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GDF-15 and uEGF Independently Associate
With CKD Progression in Children
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Introduction: Currently, there is limited ability to predict the progression of chronic kidney disease (CKD)
in children. Previously we reported that low levels of urinary epidermal growth factor (UEGF) predict CKD
progression in children. In the present study, we investigated a novel serum biomarker, growth differ-
entiation factor 15 (GDF-15), in 2 European pediatric CKD cohorts. We additionally explored the combined
effect of GDF-15 and/or uEGF on CKD progression in children.

Methods: The association between serum GDF-15 levels and CKD progression was analyzed in 671 pa-
tients of the Cardiovascular Comorbidity in Children with CKD (4C) study, aged 6 to 17 years with an
estimated glomerular filtration rate (eGFR) of 10 to 60 ml/min per 1.73 m? at baseline, and median follow-
up of 8 years. The composite end point was start of kidney replacement therapy, 50% eGFR loss, or eGFR <
10 ml/min per 1.73 m?. Results were validated in 329 participants from the ESCAPE trial.

Results: Higher GDF-15 levels were associated with an increased risk of CKD progression (hazard ratio:
1.40; 95% confidence interval [Cl]: 1.10-1.77), independent of age, sex, baseline eGFR, proteinuria, and
systolic blood pressure. Whereas adding either GDF-15 or uEGF individually to a model containing these
variables improved model fit, combining both markers improved the model further. External validation in
the ESCAPE cohort confirmed these results.

Conclusion: Serum GDF-15 and uEGF levels may provide complementary information on the risk of CKD
progression in children and might be included in future prognostic biomarker panels aimed at personal-
ized, risk-stratified management of pediatric CKD.

Kidney Int Rep (2025) m, m—m; https:/doi.org/10.1016/j.ekir.2025.07.004
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KD in children and adolescents leads to important
C clinical sequelae, including impaired neuro-
cognitive performance, reduced quality of life, and an
increased risk of cardiovascular disease.'” The rate of
disease progression varies greatly between and even
within individuals®’ and typically accelerates as the
children approach kidney failure.”

Reliable biomarkers predicting the risk of CKD
progression would help develop personalized, risk-
adapted nephroprotective  strategies.
despite ample research, few biomarkers exceeding the
prognostic value of serum creatinine and proteinuria
have been identified to date.”'’

uEGF has been identified as an independent
biomarker of CKD progression both in adults'' and in 2
pediatric cohorts.'> uEGF levels appear to reflect the
integrity of the tubulointerstitial compartment, with
low concentrations reflecting tubular atrophy and
interstitial fibrosis.

The limited number of validated biomarkers high-
lights the need for additional markers that reflect
diverse pathways of CKD progression.

GDF-15, a protein from the TGF-R superfamily, is a
promising candidate biomarker of CKD progression. It
is a ligand for the brain-specific 0-like receptor of the
Glial-Derived Neurotrophic Factor family and was
proposed to be a ligand of the ErbB2 receptor as well,
activating the ARK and the ERK-1/2 signalling path-
ways. '" Expression and plasma concentrations are
regulated by p53,'” BGR-1,'° CHOP, and ATF4'""’;
therefore, GDF-15 is upregulated in response to tissue
injury, inflammation and ischemia.” Tt is expressed
almost ubiquitously; in the kidney, expression in-
creases in response to harmful processes such as
metabolic acidosis or potassium depletion.”'** Previous
studies found GDF-15 to play a role in car-
dioprotection.”"**** A recent preclinical study indi-
cated that GDF-15 might also be nephroprotective,
because GDF-15 knockout mice showed increased
interstitial and tubular damage in models of type 1 and
type 2 diabetes.”” An association of GDF-15 with the
incidence and progression of CKD has recently been
observed in adults. In adults without known kidney
disease followed-up with in the Framingham Heart
study, higher serum GDEF-15 concentrations were
associated with a greater risk of developing CKD.”* In 2
adult CKD cohorts, intrarenal GDF-15 mRNA expres-
sion correlated with circulating serum GDEF-15 levels,

However,

which in turn were associated with CKD progression.”’
However, after adjustment for cardiovascular and age-
related risk factors the association was only weakly
significant.

Data on GDEF-15 in children with kidney disease are
scarce. Elevated serum GDF-15 levels have been re-
ported in pediatric patients on dialysis,”® but its role as
a biomarker of CKD progression in children remains
unclear.

Here, we investigated the association of serum GDEF-
15 levels alone and in combination with uEGF with the
risk of CKD progression in 2 large European pediatric
CKD cohorts. The Cardiovascular Comorbidity in
Children with CKD (4C) Study cohort was used to
explore associations and develop a prediction model,
which was subsequently validated in the ESCAPE trial
cohort.

METHODS

Study Design and Setting

The 4C Study is a long-term observational cohort study
that followed-up with 704 children with CKD in 12
European countries for up to 8 years. Participants were
aged 6 to 17 years with a baseline eGFR of 10 to 60 ml/
min per 1.73 m® at the time of enrolment and under-
went semiannual clinical assessments from 2010 to
2018. The detailed study design and setting were
described previously.”” The ESCAPE trial was a ran-
domized controlled clinical trial addressing the neph-
roprotective effect of intensified blood pressure
control.” Three hundred eighty-five European chil-
dren aged 3 to 17 years were followed-up with for 5
years, with 2-monthly eGFR assessments. Baseline
eGFR ranged from 15 to 80 ml/min per 1.73 m®. All
ESCAPE patients received a fixed dose of the
angiotensin-converting enzyme inhibitor, ramipril
throughout the observation period.

Patients from both cohorts were included if a frozen
serum sample collected at baseline or within 6 months
of enrolment were available to assess serum GDEF-15
levels, along with available data on CKD progression.
In addition, for a subset of patients, previously
measured uEGF concentrations from 1 morning urine
sample collected at baseline or within the first 6 months
of enrolment were available and included in the anal-
ysis. Both study protocols were approved by the cen-

tral ethics committee of the Medical Faculty of
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Heidelberg University and by each of the local insti-
tutional review boards.

Laboratory Assessments

Samples were aliquoted and stored at —80 °C directly
after collection. Urine and serum samples were
analyzed centrally in a standardized manner as pub-
lished in the study protocols.””””" eGFR was deter-
mined based on serum creatinine and cystatin C,”" and
proteinuria according to the urine protein-to-creatinine
ratio (mg/mg).

For GDF-15 measurements in serum, the Human
GDF-15 Quantikine enzyme-linked immunosorbent
assay (R&D Systems, Minneapolis, MN) was used as
previously described.”” All samples were determined in
duplicate wells. Only samples collected within 6
months of enrolment were used. uEGF was measured in
urine spot samples as previously described.'”

Clinical Assessments

In accordance with the study protocol, anthropometric
and clinical data were collected at each study visit.’
Weight, height ,and blood pressure were normalized
to SD scores (SDS).”

Statistical Analysis
Patient baseline characteristics are described separately
for the 4C and ESCAPE cohort using mean with SD,
median with interquartile range, or frequencies. Cor-
relations were quantified using the Spearman correla-
tion coefficient. Primary kidney diseases were
categorized into congenital anomalies of the kidney and
the urinary tract (CAKUT), tubulointerstitial disease,
glomerulopathy, CKD after acute kidney injury, and
others. The primary end point was defined as a com-
posite event of 50% loss of baseline eGFR, attainment
of an eGFR < 10 ml/min per 1.73 m’, or the start of
kidney replacement therapy, whichever occurred first.
If a 50% loss of eGFR occurred between 2 clinical
visits, the time of the event was determined using
interpolation. Survival analysis was performed by
defining GDF-15 quartiles and comparing the respec-
tive progression-free survival. The log-rank test was
applied and Kaplan-Meier survival curves are plotted.
Furthermore, Cox proportional hazard models were
applied to quantify the additional value of GDF-15 to
predict progression of CKD. First, a model with basic
prognostic variables was fitted (model 0) containing
age, sex, systolic blood pressure SDS, log-transformed
eGFR, log-transformed urine protein-to-creatinine ra-
tio, and diagnosis (glomerulopathies vs. others); and
second, log-transformed GDF-15 was added (model 1).
For a subgroup of patients with both GDF-15 and
uEGF measured, models 0 and 1 (here model 1a) were

Kidney International Reports (2025) B, H-H
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Table 1. Baseline characteristics of the 4C and ESCAPE cohorts

Baseline characteristics 4C cohort ESCAPE cohort

Total, N 671 329

Male sex (%) 434 (65.1) 129 (58.4)
Age, mean (SD), yrs 12.2 (3.4) 11.6 (4.0)
Primary renal diagnosis, no. (%)

CAKUT 462 (69.3) 237 (72.0)
Glomerulopathies 57 (8.5) 22 (6.7)
Post-AKI CKD 33 (4.9) 30 (9.1)
Tubulointerstitial disorders 89 (13.3) 33 (10.0)
Other 26 (3.9) 7 2.1)
Systolic blood pressure

mm Hg 112 (14.8) 118 (14.4)
SDS 0.74 (1.35) 0.77 (1.21)
Diastolic blood pressure

mm Hg 68.6 (12.2) 72.4 (12.3)
SDS 0.63 (1.07) 1.23 (1.24)
Body mass index

kg/m? 18.5 (3.9) 18.1 (3.6)
SDS 0.12 (1.24) -0.19 (1.11)
Height

cm 141 (20.2) 140 (22.4)
SDS —1.35 (1.36) —1.43 (1.561)
eGFR, mi/min per 1.73 m? 27.6 (13.4) 445 (18.0)
UEGF/Cr®, ng/mg 3.58 (4.69) 4.38 (4.99)
uPCR", mg/mg 1.29 (2.45) 0.90 (1.71)
GDF-15°, pg/ml 1004 (708) 805 (487)
Total cholesterol, mg/dl 181 (61.6) NA

LDL cholesterol, mg/dl 99.8 (42.4) NA

HDL cholesterol, mg/dl 48.0 (14.9) NA
Plasma bicarbonate, mmol/I 21.2 (3.8) 22.6 (3.7)
Serum albumin, g/I 39 (6.3) 42.8 (6.0)
CRP?, mg/l 0.568 (1.99) NA

AKI CKD, acute kidney injury chronic kidney disease; CAKUT, congenital anomalies of
the kidney and the urinary tract; CRP, C-reactive protein; eGFR, estimated glomerular
filtration rate; GDF-15, growth differentiation factor 15; HDL, high-density lipoprotein;
LDL, low-density lipoprotein; NA, not applicable; no., number; SDS, SD scores; uEGF/Cr,
urinary epidermal growth factor / urinary creatinine; uPCR, urine protein-to-creatinine
ratio.

Data are N (%) and mean (SD).

®The variables are given as median (interquartile range).

applied as described above, and a third Cox propor-
tional hazard model (model 2) was constructed by
adding log-transformed uEGF to model 1. Ain addition,
a model 1b was constructed by adding uEGF but not
GDEF-15 to model 0. All models were compared based on
the Akaike information criterion (AIC, lower values
indicating a better fit). C-statistics were used to eval-
uate the performance of the prediction models with
GDF-15, using the method proposed by Uno et al.”” A

truncated C (CT) was calculated with the R package @4

survCl for T =1, 2, and 3 years. The difference of the
C-statistics of the models was calculated with 95% CIs
to compare the predictive power of the models. A 95%
CI not including 0 indicates significant improvement.
Internal validation was performed by calculating
leave-1-out cross-validation and bootstrap corrected
estimates. External validation was performed in the
ESCAPE dataset. The developed model from the 4C
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Figure 1. CKD progression-free kidney survival by serum GDF-15 quartiles in 4C cohort (a) and ESCAPE cohort (b). CKD, chronic kidney disease;

GDF-15, growth differentiation factor 15.

dataset was applied to the validation dataset as follows.
After fitting the Cox proportional hazards model to the
4C data, the model coefficient estimates were used to
calculate the linear predictor of the existing model for
the patients of the ESCAPE cohort. For this purpose,
the “predict” function in R with the mean centered
linear predictor method (type="Ip") was used. Here,
too, truncated C-statistics were calculated. A calibra-
tion plot was created to compare the predicted survival
probability in the ESCAPE cohort with the observed
survival frequencies.

A P-value < 0.05 was considered significant. Sta-
tistical analysis was performed using SAS Software
Version 9.4 (SAS Inc., Cary, NC) or R version 4.0.1.

RESULTS

Description of Cohorts

Serum samples were available from 671 children in the
4C study and from 329 participants in the ESCAPE
trial. The baseline characteristics of both cohorts are
shown in Table 1.

The leading primary renal diagnoses in the 4C cohort
were CAKUT (69.3%), tubulointerstitial diseases
(13.3%), and glomerulopathies (8.5%). Of the 4C pa-
tients, 63.6% received renin-angiotensin system in-
hibitors during the observation period. In the ESCAPE
trial cohort, primary renal diagnoses were distributed
similarly with 72% with CAKUT and 7% with glo-
merulopathies. The ESCAPE patients were on average
younger and presented with higher eGFR and lower
proteinuria (0.90 [1.71] mg/mg) than the 4C patients
(Table 1).

4

In the SC cohort, the composite end point of CKD
progression was reached by 389 patients (58%) after a
median time of 2.3 (0.8-4.4) years, corresponding to an
incidence rate of 20.8 events/100 patient-yrs. In the
ESCAPE cohort, 121 (36.8%) patients reached the pri-
mary end point during the 5-year follow-up.

Serum GDF-15 Levels

The distribution of serum concentration of GDF-15 in
the 2 cohorts is presented in Table 1. In both cohorts,
GDF-15 was inversely correlated with eGFR (NC:
r= —0.58, P < 0.001; ESCAPE: r = —0.66, P < 0.001).
A multivariable linear regression model was con-
structed on the Nc cohort to identify covariates of GDF-
15. Log-transformed GDF-15 was associated with lower
eGFR (3 = —0.02, P < 0.001), lower serum albumin

(8 = —0.02, P < 0.001), higher CRP (8 = 0.05, P <05

0.001) and the diagnoses (reference: CASKET) of glo-
merulopathies (3 = 0.18, P 0.004), of tubulointerstitial
disorders (8 = 0.28, P < 0.001), and others (& = 0.31,
P < 0.001) but not with age, sex, body mass index
SSDS, and urine protein-to-creatinine ratio.

Serum GDF-15 and CKD Progression
In both cohorts, progression-free survival was quanti-
tatively associated with serum GDF-15 levels. Patients
with GDF-15 concentrations in the highest quartile
showed the highest risk of CKD progression (log-rank
test with P < 0.001 for between-group differences,
Figure 1).

Cox proportional hazard models with established
progression markers without and with serum GDEF-15
were constructed (model 0 and model 1, Table 2 and

Kidney International Reports (2025) B, H-H
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Table 2. Cox proportional hazard models of CKD progression

CLINICAL RESEARCH

Model 0 (AIC 4063)

Hazard ratio 95% ClI

Sex (female) 1.07 0.87 1.32
Age (yrs) 1.06 1.02 1.09
Glomerulopathies 1.64 1.16 2.32
log uPCR 151 1.39 1.66
Systolic BP SDS 1.11 1.04 1.20
log eGFR 0.14 0.11 0.19
log GDF-15

Model 1 (AIC 4058)
P-value Hazard ratio 95% ClI P-value
0.51 1.05 0.85 1.30 0.65
< 0.001 1.05 1.02 1.09 < 0.001
0.005 1.53 1.08 2.18 0.02
< 0.001 1.50 1.37 1.64 < 0.001
0.003 1.10 1.03 1.19 0.007
< 0.001 0.17 0.12 0.23 < 0.001
1.40 1.10 1.77 0.006

AIC, Akaike information criterion; Cl, confidence interval; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; GDF-15, growth differentiation factor 15; SDS, SD score;

uPCR, urinary protein-to-creatinine ratio.
n = 667, reference for glomerulopathies: other diagnoses.

Supplementary Table SD). In model 0 for the NC
cohort, log-transformed eGFR and log-transformed
urine protein-to-creatinine ratio, age, systolic blood
pressure SSD, and glomerulopathy (vs. others) were
significantly associated with CKD progression. In model
1, log-transformed GDF-15 showed a significant inde-
pendent association with CKD progression (hazard ra-
tio: 1.40, 95% CI: 1.10-1.77, P = 0.006) and improved
the predictive value of the model based on the AIC
(Table 2). C-statistics were calculated to compare the
predictive models. The addition of GDF-15 to model
0 improved C-statistics for predicting 1-, 2-, and 3-year
risk of CKD progression at borderline significance (95%
CI: —0.001 to 0.02, 95% CI: —0.001 to 0.01 and 95%
CL: —0.001 to 0.01 at 1, 2, and 3 years respectively)
(Table 3). The results of the C-statistics were validated
internally by leave-l-out cross-validation and boot-
strapping, which also showed improved values for risk
progression at all time points.

In the ESCAPE cohort, serum GDF-15 concentrations
were associated with CKD progression independently
of eGFR, proteinuria, and other risk factors (hazard
ratio: 4.49, 95% CIL: 2.35-858 P < 0.001)
(Supplementary Table Sc). C-statistics were nominally
increased by addition of log-transformed GDF-15 levels
to the model, approaching statistical significance with
increasing observation time (95% CI: —0.04 to 0.08,
95% CI: —0.003 to 0.06, and 95% CI: —0.001 to 0.05 at
1, 2, and 3 years respectively) (Table 4).

GDF-15 and keg Combined

In subgroups of 536 Nc and 183 ESCAPE patients with
serum GDEF-15 measurements, eGFI concentrations were
available. Among those children, 299 NC (55.7%) and
70 ESCAPE (38.3%) patients reached the composite end
point. Four Cox proportional hazard models were
constructed; models 0 and 1(a) as described earlier, a
model 1b. with the baseline values and keg (without
GDEF-15), and a model containing both log-transformed
GDEF-15 and log-transformed eGFI model 2).

Both GDEF-15 and uEGF were significantly associated
with CKD progression in the 4C cohort independently
of the conventional risk factors established in model
0 (Table 5, model la and 1b). The fit of the model ac-
cording to the AIC improved when either GDF-15 or
uEGF were added to the model (30693062 and 3053,
respectively). Adding both markers together further
improved the model fit (AIC 3051).

In the ESCAPE cohort, the results of the Cox models
were consistent with those obtained in the 4C cohort.
When adjusting for age, sex, systolic blood pressure
SDS, proteinuria, diagnosis, and eGFR, higher serum
GDF-15 was associated with a 4-fold increased hazard
of reaching the end point (model la; P < 0.001). In
model 1b, higher uEGF levels were associated with a
39% risk reduction (P = 0.007). The combination of
GDF-15 and uEGF (model 2) showed further improve-
ment based on the AIC (587, 576, 582, and 574 for
models 0, 1a, 1b, and 2, respectively) as compared with

Table 3. Internal and external validation of CKD progression prediction model incorporating GDF-15. C-statistics and internal validation of

prediction model at different time points in the 4C cohort

Leave-1-out cross-
C-statistic (95% Cl) validation Bootstrapping
Time point Model 0 Model 1 AC-statistic Model 0 Model 1 Model 0 Model 1
1-yr 0.851 (0.815-0.887) 0.858 (0.825-0.892) 0.007 (—0.001 to 0.015) 0.849 0.855 0.849 0.855
2-yr 0.814 (0.785-0.844) 0.819 (0.790-0.847) 0.004 (—0.001 to 0.010) 0.812 0.815 0.812 0.815
3-yr 0.799 (0.769-0.828) 0.803 (0.774-0.831) 0.004 (—0.001 to 0.010) 0.796 0.799 0.796 0.800

Cl, confidence interval; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; GDF-15, growth differentiation factor 15; SDS, SD score; uPCR, urinary protein-to-

creatinine ratio.

Model 0 includes sex, age, log uPCR, systolic blood pressure SDS, and log-transformed eGFR. Model 1 includes all variables of model 0 and log-transformed GDF-15.
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Table 4. Prediction model fit (C-Statistic) in ESCAPE cohort

J Bartels et al.: GDF-15 and uEGF Link to Pediatric CKD Progression

Time point Model 0

1-yr 0.828 (0.713-0.943)
2-yr 0.864 (0.808-0.919)
3-yr 0.845 (0.791-0.899)

Model 1 AC-statistic

0.847 (0.741-0.954)

0.889 (0.840-0.939)
0.869 (0.824-0.915)

0.019 (—0.042 to 0.080)
0.026 (—0.003 to 0.055)
0.024 (—0.001 to 0.050)

each biomarker alone (Supplementary Table S2). A
calibration plot of the predicted and the observed
survival probability is shown in Figure 2. The pre-
dicted survival probability was well in line with the
observed survival frequencies across most of the
probability distribution range except for the lower
end, where survival was underpredicted in the
ESCAPE validation cohort.

DISCUSSION

The aim of this investigation was to explore whether
serum GDF-15 levels are associated with the risk of CKD
progression in children and whether a combination of
GDF-15 and urinary EGF provides better prediction of
CKD progression than each factor alone. We demon-
strated an association between GDF-15 concentrations
and the progression of pediatric CKD, in keeping with
findings in adults.”*’ The association was indepen-
dent of established progression factors. Internal and
external validation confirmed these findings. However,
the observed association was not close enough to allow
risk discrimination in a prediction model at the given
sample size, with C-statistics reaching borderline sta-
tistical significance.

We aimed to identify a reliable predictive marker for
pediatric CKD progression. Biomarkers should ideally
be related to the pathophysiology of the disease, that is,
be biologically plausible.g4 Several findings indicate the
involvement of GDF-15 in the progression of CKD.
GDF-15 is weakly expressed along the whole nephron
and upregulated in response to damaging processes
such as metabolic acidosis.”” Intrarenal expression of
GDF-15 was strongly correlated with serum GDEF-15
levels in adults with CKD.”’

This is the first time the association of serum GDF-15
with CKD progression was investigated in large cohorts
of children with CKD. Pediatric CKD differs profoundly
from adult disease, because it is caused predominantly
by congenital and hereditary disorders and patients
largely lack comorbid conditions related to aging,
diabetes, and smoking. Because serum GDEF-15 reflects
various stressors in the body and is therefore associated
with aging and disease,”” studying it in pediatric co-
horts may reduce confounding and allow a clearer
assessment of its association with CKD progression.

Data on GDF-15 in children with kidney disease
have been limited and inconclusive. In a small cohort of
children on chronic dialysis, serum GDF-15 levels were
consistently elevated compared with healthy controls,

Table 5. Cox proportional hazard models with stepwise inclusion of GDF-15 and uEGF in the 4C cohort

Model 0 (AIC 3069)

Model 1a (AIC 3062)

Hazard ratio 95% ClI

Sex (female) 1.09 0.86 1.39
Age (yrs) 1.07 1.03 1.11
Glomerulopathies 1.73 1.16 2.59
log uPCR 1.65 1.40 1.71
Systolic BP SDS 1.13 1.03 1.24
log eGFR 0.22 0.16 0.31
log GDF-15 - - -
log UEGF/Cr

Model 1b (AIC 3053)
Sex (female) 1.10 0.87 1.41
Age (yrs) 1.05 1.01 1.09
Glomerulopathies 1.61 1.08 242
log uPCR 1.72 1.53 1.93
Systolic BP SDS 1.14 1.04 1.24
log eGFR 0.30 0.21 0.44
log GDF-15 - - -
log UEGF/Cr 0.81 0.74 0.89

P Hazard ratio 95% ClI P
0.48 1.06 0.83 1.35 0.64
< 0.001 1.07 1.03 1.10 < 0.001
0.01 1.56 1.03 2.34 0.03
< 0.001 1.63 1.38 1.69 < 0.001
0.01 1.12 1.02 1.22 0.02
< 0.001 0.27 0.18 0.38 < 0.001
1.47 1.14 1.90 0.003
Model 2 (AIC 3051)
0.42 1.09 0.85 1.38 0.51
0.007 1.05 1.02 1.09 0.006
0.02 1.49 0.99 2.26 0.06
<0.001 1.68 1.60 1.89 < 0.001
0.007 1.13 1.03 1.23 0.01
< 0.001 0.33 0.23 0.49 < 0.001
- 1.31 1.01 1.71 0.05
< 0.001 0.83 0.75 0.91 < 0.001

AIC, Akaike information criterion; BP, blood pressure; Cl, confidence interval; eGFR, estimated glomerular filtration rate; GDF-15, growth differentiation factor 15; SDS, SD score; uEGF/Cr,
urinary epidermal growth factor / urinary creatinine; uPCR, urinary protein-to-creatinine ratio.

n = 536; reference for Glomerulopathies: other diagnoses.
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Figure 2. Calibration plot of predicted and observed survival probability in the ESCAPE validation cohort. GDF, growth differentiation factor.

with higher levels in children receiving hemodialysis
than in those on peritoneal dialysis.”® In contrast, uri-
nary GDF-15 showed little or no correlation with kid-
ney function in pediatric allograft recipients.”
Moreover, although serum GDF-15 was studied as a
biomarker for cardiovascular disease in children, it was
found unsuitable for that purpose because of its strong
association with kidney function.”

To assess whether GDF-15 is associated with pro-
gression of CKD independently of established pro-
gression factors, baseline models for the Cox
proportional hazard analyses were constructed by
including risk factors according to previous studies.’’
A clear association of GDF-15 with the risk of CKD
progression was observed, which remained significant
after adjusting for these established risk factors. Most
importantly, the addition of GDF-15 to the model
improved the AIC, indicating a better fit of the model.
For 1-, 2-, and 3-year risk of progression, the C-statis-
tics nominally increased at all times (indicating
improvement) and in both the internal and external
validation studies; however, only borderline statistical
significance was reached.

These findings suggest that though GDF-15 is inde-
pendently associated with CKD progression in children,
its added prognostic value as a single biomarker ap-
pears to be modest. It has been argued that panels of
biomarkers might be more informative on CKD pro-
gression than single markers.” uEGF has been identi-
fied as a promising biomarker of CKD progression in
children.'” In a subgroup of patients for whom both
GDF-15 and uEGF measurements were available, the
addition of each marker to the baseline model improved
the fit of the model based on the AIC. Adding both

Kidney International Reports (2025) B, H-H

GDF-15 and uEGF to the baseline model resulted in an
even further improvement of the model fit. Therefore,
the combination of GDF-15 and uEGF may provide
complementary information on the risk of CKD pro-
gression in children.

The cross-validation of findings in 2 large prospec-
tive pediatric CKD cohorts is a major strength of our
study, which covered a wide range of primary kidney
diseases and ethnic backgrounds. Nonetheless, both
the study cohort and the validation cohort lacked
representation of children with early CKD (stages 1 and
2), infant age, as well as African American and Asian
backgrounds. Our investigation was further limited by
the fact that only I-time measurements of both bio-
markers were performed, precluding assessment of the
association of changes in serum levels with the risk of
CKD progression. In addition, GDF-15 and uEGF could
not always be measured in samples from the same visit,
although all samples were obtained within a 6-month
time window. The measurement of GDF-15 in urine
instead of serum samples could provide additional in-
formation because GDF-15 levels may be related with
uremic toxin levels and this relation is less with uri-
nary GDF-15."° Furthermore, the treatment effect of
angiotensin-converting enzyme inhibitors on GDF-15
and uEGF levels could be investigated in future
studies.

In conclusion, GDF-15 is associated with the pro-
gression of CKD in children, independent of established
variables and across all primary renal disorders
including CAKUT. Although isolated serum GDF-15
levels yield a marginal improvement of progression
prediction models, the combination of GDF-15 and
uEGF appears to provide complementary information
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on disease progression, and thus both markers are
potential candidates for a biomarker panel.

Further exploration of GDF-15, uEGF, and other
potential biomarkers of CKD progression in large
multiethnic prospective pediatric cohorts including
younger patients and children with earlier stages of
CKD will be needed to corroborate and extend
our findings with the aim of establishing reliable
biomarker panels that will help personalize neph-
roprotective management for children with CKD, such
as frequency of patient monitoring and timing of
implementation of pharmacological therapies, accord-
ing to individual risk.

APPENDIX
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S.Habbig, University Children’s Hospital, Cologne; M.
Galiano, University Children’s Hospital, Erlangen; R.
Blscher, University Children’s Hospital, Essen; C. Gimpel,
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Szczecin; M. Litwin, A.Niemirska, Children’s Memorial
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