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Abstract: Let F s( ) be a function from the extended Selberg class. We consider decompositions =F s f h s( ) ( ( )),
where f and h are meromorphic functions. Among other things, we show that F is prime if and only if the
greatest common divisor of the orders of all zeros and the pole of F is 1.
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1 Introduction

Throughout the article, = +s σ it denotes a complex variable. We begin with the definitions of the Selberg and
extended Selberg classes. A. Selberg introduced the Selberg class in [1]. Kaczorowski and Perelli introduced the
extended Selberg class in [2]. The prototypical example of an element of the class is the Riemann zeta function
ζ s( ). For further information about the Selberg class, we refer to survey papers [3–5]. Note that Lekkerkerker
[6], Perelli [7], and Matsumoto [8] introduced similar classes.

Definition. The Selberg class � consists of functions F satisfying the following axioms:
(i) (ordinary Dirichlet series) = ∑ =

∞ −F s a n nn
s

1( ) ( ) , absolutely convergent for >σ 1;
(ii) (analytic continuation) there exists a nonnegative integer k such that −s F s1 k( ) ( ) is an entire function

whose growth as → ∞s∣ ∣ is

≪ → ∞∣ ∣F s e s, ;s
O 1

∣ ( )∣ ∣ ∣
( )

(iii) (functional equation) F s( ) satisfies a functional equation of type

= −s ω sΛ Λ 1 .F F( ) ( ) (1)

Here, ≔ ∏ +=s F s Q λ s μΛ ΓF
s

j

N

j j1( ) ( ) ( ) with positive real numbers Q λ, j and complex numbers μ ω,
j

with
≥μ 0

j
R( ) and =ω 1∣ ∣ ;

(iv) (Ramanujan hypothesis) ≪a n nε( ) for any >ε 0, where the implicit constant may depend on ε.
(v) (Euler product) = ∑ =

∞ −F s b nlog n F
s

1( ) , where =b n 0F( ) unless =n pm with ≥m 1, and ≪b n nF
ϑ( ) for

some < ∕ϑ 1 2.
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Definition. The extended Selberg class ♯� consists of Dirichlet series F s( ) that satisfy the first three axioms (i),
(ii), and (iii).

The degree of F is defined as ≔ ∑ =d λ2F j

N

j1 . While for a given F , many functional equations of type (1) might
exist, the degree of F is an invariant. In addition, note that in the definition of Λ, the values of λj and μ

j
need

not be pairwise distinct. It is expected that all ratios ∕λ λj m, ≤ ≤j m N1 , , are rational numbers, even more so
that every ∈ ♯F � has the expression sΛF( ) with = ∕λ 1 2j for ≤ ≤j N1 , see Perelli [5, Conjectures 4.1 and 4.2].

The zeros of F s( ) located at the poles of Γ factors appearing in the functional equation are called trivial.
They are located at

= −
+

∈ ≤ ≤s

k μ

λ
k j Nwith and 1 .

j

j

0� (2)

Hence, the multiplicity of the trivial zero is not greater than N . All other zeros are said to be nontrivial.

Definition. A function is transcendental if it is meromorphic and not rational. This article considers only
meromorphic functions defined over the entire complex plane.

Definition. (see Gross [9], [10], Chuang and Yang [11, Section 3.2], Urabe [12]). Let F be a meromorphic function.
Then an expression

=F s f h s ,( ) ( ( )) (3)

where f and h are meromorphic functions, is called a decomposition of F with f and h as its left and right
components, respectively. F is said to be prime in the sense of a decomposition if for every representation of F of
the form (3), we have that either f orh is a fractional linear transformation. If every representation of F of the form
(3) implies that f orh is rational (respectively: f is a fractional linear transformation wheneverh is transcendental,
h is a fractional linear transformation whenever f is transcendental), we say that F is pseudo-prime (respectively:
left-prime, right-prime). Note that if F is left-prime or right-prime, then F is also pseudo-prime.

Note that in (3), if f is transcendental, then h must be entire. This follows from the fact that the trans-
cendental meromorphic f has an essential singularity or a limit of poles at infinity. If h had a pole at s0, then

∘f h would have an essential singularity or a limit of poles at s0. Consequently, F would not be meromorphic.
In particular, if F is right-prime, then in every decomposition (3) with f transcendental, the function h is
a polynomial of degree 1.

The first nontrivial example of a prime function is = +F s e ss( ) (see Rosenbloom [13] and Gross [9]). Liao
and Yang [14] proved the primeness of the Gamma function and the Riemann zeta function. In [15,16], the
primeness of Selberg zeta functions associated with a compact Riemann surface was obtained. The Selberg
zeta function does not belong to the extended Selberg class. The concept of decomposition of meromorphic
functions can be extended to several complex variables; see Li and Yang [17].

Suppose that F has a decomposition given by = ∘F f h. Let L be any fractional linear transformation.
Then = ∘ ∘ ∘−F f L L h1( ) ( ). To obtain around this, we introduce the following definition.

Definition. (see Gross [10]) Two decompositions of F

= ∘ = ∘F f h F f hand
1 1 2 2

are said to be equivalent if and only if there exists a fractional linear function L such that = ∘f f L
2 1

and = ∘−h L h2
1

1.

In [9,11,12], the notions factorization and factor instead of the corresponding notions of decomposition and
component were used. In the (extended) Selberg class case, the notions of factorization and factor are usually
used in the case of multiplication. Both classes � and ♯� are closed under the multiplication of their elements.
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We say that the expression =F s F s F s1 2( ) ( ) ( ), where ∈F F F, ,1 2 � (or ∈ ♯F F F, ,1 2 � ), is a factorization of F in �

(or in ♯� ) into factors F1 and F2. If in every factorization =F s F s F s1 2( ) ( ) ( ), either F1 or F2 is a constant, then F

is said to be primitive. Every ∈F � ( ∈ ♯F � ) can be factored as a product of primitive � ( ♯� ) functions.
(Theorems 3.5 and 3.11 in Perelli [5].) It is not known whether the factorization into primitive factors is unique.
The decomposition into prime functions is not unique (Gross [18, p. 58–59]). However, in particular cases,
the decomposition can be unique; see Li [19].

In the present article, the short notation “prime function” always means a prime function in the sense of
a decomposition.

Theorem 1. Functions ∈ ♯F � , ≥d 1F , are right-prime.

The simplest hypothesis would be that every function of the extended Selberg class is either prime or
a power of another function from ♯� . To this end, we have the following result.

Theorem 2. Suppose F belongs to the extended Selberg class, ≥d 1F , and =F s Q h s( ) ( ( )) is a decomposition with
Q rational of degree ≥k 2 and h meromorphic. Then there is a decomposition Q h s

1 1( ( )) equivalent to Q h s( ( ))

such that =Q z zk

1
( ) .

The following corollary is an immediate consequence of Theorems 1, 2, and the Weierstrass factorization
theorem.

Corollary 3. Let ∈ ♯F � , ≥d 1F . Then F is prime if and only if the greatest common divisor of the orders of all
zeros and the pole of F is 1.

If =F hk for ≥k 2, then by our hypothesis, we expect ∈ ♯h � . In the case of the Selberg class � , this was
partially confirmed by Molteni [20]. Every ∈F � has a unique Euler product representation, = ∏ −F s F pp p

s( ) ( )

for >σ 1, where −F pp
s( ) is a holomorphic function on >σ 0 (see Kaczorowski [3, formula (2.8)]). Let m ρf ( )

denote the order of ρ (with >m ρ 0f ( ) if ρ is a zero of f and <m ρ 0f ( ) if ρ is a pole of f ). Then Molteni [20]
proved the following result. Let ∈F � and ≥k 1. Then =F Xk , has a solution ∈X � if and only if k m ρF∣ ( ) for
every ∈ρ � and k m ρFp

∣ ( ) for every p, for every >ρ 0R . As noted in [20], it is expected that − −F pp
s 1( ) is

a polynomial in −p s that does not vanish when >s 0R .
The following two hypotheses about zeros imply that every function of the Selberg class is either prime or

a power of another function from � .
Simple zero conjecture (Conjecture 7.1 in [4]) Let ∈F � be primitive. Then all but o T Tlog( ) nontrivial

zeros of F s( ) up to T are simple.
Distinct zero conjecture (Conjecture 7.2 in [4]) Let ∈F G, � be distinct primitive functions. Then all but

o T Tlog( ) nontrivial zeros of F s( ) and G s( ) are strongly distinct, i.e., placed at different points.
By the simple zero conjecture, Corollary 3, and Lemma 9, a primitive ∈F � is prime. The distinct zero

conjecture then implies that = ∈F F F F…
k k

n

k

1 2
n1 2

� , where F F F, …, n1 2 are primitive, is prime if and only if
=k kGCD , …, 1n1( ) .

In the next section, we give examples of prime zeta functions from the extended Selberg class. Theorems 1
and 2 are proved in Sections 3 and 4, respectively.

2 Examples of prime functions from ♯♯�

Let d be a positive integer. By d� , we denote the subset of degree d elements of � . Analogically, we will use the
notation ♯

d� . Typical members of 1� are Dirichlet L-functions with primitive characters. For any character
χ n mod( ) ℓ, the Gaussian sum τ χ( ) is defined by

∑= ∕
=

τ χ χ m πimexp 2 .

m 1

( ) ( ) ( ℓ)

ℓ
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Note that for a primitive character χ , we have =τ χ∣ ( )∣ ℓ . Let =a 0 if − =χ 1 1( ) and =a 1 if − = −χ 1 1( ) . Then
the functional equation of the Dirichlet L-function

∑ ∏⎜ ⎟= = ⎛
⎝

− ⎞
⎠=

∞

L s χ
χ n

n

χ p

p
, 1

n

s

p

s

1

( )
( ) ( )

with a primitive character χ mod ℓ takes the form: if

= ⎛
⎝

⎞
⎠

⎛
⎝

+ ⎞
⎠

+ ∕
ξ s χ

π

s a
L s χ, Γ

2
, ,

s a 2

( )
ℓ

( )
( )

then (see Davenport [21, Chapter 9])

= −∕ξ s χ
τ χ

i q
ξ s χ, 1 , .

a 1 2
( )

( )
( )

Therefore, any Dirichlet L-function for the primitive character is an element of 1� . On the other hand, any
element of 1� is a shifted Dirichlet L-function +L s iθ χ,( ) for some primitive Dirichlet character χ and real θ

or the Riemann zeta function ζ s( ) (Kaczorowski and Perelli [2, Theorem 3]). All elements of 1� are prime
functions because all their trivial zeros are simple. Moreover, if χ and ψ are primitive characters with

− =χ 1 1( ) and − = −ψ 1 1( ) , then the Dirichlet L-functions L s χ,( ) and L s ψ,( ) have simple trivial zeros at
= − − −s 2, 4, 6,… and = − − −s 1, 3, 5,… , respectively. Hence, L s χ L s ψ, ,( ) ( ) is prime. More examples of prime

functions satisfying the assumptions of Theorem 2 can be constructed similarly.
Next, we will show that all degree 1 elements of the extended Selberg class are prime functions.

Kaczorowski and Perelli [2] described the extended Selberg class functions of degree ≤ ≤d0 1. To describe
degree 1 functions, we need details about degree 0 functions.

For degree 0 elements of the extended Selberg class, there are no Γ factors in the functional equation. LetQ

and ω be constants as in the definition of ∈ ♯F � . By ♯
Q ω,0

2� ( ) we denote a subclass of ♯
0� with givenQ2 andω.

Kaczorowski and Perelli [2, Theorem 1] proved that every ∈ ♯
F Q ω,0

2� ( ) is of the form

∑=F s
a n

n
.

n Q

s
2

( )
( )

∣

We turn to degree 1 functions. To state their result, we introduce some definitions. First, let us denote

≔ ∏ =
−

β λj

r

j

λ

1

2 j and ≔ ∕q πQ β2 2 . In addition, let ≔ ∑ − ∕ = +=ξ μ η iθ2 1 2j

r

j1( ) and ≔ ∕ ∏− + ∕
=

−
ω ωe Q β λ*

iπ η iθ
j

r

j

i μ
1 2 2

1

2
j

I
( )( ) .

Here, ω, μ
j
, λj, and Q come from the functional equation. The triple q ξ ω, , *( ) is an invariant of ∈ ♯

F 1� . The

class ♯
1� is the disjoint union over ∈q �, ∈ −η 1,0{ }, ∈θ � , and =ω* 1∣ ∣ of subclasses ♯

q ξ ω, , *1� ( ) of degree 1
functions (see [2, Theorem 2]).

For a Dirichlet character χ , f
χ
denotes its conductor. Let χ* be the primitive Dirichlet character inducing

χ . As usual, χ
0
denotes a principal character. Byω χ* denote theω factor in the standard functional equation for

L s χ, *( ). Define the following set of Dirichlet characters:

≔
⎧
⎨
⎩

− = = −
− = − =q ξ

χ q χ η

χ q χ η
,

mod with 1 1 if 1,

mod with 1 1 if 0.
�( )

{ ( ) ( ) }

{ ( ) ( ) }

From this, we see that for fixed q and ξ , the members of q ξ,�( ) are of the same modulus and parity. Theorem 2
of [2] tells that ∈ ♯

F q ξ ω, , *1� ( ) can be uniquely written as follows:

∑= + +
∈

F s P s iθ L s iθ χ, * ,

χ q ξ

χ

,�

( ) ( ) ( )
( )

where ∈ ∕♯
P q f ω ω, *χ χ χ0 *� ( ) and =P 0χ

0
if ≠θ 0. This theorem shows that all Dirichlet L-functions in the

expression for F satisfy the same functional equation. Hence, F will satisfy the same functional equation.
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Therefore, we have that if ∈ ♯
F 1� , then F satisfies the functional equation = −s ω sΛ Λ 1F F( ) ( ) with

= ⎛
⎝

+ + ⎞
⎠s F s Q

s a iθ
Λ Γ

2
,F

s( ) ( )

where a is 0 or 1; =ω 1∣ ∣ is a complex constant, θ is real, and >Q 0. If =a 0, then F has simple trivial zeros at
= − − − − − −s iθ iθ iθ2 , 4 , 6 ,… . If =a 1, the trivial simple zeros are at = − − − − − −s iθ iθ iθ1 , 3 , 5 ,… . Only

a finite number of trivial zeros can coincide with nontrivial zeros because nontrivial zeros are located in
a vertical strip of a finite width. Therefore, all degree 1 elements of the extended Selberg class are prime
functions.

Dedekind zeta functions provide natural examples of prime functions of arbitrary degree. The Dedekind
zeta function of a finite extension K of the field of rational numbers of degree = +n r r21 2 is defined
for >σ 1 by

∑=L s
N I

1
,K

I

s
( )

( )

where I runs over the nonzero ideals of the ring of integers of K , N I( ) denotes the norm of I . This zeta function
can be continued analytically to a meromorphic function with a simple pole at =s 1. Let = − − ∕ ∕A π D2 r n

K
2 1 22 ∣ ∣ ,

where DK is the discrimnant of K . Then the function

= ∕s A s s ζ sΦ Γ 2 Γs r r
K

1 2( ) ( ) ( ) ( )

satisfies the functional equation = −s sΦ Φ 1( ) ( ) (see Narkiewicz [22, Theorem 7.3]). Thus, any Dedekind zeta
function belongs to the Selberg class and is prime because it always has a simple pole at =s 1. For any positive
integer n, there is a Dedekind zeta function of degree n.

3 Proof of Theorem 1

We will use elements of the Nevanlinna theory.
Let the function n r f,( ), ≥r 0, denote the number of poles, counting multiplicity, of a meromorphic

function f in the disc ≤z r∣ ∣ . The Nevanlinna counting function is

∫= − +N r f n t f n f
t

t
n f r, , 0,

d
0, log .

r

0

( ) ( ( ) ( )) ( )

Define =+ x xlog max 0, log{ }. The proximity function is

∫= +m r f
π

f re θ,
1

2
log d .

π

iθ

0

2

( ) ∣ ( )∣

The Nevanlinna characteristic function then is

= +T r f N r f m r f, , , .( ) ( ) ( )

The order ≤ ≤ ∞k0 of a meromorphic function f is defined by

=
→∞

k
T r f

r
limsup

log ,

log
.

r

( )
(4)

The following properties of the Nevanlinna characteristic function will be useful. From Hayman [23,
Section 1.2], we have

⎜ ⎟= ⎛
⎝

⎞
⎠

+T r f T r
f

O, ,
1

1 ,( ) ( ) (5)
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∑ ∑⎜ ⎟
⎛
⎝

⎞
⎠

≤ +
= =

T r f s T r f s p, , log ,

ν

p

ν

ν

p

ν

1 1

( ) ( ( )) (6)

∏ ∑⎜ ⎟
⎛
⎝

⎞
⎠

≤
= =

T r f s T r f s, ,

ν

p

ν

ν

p

ν

1 1

( ) ( ( )) (7)

for meromorphic f f,
ν
. Further, for a rational function,

=
+ + +
+ + +

≠
−

−f z c
z a z a

z b z b
c

…

…
, where 0,

p p
p

q q
q

1
1

1
1

( )

we obtain (see [23, Section 1.3, Example (i)])

= +T r f p q r O, max , log 1 .( ) ( ) ( ) (8)

Moreover, if h is a meromorphic function, then (Goldberg and Ostrovskij [24, Chapter 1, Theorem 6.1, p. 47])

∘ = +T r f h p q T r h O, max , , 1 .( ) ( ) ( ) ( ) (9)

If = +P z az …p( ) is a polynomial and =f z P zexp( ) ( ( )), then (see [23, Section 1.3, Example (iii)])

= +T r f
a

π
r o r, .p p( )

∣ ∣
( ) (10)

Hence, f z( ) is of order p if ≠a 0.
We proceed with the following notion, which is taken from Chuang et al. [25].

Definition. Let ⊂E � . Suppose ∈θ π0, 2[ ] is an accumulation point of = ∈S s s Earg :{ }. Then the set
=s s θ: arg{ } is an accumulation line of E .

Liao and Yang [14] used the following proposition to prove the pseudo-primeness of ζ . By his proposition,
we shall see that every ∈ ♯F � with ≥d 1F is also pseudo-prime. Let = ∪ ∞� � { }.

Proposition 4. Let a a,1 2 be arbitrary distinct elements of � . Let F be a meromorphic function of finite order.
Assume that the number of the accumulation lines of = = ∈ =E s F s a j: , 1, 2j �{ ( ) } is finite. Then F is pseudo-
prime.

Note that here by the solutions of the equation = ∞F s( ) wemean the poles of F . Proposition 4 is proved in
Chuang et al. [25, Theorem 3.12, p. 141]. This reference is not easily accessible, so we provide the proof below.
Moreover, our proof differs slightly from the one in [25]. For the proof of the proposition, we will use the
following Lemmas 5–7.

Lemma 5. Let f z( ) be a meromorphic function not of order zero, and let h s( ) be an entire function that is not
a polynomial. Then, f h s( ( )) is of infinite order.

Proof. This is Corollary 1.2 in Edrei and Fuchs [26]. □

Lemma 6. Suppose f is an entire function and there is a sequence ωn( ) with = ∞ωlim n such that

⋃ =
=

∞
s f s ω:

n

n

1

{ ( ) }

has q (< ∞) accumulation lines (except for possibly finitely manyωn’s). Then f is a polynomial of degree at most q2 .

Proof. This is Theorem 3.8 from Monakhov [27]. □

Lemma 7. Let ∈a b c d, , , � . Let − ≠ad bc 0, →f : � � be a nonconstant meromorphic function, and h z( )

= +
+

af z b

cf z d

( )

( )
. Then h z( ) is transcendental if and only if f z( ) is transcendental. Moreover, h z( ) and f z( ) are of

the same order.

6  Ramūnas Garunkštis et al.



Proof. The first statement of the lemma follows from the fact that f is rational if and only if h is rational.
By (5)–(8), we have

≤ + + + + ≤ +T r h T r af b T r cf d O T r f O, , , 1 2 , 1 .( ) ( ) ( ) ( ) ( ) ( )

Thus, the order of h is not greater than that of f . The converse follows in the same way, because the
transformation → + ∕ +w aw b cw d( ) ( ) is invertible. This proves the lemma. □

Proof of Proposition 4. First, we show by contradiction that a rational function is pseudo-prime. Suppose F

is rational and there is a decomposition =F s f h s( ) ( ( )), where f and h are transcendental. Recall that then h

is entire. Then by the great Picard theorem, there exists ∈w � such thatw is not a pole of f and =h s w( ) holds
for infinitely many s. Hence, −f h s f w( ( )) ( ) has infinitely many roots, which is a contradiction.

If F is not pseudo-prime, then F s( ) is transcendental. There is a decomposition =F s f h s( ) ( ( )), where f z( )

is a transcendental meromorphic function and h s( ) is a transcendental entire function. Lemma 5 yields that
f z( ) is of zero order.

We will show that the equation

= =f z a j 1, 2j( ) ( ) (11)

has finitely many roots. Contrary to this, assume that a set = = ∈ =E z f z a j: , 1, 2j1 �{ ( ) } is infinite. Hence,
there is a sequence ωn( ) with ∈ω En 1 and = ∞ωlim n . Then

≔ ⋃ = ⊂
=

∞
E s h s ω E: .

n

n2

1

{ ( ) }

By conditions, E has a finite number of accumulation lines. Hence, the set E2 also has a finite number of
accumulation lines. Then Lemma 6 implies that h is a polynomial. This is a contradiction.

Next, we define

≔
−
−

G z
f z a

f z a
,

1

2

( )
( )

( )

if aj, =j 1, 2 are finite numbers. In this case, the poles of f in the numerator and denominator cancel out, and
by (11), the function G has finitely many zeros and poles. If one of aj, =j 1, 2 is infinite, say = ∞a2 , then

≔ −G z f z a .1( ) ( ) By applying (11) with finite a1 and = ∞a2 , we see that G z( ) has finitely many zeros and poles
also for this case. Then, for each possible pair of a1 and a2, the Weierstrass factorization theorem implies that

=G z Q z e ,L z( ) ( ) ( )

where Q s( ) is a rational function and L z( ) is a nonconstant entire function. Lemma 7 yields that G s( ) is of zero
order since f z( ) is such. By the property (7) of the Nevanlinna characteristic sum, we obtain that

∕ ≤ + ∕T r G z Q z T r G z T r Q z, , , 1 .( ( ) ( )) ( ( )) ( ( ))

Given (8), the rational function ∕Q z1 ( ) is of zero order. Therefore, ∕ =G z Q z eL z( ) ( ) ( ) is also a function of zero
order. By using Lemma 5 and the fact that the order of the exponential function is 1, we obtain that L z( ) is
a polynomial, say of degree n. Thus, the order of the function eL z( ) is n (Hayman [23, Section 1.3, Example (iii)]),
which is positive since L s( ) is a nonconstant. This contradiction proves the proposition. □

The reasoning in the following proof is similar to the one used in proving the main result in Garunkštis
and Steuding [16].

Proof of Theorem 1. Given (2), the trivial zeros of F are located in a horizontal strip of bounded height.
The Dirichlet series expression and the functional equation imply that the remaining zeros of F are contained
in a vertical strip of bounded width. The function F is of finite order by the property (ii) of the definition of
the Selberg class and the definition of order (4). Then, by Proposition 4 (applied with =a 01 and = ∞a2 ),
the function F s( ) is pseudo-prime.

Decompositions Selberg class  7



Next, we show that F is a right-prime function. Assume that

=F s f h s( ) ( ( )) (12)

is a decomposition. By the definition of a right-prime function, we have to show that if f is transcendental,
then h is linear. So, we assume that f is transcendental. Since F is pseudo-prime, h is a polynomial.

Further, we prove that h is of degree 1. For this, we consider the F s( ) growth for → +∞σ and → −∞σ .
Functions in ♯� are defined by Dirichlet series

∑= >
=

∞

F s
a n

n
σ 1 .

n

s

1

( )
( )

( )

Let k be the smallest index such that ≠a k 0( ) . Then, for → +∞σ ,

= +−F s a k k o1 1s( ) ( ) ( ( )) (13)

uniformly in t. For a sufficiently small >ε 0, let

= ∕ + ≤ ≤ − + ≤ ≤ ∕ −A s π ε s π ε π ε s π ε: 2 arg or arg 3 2 .{ }

We have the formula

− =s s
π

πs
Γ 1 Γ

sin
.( ) ( )

( )
(14)

Taking the absolute values of (1) and using the identity (14) yields

∏− = + + − − − +−

=
F s

π
F s Q λ s μ λ s λ μ π λ s μ1

1
Γ Γ 1 sin 1 .

N

s

j

N

j j j j j j j

2 1

1

∣ ( )∣ ∣ ( )∣∣ ∣ ∣ ( )∣∣ ( )∣∣ ( ( ( ) ))∣ (15)

Note that there exists σ0 such that − + ≠π λ s μsin 1 0j j
( ( ( ) )) in the region ∩ <A s σ σ: 0{ }. This together with

the Stirling formula (Titchmarsh [28, Section 4.42])

= ⎛
⎝

⎞
⎠

⎛
⎝ + ⎛

⎝
⎞
⎠
⎞
⎠ < −s

π

s

s

e
O

s
s π εΓ

2
1

1
, arg

s

( ) ∣ ( )∣

and (13) implies

= ∞
→∞
∈

F slim .
s

s A

( )
∣ ∣ (16)

Let = + + + +−
−h s a s a s a s a…d

d
d

d
1

1
1 0( ) with ≠a 0d . We consider the preimages 1ℓ , …, dℓ of the half-line

=
⎧
⎨
⎩

= +
⎫
⎬
⎭

s s
π

a: arg
2

arg dℓ

under the action of the polynomial h. We number the preimages such that near infinity, the curve jℓ is close to
the half-line

≔ ⎧⎨⎩ = + ⎫⎬⎭L s s
π

d

jπ

d
: arg

2

2
,j

where ∈j d1, …,{ }. Note that ≠L πarg j , ∈j d1, …,{ }. If ≥d 2, then there are indices p, ∈q d1, …,{ } such that
Lp lies in the half-plane >σ 2 (except for a finite part of Lp) and Lq lies in the set A for sufficiently small >ε 0.
Therefore, by formulas (13) and (16), we have

≤ = ∞
→∞
∈

→∞
∈

F s a F slim 1 and lim .
s

s

s

sp q

∣ ( )∣ ∣ ( )∣ ( )
∣ ∣

ℓ

∣ ∣

ℓ
(17)

On the other hand, from the facts that =F s f h s( ) ( ( )) and = =h hp q(ℓ ) ℓ (ℓ ), we see that =F Fp q(ℓ ) (ℓ ). The last
equality contradicts equations (17). Thus =d 1. This proves Theorem 1. □
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4 Proof of Theorem 2

Theorem 2 will be derived from Propositions 8 and 11.

Proposition 8. Suppose F belongs to the extended Selberg class, ≥d 1F , and =F s Q h s( ) ( ( )) is a decomposition
with Q rational with degree ≥ 2 and h meromorphic. Then there is a decomposition Q h s

1 1( ( )), equivalent to
Q h s( ( )), such that Q

1
is a polynomial.

We need the following two lemmas to prove Proposition 8. Let N σ T,F( ) count the number of zeros
= +ρ β iγ of F s( ) satisfying ≥β σ , ≤γ T∣ ∣ .

Lemma 9. Suppose F belongs to the extended Selberg class, ≥d 1F . Then, for any fixed ≤σ 0,

= + → ∞N σ T
d

π
T T O T T, log , .F

F
( ) ( ) (18)

Proof. For =a 1 1( ) , the lemma is a partial case of Theorem 7.7 (with =c 0 and =s F s�( ) ( )) from Steuding [29].

In the proof of Theorem 7.7, the function = ( )−
−s

c1

� � �
ℓ( ) was used (see the formula (7.3) in [29]). Repeating the proof

of Theorem 7.7 with =s F s
k

a k

s

ℓ( ) ( )
( )

(see comments at the end of Section 7.2 in [29]), we obtain Lemma 9. □

Lemma 10. For F satisfying the extended Selberg class axioms,

= + → ∞T r F
d

π
r r O r r, log , .

F
( ) ( )

Proof. For =a 1 1( ) , this is Theorem 7.9 from Steuding [29]. Next, we consider the general case. For any complex
a 1( ), we have (see formula (7.14) in the proof of Theorem 7.9 in [29])

≤ +T r F
d

π
r r O r, log .

F
( ) ( )

By (5), we see that

= ⎛
⎝

⎞
⎠ +T r F T r

F
O, ,

1
1 ,( ) ( )

and by the definition of the characteristic function,

⎛
⎝

⎞
⎠ ≤ ⎛

⎝
⎞
⎠N r

F
T r

F
,

1
,

1
.

Given (13) and (15), we have that there is σ1 such that F s( ) has no nontrivial zeros in ≤σ σ1. Then Lemma 9
together with (2) gives that

⎛
⎝

⎞
⎠ = +N r

F

d

π
r r O r,

1
log .

F
( )

This finishes the proof of Lemma 10. □

Proof of Proposition 8. Let

=F s Q h s ,( ) ( ( ))

where Q is a rational function with ≥Qdeg 2. Then, h is a transcendental meromorphic function because F

has an infinite number of zeros. The function F s( ) possibly has a pole at =s 1. By the last lemma, we see that
any ∈ ♯F � with >d 0F is an order 1 meromorphic function. Then (9) implies that the order of h equals 1.

Decompositions Selberg class  9



We consider cases where Q w( ) has no poles, a pole at a single point, poles at two distinct points, and poles
at more than two distinct points.
Case 1 Q w( ) has no poles. Then, Q is a polynomial.
Case 2 Q w( ) has a pole at w0 only. Then

=
−

Q w
P w

w w
,

m
0

( )
( )

( )

where P is a polynomial, ≠P w 00( ) .

If ≥m Pdeg , then we define the linear fractional transformation = +
L z

w z

z

10

( ) to obtain the equivalent decom-

position = ∘ ∘ ∘−F Q L L h1( ) ( ), where ∘Q L is a polynomial. To make sure of the latter fact, consider

∘ = + ∕Q L z z P w z1 .m
0( ) ( )

Since P w( ) is a polynomial of degree <m, multiplying its terms by zm eliminates all powers from the denomi-
nator, and we are left with a polynomial with respect to z.

Further, assume that <m Pdeg . Then, → ∞Q w∣ ( )∣ as → ∞w∣ ∣ , so h s( ) cannot have a pole except at =s 1, where
F s( ) may have one. We can derive two sub-cases.
(a) The function h s( ) is entire. Then h s( ) cannot assume the value w0 except possibly at =s 1 and the

Hadamard factorization theorem implies that

− = − +h s w s e1 ,k as b
0( ) ( )

where ≥k 0 is the order of h at w0. From (8) and (10), we have

− = + = ++T r s k r O T r e
a

π
r o r, 1 log 1 , , .k as b( ( ) ) ( ) ( )

∣ ∣
( )

Then (5)–(7) lead to

= = → ∞T r F O T r h O r r, , , .( ) ( ( )) ( )

This contradicts Lemma 10.

(b) The function h s( ) has a pole at =s 1. Then it does not assume w0, and we have

− =
−

+
h s w

e

s 1
,

as b

k0( )
( )

where k is the order of the pole, and we have a contradiction by analogy to case (a).
Case 3 Q w( ) has poles at different w1 and w2. Then h s( ) can assume at most one of the values w1 and w2, and if
it does assume one of them, it can only be at =s 1. Then h s( ) either does not assume one of them, for example,
w1, and has a w2-point at =s 1, or it does not assume both of them. We split our analysis into two cases.
(a) The function h s( ) does not assume the value w1 and has a w2-point at =s 1. From Hadamard factorization

and this, we have that

≔
−
−

= − +g s
h s w

h s w
s e1 .k as b2

1

( )
( )

( )
( )

for some constant k . By Hayman [23, formula (1.5a) and Section 1.3, Exercise (v)], we see
that = +T r h s T r g s O, , 1( ( )) ( ( )) ( ). Continuing the discussion, as in Case 2, we obtain a contradiction.

(b) The function h s( ) does not assume any of the values w1 and w2. Then we have

−
−

= +h s w

h s w
e .as b1

2

( )

( )

10  Ramūnas Garunkštis et al.



This leads to a contradiction, as in the previous case.
Case 4 The function Q w( ) has poles at different w1, w2, …, wN , where ≥N 3. Then, h s( ) can assume only one of
these values, say, wN , since our function F can have a pole only at the point =s 1. Therefore, h s( ) does not
assume at least two values, say, w1 and w2. By Hadamard’s factorization, we obtain

≔
−
−

= − +g s
h s w

h s w
s e1 .k as b1

2

( )
( )

( )
( )

This leads to a contradiction, as in the aforementioned case.
This proves the proposition. □

Proposition 11. Suppose the degree of ∈ ♯F � is greater than or equal to 1. Suppose =F s p h s( ) ( ( )) is a decom-
position, h is a meromorphic function possibly with pole at =s 1, but nowhere else, and = +p z a zk

k( )

+ + +−
−a z a z a…k

k
1

1
1 0, where ≠a 0k . Then there is a decomposition P H s( ( )), equivalent to p h s( ( )) such

that =P z a zk
k( ) .

In the proof of Proposition 11, we use trivial zeros (2). Note that these zeros lie in arithmetical progressions.
We first prove two lemmas. In the following lemma, we claim that for a finite number of arithmetical

progressions, each progression has an infinite subsequence of elements that coincide or are not very near to
the elements of any other sequence.

Lemma 12. Let >α 0k and ∈β
k

� , =k N0, 1,…, . Then there are >ε 0 and an increasing sequence nj, =j 1, 2,…

of positive integers such that, for any j and ≤ ≤p N1 ,

+ − − ∈ −∞ − ∪ ∪ ∞ >
∈

α n β α r β ε ε εmin , 0 , , 0.
r

j p p0 0
�

∣ ∣ { } { } { } (19)

Proof. In this proof, we use …{ } to denote the fractional part. Define = −∈α α rminr �‖ ‖ {∣ ∣}. Then we rewrite
(19) as follows:

+
−

= > =
α

α
n

β β

α

ε

α
p N0 or 1, …, .

p

j

p

p p

0 0

( ) (20)

Let numbers 1, ∕ ∕α α α α,…, M0 1 0 , where ≤M N , be linearly independent over rational numbers. For the
remaining coefficients ∕ +α αM0 ℓ, = −N M1,…,ℓ , let there be integers +dM ℓ and +dM r,ℓ , =r N0, 1,…, , such that

∑= ++
+

+
=

+d
α

α
d d

α

α
.M

M

M

p

M

M p

p

0

,0

1

,

0

ℓ
ℓ

ℓ ℓ (21)

Next, we group the coefficients ∕ +α αM0 ℓ, = −N M1,…,ℓ , into rationals and irrationals.
The case of rational coefficients. Suppose, for = ≤ −L N M1,…,ℓ , we have that all =+d 0M p,ℓ , =p

≤M N1,…, . Then, for any positive integer n such that + +d d nLCM , …,M L N1( )∣ , we have

+
−

= +
−

=
−

≤ ≤
+

+

+

+

+

+

+

+

+

α

α
n

β β

α

d

d
n

β β

α

β β

α
L1 .

M

M

M

M

M

M

M

M

M

0 0 ,0 0 0
( ℓ )

ℓ

ℓ

ℓ

ℓ

ℓ

ℓ

ℓ

ℓ

ℓ

(22)

Thus, for = + −p M N M1,…, , the statement (19) is true with = + +n j d dLCM , …,j M L N1( ).
The case of irrational coefficients. In (21), for any = + −L N M1,…,ℓ , let there be at least one i, ≤ ≤i M1 ,

such that ≠+d 0M i,ℓ , and hence, ∕ +α αM0 ℓ are irrational numbers. Assuming that + +d d nLCM , …,M L N1( )∣ from (21),
we obtain

∑≔ +
−

= +
−

< ≤ −
+

+

+ =

+

+

+

+
A n

α

α
n

β β

α

d

d

α

α
n

β β

α
L N M, .

M

M

M p

M
M p

M p

M

M

0 0

1

, 0 0
(ℓ ) ( ℓ )

ℓ

ℓ

ℓ

ℓ

ℓ

ℓ

ℓ

(23)
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By Kuipers and Niederreiter [30, Example 6.1, p. 48], we have that the multidimensional vector

⎜ ⎟
⎛
⎝

⎞
⎠

α

α
n

α

α
n, …, ,

M

0

1

0

where n runs over all positive multiples of + +a aLCM , …,M L N1( ), is uniformly distributed modulo 1 in M� . Thus,
by choosing a suitable subsequence, we can control the fractional part of ∕ +nα αM0 ℓ, = −N M1,…,ℓ , but not the
integral part. In view of this, we rewrite (23) as follows:

∑ ∑=
⎧
⎨
⎩

⎫
⎬
⎭

+
⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥
⎫
⎬
⎭

+
−

< ≤ −
=

+

+ =

+

+

+

+
A n

d

d

α

α
n

d

d

α

α
n

β β

α
L N M, .

p

M
M p

M p p

M
M p

M p

M

M1

, 0

1

, 0 0
(ℓ ) ( ℓ )

ℓ

ℓ

ℓ

ℓ

ℓ

ℓ

If n runs even over all positive integers, then among the numbers

∑⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥
⎫
⎬
⎭

+
−

< ≤ −
=

+

+

+

+

d

d

α

α
n

β β

α
L N M ,

p

M
M p

M p

M

M1

, 0 0
( ℓ )

ℓ

ℓ

ℓ

ℓ

there are only finitely many different numbers. Let H be the smallest such positive number. If there is no such
positive number, then let = ∕H 1 4. Next we choose < < <x x0 … M1 such that

(i)

∑ < ∕
< ≤ − =

+

+

d

d
x Hmax 4;

L N M
p

M
M p

M

p

1

,

ℓ

ℓ

ℓ

(ii) for = −k M1,…, 1, if

≠
< ≤ −

+ +dmax 0,
L N M

M k, 1∣ ∣
ℓ

ℓ

then

∑ ⎟⎜<
⎛
⎝

≠
⎞
⎠< ≤ − =

+

+ < ≤ −

+ +

+
+

d

d
x

d

d
xmax

1

4
min 0 ;

L N M
p

k
M p

M

p
L N M

M k

M

k

1

, , 1

1
ℓ

ℓ

ℓ ℓ

ℓ

ℓ

(iii) for =p M1,…, , if ≠
−

0
β β

α

p

p

0 , then we require that

<
−

x

β β

α

1

4
.p

p

p

0

Hence, there is a small positive number δ, <δ x1, and the sequence =
∞

nj j 1( ) , such that for all j ,
(1) + +d d nLCM , …,M L N j1( )∣ ;
(2) for =p M1,… ,

− <
⎧
⎨
⎩

⎫
⎬
⎭

< +x δ
α

α
n x δp

p

j p

0 (24)

and

+ <
− −

≠x δ

β β

α

β β

α

1

2
, if 0;p

p

p

p

p

0 0 (25)

(3)

∑ ⎧
⎨
⎩

⎫
⎬
⎭

< ∕
< ≤ − =

+

+

d

d

α

α
n Hmax 2;

L N M
p

M
M p

M p

j

1

, 0

ℓ

ℓ

ℓ
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(4) for = −k M1,…, 1, if ≠< ≤ − + +dmax 0L N M M k, 1∣ ∣ℓ ℓ , then

∑ ⎧
⎨
⎩

⎫
⎬
⎭

< ⎧⎨⎩
⎫⎬⎭< ≤ − =

+

+ < ≤ −

+ +

+ +

d

d

α

α
n

d

d

α

α
nmax

1

2
min .

L N M
p

k
M p

M p

j
L N M

M k

M k

j

1

, 0 , 1 0

1ℓ

ℓ

ℓ ℓ

ℓ

ℓ

This leads to

< +
−

< < ≤ −
+

+

+
H

α

α
n

β β

α
H L N M

1

2

3

2
.

M

j

M

M

0 0
( ℓ )

ℓ

ℓ

ℓ

By this, (24), (25), (22), and (20), the lemma follows. □

Lemma 13. Suppose the degree of ∈ ♯F � is greater than or equal to 1. Let C be a small positive real number. Let
si

M( ) run only over such trivial zeros of F of some fixed multiplicity M that → −∞si

M
R

( ) and that the discs
− ≤s s C2i

M
∣ ∣

( ) do not intersect and do not contain any additional zeros of F. Let s belong to the union of circles
− =s s Ci

M
∣ ∣

( ) . Then we have → ∞F s( ) as → −∞sR .

Proof. Given the distribution of trivial zeros (2) and the conditions of the lemma, we have that there is >c 0 for
which + > >π λ s μ csin 0j j

∣ ( ( ))∣ , ≤ ≤j N1 if − =s s C
i

0∣ ∣
( ) . Here, N comes from the functional equation (1).

Then, the last factor in the equation (15) is strictly positive. In view of (13), the Stirling’s formula implies

− → ∞F s1∣ ( )∣ (26)

for − =s s C0∣ ∣ , as → ∞sR , which gives the proof of the lemma. □

Proof of Proposition 11. Let < < <k k k… m1 2 be such multiplicities of the trivial zeros of ∈ ♯F � that the
number of the trivial zeros for each multiplicity ki, ≤ ≤i m1 is infinite. Let +km 1 be the multiplicity of the
possible pole at =s 1. Let the set � consist of k1, k2, …, km, and possibly +km 1. It is expected ([5, Conjecture 4.2])
that for any multiplicity of a trivial zero, there are infinitely many such zeros.

The proof strategy is first to construct for each ∈M � , the set of trivial zeros of multiplicity M satisfying
the conditions of Lemma 13 and then to apply this lemma together with Rouché’s theorem.

From formula (2), the trivial zeros form arithmetic progressions depending on the parameters λj and μ
j
.

These progressions may share some members, resulting in zeros of higher multiplicity. The main problem is
that a sequence of zeros of multiplicity M could be indefinitely approximated by another sequence of zeros
without coinciding.

We now formulate two statements about arithmetic progressions. The first statement is that the intersec-
tion of two arithmetical progressions is again an arithmetical progression. The second statement states that if
we remove an arithmetical progression from an arithmetical progression and the remaining set has infinitely
many elements, then it contains an arithmetical progression.

From the aforementioned statements, we have that if the trivial zeros of a given multiplicity form an
infinite set, then this set contains an arithmetical progression. From Lemma 12, it follows that this progression
contains a subsequence such that we can draw discs of some small fixed radii satisfying the conditions of
Lemma 13 around each of its members. Denote the radii of the discs for each multiplicity in � by C1, …, Cn.
Then, take the minimum of C1, …, Cn and call it C . Denote the set of zeros inside the discs � .

We turn to the decompositions of F . There are complex numbers zj, =j k1,…, , such that

∏= −
=

p z a z z .k

j

k

j

1

( ) ( )

Then a decomposition = ∘F p h can be replaced by equivalent decomposition = ∘F p h
j j, =j k1,…, , where

= − = +h s h s z p z p z zand .j j j j( ) ( ) ( ) ( ) (27)
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Then =p 0 0
j
( ) for each j . Choose any multiplicity M of a trivial zero belonging to � and by ∈si

M

i �( )
( ) denote

the sequence of such zeros with i increasing as we move to the left of the complex plane. The real parts of this

sequence are unbounded as we approach −∞. For each i, there is some j such that =h s zi

M

j( )
( ) , so there must

be some j that occurs infinitely many times. Fix such a j and the subsequence ( ) ∈si

M

r
r

�
( ) of ∈si

M

i �( )
( ) such that

( ) =h s zi

M

j
r

( ) . Let aℓ denote the coefficients of p
j
. Thus,

∑=
= ′

p z a z ,
j

k

k

( )
ℓ

ℓ
ℓ (28)

with some ′ ≥k 1 and ≠′a 0k . In view of = ∘F p h
j j, we have that

= ′M k m, (29)

where m is the multiplicity of each zero of hj at si

M

r

( ).
Next, we consider the function

− − − =−
−

′
′

F s a h s a h s a h s… .k j

k
k j

k

k j

k
1

1( ) ( ) ( ) ( )

If F s( ) is large, then h sj( ) is also large and

≪h s F sj
k

1

( ) ∣ ( )∣

because F s( ) is a polynomial of h sj( ). The real parts of the subsequence si

M

r
( )

( ) are also unbounded as we

approach −∞. This, Lemma 13, and Rouché’s theorem give that on the disc − ≤s s Ci

M

r
∣ ∣

( ) , for large negative

si

M

r
R

( ), the functions F s( ) and

− − − =−
−

′
′

F s a h s a h s a h s…k j

k
k j

k

k j

k
1

1( ) ( ) ( ) ( )

have the same number M of zeros. Recall that the multiplicity of each zero of hj at si

M

r

( ) is m. Hence,

≥M km.

This and (29) lead to = ′k k . Then in view of (28), we conclude Proposition 11. □

Proof of Theorem 2. The theorem follows by Propositions 8 and 11. □
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