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ABSTRACT
European bison (Bison bonasus) are one of the few European megafaunal species to survive the Late Pleistocene mass megafau-
nal extinction. Current conservation management efforts have proceeded in the absence of information about their evolutionary 
history, which has been obscured by recent severe population bottlenecks. We characterized mitochondrial genomes from 135 
ancient bison samples spanning > 50,000 years (> 50 ka) across the Eurasian continent and detected three distinct phylogenetic 
groups: two distinct clades of European bison and the extinct steppe bison (Bison priscus). The geographical distributions and di-
etary/ecological signatures of the three groups overlapped during the Late Pleistocene climate cycles and tracked environmental 
changes including vegetation cover and human impacts. The abundance of European bison specimens responded negatively to 
the extent of forest cover, including Holocene cycles of abrupt atmospheric-ocean circulation changes originating in the North 
Atlantic. European bison remain preferentially adapted to an open environment, but with today's anthropogenic landscapes, are 
now largely restricted to forest habitats with negative implications under scenarios of future environmental change.
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1   |   Introduction

European bison (Bison bonasus), or wisent, are one of the only 
megafaunal species to survive the Late Pleistocene megafau-
nal extinctions in Europe, and remain the largest endemic 
vertebrate (Bocherens et  al.  2015; Cooper et  al.  2015). They 
were broadly distributed across the continent and (now sub-
merged) North Sea during the Late Pleistocene (120,000–
12,000 years ago; ka) and Holocene (12 ka to present day) 
(Hofman-Kamińska et  al.  2019; Soubrier et  al.  2016), along 
with the now extinct steppe bison (Bison priscus). However, by 
the end of the 19th Century, human persecution had restricted 
their distribution to two small populations (recognized as sub-
species) in the Białowieża Forest between Poland and Belarus 
(Bison bonasus bonasus) and the Caucasus Mountains (Bison 
bonasus caucasicus) (Krasińska and Krasiński  2013; Pucek 
et al. 2004; Węcek et al. 2017). By the 1920s, European bison 
were extinct in the wild with just 54 individuals remaining in 
captivity, and these in turn were effectively descended from 
just 12 individuals (Krasińska and Krasiński  2013; Pucek 
et al. 2004; Slatis 1960).

The severe historical genetic bottleneck (Massilani et al. 2016; 
Soubrier et  al.  2016; Tokarska et  al.  2009, 2011; Węcek 
et al. 2017; Wójcik et al. 2009) and resulting extremely limited 
genetic diversity of modern European bison has obscured the 
genetic records of their evolutionary history, while range re-
striction to just two refugial locations has also obscured their 
ecological history and potential adaptive capacity, and as a 
result, they have been described as a refugee species (Kerley 
et  al.  2012). However, the evolutionary history of European 
bison (Kerley et al. 2012), craniodental morphology (Mendoza 
and Palmqvist  2008), and the isotopic signatures of histori-
cal populations (Bocherens et  al.  2015; Hofman-Kamińska 
et al.  2019) indicate adaptation to foraging in open habitats. 
This evidence is at odds with the re-introduction of European 
bison in non-optimal habitats such as forests (Kerley 
et al. 2012), where current populations are highly dependent 
on human care, leading to potentially serious impacts on ge-
netic fitness. The pressing conservation needs of this species 
make the issue of potential resilience to environmental and 
anthropogenic challenges critically important, along with the 
increasing interest in restoring the ecological role of mega-
herbivores as habitat engineers and umbrella species in eco-
systems such as Eurasia and North America (Svenning 2020; 
Svenning et al. 2024; Trepel et al. 2024). The European situa-
tion also provides important insights for current conservation 
efforts in North America, where the evolutionary history of 
North American bison (Bison bison) similarly revolves around 
two putative subspecies, the woods and plains bison (B. b. 
athabascae and B. b. bison), which have also experienced re-
cent genetic bottlenecks and are currently managed separately 
in small populations (Cronin et al. 2013; Hartway et al. 2020).

Several ancient DNA (aDNA) studies have investigated the 
evolutionary history of bison in Western Eurasia (Grange 
et  al.  2018; Massilani et  al.  2016; Onar et  al.  2017; Soubrier 
et al. 2016) using specimens principally from the North Sea, 
Ural Mountains, and France. Most of the data generated has 
been mitochondrial control region sequences, with smaller 
amounts of full mitochondrial genomes. The amount of 

ancient genomic data currently remains limited due to the 
sub-optimal preservation conditions of many sites, but has re-
vealed that Late Pleistocene Bison bonasus mitochondrial lin-
eages derive from a major admixture event with aurochs (Bos 
primigenius) around 120 ka, during the last (Eemian) inter-
glacial (Massilani et al. 2016; Soubrier et al. 2016). Although 
geographically and temporally restricted, the ancient DNA 
data support the division of ancient European bison into 
two distinct clades, only one of which survives. An extinct 
Pleistocene clade was first termed Clade X, or colloquially “the 
Higgs Bison,” to distinguish it from contemporary European 
bison (Massilani et al. 2016; Soubrier et al. 2016). Subsequent 
studies have termed these two groups Bison bonasus clades 1 
and 2 (Bb1 and Bb2) (Grange et al. 2018; Massilani et al. 2016). 
We use this terminology for consistency, where Bb1 refers to 
the extinct Late Pleistocene clade and Bb2 refers to the clade 
including present-day European bison. Initial results suggest 
that Bb1, Bb2, and steppe bison might potentially reflect dis-
tinct groups adapted to specific ecological niches found in 
the Ural mountains/eastern Europe, western Europe, and 
western Siberia respectively (Massilani et  al.  2016; Soubrier 
et al. 2016), but this hypothesis cannot be examined without a 
continental scale geographic and temporal sampling of genet-
ically typed individuals.

In this paper, we generate 75 ancient mitochondrial genome 
sequences from bison specimens across Eurasia, spanning 
over 50 thousand years, substantially increasing the spatial 
and temporal coverage of previous studies. Together with pub-
lished sequences, the total dataset comprises 135 bison mito-
chondrial genomes. In addition, radiocarbon dates and stable 
isotope information were generated for each of the new spec-
imens. The resulting dataset allows the evolutionary history 
of European bison to be reconstructed in some detail, permit-
ting comparison with contemporaneous environmental and 
climatic changes.

2   |   Materials and Methods

2.1   |   Sample Collection and Processing

Samples of bison specimens were collected from museums and 
private collections across Europe (Table S1) to complement an 
existing collection at the Australian Centre for Ancient DNA 
(ACAD), University of Adelaide. The final sample set includes 
specimens ranging from over 50 ka to present, across regions 
from Scandinavia and Siberia (Russia) to Italy and Turkey 
(Figure  1A,D). All ancient DNA work was performed in the 
purpose-built ancient DNA facilities at ACAD. Ancient DNA 
was extracted from bone fragments following a silica-based 
extraction protocol (Brotherton et al. 2013) with modifications 
as previously described (Soubrier et al. 2016). Double-stranded 
Illumina sequencing libraries were built from 25 μL of DNA 
extract following a partial uracil-DNA-glycosylase (UDG) 
treatment protocol (Rohland et  al.  2015) modified to include 
dual 7-mer internal barcode sequences as previously described 
(Soubrier et  al.  2016). We used RNA baits targeting bison mi-
tochondrial genome sequences and in-solution hybridization 
capture followed by high-throughput sequencing as previ-
ously described (Soubrier et  al.  2016) to generate complete or 
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FIGURE 1    |     Legend on next page.
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near-complete mitochondrial genomes from 81 bison samples, 
although we retained only 75 samples after data quality filtering 
(see below).

Sequencing reads were mapped to published mitochondrial ge-
nomes of European bison (chrM from NC014044) or Steppe bison 
(chrM from NC012346) according to the morphological assign-
ment of bones (unidentified bones were mapped to steppe bison). 
We used the programs AdapterRemoval v2.2.1 (Lindgreen 2012), 
BWA v0.7.15 (Li and Durbin 2009), Picard Tools (broad​insti​tute.​
github.​io/​picard), Genome Analysis ToolKit (McKenna et al. 2010), 
SAMtools v1.3.1 (Li 2011; Li et al. 2009), and mapDamage v2.0.6 
(Jónsson et al. 2013), as implemented in the pipeline PALEOMIX 
v1.2.9 (Schubert et al. 2014) and as previously described (Soubrier 
et al. 2016). The sequencing summary statistics for each specimen 
were compiled from the PALEOMIX pipeline output (Table S2). 
A mitochondrial genome consensus sequence was generated in 
Geneious v9.0.5 (genei​ous.​com) with a minimum read depth of 3 
and a consensus call threshold of 75%. Any ambiguities were visu-
ally inspected and manually realigned if necessary, and the result-
ing 75 consensus sequences were aligned to previously published 
bovid mitochondrial sequences using MAFFT7 (Katoh et al. 2002) 
to create a multiple sequence alignment (MSA). A Maximum-
Likelihood (ML) tree was generated in PhyML v3.0 (Guindon 
et  al.  2010) from the MSA (substitution model: HKY + G6, data 
type: nucleotide, tree improvement: BEST) to classify specimens 
as Steppe bison, Bb1, or Bb2. In cases where the ML tree species 
assignment did not match the initial morphological assignment, 
sequencing reads from that specimen were re-mapped to the mor-
phologically appropriate reference genome and variants called as 
described above.

Sequence data from the 75 new specimens were combined with 
17 mitochondrial genomes re-sequenced from enriched DNA li-
braries generated in (Soubrier et al. 2016) and (Onar et al. 2017), 
plus 43 published European bison mitochondrial genomes avail-
able on NCBI and ENA databases (i.e., specimens from western 
Eurasia identified as either Bb1, Bb2, B. bonasus, or B. priscus). 
We did not include two previously published mitogenome se-
quences, as one was chimeric (KY055664) (Węcek et al. 2017), 
and the other was sourced from a hyena coprolite (GAO1/
KU886087) (Palacio et al. 2017) and has an unclear taxonomic 
origin (Grange et al. 2018). The resulting final dataset included 
135 bison mitochondrial genomes from across western Eurasia 
(Table S1).

2.2   |   Phylogenetic Analyses

Median-joining haplotype networks were generated in PopART 
(Bandelt et al. 1999; Leigh and Bryant 2015) from the alignment 

of all mitochondrial genomes, masking sites with more than 5% 
missing data from the analysis. Bayesian phylogenetic analy-
ses were performed on the MSA of all complete mitochondrial 
genomes of European bison using BEAST v1.8.4 (Drummond 
and Rambaut  2007; Suchard and Rambaut  2009) through the 
CIPRES Science Gateway v3.1 (Miller et  al.  2010) (HKY + G6 
nucleotide substitution model, GMRF skyride, uncorrelated 
relaxed clock). Specimens were assigned to clades of European 
bison according to their position in an initial ML tree (Figure S3) 
for subsequent analyses. The radiocarbon dates of specimens 
were used as tip dates to calibrate the tree and calculate rates 
of molecular evolution. The ages of specimens with infinite ra-
diocarbon error margins were treated as parameters to be esti-
mated in the model. Steppe bison mitochondrial genomes were 
not included in the Bayesian phylogenetic analyses as the GMRF 
skyride coalescent tree prior implemented in BEAST requires 
all samples to be drawn from a single species. Three Markov 
Chain Monte Carlo (MCMC) chains were run for 100 million 
generations, sampling every 10,000 generations. The first 10% 
of generations were discarded as burn-in, and the remaining 
90% combined using LogCombiner v1.8.3, with all parameters 
showing convergence when inspected in Tracer v1.7 (Rambaut 
et  al.  2018). The resulting maximum clade credibility (MCC) 
tree was annotated in TreeAnnotator v1.8.4 and visualized in 
FigTree v1.4.2 (Drummond and Rambaut 2007). It is clear that 
Bb1 and Bb2 populations have relatively distinct geographical 
distributions, and it is likely that they were not randomly mat-
ing, which violates the assumptions of the Bayesian skyride 
(Ho and Shapiro 2011). As a result, we ran two separate skyride 
analyses, first with all Bb1 specimens and then with just Bb2 
specimens. Both skyride plots were generated under the GMRF 
skyride analysis option in Tracer v1.5 (Ho and Shapiro  2011; 
Minin et al. 2008). For two samples with low coverage (A17406 
and A17482), the BEAST maximum credibility tree was used as 
a backbone constraint in RAxML v8 (Stamatakis 2014) and the 
position of both samples estimated via ML.

2.3   |   Stable Isotope Data

Stable isotope data (δ13C and δ15N) were generated for the new 
samples at the Department of Geosciences at the University of 
Tübingen (Germany) using an Elemental Analyzer NC 2500 
connected to a Thermo Quest Delta+XL mass spectrometer as 
previously described (Hofman-Kamińska et al. 2018). Previously 
published isotope data for Holocene European bison (Bocherens 
et al. 2015; Hofman-Kamińska et al. 2019; Soubrier et al. 2016) 
were collated and included in the analyses. In total, values for 
both δ13C and δ15N were available for 96 sequenced bison spec-
imens. We used a Kruskal–Wallis test by ranks to identify dif-
ferences in stable carbon and nitrogen isotope values (δ13C and 

FIGURE 1    |    (A) Geographical distribution of bison samples during three time periods of interest in Eurasia; Bb1: Blue squares, Bb2: Green circles, 
and steppe bison: Purple triangles. Current distribution of European bison is represented in red (from Kowalczyk and Plumb 2022). Map lines delin-
eate study areas and do not necessarily depict accepted national boundaries (B) δ13C isotope values as a function of sample age. (C) δ15N isotope values 
as a function of sample age. (D) Latitude as a function of sample age. The Aurignacian–Gravettian and Magdalenian periods are represented, with 
corresponding Western Eurasian specimens annotated with Ca (Caucasus), Fr (France), Mo (Moldova), Po (Poland), Sl (Slovenia), Sw (Switzerland), 
Uk (Ukraine). (E) NGRIP δ18O record (Andersen et al. 2004) with Greenland interstadials numbered and highlighted in gray. Fitting lines in panels 
B–D are generalized additive models with integrated smoothness; colors correspond to bison clades and confidence intervals are highlighted.
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δ15N, respectively) for the 3 bison clades in the Late Pleistocene 
(120–12 ka). Using a Mann–Whitney U-test, we tested for pair-
wise temporal differences in δ13C and δ15N signals between the 
Pleistocene and Holocene for Bb1 (120–12 ka and 12–9 ka) and 
Bb2 (120–12 ka and 9 ka–present). Analyses were performed 
using Statistica v.9.1 (StatSoft).

2.4   |   Radiocarbon Dating and Kernel Density 
Estimation

Samples were AMS radiocarbon dated at the Laboratory of Ion 
Beam Physics, Eidgenössische Technische Hochschule Zürich, 
Switzerland (Swiss Federal Institute of Technology Zürich) 
(ETH). 14C ages were calibrated with OxCal v4 using the 
IntCal20 curve (Table  S1) (Ramsey  2009; Reimer et  al.  2020). 
The quality of bone collagen was tested (collagen yield, propor-
tion of C:N and collagen %N and %C) and samples with param-
eters different from fresh bones were excluded to avoid the need 
for extensive pre-treatment and ultra-filtration steps (Hofman-
Kamińska et  al.  2018). The distribution of Holocene radiocar-
bon ages exhibited an unusual degree of discrete clusters, so a 
kernel density estimation (KDE) was generated in OxCal v4.4 to 
provide a more robust estimate with less high-frequency noise, 
as an alternative to summed probability modeling (Turney 
et al. 2006). The standardized normal kernel was used to model 
the measurement and sampling error, where K(u) ~ N(0,1), with 
Silverman's rule (Silverman 1986) providing the optimal choice 
of bandwidth (Ramsey 2017). Ensembles of possible KDE distri-
butions from the MCMC sampler (using the Bayesian likelihood 
and model priors) were then combined.

2.5   |   Spectral Analysis

To investigate the potential relationship between climate 
changes and the temporal distribution of Holocene bison pop-
ulations reflected by the KDE of the calibrated radiocarbon 
ages, we explored two key datasets. Whilst the North Atlantic 
Holocene record of iceberg-rafted debris (IRD) provides a 
continuous record of changes in ocean circulation with 8 rec-
ognized “Bond” events (Bond et  al.  2001), unfortunately, the 
slow sedimentation rate and changing marine reservoir im-
pacts prevents precise alignment with the calibrated ages of the 
bison samples. As a result, we compared the bison KDE data 
(Figure 2C–E) with an annually resolved population dataset of 
Irish bog oaks that provides a measure of westerly airflow over 
Eurasia (Figure 2A,B). The continuous Irish bog oak chronol-
ogy of > 750 trees extends back to 7468 years ago and has been 
obtained from marginal environments across northern Ireland, 
and linked to the IRD records in the North Atlantic (Pilcher 
et al. 1984; Turney et al. 2005). Peaks in tree numbers have been 
interpreted as representing episodes of surface drying conducive 
for oak colonization (Turney et al. 2005, 2016). Previous stud-
ies have demonstrated that bog oaks are sensitive to precipita-
tion/water table levels (García-Suárez et al. 2009; Scharnweber 
et al. 2015; Turney et al. 2016).

To explore the relationship between climate and European bison 
population over century to millennium timescales we undertook 
wavelet and cross-wavelet analysis that allows the identification 

of changing periodicities. Continuous wavelet transforms can be 
used for analysing data that may contain non-stationary power 
to identify periodicities in both the time and frequency domains 
(Torrence and Compo 1998). Wavelet and cross-wavelet analysis 
was undertaken on the KDE using the wt() and xwt() functions 
respectively in the R package “Biwavelet” (github.​com/​tgouh​
ier/​biwav​elet). The cross-wavelet analysis allows the testing of 
relationships in time frequency space between two time series 
(Grinsted et al. 2004). A Morlet continuous wavelet transform 
was applied, and the data were padded with zeros at each end 
to reduce wraparound effects (Torrence and Webster 1999). The 
“cone of influence” represents the region where zero padding af-
fects the estimation of the wavelet spectrum; the spectral peaks 
within this region are likely to be reduced in magnitude, and 
therefore may represent an artifact from the padding. To test the 
robustness of the obtained periodicities, the Lomb–Scargle al-
gorithm was employed, a spectral decomposition method that 
computes the spectral properties of time series. This technique 
was undertaken using the lsp() function within the R package 
“lomb” (Ruf 1999).

3   |   Results

3.1   |   Sequencing Results

Of the 92 samples that were sequenced for the first time or re-
sequenced, 75 had more than 70% coverage of the mitochondrial 
genome and an average depth-of-coverage ≥ 3. The remaining 
17 samples had poor preservation but yielded sufficient data to 
determine their taxonomic affiliation. Sequencing and map-
ping summary statistics are presented in Table S2, and damage 
patterns for all specimens were consistent with ancient DNA 
(Table S3). Out of the 135 Eurasian bison included in this study, 
107 specimens were directly radiocarbon dated and ranged in 
age from greater than 50,000 cal BP (calibrated radiocarbon 
years before present) to modern day (Table S1). For the remain-
ing 28 specimens, 3 were undated, but 25 were dated indirectly 
or came from well-characterized archeological layers that pro-
vided an associated date range for the specimens (Hofman-
Kamińska et al. 2019).

3.2   |   Phylogenetic Analysis

The median-joining haplotype network (Figure  S1) clearly 
shows three distinct groups of mitochondrial genomic diver-
sity: two clades of European bison (Bb1 and Bb2), and steppe 
bison. There was no obvious genetic structure within either of 
the European bison clades, which is important as Bb2 includes 
the Holocene specimens previously classified as B. b. bonasus 
or B. b. caucasicus (Figures S3 and S4). The pronounced ge-
netic divergence of the Bb1 and Bb2 mitochondrial clades (81 
base changes, 0.5%) matches the genomic phylogeny (Soubrier 
et al. 2016), and is comparable to mitochondrial diversity seen 
within steppe bison (Froese et  al.  2017). This indicates that 
Bb1 and Bb2 should be considered two clades of the same spe-
cies. The Maximum Clade Credibility (MCC) tree generated in 
BEAST, calibrated with the sample radiocarbon dates, shows 
that the Bb1 and Bb2 clades diverged ∼97 ka (95% Highest 
Posterior Density, HPD: 113–79 ka), centred around the warm 

 13652486, 2025, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.70354 by C

ochrane L
ithuania, W

iley O
nline L

ibrary on [10/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://github.com/tgouhier/biwavelet
http://github.com/tgouhier/biwavelet


6 of 13 Global Change Biology, 2025

FIGURE 2    |     Legend on next page.
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phase of Marine Isotope Stage 5c. This date estimate is more 
precise and slightly younger than that obtained by Soubrier 
and colleagues (Soubrier et al. 2016) (∼120 ka; 95% HPD: 152–
92 ka) (Figure  S2B), due to the additional radiocarbon date 
calibrations and mitochondrial data. Previous estimates for 
the divergence of Bb1 and Bb2 have been considerably earlier 
but were generated using less robust temporal calibrations 
(Massilani et  al.  2016) (∼246 ka; 95% HPD: 283–212 ka) and 
(Grange et al. 2018) (∼395 ka; 95% HPD: 445–343 ka).

3.3   |   Global Distribution and Ecology

All three groups (steppe bison, Bb1 and Bb2) were present in 
Europe until the end of the Pleistocene, but after the Pleistocene–
Holocene transition (∼12–9 ka) there was a major reduction in 
bison diversity, with only Bb2 surviving into the Holocene and 
modern day (Figure 1D). Reconstructed population sizes using 
GMRF (Gaussian Markov Random Field) Bayesian skyride plots 
revealed no signs of marked decreases prior to the extinction 
of Bb1 around the early Holocene, suggesting the decline was 
rapid. In contrast, Bb2 specimens showed a population decline 
starting ∼10 ka (Figure S2A).

The geographical distributions of steppe, Bb1, and Bb2 bison 
overlapped across the European continent throughout the Late 
Pleistocene (Figure 1A,D,E). The steppe bison specimens appear 
more common during the cold Greenland stadials. The distribu-
tion of Bb1 specimens is concentrated across northern Europe 
and western Eurasia, while in contrast, the records of Bb2 indi-
viduals appear limited to southern and southwestern Europe. The 
European extirpation of steppe bison appears to occur during the 
end-Pleistocene, with the last individuals observed in Spain and 
southern France during the Last Glacial Maximum. Around the 
same time, the Bb1 clade also appears to contract in range and 
shift northwards into Scandinavia, prior to disappearing in the 
early Holocene, with the last identified specimen in Sweden at 
∼9900 cal BP (Figure  1A,D). The fossil record of the Bb2 clade 
disappears around the Pleistocene–Holocene transition, before re-
appearing by the mid-Holocene, initially in Poland ∼6242 cal BP, 
and then quickly re-emerging across the rest of the European con-
tinent (Figure 1A,D). Despite this expansion, by the late Holocene, 
Bb2 specimens were restricted predominantly to the Caucasus 
Mountains and the Białowieża Forest (Poland), until their extinc-
tion in the wild by the 1920s (Figure 1A,D, Table S1).

During the Late Pleistocene there are no clear differences in the 
dietary δ13C and δ15N stable isotope values between Steppe bison, 

Bb1, and Bb2 (Table S4) with all three groups showing signals of 
graze and mixed diet (higher proportions of δ15N) and utiliza-
tion of open habitats (higher proportions of δ13C) (Figure 1B,C). 
The dietary isotopic signals changed during the rapid climatic 
shifts at the Pleistocene–Holocene transition (12–9 ka), with a 
decrease in δ15N levels observed in Bb1 specimens (Z = 3.54, 
p = 0.0004, N = 30) (Table S1). During this period, δ15N in Bb1 
appears to have remained low, but δ13C changed from higher 
between ∼12,000 and ∼10,650 cal BP to lower between ∼10,250 
and ∼9850 cal BP (δ13C: −22.15‰ and −22.61‰) (Figure 1B,C) 
prior to becoming extinct. A parallel significant decrease in δ13C 
signals can also be observed in Bb2 between the Late Pleistocene 
and Holocene (Z = 3.48, p = 0.0005, N = 52) (Table S4) suggesting 
a shift from more open Late Pleistocene habitats to more for-
ested sites in the Middle Holocene. Two exceptions were from 
high-altitude meadows (1900 m.a.s.l.) around Sevan Lake in 
Armenia.

3.4   |   Periodicity of Climate Changes and Bison 
Numbers

Analysis of the KDE plots with both wavelet and Lomb–Scargle 
spectral analyses demonstrates that the clumping pattern of the 
dates of the Holocene Bb2 specimens exhibits two pervasive pe-
riodicities at ~800 years and ~1600 years over the last 6000 years 
(within the cone of influence) (Figure 2F). Further exploration 
of the KDE plots with Holocene climate changes suggests a close 
relationship. The cross-wavelet plot between the Bb2 KDE and 
Irish bog oak number (Figure 2G) indicates a strong and signif-
icant correlation between the time series centered on two fre-
quencies, corresponding to ~830 years and ~1750 years. The high 
power, represented by the red color, suggests that variations in 
one time series are strongly related to those in the other time 
series over the last 6000 years.

4   |   Discussion

The broad geographic and temporal range of the sampled spec-
imens provides the first comprehensive overview of bison pa-
leoecology across Europe during the Late Pleistocene and the 
Holocene, and the genetic impacts of the megafaunal extinctions. 
The phylogenetic analyses illustrate a dramatic loss in bison ge-
netic diversity across the Eurasian continent at the end of the 
Pleistocene, as exemplified by the extinction of both steppe and 
Bb1 bison (Figures S1 and S2B). For Bb2, the apparent loss of ge-
netic diversity during the Late Pleistocene–Holocene transition 

FIGURE 2    |    KDE model of Holocene specimens based on OxCal v4.4.4 with key climate records. (A) Iceberg-rafted debris (IRD) stack with “Bond” 
numbers and events indicated by the numbers and black bars (Bond et al. 2001); (B) Number of Irish bog oaks as a proxy of surface wetness over 
northern Ireland (Turney et al. 2016); (C–E) Holocene Kernel density estimation (KDE) for all Bison, population Bb1 and Bb2 respectively. Colored 
boxes labeled “First” and “Last” population cohorts and “Span” provide the range and median age estimates. (F) Spectral analysis for the KDE of the 
Holocene specimens (Bb2), including a Morlet wavelet transform (right) and a Lomb–Scargle periodogram (left). (G) Cross-wavelet power spectrum 
between KDE of the Holocene specimens (Bb2) and Irish bog oak number (right), and periodogram (left). Wavelet power spectra illustrate the change 
in concentration of spectral power with time with areas of red denoting strongest expression of the periodicity at ~800 and ~1600 years (F) and ~830 
and ~1750 years (G). Solid black line in wavelet denotes 95% confidence in periodicity; white dashed line and shaded area denotes cone of influence 
where signal interpretation can be unreliable. Note, the peaks in bison numbers coincide with decreases in Irish bog oaks associated with wetter 
conditions over western Europe, consistent with the preference of these megafauna for relatively open landscapes.
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might be due to extirpation or a lack of sampling in regions 
where they persisted. Either way, the loss of bison genetic diver-
sity continued during the Holocene, where Bb2 mitochondrial 
diversity declined from 11 haplotypes during the early-to-mid 
Holocene to just four in the late Holocene (Figures S1 and S2).

The geographically broad dataset reveals the pre-Holocene 
Bb2 clade bison was more widespread across southern Europe 
than the previously reported isolated occurrence in the 
Caucasus region (Soubrier et  al.  2016). Indeed, the Bb1 and 
Bb2 clades appear to have been present in roughly comparable 
numbers during the Late Pleistocene (Figure S2A), as shown 
by the overlapping highest posterior densities of the Bayesian 
skyride analyses. While more Bb1 individuals were found in 
Late Pleistocene sites, this may reflect a sampling bias due 
to geographic distribution or sample preservation. For ex-
ample, Bb1 specimens were located across northern Europe 
and western Eurasia where cold conditions lead to good fossil 
bone preservation conditions. In contrast, late Pleistocene Bb2 
specimens were found in southern and southwestern Europe 
where warmer conditions are less conducive to DNA preser-
vation, except in mountainous areas. Interestingly, the distri-
butions of Bb1 and Bb2 appear to match a species distribution 
modeling study of Bison bonasus (Pilowsky et al. 2023), which 
predicted separate late Pleistocene populations in western 
Russia and southwestern Europe. A longer-term geographic 
separation of Bison bonasus populations as suggested by this 
model could explain the genetic divergence between Bb1 
and Bb2 mitochondrial and genomic data, estimated here at 
~100 ka, MIS 5c. It would also match the Late Pleistocene geo-
graphic distributions observed in this dataset, with the Bb1 
group distributed across the colder environments of western 
Russia and northern Europe.

The two currently recognized lineages or subspecies of 
European bison are the Lowland and Lowland-Caucasian 
bison (Pucek et  al.  2004; Tokarska et  al.  2011), and captive 
and wild populations of the two groups are currently kept 
artificially separated. This has important consequences for 
the genetic diversity of the species, which is very low in both 
lines (Tokarska et  al.  2011). The Lowland-Caucasian bison 
is a hybrid of B. b. bonasus and B. b. caucasicus, as only one 
pure Caucasian male was available during restoration efforts 
(Tokarska et al. 2015, 2011). The ancient DNA records show 
that these two groups have shared the same mitochondrial 
clade (Bb2) throughout the Holocene and appear to be two 
descendant groups of the Late Pleistocene southern European 
distribution of Bison bonasus. The limited amounts of genetic 
differentiation currently observed between these groups ap-
pear to be an effect of geographic structure and differing num-
bers of founders during population restoration rather than 
distinct evolutionary paths (Tokarska et  al.  2015, 2011), and 
do not justify separate management plans. This has import-
ant ramifications for the conservation management of modern 
European bison populations, where limited genetic diversity 
and the risk of disease (Didkowska et  al.  2023; Kołodziej-
Sobocińska et  al.  2016) or environmental events on isolated 
herds are existential threats. Similar patterns are potentially 
likely for a number of other currently threatened megafaunal 
groups globally that have survived environmental and human-
caused population bottlenecks. For example, the separation of 

Holocene populations of North American bison into separate 
plains and wood bison appears very similar, and the genetic 
evidence used to support the current strategy of separate man-
agement has been contested (Cronin et al. 2013).

Dietary isotopic signatures suggest that Late Pleistocene 
steppe, Bb1, and Bb2 bison all foraged in non-forested habitats 
and had broad but overlapping diets. Similar niche and dietary 
overlap of Late Pleistocene steppe bison and aurochs (Bos pri-
migenius) has also been observed in Belgian and French sites 
(Bocherens et  al.  2015). Late Pleistocene Eurasia supported 
a rich community of megaherbivores on a productive tundra 
steppe habitat that has no close modern analog (Guthrie 2013). 
While the steppe bison appears to have dominated cold dry 
steppe environments (Figure  1A,D), European bison speci-
mens appear more common in the southern latitudes. Within 
that, however, the Bb1 clade appears to have been more com-
mon in colder, more open northern environments, while Bb2 
was largely present in warmer southern and southwestern 
European sites. Steppe bison disappeared in Europe before 
the end of the Pleistocene, while the Bb1 group survived until 
the early Holocene by moving northwards into Scandinavia 
as temperatures increased and following the retreat of the 
Fennoscandanavian ice sheet. This movement suggests Bb1 
was utilizing the shrinking open habitats as forests expanded 
(Figure  1A,D). The decreases in Bb1 dietary δ15N signals 
during this period likely reflect the low nitrogen levels in the 
early stages of soil formation and vegetation following degla-
ciation and the dominance of shrubs and bushes in north-
ern Europe preceding forest expansion (Hofman-Kamińska 
et al. 2019) (Figure 1C).

The stark contrast between dietary isotope signatures in Late 
Pleistocene and early Holocene bison individuals is consistent 
with the predicted forest cover across their respective geograph-
ical ranges (Figure 1B,C). During the Late Pleistocene, repeated 
glaciation events restricted cold-sensitive plant species (such as 
deciduous trees) to glacial refugia throughout Europe, resulting 
in a “mosaic” forest-steppe environment. Following deglaci-
ation of the European Ice Sheet Complex (EISC) at the end of 
the Younger Dryas and the onset of the Holocene (∼11.6 ka), 
continuing cold temperatures and seasonal dryness restricted 
forest expansion for the next two millennia. After this point, 
deciduous forest species rapidly expanded to cover the conti-
nent from ∼10 ka onwards until reaching a maximum extent 
∼6.7 ka (Binney et al. 2017; Birks and Tinner 2016; Leuschner 
and Ellenberg  2017; Marquer et  al.  2014; Patton et  al.  2017; 
Theuerkauf et al. 2014). As the EISC retreated there were mi-
grations of human populations into Scandinavia, northwards 
through Germany and Denmark, and southwards down the ice-
free Norwegian Atlantic coast (Günther et al. 2018). As a result, 
the remaining Bb1 populations in early Holocene Scandinavia 
would have been restricted to a region between rapidly expand-
ing dense forest to the south, newly arriving human populations, 
and the remaining ice sheets. This confluence of factors perhaps 
ultimately resulted in the extinction of the Bb1 clade.

Recent modeling studies suggest that a combination of climatic 
change and human pressure interacted with key ecological pro-
cesses to cause the abrupt decline of European bison, similarly to 
steppe bison in Siberia (Pilowsky et al. 2023, 2022). Humans are 
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likely to have exacerbated regional extinctions of these species 
by interrupting critical metapopulation processes (e.g., disper-
sal and recolonisation) that are critical in providing long-term 
demographic stability in the face of frequent and abrupt climate 
and environmental change, as has been suggested for other Late 
Pleistocene megafauna (Cooper et al. 2015; Fordham et al. 2024). 
Environmental change and habitat fragmentation are also rec-
ognized as major risk factors for extirpation or extinction of 
contemporary megafaunal herbivores due to their body size, 
low population density, larger spatial requirements, and dispro-
portionate exploitation by humans (Cardillo et al. 2005). In this 
regard, it is interesting that the distributions of Bb1 and Bb2 ap-
pear differentiated by latitude, although it is important to note 
that the oldest non-Caucasus Bb2 specimen is 21.6 ka in Slovenia 
(Figure 1D; Table S1). Assuming Bb1 had a long-term presence 
in southern Europe during the late Pleistocene, this may have 
provided important adaptations to periodic warmer and more 
forested conditions, such as environmental and foraging plas-
ticity (Gautier et al. 2016; Hofman-Kamińska et al. 2019). Such 
adaptations may have provided a key advantage to surviving the 
Holocene transition and rapid increase in forested habitats. The 
occupation of naturally open areas within forests such as river 
valleys and gaps after windfalls or insect/disease outbreaks is 
also likely to have provided important habitats for foraging and 
shelter from human pressure in the early Holocene, until the 
expansion of pastoralism and domestic animals (cattle, sheep, 
and subsequently pigs) into central European forest sites from 
around 6 ka (Zampirolo et al. 2023). It is notable that the reap-
pearance of Bb2 in mid-Holocene Polish sites occurs at the same 
time as the expanding human pressure in central European 
forests, potentially competing for habitat. This suggests that 
increased human activity may have prevented populations of 
European bison from rebounding during the Holocene, despite 
seemingly improved environmental conditions following defor-
estation by humans (Pilowsky et al. 2023).

We hypothesize that European bison partly avoided human 
pressure by using dense forests as refuge habitats during the 
Holocene (Kerley et al. 2012) as indicated by isotopic signatures 
(Hofman-Kamińska et  al.  2019) (Figure  1B,C), but ultimately 
faced gradual extirpation from the European continent at the 
end of the Holocene (Benecke 2005), potentially accelerated by 
the development of firearms (Pilowsky et  al.  2023). Although 
the modern-day Bb2 bison forage under dense forest cover in 
a typically warm/humid environment (Hofman-Kamińska 
et al. 2018), during the Middle to Late Holocene this group was 
successfully occupying high-altitude (1900 m above sea level) 
meadows in the Caucasus. They survived in those sites in the 
wild until the beginning of the 20th century, considerably longer 
than in Polish-Lithuanian forests where bison have been under 
royal protection since the 15th century (Samojlik 2005). Together 
with the paleorecords, this supports the conclusion that dense 
forest environments are not optimal habitat for European bison, 
because they do not offer enough food for large herbivores in 
winter—the animals are given supplementary feed during win-
ter months to compensate for the lack of dietary resources and 
avoid bison incursions into farmed lands (Hofman-Kamińska 
and Kowalczyk 2012; Samojlik et al. 2019). Open environments 
are far more suitable as they are much more productive, with 
longer periods with green grasses and large amounts of dry veg-
etation available in winter (Hurtado-Uria et al. 2013; Kowalczyk 

et al. 2019). However, not all open habitats provide the optimal 
conditions for the existence and survival of European bison. An 
average winter temperature below −5°C is a key climatic factor 
in current habitat use (Kuemmerle et al. 2011), so for example, 
while steppe bison inhabited the Iberian Peninsula during the 
Pleistocene, current and projected climatic conditions would not 
support the presence of European bison (Pilowsky et al. 2023). 
Milder winters mean temperatures only reach 0°C in the cold-
est month at the highest mountain peaks, while warmer con-
ditions are projected for the future (IUCN/SSC, 2013), so the 
region would likely be unsuitable for re-introduction (Paniagua 
et al. 2019).

Bison comprise around 20% of the species depicted in 
European cave art, and the diversity of bison horn and body 
shapes is thought to reflect variants of the steppe bison and 
European bison, which were the only two bison groups known 
to be present in Europe during the Late Pleistocene (Soubrier 
et al. 2016). The cave artists accurately recorded morpholog-
ical details, and the presence of both Bb1 and Bb2 clades in 
Late Pleistocene central and southern Europe raises the po-
tential that both might be represented in the cave art. The ge-
netic separation between Bb1 and Bb2 is greater than between 
American wood and plains bison, which have distinct morphol-
ogies and profiles, potentially related to ecological adaptations 
for forest and plains niches (Guthrie 2013). European cave art 
images include a distinctive steppe bison outline (pronounced 
humped back and downswept horns), a European bison-like 
profile (Bb1; upswept horns and flatter profile) (Soubrier 
et al. 2016), and also a number of unidentified forms (Soubrier 
et al. 2016). Many of the latter artworks were painted in south-
ern French caves during the Magdalenian (17–14 ka) and in 
central France during the Aurignacian and Gravettian periods 
(~42–21 ka), when Bb2 does not appear to have been present 
(Figure  1D; Table  S1). The only recorded Bb2 specimens in 
Western Eurasia during these periods were in Switzerland, 
Moldova, Slovenia, and the Caucasus (Figure  1D; Table  S1). 
It is therefore unclear if Bb2 is part of the unidentified forms 
depicted in Paleolithic French cave art.

The apparent periodicity in the radiocarbon dates of the 
Holocene bison specimens suggests some form of multi-
centennial- to millennial-scale forcing, with periodicities around 
~800 and ~1600 years (Figure 2). The peaks in bison numbers 
also coincide with decreases in Irish bog oaks associated with 
wetter conditions (Figure 2A,B,G) (Turney et al. 2016). Climate 
changes with similar variability have previously been iden-
tified in Holocene Western Europe, including the content of 
ice-rafted debris in marine sediments and reconstructed atmo-
spheric circulation over the North Atlantic (Bakke et al. 2008; 
Bond et al. 2001; Darby et al. 2012; Jonsson et al. 2010; Turney 
et al. 2005). These fluctuations appear to have had substantial 
impacts on climate and vegetation across the wider region, 
most notably Eurasia, where changes in glacier limits, lake 
levels, vegetation, and human populations have been reported 
(Balascio et al. 2015; Bevan et al. 2017; Daley and Barber 2012; 
Dobrowolski et  al.  2016; Magny  2004; McDermott et  al.  2001; 
Smith et al. 2016; Turney et al. 2006; Zielhofer et al. 2017). In 
the North Atlantic, peaks in ice-rafted debris are generally as-
sociated with wetter conditions (higher lake levels), a shorter 
growing season over western Europe, changes in vegetation 
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cover, and a decrease in human population numbers (Bevan 
et al. 2017; Pèlachs et al. 2011; Poska et al. 2022).

The wetter conditions are related to a pervasive phase state in the 
North Atlantic Oscillation (NAO), characterized by surface sea-
level pressure differences between the Icelandic (subpolar) Low 
and the Azores (subtropical) High pressure systems, which mod-
ulate the route and intensity of the North Atlantic jet stream and 
storm track (Smith et al. 2016). In the negative phase of the NAO, 
below-normal pressure over western Europe and high pressure 
in the high latitudes of the North Atlantic results in a weakening 
of the winter storm tracks, which migrate southwards, resulting 
in cooler air masses over northwestern Europe and wetter con-
ditions across southern Europe (Trouet et al. 2009). The opposite 
pattern is observed during a positive phase of the NAO. Here, we 
show a synchronicity of climate changes and variations in dated 
bison specimens that is consistent with known 800-year cycles 
in westerly airflow and increased discharge of IRD into the 
North Atlantic resulting in colder and relatively short growing 
seasons across Europe. A number of scenarios may explain this 
observation. For instance, associated cooler conditions would 
have reduced vegetation growth, favoring open habitat spaces 
suitable for European bison, and potentially increasing bone 
deposition through larger population sizes and ranges, or en-
hanced bone preservation rates (e.g., alluvial sites, open areas). 
Alternatively, a similar impact may have resulted from reduced 
human activity in the landscape including a smaller agricultural 
footprint (Turney et al. 2006) so the driver remains somewhat 
unclear. Nevertheless, it is intriguing that short-term European 
climate cycles can be observed so clearly within Holocene mega-
herbivore skeletal remains.

5   |   Conclusion

The extinction of steppe bison and the Bb1 European bison 
group was associated with human pressure but also the devel-
opment of dense forest coverage across most of Europe around 
the Late Pleistocene–Holocene transition. This prompted the 
potentially more northerly distributed Bb1 group to follow 
shrinking open habitats into Scandinavia before eventually 
becoming extinct. The Bb2 lineage potentially survived due to 
having a Late Pleistocene distribution in southern and south-
western Europe, where warmer climates and forested habitats 
periodically occurred. This group appears to have survived in 
open areas of forests during the early Holocene before recolo-
nizing the continent in the mid-Holocene. This geographic ex-
pansion coincides with human population growth during the 
Neolithic, including the increasing use of forest habitats for 
pastoralism. The observation that forests provide sub-optimal 
European bison habitat has important implications for long-
term bison conservation under projected climate warming 
(Kerley et al. 2012). In particular, the combination of our ge-
netic, ecological, and climate findings strongly challenges the 
proposed rewilding initiative to use extant European bison as 
a megaherbivore replacement for extinct steppe bison in Spain 
(Nores et al. 2024).

Although modern European bison populations occur in an in-
creasing number of locations and are becoming more numer-
ous (Kowalczyk and Plumb  2022), isolation and low genetic 

variability pose a threat to their survival and restoration of their 
role as environmental engineers in ecosystems. The current 
artificial isolation of genetic lineages based solely on several 
hundred years of geographic isolation, rather than their genetic 
history, appears unwarranted and increases threats in multiple 
ways, including disease susceptibility and reproductive issues. It 
is critical that the evolutionary history of species is used to in-
form current conservation management of these last remnants 
of the European megafaunal ecosystem.
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