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Summary

Macrophytes serve as indicators of aquatic ecosystem health and are often employed in
monitoring the condition of water bodies. Traditionally, such observations are conducted
in situ, but remote sensing offers a cost-effective and scalable alternative. Here, an algorithm for
macrophyte detection using satellite data was created; we utilized clustering, with its results
serving as target labels for building a machine-learning model. We developed a model for
macrophyte identification using reflectance data in the near-infrared band during spring and
summer. The derived algorithm, employing Sentinel-2 satellite reflectance data, enables the
identification of open water, submerged and floating macrophytes and emergent macrophytes.
This approach enhances the efficiency and applicability of macrophyte assessment, bridging the
gap between field observations and remote sensing for comprehensive aquatic ecosystem
monitoring.

Introduction

Macrophytes are visible aquatic plants constituting an important environmental component;
they include emergent, floating and submerged species (Chambers et al. 2008). Macrophytes
impact the physical structure of the littoral zone and predictably change community
composition, biomass and life forms with depth (Vadeboncoeur 2009). They react to shifts in
energy inflow, cycling of nutrients and sedimentation (Bornette & Puijalon 2009). Monitoring
macrophytes is also important in the context of the widespread shift in freshwater bodies from
stable clear-water ecosystems to degraded algae-dominated states (Zhang et al. 2016,Wang et al.
2023, Qiu et al. 2025). The macrophyte index of the European Water Framework Directive is a
long-term trophic status indicator (WFD 2000) and a crucial element for evaluating the
ecological health of water bodies (Kumar et al. 2023).

The monitoring of macrophytes has relied on field observations using the transect method
(DES 2009, Ministry of Environment of Lithuania 2013) or surveys of key points to assess the
ecological condition of lakes based on deviations in taxonomic composition (Clayton &
Edwards 2006, Zviedre et al. 2013, 2015, 2016, Ministry of Environment of Lithuania 2021).
These require substantial human and financial resources.

Detailed studies of specific lakes (Sinkevičienė 2007, Marčiulioniene et al. 2011, Ghirardi
et al. 2022, Liang et al. 2022, Ozolins et al. 2023, Novković et al. 2024, Robran et al. 2024) or
particular species (Salako et al. 2016, Abeysinghe et al. 2019, Tiškus et al. 2023) have explored
macrophyte distributions. Among these, remote sensing techniques were applied in the studies
by Salako et al. (2016), Abeysinghe et al. (2019), Ghirardi et al. (2022), Liang et al. (2022), Tiškus
et al. (2023), Novković et al. (2024) and Robran et al. (2024). However, most remote sensing
studies focus on single-time acquisitions or vegetation indices, overlooking seasonal variations
in reflectance.

Current challenges in macrophyte ecology require advanced monitoring approaches to
detect ecosystem changes in response to climate variability, anthropogenic pressure and
pollution. Macrophytes are often used as bioindicators, especially for detecting heavymetals and
other pollutants in aquatic environments (Farias et al. 2018). Automatic identification and
classification algorithms using remote sensing data can accelerate bioindication efforts by
enabling continuous monitoring of macrophyte dynamics with high levels of development over
large geographical regions, such as river basins.

To our knowledge, it has not been possible to simultaneously identify emergent, submerged
and floating macrophytes in water bodies based on seasonal reflectance data, apart from an
existing vegetation index-based approach (Villa et al. 2015), the complexity of which limits its
practical applicability.

Recent reviews of remote sensing of lakes (Krtalić & Krtalić 2023, Batina & Krtalić 2024,
Deng et al. 2024) have predominantly focused on parameters such as water quality, temperature
or chlorophyll-a concentrations, and they have rarely considered macrophytes as long-term
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indicators of ecosystem health and trophic status. Optical satellite
Sentinel-2 reflectance data have been used to classify macrophyte
types for specific water bodies, employing spectral signature
(Albright & Ode 2011, Tiškus et al. 2023) and machine-learning
methods (Piaser & Villa 2023). Due to their 5-day periodicity,
10-m spatial resolution over four bands and free access, Sentinel-2
images have been useful for mapping regional water bodies and
vegetation (Du et al. 2016).

Optical remote sensing has a critical drawback for vegetation
determination: it cannot identify vegetation under clouds. This is
less essential for persistent vegetation, for which obtaining only
one cloud-free image within a month is sufficient. Emergent,
submerged and floating aquatic plants and the open water surface
differ in solar reflectance throughout the year due to differences
caused by variations in vegetation phenological stages; this
provides a basis for their identification.

Our objective was to develop and validate a straightforward,
reproducible algorithm for identifying and classifying emergent,
submerged and floating macrophytes in lakes using Sentinel-2
data. Designed for broad applicability across lakes within the
Nemunas River Basin, the algorithm combines cluster analysis
with machine learning to improve ecological monitoring. We
hypothesized that seasonal changes in near-infrared reflectance
patterns could be used to identify and distinguish macrophyte
types, despite environmental factors.

Materials and methods

Study area

Two natural lakes in Lithuania were studied: Žuvintas and Salotė.
Extensive overgrowth of aquatic plants in Lake Žuvintas
(Northeastern Žuvintas Biosphere Reserve) provides a challenging
spatial distribution of vegetation for algorithm application and
testing of remote sensing technologies for vegetation identification.
Lake Žuvintas is 9.38 km2 in area, has an average ecological status
(Sinkevičienė 2007, Paukštys 2011) and is surrounded by wooded
swamps, with its shores adorned by marsh plants (Zviedre et al.
2015). Thirty-three macrophyte species have been identified
within Lake Žuvintas, with 19 being floating or submerged. The
prevailing macrophyte species is Phragmites australis, with others
including Hydrilla verticillata, Potamogeton lucens, Potamogeton
perfoliatus and Potamogeton compressus (Zviedre et al. 2015).

Lake Salotė is 0.5 km south of Pilaitė (Vilnius) and is shallow
and irregular in shape, with an area of 0.13 km2 (Krevš &
Kučinskienė 2009). The lake has several bays and a small island in
the middle. The south-western shore and the ends of the bays are
swampy, whereas the eastern shore is dry.

Algorithm development

The algorithm was developed through satellite data preprocessing,
clustering or label creation and building a machine-learning
model, which involved searching, testing and implementing the
algorithm (Fig. S1).

We utilized the Harmonized Sentinel-2 MultiSpectral Imagery
(MSI) data in the visible and near-infrared bands with 10-m
resolution for Lake Žuvintas (ESA 2015). We employed Level-2A
products, which include Scene Classification and Atmospheric
Correction applied to the Top-Of-Atmosphere (TOA) Level-1C
orthoimage products (ESA 2021). This ensured that our analyses
were based on satellite imagery with minimal atmospheric effects.

Initially, for Lake Žuvintas, all data were collected on cloudless
days during the snow-free period in 2021: 19 April, 11 May, 18
June, 10 July, 8 September, 26 September and 31 October (Fig. S2);
and in 2022: 22 March, 9 May, 25 June, 20 July, 24 August and 26
September. We used Lake Salotė reflectance data for algorithm
application on 11 May and 17 August 2023. The data were
resampled by Google Earth Engine and scaled by 10 000; for 2022
data, their Digital Number (DN; value) range shifted by 1000
(GEE 2022).

Subsequently, the data underwent cropping through the Google
Earth Engine platform, employing a polygon mask encompassing
the lake and the largest island. This mask covered an area of
9.95 km2.

The 2022 reflectance data from Lake Žuvintas and the 2023
reflectance data from Lake Salotė were employed to assess the
model’s performance on independent data; this enabled the model
to be examined regarding its capacity to identify macrophytes in
disparate temporal and spatial contexts.

We employed clustering on the reflectance data of Lake
Žuvintas to identify areas with similar seasonal reflectance
dynamics due to the limited amount of verified ground-based
data, acknowledging that only macrophytes and open water
surfaces could be identified in the lake.

The gap-statistics metric applied on three samples of 1000
random pixels suggested the division of Lake Žuvintas into at least
two clusters (Fig. S3). Ultimately, we divided Lake Žuvintas into
four clusters.

The CLARA (Clustering Large Applications; Gentle et al. 1991)
algorithm utilized the Manhattan distance method, which is
particularly effective for large datasets (Gupta et al. 2019). This
method extends the k-medoids (PAM; i.e. Partitioning Around
Medoids) techniques, addressing computing time and RAM
storage issues in data with numerous objects (Kassambara 2017).

Using the Manhattan distance, the CLARA clustering algo-
rithm with five sample sets divided the area of interest into four
distinct clusters. Each pixel was represented by 49 min–max
normalized reflectance values (seven bands across seven dates)
used for clustering (Gopal et al. 2015).

We validated the clustering results by comparing the area with
satellite data and a digital raster orthophotography map of
Lithuania (ORT10LT – 1:10 000) from the National Land Service
of the Ministry of Environment (LSIP), using remote sensing data
from Google Maps.

The clustering results became target labels for model training, for
which we usedmachine-learning techniques. Themodel was trained
using the Recursive Partitioning and Regression Trees (RPART)
method (Strobl et al. 2009), which is a robust classifier for high
dimensionality (Georganos et al. 2018). We applied repeated cross-
validation on the training set for the model evaluation and its
behaviour on independent data. The training set was divided into 10
folds, and the test was carried out with five repeats.

We used only 20.2% of pixels as the foundation for model
building, with equal portions of all vegetation types and open water
surfaces. The training and test datasets comprised 70% and 30% of
the data, respectively.

Tuning the model with a complexity parameter (cp) equal to
0.40 enhanced the accuracy of identification. The lowest value of cp
corresponds with the highest accuracy value (Fig. S4). The model’s
accuracy was significantly reduced using a cp higher than 0.41, but
employing a minimal value resulted in a cumbersome model with
numerous variables. The model’s performance was applied
independently to the macrophytes of Lake Salotė.
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We used data from the Phantom 4 unmanned aerial vehicle
with a 12-megapixel camera that captured high-quality images
with precise detail and clarity for validation of the model
application. The horizontal accuracy was ±0.3 m and the vertical
accuracy was ±0.1 m. The date of acquisition for Lake Salotė was
21 July 2023 and the date of acquisition for Lake Žuvintas was 24
September 2023. Additionally, we used data from Lake Želva and
Lake Želvykštis (3 July 2023) and from Lake Lielukas (2
September 2023) for validation. Several flight altitudes (10–50 m)
were tested to determine the altitude that provided the optimum
image quality for accurately identifying aquatic vegetation in the
lakes. The images were processed and analysed using ArcGIS Pro
3.3.1 software. The validation dataset contains 344 points, each
representing a 10-m2 surface, corresponding to Sentinel-2 pixels
from five lakes.

Results

Clusters of lake surface types

The first and second clusters predominantly consisted of emergent
macrophytes, the third cluster was characterized by submerged and
floating vegetation and the fourth cluster represented open water
(Fig. 1). Seasonal variations in reflectance data from spring to
autumn during the vegetation period enabled the differentiation of
submerged and floatingmacrophytes into a distinct cluster (Fig. S5).

Drone data revealed that the differences between clusters were
attributed to varying humidity levels. The second cluster partially
covered the open water and contained less old vegetation than the
first cluster (Fig. S6).We thus joined the first and second clusters as
emergent macrophytes.

The seasonal dynamics of macrophytes and open water
reflectance confirm that in spring and autumn the reflectance of

submerged macrophytes is scarcely distinguishable from water
across all spectral ranges. In contrast, emergent macrophytes were
quite distinguishable during this period. The highest distinctive-
ness was achieved during the summer period, during which each
cluster demonstrated a range of reflectance values across almost all
bands (Fig. S7).

Macrophyte identification model

The model demonstrated that the month of May’s reflectance
value in the near-infrared range (B8_05) of 0.063 serves as a
threshold, dividing the surface into two categories: emergent
macrophytes and open water with submerged and floating
macrophytes. The surface of a water body with a reflectance
value in the 842-nm band (B8) of less than 0.063 in May
corresponded to emergent macrophytes. The probability of
correctly identifying emergent macrophytes using this method
was 0.96. The emergent macrophyte type constituted 33% of the
training dataset (Fig. 2).

The rest of the pixels with the month of July’s reflectance values
in the near-infrared band (B8_07) of equal to or greater than 0.066
were classified as open water with a probability of 0.93. Identifying
floating and submerged macrophytes within this group had a
probability of 0.86. This approach classified 34% of the training
dataset as floating and submerged macrophytes and 32% as
open water.

The model achieved an overall accuracy of 92.21% when
applied to the 2021 dataset. Notably, only 14.14% of the 2021 data
was used for training, meaning the model had prior exposure to
part of this dataset. When applied to previously unseen 2022 data,
themodel determined vegetation types with an accuracy of 87.93%,
which is slightly lower than its performance on the full 2021
dataset.

Figure 1. Lake Žuvintas surface types. The lake
is divided into emergent macrophytes, sub-
merged and floating macrophytes and open
water surface groups. The surface area under
open water is 42.1% of the area of interest, with
submerged and floating macrophytes being
distributed on 19.9% of the surface. Emergent
macrophytes occupy the remaining 38.0%.
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When these two matrices were compared, the most significant
decrease was in the accuracy of the open water class, which
dropped by 8.23%, primarily due to increased misclassification
with the submerged and floating macrophytes class, which rose
from 8.95% to 17.06%.

The submerged and floating macrophytes class also experi-
enced a decline in accuracy, decreasing by 0.45%, influenced by a
slight increase in misclassification with both emergent macro-
phytes and open water classes.

Lastly, the emergent macrophytes class demonstrated a notable
accuracy reduction of 1.95%, primarily due to an increase in
misclassification with the submerged and floating macrophytes
class (Table 1).

Model validation shows that the model correctly identified 81
pixels as emergent macrophytes, 184 pixels as submerged and
floating macrophytes and 26 pixels as open water. However, some
misclassifications occurred: 21 submerged and floating macro-
phytes pixels were misidentified as emergent macrophytes, and 23
open water pixels were misidentified as submerged and floating
macrophytes. Based on this matrix, themodel achieved F1 scores of
0.85 for emergent macrophytes, 0.88 for submerged and floating
macrophytes and 0.67 for open water. These results indicate high
classification accuracy for aquatic vegetation, particularly sub-
merged and floating types, whereas lower performance for the
open water class probably reflects spectral overlap with algae or
transitional vegetation zones.

Applying the model to Lake Salotė reflectance data showed that
the macrophyte detection algorithm identifies open water and two
types of vegetation (Fig. S8). However, some errors were also
revealed. For example, shallow water near the beach and the beach
itself was identified as emergent macrophytes; in the area of the
island, some surface areas were identified as submerged macro-
phytes, although this is simply the border area between emergent
macrophytes and open water.

Discussion

We provide a practical and interpretable approach to macrophyte
identification and classification using the near-infrared band of
Sentinel-2 in May and July. This method reduces computational
complexity while simplifying the classification process and
maintaining strong accuracy. This study demonstrates that
classification based on two temporally distinct near-infrared
values is sufficient for reliable macrophyte identification and
classification.

An innovation of our method is using clustering results as
ground truth for supervised learning, which reduces dependence
on field surveys and enables efficient dataset generation. This
approach streamlines the classification process and opens new
possibilities for automating macrophyte monitoring in data-scarce
regions. However, although our model provides a useful tool for
large-scale macrophyte detection, it does not replace in situ
observations. Macrophyte indices are typically taxonomic, whereas
our model identifies the presence and types of macrophytes rather
than species.

The reliance on optical satellite data introduced constraints
related to spatial resolution and atmospheric conditions.
Additionally, the algorithm’s inability to directly detect submerged
macrophytes beneath the water surface represents a significant
limitation, as deeper-growing species remain undetected unless
they reach or float on the surface (Vahtmäe & Kutser 2007). This
could lead to underestimating macrophyte coverage and bias
ecological assessments.

There was potential for misclassification in areas with mixed or
transitional vegetation, where the spectral signatures of macro-
phytes may overlap with those of other land-cover types, such as
algae or terrestrial vegetation. This issue is exacerbated in shallow
or turbid waters, where the reflectance properties of the water
column can interfere with the detection of aquatic vegetation.
Furthermore, the algorithm’s performance may vary across

Figure 2. Macrophyte identification algorithm based on Lake
Žuvintas reflectance data. For identifying emergent, floating and
submerged macrophytes and open water surfaces, we needed to
obtain data in the near-infrared (842 nm) band in the months of
May (B8_05) and July (B8_07). Each node shows a surface type
label, probability of identification and portion of the Lake
Žuvintas dataset.

Table 1. Confusion matrices of applying the model to 2021 and 2022 Lake Žuvintas reflectance data. Correct classifications are indicated in bold

Predicted 2021 Predicted 2022

Em_m S&f_m Open water Em_m S&f_m Open water

Em_m 94.96% 5.05% 0.00% 93.01% 6.63% 0.35%
S&f_m 4.14% 90.06% 6.36% 5.00% 89.61% 5.90%
Open water 0.08% 8.95% 90.97% 0.20% 17.06% 82.74%

Em_m = emergent macrophytes; S&F_m = submerged and floating macrophytes.
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different aquatic ecosystems, as local environmental conditions,
such as water chemistry, sediment type and light availability, can
influence the spectral characteristics of macrophytes. For instance,
in highly turbid or eutrophic waters, the reflectance signals from
macrophytes may be obscured, reducing classification accuracy.

The algorithm was also dependent on predefined lake
boundaries, which do not reflect seasonal shoreline shifts and
may lead to the omission or misclassification of vegetation in
temporarily flooded or exposed areas.

Seasonal changes in near-infrared reflectance can nevertheless
effectively distinguish between emergent, submerged and floating
macrophyte types. We provide a novel approach for remote
macrophyte assessment, where aquatic vegetation is often over-
looked in lake remote sensing studies.

Conclusions

Seasonal reflectance values from Sentinel-2 data, specifically in the
near-infrared band in May and July, were able to distinguish
emergent macrophytes and submerged and floating macrophytes
with high accuracy. The low data requirements of this approach
make it suitable for broader application in similar temperate lakes.

This approach could facilitate more comprehensive aquatic
ecosystemmonitoring, but future work should focus on improving
detection in variable shoreline and turbid conditions and on testing
the model across diverse lake systems.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0376892925100167.
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