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Abstract – The method for analysing transversal plane images 

from computer tomography scans is considered in the paper. 

This method allows not only approximating ribs-bounded 

contour but also evaluating patient rotation around the vertical 

axis during a scan. In this method, a mathematical model 

describing the ribs-bounded contour was created and the 

problem of approximation has been solved by finding the optimal 

parameters of the mathematical model using least-squares-type 

objective function. The local search has been per-formed using 

local descent by quasi-Newton methods. The benefits of analytical 

derivatives of the function are disclosed in the paper. 
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I. INTRODUCTION 

Computed tomography (CT) is a technology allowing the 

inside of objects to be spatially viewed using computer-

processed X-rays. It is very important in medical diagnostics 

because it shows human internal organs without cutting, e.g., 

brain, liver [1], and prostate [2]. CT scans are 3D images – a 

collection of 2D images (slices), representing slices by 

transversal plane. Many papers deal with the finding of the 

ribs-bounded contour [3], [4], [5]. The ribs-bounded contour 

restricts the region of location of internals in the slice. Internal 

organ localisation is particularly important for the comparison 

of patient health state or evaluation of disease processes. Here 

the registration problem of slices from different scans of the 

same patient becomes significant. The ribs-bounded contour 

may serve as a reference point in comparing two slices. Such 

comparison of slices should play an essential role in the 

registration of CT images. References that deal with the 

registration on images find a wide application in medicine [6], 

[7], [8], [9]. 

In the papers [3], [4], [5] a mathematical model is suggested 

to approximate the ribs-bounded contour and to evaluate the 

parameters of this model from the CT image. The local 

optimisation problem of some non-linear objective function is 

formulated. It is solved using quasi-Newton descent method. 

The experiments indicate that finding the optimal parameter 

values of this model is computationally expensive.  

In the paper, we find the analytical derivatives of the objec-

tive function seeking to speed up the process of optimisation. 

II. DATA TO BE ANALYSED 

We investigate images of size 512 × 512 gathered by GE 

LightSpeed Pro 32 CT scanner
1
. 16-bit DICOM grayscale 

images were obtained using the scanner. The images were 

automatically linearly normalised to the interval [0;  255] by 

window level (center) 40  and window width 350  HU 

(Hounsfield units). The CT scanner uses a set of software 

algorithms to determine the amount of x-radiation absorbed by 

every element in a plane of tissue. Each of these elements is 

represented by a pixel on the video display, and the density 

(amount of X-radiation absorbed) is measured in Hounsfield 

units (HU). Figure 1 demonstrates the possible content of 

particular scan slices. Depending on the slice, the heart, lungs, 

stomach, or liver, can be seen. In all the slices of Fig. 1, the 

internal organs are bounded by ribs. Figure 1 was obtained 

after the patient was given a radiocontrast agent injection. 

Therefore, the heart and aorta as well as all blood vessels are 

bright here. 

III. METHOD 

In this section, a method of analysis of CT scan slice 

(through transversal plane) is presented. This method allows 

us not only to find the ribs-bounded contour but also to 

evaluate patient rotation around the vertical axis during the 

scan.  

We notice a symmetry of the ribs by the human sagittal 

plane, body rotation in respect to bed, aorta near spine, high 

grayscale intensity of bones, bed, heart and blood vessels (if 

the radiocontrast agent was injected to the patient). All these 

aspects should be considered when building a method. 

The method consists of two steps [3]: (a) extracting the 

bone tissue from image; (b) approximating the ribs-bounded 

contour with a mathematical function. 

A. Ribs-bounded Contour Approximation 

As a result of the bone tissue extraction presented in [3], we 

get binary images – see the example in Fig. 2. Denote 

𝐵 = {(𝑏1𝑖 , 𝑏2𝑖), 𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ } the set of coordinates of bone pixels 

obtained during analysis of CT image slices, 𝑚 is the number 

of bone pixels.  

The ribs form a shape similar to cardioid (see Fig. 1): 

 𝜌 = 1 + 𝑐𝑜𝑠(𝜑 − 𝜋 2⁄ ) ,  𝜑 ∈ [− 𝜋 2⁄ ; 3𝜋 2⁄ ) (1) 

                                                           

 
1
 http://www3.gehealthcare.com/en/products/categories/goldseal_-

_refurbished_systems/goldseal_computed_tomography/goldseal_vct_series 
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Here 𝜌 is the radius and 𝜑 is the polar angle. The shape of 

(1) is depicted in Fig. 3 (thick curve). It looks similar because 

it features a cave, which could be used to approximate ribs 

cave near spine. 𝜋 2⁄  is introduced in (1) because the standard 

cardioid is rotated by 90° as compared in Fig. 3 and the ribs-

bounded contour in the images should be oriented like ribs 

depicted in Fig. 1. 

 

 

 

Fig. 1. Examples of the CT image slices. 

 

Fig. 2. Pixels representing bone tissue. 

Our research showed that a ribs-bounded contour was more 

condensed vertically than the standard cardioid curve. 

Therefore, we suggest adding a new optimisable parameter – 

power 𝑠: 

 𝜌 = (1 + 𝑐𝑜𝑠(𝜑 − 𝜋 2⁄ ))𝑠 (2) 

The (2) curve with different 𝑠 is depicted in Fig. 3. 

As we see in Fig. 1, the rib-bounded contour has some 

rotation in respect to the bed. Therefore, we should introduce 

the angle 𝜃 of such rotation.  

Parameter 𝑠  influences not only the vertical scale of the 

curve (1), but the form of the curve, too (see Fig. 3 for curves 

with different values of 𝑠). 

 

 

Fig. 3. Thick line – standard cardioid (1), middle thickness and thin lines – (2) 

curve with 𝑠 = 0.5 and 𝑠 = 0.3, respectively. 

 

ribs breastbone heart lungs ribsbed
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In the CT scan slice (Fig. 1), we see a cave influenced by 

the breastbone. Curve (2) is convex in this region. Therefore, 

we need to complement the model (2) redefining 𝜌  with 

additional member 𝜌′ whose form may vary depending on the 

cave: 

 𝜌 = (1 + 𝑐𝑜𝑠(𝜑 − 𝜋 2⁄ ))𝑠 − 𝜌′. (3) 

This member realises the cave by subtraction of some value 

from the right side of (2) starting from 𝜑 = 𝜋 2⁄ − 𝛽  till 

𝜑 = 𝜋 2⁄ + 𝛽. 𝜌′ depends on 𝜑 and has special properties. It 

should  

a) be unimodal non-negative function on 𝜑;  

b) achieve the maximal value as 𝜑 = 𝜋 2⁄ ;  

c) be symmetrical function in respect of 𝜑 = 𝜋 2⁄ ;  

d) be equal to 0 when 𝜑 = 𝜋 2⁄ − 𝛽 and 𝜑 = 𝜋 2⁄ + 𝛽;  

e) have zero first and second derivatives on 𝜑  when 

𝜑 = 𝜋 2⁄ − 𝛽 and 𝜑 = 𝜋 2⁄ + 𝛽. 

Function 𝜌′ may be as follows: 

 𝜌′ = {
𝑐 sin𝑙(𝜋(𝜑 − 𝜋 2⁄ + 𝛽) 2𝛽⁄ ) ,

            if  𝛽 ≥ |𝜑 − 𝜋 2⁄ |  
0,        else

 (4) 

In (4), we have three control parameters for which optimal 

values need to be found: 𝛽 is an angle defining the region of 

subtraction, c defines the maximal value of subtraction, l 

defines the steepness of curve describing the cave (𝑙 ≥ 2). See 

[3] for examples of 𝜌′ depending on different values of 𝛽, 𝑐, 𝑙. 
Moreover, we need some additional parameters 𝑎 and 𝑏  that 

define the horizontal and vertical scales of the curve that 

approximate the rib-bounded contour, respectively.  

The curve (3) should be fitted among ribs in the picture of 

bone tissue. For this reason, we need the optimal place of the 

point of (3) corresponding to 𝜌 = 0  in the picture; denote 

coordinates of this point by (𝑥0, 𝑦0). 

If the values of 𝑠, 𝜃, 𝑎, 𝑏, 𝑥0, 𝑦0, 𝛽, 𝑐, 𝑙 are fixed, we can 

draw some parametric curve (𝑥, 𝑦) = (𝑥(𝜑), 𝑦(𝜑)) 

approximating the rib-bounded contour: 

 𝑥(𝜑) = 𝑥0 + 𝑎𝜌(𝜑) cos 𝜑 cos 𝜃 − 𝑏𝜌(𝜑) sin 𝜑 sin 𝜃 

 𝑦(𝜑) = 𝑦0 + 𝑎𝜌(𝜑) cos 𝜑 sin 𝜃 + 𝑏𝜌(𝜑) sin 𝜑 cos 𝜃, (5) 

where 𝜌  is defined by (3). If 𝜑  runs through the interval 

[− 𝜋 2⁄ ; 3𝜋 2⁄ ) with a step 2𝜋/𝑛, we get from (5) and (6) a 

sequence of points 𝐶𝑗 = (𝑥𝑗 , 𝑦𝑗), 𝑗 = 1, 𝑛̅̅ ̅̅̅ of the curve. In our 

experiments, 𝑛 = 180. 

B. Optimization Problem 

The model of ribs-bounded contour has nine parameters 

whose values can be varied seeking to find the best 

approximation of the contour: 𝑠, 𝜃, 𝑎, 𝑏, 𝑥0 , 𝑦0, 𝛽, 𝑐, 𝑙. The 

optimal values of these parameters must be defined by the set 

𝐵 of coordinates of bone pixels obtained during the analysis of 

CT image slices.  

 

Fig. 4. The ribs-bounded contour. 

The optimisation problem to find optimal 𝑠, 𝜃, 𝑎, 𝑏, 𝑥0, 𝑦0, 

𝛽, 𝑐, 𝑙 is formulated as a least square one: 

 𝑚𝑖𝑛𝑠,𝜃,𝑎,𝑏,𝑥0,𝑦0,𝛽,𝑐,𝑙 𝑓(𝑠, 𝜃, 𝑎, 𝑏, 𝑥0, 𝑦0, 𝛽, 𝑐, 𝑙 )              

 

 𝑓(∙) = ∑ ‖𝐵𝑖 − 𝐶𝑘𝑖
‖

2𝑚
𝑖 , 𝑘𝑖 = arg min𝑗‖𝐵𝑖 − 𝐶𝑗‖ (6) 

Here 𝑘𝑖  is the order number of the nearest model curve 

point among 𝑛 to the 𝑖th bone tissue point. 

The objective function is quite difficult because of the large 

number 𝑚 of bone tissue points. The optimisation method to 

solve (6) may be any local minimisation one. We use the 

Matlab realisation of the quasi-Newton method [10].  

An example of optimisation and model curve fitting to the 

bone tissue is given in Figure 4 (the approximating curve is in 

black-white-black line). 

Model (3)–(5) is suggested in [3]. More sophisticated model 

may be found in [4], [5]. The analytical derivatives were 

found especially for this model in [3]. 

IV. ANALYTICAL DERIVATIVES  

OF THE OBJECTIVE FUNCTION 

Experiments in [3], [4], [5] indicate the necessity for large 

computing expenses for optimisation of the objective function 

(6). The way to speed up the optimisation is using the 

analytical derivatives of the objective function. In this case, 

we save a large number of calculations of the objective 

function. 

The Maple software
2
 was used to determine the derivatives 

of such complex objective function on 𝑠, 𝜃, 𝑎, 𝑏, 𝑥0 , 𝑦0 , 𝛽 ,  

𝑐, 𝑙. 
The derivatives are presented in (7)–(15): 

                                                           

 
2 http://www.maplesoft.com  
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𝑑𝑓

𝑑𝑠
= ∑ −2 (1 + sin (

2𝜋

𝑛
𝑘𝑖))

𝑠

ln (1 + sin (
2𝜋

𝑛
𝑘𝑖)) ((𝑏1𝑖 −𝑚

𝑖

  −𝑥𝑘𝑖
) (𝑎 cos (

2𝜋

𝑛
𝑘𝑖) cos 𝜃 + 𝑏 sin (

2𝜋

𝑛
𝑘𝑖) sin 𝜃) +

+(𝑏2𝑖 − 𝑦𝑘𝑖
) (𝑎 cos (

2𝜋

𝑛
𝑘𝑖) sin 𝜃 + 𝑏 sin (

2𝜋

𝑛
𝑘𝑖) cos 𝜃)) (7) 

 
𝑑𝑓

𝑑𝜃
= ∑ 2(𝑏1𝑖 − 𝑥𝑘𝑖

) (𝑎𝜌 (
2𝜋

𝑛
𝑘𝑖) cos (

2𝜋

𝑛
𝑘𝑖) cos 𝜃 +𝑚

𝑖

       +𝑏𝜌 (
2𝜋

𝑛
𝑘𝑖) sin (

2𝜋

𝑛
𝑘𝑖) sin 𝜃) +

2(𝑏2𝑖 −        −𝑦𝑘𝑖
) (−𝑎𝜌 (

2𝜋

𝑛
𝑘𝑖) cos (

2𝜋

𝑛
𝑘𝑖) cos 𝜃 +

           +𝑏𝜌 (
2𝜋

𝑛
𝑘𝑖) sin (

2𝜋

𝑛
𝑘𝑖) sin 𝜃) (8) 

 
𝑑𝑓

𝑑𝑎
= ∑ −2𝜌 (

2𝜋

𝑛
𝑘𝑖) cos (

2𝜋

𝑛
𝑘𝑖) ((𝑏1𝑖 − 𝑥𝑘𝑖

) cos 𝜃 +𝑚
𝑖

               +(𝑏2𝑖 − 𝑦𝑘𝑖
) sin 𝜃) (9) 

 
𝑑𝑓

𝑑𝑏
= ∑ 2𝜌 (

2𝜋

𝑛
𝑘𝑖) sin (

2𝜋

𝑛
𝑘𝑖) ((𝑏1𝑖 − 𝑥𝑘𝑖

) sin 𝜃 −𝑚
𝑖

               −(𝑏2𝑖 − 𝑦𝑘𝑖
) cos 𝜃) (10) 

 
𝑑𝑓

𝑑𝑥0
= ∑ −2(𝑏1𝑖 − 𝑥𝑘𝑖

)𝑚
𝑖  (11) 

 
𝑑𝑓

𝑑𝑦0
= ∑ −2(𝑏2𝑖 − 𝑦𝑘𝑖

)𝑚
𝑖  (12) 

 
𝑑𝑓

𝑑𝛽
= ∑ 2𝑐 sinl−1 (

𝜋

2𝛽
(

2𝜋

𝑛
𝑘𝑖 −

𝜋

2
+ 𝛽)) 𝑙 cos (

𝜋

2𝛽
(

2𝜋

𝑛
𝑘𝑖 −

𝜋

2
+𝑚

𝑖

+𝛽))
𝜋

2𝛽2  (
𝜋

2
−

2𝜋

𝑛
𝑘𝑖) ((𝑏1𝑖 − 𝑥𝑘𝑖

) (𝑎 cos (
2𝜋

𝑛
𝑘𝑖) cos 𝜃 −

−𝑏 sin (
2𝜋

𝑛
𝑘𝑖) sin 𝜃) + (𝑏2𝑖 − 𝑦𝑘𝑖

) (𝑎 cos (
2𝜋

𝑛
𝑘𝑖) sin 𝜃 −

              −𝑏 sin (
2𝜋

𝑛
𝑘𝑖) cos 𝜃)) (13) 

 
𝑑𝑓

𝑑𝑐
=

∑ 2 sin𝑙 (𝜋 (
2𝜋

𝑛
𝑘𝑖 −

𝜋

2
+ 𝛽) 2𝛽⁄ ) ((𝑏1𝑖 −𝑚

𝑖

      −𝑥𝑘𝑖
) (𝑎 cos (

2𝜋

𝑛
𝑘𝑖) cos 𝜃 + 𝑏 sin (

2𝜋

𝑛
𝑘𝑖) sin 𝜃) +

  +(𝑏2𝑖 − 𝑦𝑘𝑖
) (𝑎 cos (

2𝜋

𝑛
𝑘𝑖) sin 𝜃 + 𝑏 sin (

2𝜋

𝑛
𝑘𝑖) cos 𝜃)) (14) 

 
𝑑𝑓

𝑑𝑙
= ∑ 2𝑐 sin𝑙 (

𝜋(
2𝜋

𝑛
𝑘𝑖−

𝜋

2
+𝛽)

2𝛽
) ln (sin (

𝜋(
2𝜋

𝑛
𝑘𝑖−

𝜋

2
+𝛽)

2𝛽
)) ((𝑏1𝑖 −𝑚

𝑖

−𝑥𝑘𝑖
) (𝑎 cos (

2𝜋

𝑛
𝑘𝑖) cos 𝜃 + 𝑏 sin (

2𝜋

𝑛
𝑘𝑖) sin 𝜃) +

  +(𝑏2𝑖 − 𝑦𝑘𝑖
) (𝑎 cos (

2𝜋

𝑛
𝑘𝑖) sin 𝜃 +

              +𝑏 sin (
2𝜋

𝑛
𝑘𝑖) cos 𝜃)) (15) 

Here (𝑏1𝑖 , 𝑏2𝑖), 𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅  are the coordinates of bone pixels 

obtained during analysis of CT image slices, 𝑚 is the number 

of bone pixels. 

The experiments in [4], [5] have shown that optimal values 

of parameter 𝛽 are close to 𝜋. Therefore, 𝛽 can be fixed at 𝜋, 

i.e. it may be set as non-optimisable parameter. This means 

that the subtrahend for breastbone is subtracted from 𝜌(𝜑) for 

all 𝜑 ∈ [− 𝜋 2⁄ ; 3𝜋 2⁄ ], and the shape of the breastbone cave 

is controlled by scale 𝑐 and power 𝑙 only. The model (3) in 

polar coordinates becomes 

 𝜌(𝜑) = (1 + cos (𝜑 −
𝜋

2
))

𝑠

− 𝑐 sin𝑙 ((𝜑 +
𝜋

2
) 2⁄ ). (16) 

The derivatives of the objective function 𝑓(∙)  become 

simpler. Most derivatives remain as they stand before, 

derivative (13) is not applied, and derivatives (14) and (15) 

become (17) and (18), respectively: 

 
𝑑𝑓

𝑑𝑐
= ∑ 2 sin𝑙 (

𝜋

𝑛
𝑘𝑖 +

𝜋

4
) ((𝑏1𝑖 − 𝑥𝑘𝑖

) (𝑎 cos (
2𝜋

𝑛
𝑘𝑖) cos 𝜃 +𝑚

𝑖

+𝑏 sin (
2𝜋

𝑛
𝑘𝑖) sin 𝜃) + (𝑏2𝑖 − 𝑦𝑘𝑖

) (𝑎 cos (
2𝜋

𝑛
𝑘𝑖) sin 𝜃 +

               +𝑏 sin (
2𝜋

𝑛
𝑘𝑖) cos 𝜃)) (17) 

 
𝑑𝑓

𝑑𝑙
= ∑ 2𝑐 sin𝑙 (

𝜋

𝑛
𝑘𝑖 +

𝜋

4
) ln (sin (

𝜋

𝑛
𝑘𝑖 +

𝜋

4
)) ((𝑏1𝑖 −𝑚

𝑖

    −𝑥𝑘𝑖
) (𝑎 cos (

2𝜋

𝑛
𝑘𝑖) cos 𝜃 + 𝑏 sin (

2𝜋

𝑛
𝑘𝑖) sin 𝜃) +

    +(𝑏2𝑖 − 𝑦𝑘𝑖
) (𝑎 cos (

2𝜋

𝑛
𝑘𝑖) sin 𝜃 +

              +𝑏 sin (
2𝜋

𝑛
𝑘𝑖) cos 𝜃)) . (18) 

V. CONCLUSION 

In the paper, a method for analysing transversal plane 

images from computer tomography scans has been analysed. 

This method allows not only approximating ribs-bounded 

contour but also evaluating patient rotation around the vertical 

axis during a scan. In this method, a mathematical model 

describing the ribs-bounded contour has been created and the 

problem of approximation has been solved by finding out the 

optimal parameters of the mathematical model using least-

squares-type objective function. The local search has been 

performed using local descent by quasi-Newton methods. The 

proposed approximation defines the ribs-bounded contour 

exactly. The model may be applied to any 2D slice where the 

ribs are visible. 

The experiments show that application of analytical 

derivatives of the objective function allows speeding up the 

optimisation by 1.98 times. This is essential benefit when the 

medical doctors need fast decisions. 
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