approximation to the global clustering coefficient, see discussion after

Theorem 3.4 below. Now we only remark that the fraction in (3.3) tends to 0 (respectively 1) for

m/n → +∞ (respectively m/n → 0). Hence, in order to get a network with a non-trivial clustering

one needs to choose m asymptotically linear in n, say m/n → γ , for some γ > 0.

Let us outline analytical results of this section. For G′
being a version of the random graph [32, 33]

conditioned on the weights X1 = x1, . . . , Xm = xm and Y1 = y1, . . . , Yn = yn it is reasonable to

ask how the weights of individual nodes affects their degree distributions. We address this question

in Theorems 3.1 and 3.3 below. Furthermore, our Theorem 3.4 establishes the first order asymptotic

as n, m → +∞ to the global clustering coefficient CGL(G′).

To proceed further we introduce some notation. By Py,n =
1
n
∑n

i= 1 δyi and Px,m =
1
m

∑m
u= 1 δxu

we denote empirical distributions of the sequences {y1, . . . , yn} and {x1, . . . , xm}. Here δt stands for

the degenerate distribution that assigns mass 1 to point t. Furthermore, we denote

⟨xs⟩ =
1

m

∑
u∈[m]

xsu, ⟨ys⟩ =
1

n

∑
i∈[n]

ysi , β2
=

m
n

, ~ =
nm
µ2 .

Degrees of G′
. Here we show that the expected value Edi of the degree di = di(G′) of node

i is approximately proportional to its weight yi. Moreover, di has asymptotic compound Poisson

distribution as the network size n → +∞.

Theorem 3.1 Let n, m → +∞. Put µ =
√

nm and assume that for some c > 0 we have

⟨x3⟩ ≤ c and ⟨y2⟩ ≤ c uniformly in n, m. Then for each i

Edi = yi⟨x2⟩⟨y⟩ + O
(

y2i
√

nm

)
. (3.4)

Theorem 3.1 is an immediate consequence of the following (more general) result.

Proposition 3.2. For each i ∈ V we have

0 ≤ yi~ ⟨x2⟩⟨y⟩ − Edi ≤
~

µ
yi

(
⟨x3⟩⟨y2⟩ + yi⟨x3⟩⟨y⟩

)
+

~2

n
y2i ⟨x2⟩2⟨y2⟩ +

1

n
yi⟨x2⟩. (3.5)

It follows from Proposition 3.2 that for large n, m random graph G′
admits bounded

average degrees whenever µ = µ(n, m) is of the order

√
nm.

As we are interested in sparse and clustered networks it is reasonable to assume that µ=
√

nm
and that m = m(n) is asymptotically linear in n as n → +∞. Theorem 3.1 now implies that Edi
stays bounded as n, m → +∞. In this case, the probability distribution of di does not concen-

trate around the expected value Edi. Theorem 3.3 below shows that di has a compound Poisson

asymptotic distribution. Recall that compound Poisson distribution is the probability distribution

of a randomly stopped sum

∑3
k= 1 ξk, where ξ1, ξ2, . . . are independent and identically distributed

random variables, which are independent of the Poisson random variable 3. We write 3 ∼ P(λ),
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where λ := E3 denotes the expected value and denote by C P(λ, Pξ ) the (compound Poisson)

distribution of

∑3
k= 1 ξk. Here Pξ denotes the (common) probability distribution of ξk.

Let x1, x2, . . . and y1, y2, . . . be positive infinite sequences of weights. In Theorem 3.3, we

consider random affiliation networks G′
= G′

n,m, n, m = 1, 2, . . . , based on respective bipartite

random graphs Hn,m whose edges are inserted independently with probabilities (3.2). Note that

each Hn,m is defined by truncated (finite) sequences {x1, . . . , xm} and {y1, . . . , yn}.

To formulate our next result we need the following conditions: for n, m → +∞ we have

• Px,m converges weakly to some probability distribution, say PX , having a finite first moment∫
sPX(ds) < ∞ and ⟨x⟩ converges to

∫
sPX(ds);

• the family of distributions {Py,n, n = 1, 2, . . . } is uniformly integrable and ⟨y⟩ converges to

some number ay > 0.

Theorem 3.3 Let µ =
√

nm. Let n → +∞. Assume that m = m(n) is such that m/n
converges to some γ > 0. Assume that (i) and (ii) hold. Denote ax =

∫
sPX(ds) and

introduce function s → λs = sayγ −1
. For each i = 1, 2, . . . the probability distribution of

di converges weakly to the compound Poisson distribution C P(yiaxγ , Q ), where the

discrete probability distribution Q assigns probabilities

Q ({t}) =

∫
s

ax
e−λs

λts
t!

PX(ds). (3.6)

to integers t = 0, 1, 2, . . . . We note that Q is a mixture of Poisson distributions with a size

biased random parameter. To sample from Q one can use the two step procedure:

(i) generate a (size biased) random variable X̃ according to the distribution

P{X̃ = s} =
s
axP{X = s}, s = 0, 1, . . . ; and (ii) sample Poisson random variable with rate

X̃ayγ −1
. The intuition behind the degree distribution formula of Theorem 3.3 is that given

node i is linked to (asymptotically) Poissonian number of attributes and each attribute, in

addition, is linked to random number of nodes having mixed Poisson distribution.

Clustering in G′
. We recall that N1(G′) denotes the number of (closed) triangles in G′

and N3(G′)
denotes the number of 2-paths in G′

.

Theorem 3.4 Let µ =
√

nm. Let n → +∞. Assume that m = m(n) is such that m/n
converges to some γ > 0. Assume that for some constant c > 0 we have ⟨x5⟩ < c and

⟨y4⟩ < c for all n. Then

N1(G′) =
n

6β
⟨x3⟩⟨y⟩3 + oP(

√
n), (3.7)

N3(G′) =
n

2β
⟨x3⟩⟨y⟩3 +

n
2

⟨x2⟩2⟨y2⟩⟨y⟩2 + OP(
√

n). (3.8)

In particular, the global clustering coefficient

CGL(G′) =
⟨x3⟩⟨y⟩3

⟨x3⟩⟨y⟩3 +
√

γ ⟨x2⟩2⟨y2⟩⟨y⟩2
+ oP(1). (3.9)

We remark that conditions ⟨x5⟩ < c and ⟨y4⟩ < c of Theorem 3.4 can be relaxed. We

expect that the minimal conditions ⟨x3⟩ < c and ⟨y2⟩ < c plus the uniform integrability of

t3Px,m(dt) and t2Py,n(dt) would suffice.
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We note that the result (3.9) is consistent with the earlier finding (3.3). In particular, the fraction

in (3.3) can be obtained from (3.9) if we let m, n → +∞ and replace averages by respective

expectations.

Finally, we comment on the proofs of Theorems 3.3, 3.4, and Proposition 3.2 that are given

in the Supplementary Appendix. We mention that the underlying bipartite structure adds a level

of complexity. Although the limiting (underlying) random bipartite graph is locally tree-like, the

projection graph G′
has quite a few short cycles [34]. This makes the analysis of the degree

distribution nontrivial. The same comment applies to the global clustering coefficient, where (3.9)

is established by showing the concentration of triangle counts and 2-path counts (3.7), (3.8). Here

we apply the second moment method (Chebyshev’s inequality).

4. CONCLUDING REMARKS
We presented two dynamic network models that generate sparse and clustered stationary networks.

Both models seems natural as they mimic dynamics of real network processes. Luckily, for rigorous

analysis of dynamic affiliation network we can use techniques developed for random intersection

graphs [2, 8, 13, 27, 34, 35]. On the other hand we have only a few rigorous results for stationary

Markov chains with clustering like (2.2), (2.3). It would be interesting to learn more about network

structure and properties of this model via rigorous analysis.
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