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Abstract: Bitcoin’s role in global finance has rapidly expanded with increasing institutional
participation, prompting new questions about its linkage to macroeconomic variables. This
study thoughtfully integrates a Bayesian Markov Chain Monte Carlo (MCMC) covariate
selection process within homogeneous and non-homogeneous Hidden Markov Models
(HMMs) to analyze 16 macroeconomic and Bitcoin-specific factors from 2016 to 2024. The
proposed method integrates likelihood penalties to refine variable selection and employs a
rolling-window bootstrap procedure for 1-, 5-, and 30-step-ahead forecasting. Results indi-
cate a fundamental shift: while early Bitcoin pricing was primarily driven by technical and
supply-side factors (e.g., halving cycles, trading volume), later periods exhibit stronger ties
to macroeconomic indicators such as exchange rates and major stock indices. Heightened
volatility aligns with significant events—including regulatory changes and institutional
announcements—underscoring Bitcoin’s evolving market structure. These findings demon-
strate that integrating Bayesian MCMC within a regime-switching model provides robust
insights into Bitcoin’s deepening connection with traditional financial forces.

Keywords: Bitcoin price dynamics; Bayesian Markov Chain Monte Carlo (MCMC);
Hidden Markov Models (HMMs); regime-switching models; macroeconomic determinants;
cryptocurrency forecasting

MSC: 60J20; 37N40

1. Introduction
Blockchain technology, originally introduced with Bitcoin [1], has rapidly evolved,

finding diverse applications across various sectors such as finance, artificial intelligence,
supply chain management, healthcare, and governance [2–5]. Despite significant technolog-
ical advances and its transformative impact on decentralization across multiple domains [6],
cryptocurrency investment and speculation continue to dominate its primary use case, with
Bitcoin remaining at the forefront of this movement.

Initially driven primarily by speculative retail investors, Bitcoin’s price behavior was
characterized by high sentiment sensitivity, low liquidity, and notable market inefficiencies,
resulting in substantial volatility and frequent price bubbles [7]. However, over recent years,
increasing institutional adoption, regulatory developments, and deeper integration within
traditional financial systems have significantly reshaped its market structure. The entry of
major financial institutions such as MicroStrategy, Goldman Sachs, and BlackRock, together
with regulatory milestones including the Markets in Crypto-Assets Regulation (MiCA)
implemented in the European Union and the SEC’s approval of Bitcoin spot ETFs in 2024,

Mathematics 2025, 13, 1577 https://doi.org/10.3390/math13101577

https://doi.org/10.3390/math13101577
https://doi.org/10.3390/math13101577
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9329-6431
https://orcid.org/0000-0001-8167-7328
https://orcid.org/0000-0003-2057-2922
https://doi.org/10.3390/math13101577
https://www.mdpi.com/article/10.3390/math13101577?type=check_update&version=2


Mathematics 2025, 13, 1577 2 of 25

has solidified Bitcoin’s status as a recognized asset class. Additionally, sovereign adoption—
highlighted notably by El Salvador’s decision to adopt Bitcoin as legal tender in 2021—
underscores its growing significance within the global financial ecosystem. Collectively,
these developments represent a shift in Bitcoin’s fundamental price dynamics, suggesting
that macroeconomic conditions now play an increasingly influential role as the market
matures toward efficiency [8].

Despite this evolution, the academic debate regarding the primary drivers of Bitcoin’s
price remains ongoing and inconclusive. Some studies contend that Bitcoin has increas-
ingly integrated with traditional financial markets, exhibiting stronger correlations with
conventional indicators such as stock indices and exchange rates, particularly in the post-
COVID-19 environment [9,10]. In contrast, other research emphasizes Bitcoin’s continuing
autonomy as an asset, arguing that internal ecosystem dynamics, including trading volume,
miner activities, and speculative sentiment, remain central to its price formation [9–11]. Ad-
ditionally, historical event-driven analyses highlight that market manipulation, regulatory
developments, and halving events have consistently contributed to Bitcoin’s volatility and
market dynamics [12,13]. These divergent findings underscore the complexity of Bitcoin’s
price behavior, suggesting that its determinants are not static but rather dynamic and may
vary significantly across different market regimes.

A two-state Hidden Markov Model (HMM) framework is particularly suited for in-
vestigating the evolving determinants of Bitcoin’s price, as it accommodates latent regime
shifts characteristic of financial time series. This framework enables the dynamic assess-
ment of Bitcoin’s sensitivity to macroeconomic and internal factors across varying market
conditions. Formally, the observed price series Yt is modeled as conditionally Gaussian,
dependent on an unobserved state sequence Zt following a Markov process:

Yt | Zt = s, Xt ∼ N
(

X⊤
t Bs, σ2

s

)
, s = 1, 2, (1)

where Zt denotes the hidden market state (e.g., bullish (s = 1) or bearish (s = 2)) and
Xt represents macroeconomic, financial, and Bitcoin-specific covariates. The impact of
these covariates on Bitcoin’s price is governed by a state-dependent coefficient vector Bs,
enabling distinct predictors to influence price behavior differently across market regimes.

In a homogeneous HMM, the transitions between states occur with fixed probabilities:

P(Zt+1 = j | Zt = i) = pij, i, j = 1, 2, (2)

where pij is the time-invariant probability of transitioning from state i to state j. This
structure assumes that market regime shifts follow an internal process independent of
external influences.

Conversely, the non-homogeneous HMM (NH-HMM) allows for external variables
to dynamically influence state transitions, modeling these probabilities as a function
of covariates:

P(Zt+1 = j | Zt = i, X(2)
t ) =

exp
(

X(2)⊤
t βij

)
∑2

k=1 exp
(

X(2)⊤
t βik

) , i, j = 1, 2, (3)

where X(2)
t is a set of covariates influencing the probability of state transitions and βij are

logistic regression coefficients.
By capturing these hidden regime shifts, the HMM framework offers a structured

approach to analyzing Bitcoin’s evolving price dynamics. As institutional involvement
increases and market conditions continue to shift, a crucial research question arises: Has
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Bitcoin become increasingly intertwined with macroeconomic factors as its market evolves
and matures?

To investigate this question, the study employs two complementary approaches: a
Bayesian Markov Chain Monte Carlo (MCMC) covariate selection method to identify
relevant long-term determinants, and a bootstrapped rolling-window forecasting technique
to capture short-term dynamics.

Several studies have already explored Bitcoin price dynamics using Hidden Markov
Models (HMMs) and related regime-switching frameworks. Koki et al. [14,15] applied a
NH-HMM with Pólya–Gamma augmentation and found that macroeconomic variables
were insufficient for reliable out-of-sample prediction, suggesting Bitcoin’s relative auton-
omy from broader economic trends. In contrast, Chen [16] combined vector error correction
(VEC) and Markov-switching models, concluding that financial expectations and exchange
rates had a stronger influence on Bitcoin price movements than blockchain-specific vari-
ables, although the impact varied across “bull” and “bear” market regimes. Katsiampa [17]
modeled Bitcoin volatility through Markov-switching GARCH models, revealing distinct
regime changes in volatility behavior. Tiwari et al. [18] employed a two-state Markov-
switching framework to analyze Bitcoin’s speculative bubbles, identifying alternating
phases of exuberance and correction. Kodama et al. [19] applied HMMs to detect trend
reversals in Bitcoin markets, while Alam and Dutta [20] investigated cryptocurrency in-
terconnectedness across different market regimes. Similarly, Bouri et al. [21] examined
regime-dependent spillovers between Bitcoin and traditional financial assets. While these
studies highlight the utility of regime-switching models for capturing Bitcoin’s nonlinear
dynamics, few explicitly incorporate a systematic covariate selection process to assess
macroeconomic influences within an HMM framework.

Our study addresses this gap by integrating Bayesian MCMC covariate selection into
both homogeneous and non-homogeneous HMMs to trace how Bitcoin’s price drivers
evolve across hidden market states. Although previous research has examined Bitcoin’s
price determinants, there is still no consensus on whether these factors remain stable or shift
across different market regimes. By embedding Bayesian MCMC within a regime-switching
structure, this research offers a new perspective on the dynamic interplay between macroe-
conomic and Bitcoin-specific variables under varying market conditions. The findings
provide valuable insights for investors, regulators, and policymakers, enhancing their
understanding of Bitcoin’s evolving role within the broader financial system and informing
strategic and regulatory decision-making.

The key contributions of this study include:

1. Identification of Regime-Dependent Determinants: The analysis reveals how the
influence of macroeconomic, financial, and Bitcoin-specific variables changes across
market regimes, enriching the understanding of Bitcoin’s evolving price behavior.

2. Enhanced Bayesian MCMC Approach: The study advances existing Bayesian MCMC
covariate selection techniques [14], particularly for regime-switching contexts, to more
accurately capture long-term effects.

3. Improved Predictive Performance: By employing a bootstrapped rolling-window
forecasting approach across different subsamples, the study demonstrates variations
in Bitcoin’s price predictability under diverse market conditions, thus enhancing
forecasting accuracy and reliability.

The paper is structured as follows: Section 2 introduces the Bayesian MCMC covariate
selection algorithm, outlines the bootstrapped rolling-window forecasting methodology,
and provides an overview of the empirical data used in the study. Section 3 presents
and discusses the empirical findings across different subsamples. Section 4 highlights
the methodological enhancements and contributions of this research and suggests av-
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enues for future research. Section 5 concludes the study by summarizing the key findings
and implications.

2. Materials and Methods
This section outlines the methodological approach used to analyze long-term and

short-term determinants of Bitcoin’s price, illustrated visually in Figure 1.

Figure 1. Methodological framework of the analysis, illustrating the integration of Bayesian MCMC
covariate selection for identifying key long-term determinants and the bootstrapped rolling-window
forecasting procedure for evaluating their predictive performance relative to benchmark covariate
sets in capturing Bitcoin’s short-term price dynamics.

The analysis comprises three main stages:

1. Data processing and specification of prior parameters;
2. Identification of optimal long-term covariates using the Bayesian MCMC covariate

selection algorithm;
3. Evaluation of these selected covariates against benchmark sets through a bootstrapped

rolling-window forecasting procedure, considering h = 1, 5, 30 steps ahead.

Details of the Bayesian MCMC covariate selection method and its modifications
are provided in Section 2.1. The bootstrapped rolling-window forecasting approach is
described in Section 2.2. Finally, Section 2.3 presents an overview of the dataset used for
empirical analysis.

2.1. The Bayesian MCMC Covariate Selection Algorithm

The optimal subset X of covariates for the HMMs is determined using a MCMC
algorithm inspired by Koki et al. [14], implemented over 100,000 iterations. This proce-
dure systematically explores the model space to identify the most relevant covariates by
repeatedly proposing subsets, simulating hidden states, sampling emission coefficients
(and transition coefficients in the non-homogeneous case), calculating and comparing
likelihoods, and updating covariate sets accordingly. The procedure begins by fitting a
full-covariate HMM using the Expectation–Maximization (EM) algorithm to establish initial
parameter priors. The steps are as follows:
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1. Simulating the Latent State Sequence: The latent states are simulated using the
Forward–Backward algorithm. Forward probabilities are calculated as

αt(i) = P(Zt = i | θ, y1:t), i = 1, 2; θ = (B, σ).

These probabilities inform the computation of backward probabilities from which the
hidden state sequence Zt is subsequently sampled.

2. Sampling Emission Coefficients: Emission coefficients Bs are sampled through a
Gibbs sampling approach from a Normal–Inverse Gamma distribution:

Bs | σ2
s , X, Y ∼ N (µBs , ΣBs), σ2

s | Bs, Y ∼ IG(a, b).

Here, µBs and ΣBs represent posterior mean and covariance matrices, while σ2
s denotes

the state-specific variance drawn from an Inverse–Gamma distribution.
3. Sampling Transition Coefficients (NH-HMM): In the NH-HMM case, transition

coefficients βij are sampled using Pólya–Gamma augmentation. This method simpli-
fies coefficient sampling by introducing auxiliary Pólya–Gamma distributed latent
variables ωs, enabling efficient Gibbs sampling of transition parameters:

βs | ωs, X(2), Z ∼ N (µβs
, Σβs

), ωs ∼ PG(b, X(2)).

Here, µβs
and Σβs

indicate posterior means and covariance matrices.
4. Double Reversible Jump Algorithm: The algorithm employs a Double Reversible Jump

procedure that iteratively proposes adding or removing covariates. Each proposal is
evaluated by calculating an acceptance ratio α, which balances model complexity and
goodness of fit:

α =
p(Y | Xnew)

p(Y | Xold)
exp(−pen),

where pen is a penalty term proportional to the model’s complexity. This penalty
discourages overly complex models unless they significantly enhance the model’s
explanatory power. Through successive iterations, the algorithm efficiently identifies
the optimal covariate subset.

5. Metropolis–Hastings Acceptance Criterion: The acceptance of the proposed covariate
set update follows the Metropolis–Hastings criterion, accepting models with α ≥ 1
automatically, or probabilistically accepting updates with probability α if a random
draw u ∼ U (0, 1) is less than α. This approach ensures thorough exploration of model
space, promoting convergence to a well-fitting, parsimonious model.

The final set of covariates selected for the emission models is determined based on pos-
terior inclusion probabilities derived from the Bayesian MCMC algorithm. Covariates with
high posterior inclusion probabilities (indicating improvement in model fit) are retained,
while those with probabilities below a threshold are excluded. Specifically, covariates
are selected based on their posterior inclusion probability, with a threshold adapted for
emission models (0.5) and a lower threshold for transition models (due to the complexity
and subtlety of non-linear effects, set at 0.3).

The choice of 0.5 for the emission models follows standard practice in Bayesian
variable selection (e.g., [22]), where inclusion is favored once the posterior probability
exceeds the point of equal odds between inclusion and exclusion. In contrast, transition
models within NH-HMMs often exhibit weaker and less stable covariate effects due to
the inherent challenges of estimating time-varying transition probabilities, as discussed
in Section 4. To account for these identifiability issues and prevent the transition models
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from becoming overly sparse, thereby excluding potentially relevant predictors, we apply
a more permissive threshold of 0.3 for covariate inclusion in the transition equations.

The Double Reversible Jump algorithm manages the exploration of a lengthy, correlated
candidate covariate list. However, this complexity can cause the algorithm to become stuck
in regions of high likelihood early on, making it reluctant to exclude covariates despite
their limited contribution. To mitigate this issue, the procedure initializes with a reduced
set (contrary to Koki et al. [14]) of three essential covariates, enhancing the algorithm’s
flexibility in exploring the covariate space. Remaining covariates stay candidates for
inclusion or exclusion from the second iteration onward, thus gradually refining the
covariate set without overwhelming the algorithm.

Because HMM likelihoods naturally tend to improve when introducing additional
covariates—regardless of whether these covariates meaningfully contribute to predictive
performance—a penalty-based approach is employed. Specifically, the Double Reversible
Jump algorithm introduces a complexity penalty into the acceptance ratio calculation
whenever a proposed model includes more covariates than the current model. A penalty of
0.1 was selected to sufficiently discourage overfitting by excessively large covariate sets,
balancing model parsimony and exploratory power. This penalty reduces the Metropolis–
Hastings criterion acceptance probability for model updates that significantly increase
complexity without proportionate improvement in model fit. The choice of this value is
motivated by the need to avoid spurious inclusion of redundant predictors, as observed in
correlated variable groups, where joint inclusion would otherwise be frequently accepted
due to minor cumulative likelihood gains.

To facilitate gradual model refinement and avoid excessively restrictive moves that
could trap the chain in local modes, a smaller penalty of 0.05 is imposed for incremen-
tal changes (e.g., the addition or removal of a single covariate). This softer penalty for
small steps encourages local exploration while maintaining overall control over model
complexity. Both penalty values are calibrated empirically, following the observation
that higher penalties overly constrained the model space. Compared to previous imple-
mentations of [14] without penalization, this refinement substantially reduces the risk of
multicollinearity-driven overfitting.

Given that initial iterations may be biased due to insufficient exploration of the pa-
rameter space, a burn-in period is implemented, discarding the first 30% of iterations. This
percentage ensures the exclusion of early iterations heavily influenced by initial priors,
enhancing the stability and reliability of posterior inference. Convergence of the MCMC
algorithm is evaluated using diagnostic tools provided by the coda 0.19–4.1 package in
R 4.4.3, including trace plots, the Gelman–Rubin statistic (for comparing variance between
chains), and the Effective Sample Size (ESS) to quantify the number of effectively inde-
pendent samples in the chain. As substantiated later by the typical convergence patterns
shown in Section 3.1, the 30% burn-in proportion is sufficient for the majority of the MCMC
chains, with 78 out of 96 achieving convergence within this window. Conversely, a longer
burn-in period does not resolve convergence issues in the remaining cases, where the
Gelman–Rubin statistic remains consistently high across all iterations.

In non-homogeneous Hidden Markov Models (NH-HMMs), sampling transition coef-
ficients βij poses computational challenges due to the nonlinear nature of logistic regression.
To address these challenges, a Pólya–Gamma augmentation approach (Polson et al. [23])
is implemented, introducing latent variables ωs from a Pólya–Gamma distribution. This
transformation simplifies the logistic likelihood into a Gaussian form, significantly improv-
ing computational efficiency, mixing properties, and convergence speed within the MCMC
sampling process.
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2.2. The Forecasting Procedure

As depicted in Figure 1, the h-step-ahead forecasting methodology employed in this
study integrates a rolling-window approach, initially proposed by Box and Jenkins [24],
with bootstrapping techniques introduced by Efron [25]. This combined procedure involves
iteratively moving forward a fixed-length window of the most recent observations. Within
each window, a HMM is fitted to classify market regimes, estimate model parameters, and
determine state transition probabilities. The estimated parameters are then utilized for
generating forecasts h-steps ahead, specifically the following:

• For h = 1: Given the most recently observed hidden state, the next-day forecast is
obtained as the mean of 1000 bootstrap simulations generated using the respective
state-specific parameters.

• For h > 1: At each forecast horizon beyond one step, the next possible hidden
state is simulated using the estimated transition probability matrix. This simulation
determines which state-specific parameters to apply for subsequent forecasting.

• NH-HMM case: Transition probabilities are dynamic and depend on external covari-
ates. A logistic function employing covariate data determines the transition probability
matrix for each forecast step, thus simulating the next possible hidden state.

• At each step, the estimation window is shifted forward by one observation, repeating
the forecasting procedure iteratively.

For each bootstrap iteration, the forecast is initiated from the most recent hidden
state estimated from the model’s posterior distribution. Subsequent state transitions are
simulated based on the model’s transition probabilities. Forecasted values for each h-step-
ahead period are derived using the emission parameters Bs and σs, conditioned on the
simulated hidden states. This bootstrapping approach generates a distribution of future
values, allowing computation of mean forecasts and associated confidence intervals. In
the NH-HMM scenario, the recalculation of transition probabilities at each step based on
time-varying covariates enhances the model’s responsiveness to external influences on
market dynamics.

Forecast accuracy and robustness are evaluated using multiple performance metrics,
including Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean Absolute
Percentage Error (MAPE), and the coverage probability of the 95% forecast confidence
intervals relative to the observed actual values.

2.3. Data Considered

The dataset employed in this study consists of daily closing Bitcoin prices spanning
from 1 June 2016 to 1 December 2024. To better understand temporal variations in Bitcoin’s
behavior, the analysis is conducted on two distinct subsamples: the early period (1 June
2016 to 31 August 2019) and the recent period (1 September 2019 to 1 December 2024).

The Bayesian MCMC analysis incorporates 16 covariates representing financial,
macroeconomic, and Bitcoin-specific factors. Data sources include Yahoo Finance (accessed
via the tidyquant package in R) and the Blockchain.com API. Given sensitivity to varying
data magnitudes, all covariates are log-transformed and scaled. Variables unavailable on
weekends or those reported with minor lags are aligned to daily frequency using linear
interpolation. Additionally, all covariates are lagged by seven days, reflecting a realis-
tic time adjustment period. Table 1 summarizes these adjusted covariates classified into
macroeconomic and Bitcoin-specific categories.
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Table 1. Summary of variables analyzed, including sources, types, median, minimum, maximum
values, and ranges.

Variable Full Name Source Type Median Min Max Range

BTC_USD Bitcoin price Yahoo Finance - −0.02 −2.38 1.60 3.98
DJI Dow Jones Index Yahoo Finance Macroeconomic 0.00 −2.28 1.98 4.27
IXIC Nasdaq index Yahoo Finance Macroeconomic 0.19 −2.07 1.81 3.88
SPX S&P500 index Yahoo Finance Macroeconomic −0.05 −1.91 2.04 3.95
VIX VIX uncertainty index Yahoo Finance Macroeconomic −0.13 −1.83 4.50 6.33
INFL Inflation expectations Calculated Macroeconomic 0.11 −8.74 2.05 10.80
CNYUSD CNY/USD exchange rate Yahoo Finance Macroeconomic −0.17 −1.79 2.01 3.80
EURUSD EUR/USD exchange rate Yahoo Finance Macroeconomic −0.07 −3.15 2.25 5.40
GBPUSD GBP/USD exchange rate Yahoo Finance Macroeconomic 0.01 −3.91 2.91 6.82
JPYUSD JPY/USD exchange rate Yahoo Finance Macroeconomic 0.48 −2.36 1.34 3.70
GC_F Gold futures Yahoo Finance Macroeconomic 0.28 −1.69 2.52 4.21
CL_F Crude Oil futures Yahoo Finance Macroeconomic 0.10 −12.75 2.14 14.90
VOL Bitcoin trading volume Yahoo Finance Bitcoin−specific 0.36 −3.12 1.97 5.09
BLOCK Average block size Blockchain.com Bitcoin−specific −0.02 −3.84 2.62 6.46
HASH Total hash rate Blockchain.com Bitcoin−specific 0.27 −2.34 1.39 3.73
MINER Miner revenue Blockchain.com Bitcoin−specific 0.17 −2.75 1.94 4.69
HALVING Days until halving events Calculated Bitcoin−specific 0.02 −1.72 1.61 3.33

The selection of macroeconomic covariates is directly motivated by the central research
question of this study: Has Bitcoin become increasingly intertwined with macroeconomic
factors as its market evolves and matures? Figure 2 visualizes transformed macroeconomic
variables alongside Bitcoin’s price. Stock market indices (S&P500, Dow Jones, Nasdaq)
serve as proxies for investor confidence and broader financial market performance, where
positive equity returns may signal economic optimism and greater liquidity, potentially
supporting speculative investment across asset classes, including cryptocurrencies. Con-
versely, the VIX index, a measure of implied stock market volatility, captures risk-off
environments where uncertainty may influence portfolio reallocations toward or away
from cryptocurrencies. Exchange rates (EUR/USD, GBP/USD, JPY/USD, CNY/USD)
reflect international capital flows and monetary policy differentials, offering insight into
global liquidity conditions and the strength of reserve currencies relative to Bitcoin. Their
inclusion acknowledges Bitcoin’s emerging role as both a speculative vehicle and a per-
ceived hedge against fiat currency depreciation in certain regions. Similarly, gold and crude
oil futures are included to assess Bitcoin’s positioning relative to traditional inflation hedges
and commodities, contributing to the broader discussion on whether Bitcoin functions as
“digital gold” or aligns more closely with high-risk speculative assets.

The scaled time-series dynamics reveal a pronounced decline in gold prices and
inflation expectations following the implementation of COVID-19 regulations in 2020,
accompanied by a rise in the VIX uncertainty index, during which Bitcoin’s price remained
relatively stable. Exchange rates, particularly EUR/USD and GBP/USD, generally exhibit
directional alignment with Bitcoin, though they experienced significant declines in 2022
without recovering to their earlier peak levels observed in 2018. Financial market indices,
notably the Dow Jones Industrial Index (DJI), exhibit stronger co-movement with Bitcoin’s
price post 2019, although the magnitude of these movements remains subdued compared
to earlier periods.
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Figure 2. Transformed BTC price (solid black line) and macroeconomic covariates over time.

Figure 3 illustrates Bitcoin-specific variables including trading volume, average block
size, total hash rate, miner revenue, and the cyclical variable of days until halving events
(set for 9 July 2016, 11 May 2020, 19 April 2024, and 26 March 2028). Bitcoin’s price closely
tracks trading volume and miner revenue, while days until halving events display a clear
cyclical pattern, confirming prior findings by M’bakob [13].

Figure 3. Transformed BTC price (solid black line) and Bitcoin-specific covariates over time.

3. Results
This section presents the empirical findings derived from the Bayesian MCMC co-

variate selection procedure and the bootstrapped rolling-window forecasting experiments.
Key outcomes include identifying the covariates most significantly influencing Bitcoin’s
price dynamics and evaluating the predictive accuracy for both short-term and long-
term forecasts.

3.1. Bayesian MCMC Covariate Selection

Table 2 summarizes the variables selected by the Bayesian MCMC covariate selec-
tion algorithm for emission coefficients (B) within both homogeneous (HMM) and non-
homogeneous (NH-HMM) models, as well as transition coefficients (β) specifically in
the NH-HMM. A value of “1” indicates covariates with posterior inclusion probabilities
exceeding the threshold of 0.5 for emission coefficients and 0.3 for transition coefficients
across different samples and model specifications.
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Table 2. Results of Bayesian MCMC covariate selection. A “1” indicates posterior inclusion probabili-
ties surpassing the specified thresholds: ≥0.5 for emission coefficients (B) and ≥0.3 for transition
coefficients (β).

Variable
Early Recent Full

HMM B NH-HMM B NH-HMM β HMM B NH-HMM B NH-HMM β HMM B NH-HMM B NH-HMM β

EURUSD 0 0 1 0 1 1 0 0 0
GBPUSD 0 0 0 1 0 0 0 1 0
JPYUSD 0 0 0 0 0 0 0 0 0
CNYUSD 0 0 0 1 1 0 1 0 0
SPX 0 0 0 0 0 0 0 0 0
DJI 0 0 0 0 1 0 0 0 0
IXIC 0 0 0 0 0 0 0 0 0
CL_F 0 0 0 0 0 1 0 0 0
GC_F 1 0 0 0 0 0 0 0 0
VIX 0 0 1 0 0 0 0 0 1
INFL 1 0 0 0 0 0 1 0 0
BLOCK 0 0 0 0 0 0 0 0 0
HASH 0 0 0 1 0 0 0 1 0
MINER 0 0 0 0 0 0 0 0 0
VOL 0 1 0 0 0 0 1 0 0
HALVING 1 0 0 0 0 0 0 0 0

The homogeneous HMM identifies a mixture of macroeconomic and Bitcoin-specific
determinants for Bitcoin price across different periods, summarized as follows:

• Early: GC_F, INFL, HALVING.
• Recent: GBPUSD, CNYUSD, HASH.
• Full: CNYUSD, INFL, VOL.

In contrast, the non-homogeneous HMM highlights an evolving pattern, shifting
from predominantly Bitcoin-specific factors during the early subsample (evidenced by the
exclusive selection of trading volume) toward macroeconomic factors dominating in the
recent subsample for both emission and transition models. The selected covariates in the
NH-HMM model are the following:

• Early: VOL (emission), EURUSD, VIX (transition).
• Recent: EURUSD, CNYUSD, DJI (emission), EURUSD, CL_F (transition).
• Full: GBPUSD, HASH (emission), VIX (transition).

Diagnostics

Multiple diagnostic metrics are used to evaluate the reliability and convergence of
the Bayesian MCMC procedure, following Gelman and Rubin [26]. Foremost among these
metrics is the Gelman–Rubin statistic, also referred to as the Potential Scale Reduction Factor
(PSRF). This statistic compares within-chain variance to between-chain variance across
multiple chains to determine whether they converge on the same posterior distribution.
A PSRF value of 1 indicates perfect convergence, whereas values up to 1.2 are typically
deemed acceptable for inference.

The Gelman–Rubin statistics in Table 3 indicate that the homogeneous HMM generally
converges more smoothly than the NH-HMM due to the latter’s additional complexity from
time-varying transitions. Certain covariates, such as CNYUSD in the recent and full samples
or GC_F in the recent sample, exhibit notably higher PSRF values, likely stemming from large
initial effects estimated by the full-covariate Expectation–Maximization (EM) initialization.
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Table 3. Gelman–Rubin statistics for homogeneous (HMM) and non-homogeneous (NH-HMM)
models across different periods. A value of 1 indicates perfect convergence, and values ≤ 1.2
are acceptable.

Variable
Early Recent Full

HMM NH-HMM HMM NH-HMM HMM NH-HMM

EURUSD 1.01 1.17 1.28 1.23 1.44 1.28
GBPUSD 1.14 1.11 1.02 1.11 1.18 1.90
JPYUSD 1.15 1.08 1.04 1.09 1.00 1.13
CNYUSD 1.00 1.11 1.95 2.70 1.80 1.21
SPX 1.00 1.08 1.00 1.09 1.00 1.14
DJI 1.00 1.08 1.00 2.32 1.00 1.14
IXIC 1.00 1.07 1.00 1.12 1.00 1.15
CL_F 1.02 1.12 1.03 1.19 1.15 1.20
GC_F 1.91 1.22 1.00 1.09 1.00 1.14
VIX 1.00 1.18 1.07 1.12 1.01 1.19
INFL 1.04 1.09 1.00 1.13 1.63 1.21
BLOCK 1.00 1.09 1.00 1.10 1.00 1.14
HASH 1.02 1.09 1.01 1.09 1.00 2.17
MINER 1.00 1.11 1.00 1.09 1.00 1.10
VOL 1.00 7.19 1.11 1.15 1.06 1.11
HALVING 1.45 1.07 1.06 1.07 1.00 1.26

Nevertheless, these variables display high posterior inclusion probabilities, suggesting
that their high PSRF values reflect meaningful informational content rather than mere
noise. In addition, elevated PSRF values are observed for the intercept term, which is less
consequential because the intercept remains included by default in subsequent forecasting
stages, circumventing the variable selection process.

Figure 4 provides further insight into convergence patterns over time. In the left
panels, variables such as HASH (recent HMM) and VOL (full NH-HMM) quickly converge
to PSRF = 1 and remain stable. By contrast, the center panels highlight instances in
which the PSRF stays high but steady, implying persistent difficulties in achieving full
convergence. The right panels, featuring EURUSD data, illustrate a delayed convergence
trajectory, wherein the PSRF initially spikes before gradually declining in later iterations.

(a)

(b)

Figure 4. Examples of dynamic Gelman–Rubin statistic plots over the course of MCMC iterations.
The solid black line denotes the statistic, whereas the red dashed line represents the 97.5% upper
confidence bound. Panel (a) depicts typical examples from the HMM procedure; panel (b) focuses on
NH-HMM cases.
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To further assess mixing and autocorrelation, the Effective Sample Size (ESS) is computed
for each chain. Higher ESS values generally indicate better mixing, ideally approaching
the total number of iterations after burn-in (70,000 in this study). The homogeneous HMM
tends to maintain ESS values close to this upper bound, apart from certain exceptions, such
as EURUSD in the full sample. Conversely, NH-HMM transition models often exhibit lower
ESS values, reflecting the inherent challenges of sampling non-linear transition parameters.
Detailed ESS outcomes can be found in Appendix A.

3.2. Forecasting

This section presents the rolling-window forecasting approach described in Section 2.2,
using the final covariate sets determined by the Bayesian MCMC procedure. Each h-step-
ahead forecast is based on 1000 bootstrap iterations. A rolling window of 100 observations
is selected, motivated by prior evidence that a single hidden state typically persists for
30–60 days, thereby ensuring each window captures both states.

Non-convergence issues occasionally arise during NH-HMM training, triggered by
factors such as extreme data values, limited variation among covariates, or pronounced state
imbalance. When convergence fails, parameter estimates are unavailable for bootstrapping.
In these cases, the affected iteration is skipped, linear interpolation is applied to fill the
resulting gap in the forecasted time series, and these interpolated values are retained in
subsequent performance metrics. Importantly, these non-convergence instances are rare,
with fewer than 10 occurrences across all forecast windows (representing less than 1%
of the windows in the shortest subsample). Given their infrequency, this interpolation
procedure has a negligible impact on the overall performance metrics. Moreover, linear
interpolation provides a conservative estimate that follows the local trend of the original
forecast trajectory, minimizing the risk of artificially inflating or distorting error calculations.

Departing from Koki et al. [15], the final MCMC-based covariate sets (Section 3.1)
are compared against additional benchmark sets prompted by interim findings and
relevant literature:

• Set 1: A mixed set of variables (CNYUSD, DJI, GC_F, VOL), following [16,27].
• Set 2: Bitcoin-specific variables only (MINER, HASH, VOL, HALVING), as in [28,29].
• Transmission Covariate for NH-HMM Benchmarks: VIX is used in both Set 1

and Set 2 for non-homogeneous forecasts, reflecting the importance of uncertainty
indices [30,31].

Table 4 presents typical performance ranges for MAE, RMSE, MAPE, and coverage
probability (COV. P.) across 1-, 5-, and 30-step horizons in the context of this study. These
metrics account for log-transformed Bitcoin prices to mitigate raw error magnitudes and
stabilize outliers in MAPE. Previous research [32–34] documents significant volatility-
driven forecast errors over longer horizons, while bootstrap approaches (e.g., rolling
windows) can improve interval coverage via parameter uncertainty incorporation [35].
Thus, these ranges serve as approximate guidelines rather than rigid thresholds.

Table 4. Typical performance ranges for MAE, RMSE, MAPE, and coverage probability at varying
horizons in this study.

Metric h = 1 h = 5 h = 30

MAE 0.01–0.10 0.05–0.15 0.10–0.30
RMSE 0.01–0.12 0.06–0.18 0.15–0.40
MAPE 10–25% 20–40% 30–50%
COV. P. 90–95% 80–90% 70–85%
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Results are discussed by subsample (early, recent, and full) under both homogeneous
(HMM) and non-homogeneous (NH-HMM) modeling frameworks. Illustrative figures
show actual versus forecasted values, rolling coefficients, and rolling MAPE series for the
one-step-ahead models with the lowest MAPE.

3.2.1. Early Sample

In the early sample (2016–2019), Set 2 (Bitcoin-specific variables) achieves the best
accuracy for the homogeneous HMM, as shown in Table 5. This outcome aligns with
Ibrahim et al. [28], which also indicates that technical or internal Bitcoin metrics suffice
during earlier, more speculative stages of Bitcoin’s development. However, the MCMC set
(GC_F, INFL, HALVING) comes in a close second for one-step-ahead forecasts. Overall, this
subsample has relatively low forecast errors but falls below Table 4 coverage guidelines.

Table 5. Homogeneous HMM bootstrapped rolling forecasts for the early sample (2016–2019). The
MCMC set consists of GC_F, INFL, HALVING. The minimum MAPE across each set of horizons (1, 5,
30) is highlighted in bold.

MCMC Set Set 1 Set 2

Metric h = 1 h = 5 h = 30 h = 1 h = 5 h = 30 h = 1 h = 5 h = 30

MAE 0.05 0.08 0.16 0.06 0.08 0.17 0.05 0.07 0.16
RMSE 0.05 0.08 0.18 0.06 0.09 0.20 0.05 0.08 0.18
MAPE 14.01 20.18 42.47 15.79 22.63 49.02 13.52 18.65 40.82
COV. P. 78.74 75.67 57.94 81.68 78.17 58.50 81.98 77.68 58.61

Under the non-homogeneous HMM framework (Table 6), the MCMC set (featuring
VOL in the emission model and EURUSD, VIX in transition) performs relatively worse.
Meanwhile, Set 2 again achieves lower MAPE, though adding VIX for transition does not
yield substantial gains compared to simpler homogeneous variants. Incorporating extra
Bitcoin-specific variables (MINER, HASH, HALVING) cuts MAPE from 25.30% to 15.23%
(1-step-ahead) yet reduces coverage.

Table 6. NH-HMM bootstrapped rolling forecasts for the early sample, where the MCMC set includes
VOL (emission) and EURUSD, VIX (transition). The minimum MAPE across each set of horizons (1,
5, 30) is highlighted in bold.

MCMC Set Set 1 Set 2

Metric h = 1 h = 5 h = 30 h = 1 h = 5 h = 30 h = 1 h = 5 h = 30

MAE 0.09 0.16 0.25 0.07 0.13 0.22 0.06 0.12 0.21
RMSE 0.09 0.18 0.27 0.07 0.14 0.25 0.06 0.14 0.24
MAPE 25.30 45.66 70.47 17.69 37.58 61.80 15.23 29.24 52.89
COV. P. 80.74 72.93 54.49 75.05 72.12 56.40 74.61 71.85 53.26

Figure 5 shows the rolling coefficients from the best-performing homogeneous HMM
with Set 2, revealing HALVING as the primary driver from mid-2017 through early 2018.
This period aligns with heightened speculation and anticipation of halving’s influence
on supply [13]. Over time, HALVING’s impact diminishes in favor of factors linked to
institutional involvement and broader macroeconomic developments.
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Figure 5. Rolling coefficients in States 1 and 2 for the homogeneous HMM with Set 2, early sample
(2016–2019). HALVING dominates during speculative phases, then tapers off.

Figure 6 illustrates sharp MAPE spikes during the 2017–2018 bull run and subsequent
crash, underscoring the influence of HALVING, VOL, and HASH in high-volatility regimes.
More moderate errors reappear as the market stabilizes. An additional MAPE surge in
early 2019 corresponds to the intercept absorbing unexplained volatility. These anomalies
match Tether- and PlusToken-related irregularities, consistent with [12].

Figure 6. Rolling MAPE for the homogeneous HMM with Set 2 in the early sample. (1) Tether
issuance and trading (2017–2018); (2) PlusToken Ponzi scheme (2019).

3.2.2. Recent Sample

In the recent subsample (2019–2024), Set 1 (macroeconomic + Bitcoin variables)
emerges as the best performer for the homogeneous HMM, while the MCMC set
(CNYUSD, GBPUSD, HASH) runs a close second at one-step-ahead (Table 7). By con-
trast, Set 2—dominant in the early sample—now struggles to capture the evolving inter-
play of traditional financial factors, in line with [27,36]’s findings on Bitcoin’s growing
macroeconomic sensitivity.

Table 7. Homogeneous HMM forecasts for the recent sample (2019–2024). The MCMC set comprises
CNYUSD, GBPUSD, and HASH. The minimum MAPE across each set of horizons (1, 5, 30) is
highlighted in bold.

MCMC Set Set 1 Set 2

Metric h = 1 h = 5 h = 30 h = 1 h = 5 h = 30 h = 1 h = 5 h = 30

MAE 0.07 0.09 0.18 0.06 0.09 0.18 0.06 0.09 0.20
RMSE 0.07 0.10 0.21 0.06 0.09 0.21 0.06 0.10 0.23
MAPE 27.61 42.41 102.42 25.85 38.84 87.35 33.69 46.07 107.24
COV. P. 81.77 78.25 60.97 82.56 79.45 60.71 79.20 77.10 60.76
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Non-homogeneous forecasts (Table 8) underscore this trend: the MCMC set (DJI,
CNYUSD, EURUSD in emission; EURUSD, CL_F in transition) outperforms benchmark
sets over shorter horizons but shows weak coverage at longer horizons. Both homogeneous
and non-homogeneous results highlight Bitcoin’s macroeconomic entanglement post 2019.

Table 8. NH-HMM forecasts for the recent sample, with the MCMC set involving DJI, CNYUSD,
EURUSD (emission), and EURUSD, CL_F (transition). The minimum MAPE across each set of
horizons (1, 5, 30) is highlighted in bold.

MCMC Set Set 1 Set 2

Metric h = 1 h = 5 h = 30 h = 1 h = 5 h = 30 h = 1 h = 5 h = 30

MAE 0.08 0.15 0.26 0.07 0.14 0.24 0.08 0.25 0.53
RMSE 0.08 0.16 0.29 0.07 0.16 0.27 0.08 0.29 0.62
MAPE 29.13 56.88 122.43 30.13 58.98 106.25 33.80 88.61 172.30
COV. P. 77.81 69.31 44.85 76.07 70.89 51.33 74.58 70.03 53.19

Figure 7 illustrates rolling coefficients for the homogeneous HMM with Set 1. CNYUSD
and DJI peak during the 2020–2022 bull run and 2022 volatility surges, while GC_F rises
in importance from 2022 onward. VOL remains comparatively stable, suggesting it tracks
broader market swings without driving them [27].

Figure 7. Rolling coefficients in States 1 and 2 for the homogeneous HMM with Set 1, recent sample
(2019–2024).

Figure 8 shows generally lower volatility spikes than in the early sample, though large
MAPE jumps occur in 2022 and 2023, coinciding with events such as BlackRock’s Bitcoin
ETF filing and the EU’s Markets in Crypto-Assets Regulation (MiCA) legislation. Investor
sentiment, beyond the scope of these models, likely contributes to abrupt shifts in price.

Figure 8. Rolling MAPE for the homogeneous HMM with Set 1 in the recent sample. (1) BlackRock’s
spot BTC ETF filing; (2) EU’s MiCA adoption.
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3.2.3. Full Sample

When evaluated over the entire 2016–2024 period, the shorter early sample exerts a
pronounced influence. Table 9 indicates that Set 2 (Bitcoin-only) attains the lowest MAPE
(15.78%) for the homogeneous HMM, whereas the MCMC set (CNYUSD, INFL, VOL) yields
slightly better coverage. Performance converges across sets for 30-step-ahead forecasts, all
scoring relatively poorly.

Table 9. Homogeneous HMM forecasts for the full sample (2016–2024). The MCMC set includes
CNYUSD, INFL, and VOL. The minimum MAPE across each set of horizons (1, 5, 30) is highlighted
in bold.

MCMC Set Set 1 Set 2

Metric h = 1 h = 5 h = 30 h = 1 h = 5 h = 30 h = 1 h = 5 h = 30

MAE 0.04 0.06 0.11 0.04 0.05 0.11 0.03 0.05 0.11
RMSE 0.04 0.06 0.13 0.04 0.06 0.13 0.03 0.06 0.13
MAPE 24.68 31.85 74.70 24.95 28.70 72.56 15.78 26.68 73.14
COV. P. 82.39 78.86 62.65 82.59 78.89 60.20 80.73 77.31 59.69

Under the NH-HMM (Table 10), Set 2 again excels at one-step-ahead horizons with
the lowest MAPE (21.26%), but it deteriorates more than other sets at longer forecasts. Set 1
improves for five-step predictions, while the MCMC set (GBPUSD, HASH for emission;
VIX for transition) slightly enhances coverage.

Table 10. NH-HMM forecasts for the full sample. The MCMC set includes GBPUSD, HASH (emission)
and VIX (transition). The minimum MAPE across each set of horizons (1, 5, 30) is highlighted in bold.

MCMC Set Set 1 Set 2

Metric h = 1 h = 5 h = 30 h = 1 h = 5 h = 30 h = 1 h = 5 h = 30

MAE 0.05 0.10 0.16 0.04 0.09 0.15 0.05 0.12 0.25
RMSE 0.05 0.11 0.18 0.04 0.10 0.17 0.05 0.14 0.29
MAPE 24.08 49.75 95.82 21.67 39.35 96.30 21.26 70.42 116.08
COV. P. 78.16 70.61 51.56 76.61 71.39 51.22 75.01 70.34 53.88

Figure 9 shows the rolling coefficients for the homogeneous HMM with Set 2 across the
entire period. Notable spikes in HALVING reflect its cyclical significance around scheduled
supply reductions [13]. Volatility in the intercept captures unexplained short-term shocks,
while VOL, HASH, and MINER remain comparatively stable, consistent with King [9]’s
emphasis on mining variables primarily at threshold events.

Figure 9. Rolling coefficients for the homogeneous HMM with Set 2 over the full sample (2016–2024).
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Figure 10 illustrates why Set 1 loses its advantage at the full-sample level despite strong
results in the recent period. High MAPE episodes appear before 2021, suggesting omitted
factors or short-term speculative behavior as identified in previous studies [10,19,29].
Nonetheless, the elevated error regions are relatively brief under Set 2, making it favorable
overall. Periods labeled (1) and (2) again correspond to Tether issuance/trading and the
PlusToken scheme; event (3) denotes the halving impact observed around 2020, when major
firms (e.g., MicroStrategy, Square, PayPal) accelerated Bitcoin accumulation.

Figure 10. Rolling MAPE for the homogeneous HMM with Set 2 over the full sample. (1) Tether
trading (2017–2018), (2) PlusToken (2019), (3) Halving-related demand (2020).

While the proposed framework demonstrates strong performance for short-term fore-
casts (h = 1, 5), the 30-step-ahead predictions often yield considerably higher MAPE values,
exceeding 100% in several subsamples. This reflects the intrinsic challenge of modeling
Bitcoin prices over longer horizons due to their high volatility, sensitivity to external shocks,
and limited predictability. Accordingly, these long-term forecasts should be viewed as
indicative scenario tools rather than precise point predictions. They may still provide useful
insights into potential regime shifts or directional tendencies but should be interpreted
with caution, especially in practical financial or policy decision-making contexts.

4. Discussion and Methodological Comparisons
The empirical findings from the Bayesian MCMC covariate selection in homogeneous

HMMs indicate that both macroeconomic and Bitcoin-specific factors influence Bitcoin’s
price over the examined periods, underscoring the asset’s evolving market structure.
By contrast, results from the non-homogeneous HMM highlight a shift from primarily
Bitcoin-specific determinants toward macroeconomic drivers, particularly in the later
subsample. These observations are further supported by the forecasting procedure, aligning
with [16,27,36], where the highest accuracy for the early sample derives from a Bitcoin-
focused Set 2, while a mixed Set 1 dominates for the later sample—yet Set 2 still outperforms
in the full sample.

Dynamic Coefficients and Market Evolution

Rolling coefficient estimates provide deeper insight into shifting price drivers. In
both the early and full-sample analyses, Days until halving exhibits a pronounced effect,
consistent with [13], which links halving events to significant supply reductions and
subsequent price surges. Conversely, in the recent subsample, the CNY/USD exchange rate
and the Dow Jones index assume top coefficient ranges, highlighting Bitcoin’s heightened
sensitivity to global financial markets, consistent with [31,37].

Additionally, dynamic MAPE values reveal that large forecasting errors coincide with
influential external shocks or fraudulent activities [27]. For instance, substantial error
spikes appear in June 2023 alongside BlackRock’s ETF filing and in April 2023, coinciding
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with the EU’s MiCA adoption. Likewise, Tether issuance (2017–2018) and the PlusToken
Ponzi scheme (2019) align with error peaks observed in earlier years [12].

Methodological Extensions and Refinements

Building on [14], this study introduces several modifications designed to enhance
covariate selection and forecasting performance:

• Penalized Acceptance Ratios: A penalty term is added to discourage unnecessary model
complexity.

• Reduced Initial Covariate List: Initialization with a minimal set of covariates enhances
search flexibility.

• Lower Posterior Transition Benchmark: A reduced threshold is used to accommodate
non-linear transition effects.

• Bootstrapped Rolling-Window Forecasting: Short-term predictions benefit from iterative
re-estimation on local windows.

Further innovations include extending the approach to homogeneous HMMs, en-
larging the macroeconomic and Bitcoin-specific variable pool, explicitly reporting MCMC
diagnostics, and incorporating dynamic, rolling-window analyses. These collective refine-
ments mitigate multicollinearity and overfitting by discouraging redundant covariates.
For instance, SPX, DJI, and IXIC—highly correlated U.S. indices—are rarely all included
simultaneously, as their combined likelihood improvement triggers the penalty mechanism.

Challenges in Estimating Transition Models

Despite these advancements, sampling transition probabilities within non-
homogeneous HMMs remains challenging. Some variables display low ESS and ele-
vated Gelman–Rubin statistics (Diagnostics Section). Among the 96 estimated MCMC
chains, 4 exceeded the PSRF convergence threshold of 1.2 in the early subsample, 5
in the recent subsample, and 9 in the full sample, with poor convergence more fre-
quently observed in the NH-HMM specifications. Restrictive priors, or attempts to
inflate priors for broader exploration, can yield overflow errors in the logistic transition
likelihood if X⊤

t βi j becomes excessively large. Similar complexities are noted in [38],
wherein non-linear transitions undermine stable mixing. Although Pólya–Gamma aug-
mentation [23] addresses non-conjugacy issues, time-varying transitions and modest
covariate effects can complicate convergence. Empirically, adding the VIX uncertainty
index to transition equations often does not enhance accuracy, deviating from [30,31]
but aligning with [10], which report limited forecasting gains from uncertainty proxies.

Covariate Selection Versus Forecasting Horizon

Another key observation is that MCMC-selected covariates—optimized for broad,
long-term effects—do not consistently surpass benchmark sets under rolling-window
forecasts aimed at short-term patterns. In high-correlation scenarios, substituting one
macroeconomic or Bitcoin variable for another often yields minimal net likelihood gain.
For instance, the non-homogeneous MCMC set (CNYUSD, DJI, EURUSD, CL_F) is closely
matched by a slightly different Set 1 (CNYUSD, DJI, GC_F, VOL), emphasizing that strong
pairwise correlations can make certain variables interchangeable.

SWOT Analysis of the Methodological Approach

Strengths. The methodological framework—Bayesian MCMC-based variable selec-
tion combined with homogeneous and non-homogeneous HMMs—offers several notable
strengths. It effectively captures regime-dependent relationships and accommodates struc-
tural shifts in Bitcoin’s price dynamics. By integrating long- and short-term forecasting
through a rolling-window bootstrap procedure, the approach remains flexible to evolving
market conditions. The Bayesian framework in particular enhances model parsimony by
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using posterior inclusion probabilities, thereby reducing the risk of overfitting in high-
dimensional settings.

Weaknesses. Several limitations should be acknowledged. The non-linear nature of
transition probabilities in the non-homogeneous HMMs introduces considerable computa-
tional challenges, often leading to slower MCMC convergence and lower effective sample
sizes. Additionally, the reliance on lagged covariates may limit the model’s real-time
predictive responsiveness, and the methodological complexity could reduce transparency
and interpretability for broader, non-technical audiences.

Opportunities. This framework opens up promising opportunities for extension. It can
be adapted to other volatile assets or markets undergoing structural transformation. Future
research could explore its integration with sentiment indicators, regime duration modeling,
or hybrid machine learning-HMM systems. Moreover, real-time macro-financial surveil-
lance tools based on this framework could aid policymakers and institutional investors.

Threats. Potential threats include the risk of misinterpretation or over-reliance on
model outputs, particularly in policymaking or financial regulation. Model performance
may degrade rapidly during unprecedented crises (e.g., pandemics or geopolitical shocks) if
relevant covariates are omitted or lagged responses are misaligned. Moreover, high compu-
tational demands and limited accessibility for practitioners may hinder broader adoption.

Macroeconomic and Regulatory Outlook: A PESTLE Perspective

Beyond statistical and econometric modeling, Bitcoin’s long-term evolution is embed-
ded in broader macro-environmental dynamics. A PESTLE framework helps illustrate this
multifaceted landscape. Politically, Bitcoin faces shifting regulatory positions—ranging
from El Salvador’s adoption to the European MiCA regulation—affecting global legiti-
macy. Economically, its ties to inflation expectations, institutional investment flows, and
interest rate regimes grow stronger. Socially, cultural attitudes, generational shifts, and
public narratives drive adoption cycles. Technologically, innovations like Layer 2 scaling and
proof-of-stake alternatives shape user behavior and infrastructure. Legally, classification
as a commodity or security continues to shape compliance obligations and institutional
involvement. Environmentally, Bitcoin mining remains under scrutiny due to energy inten-
sity, sparking interest in sustainable practices. These contextual forces deepen Bitcoin’s
integration into traditional financial systems while also introducing volatility through
exogenous shocks.

Policy Implications

The findings of this study suggest that Bitcoin is increasingly influenced by traditional
macroeconomic factors, particularly during recent periods of institutional adoption and
regulatory attention. Policymakers and financial regulators should consider integrating
Bitcoin and other major cryptocurrencies into broader macro-financial surveillance frame-
works. The heightened sensitivity of Bitcoin prices to interest rates, exchange rates, and
stock market volatility implies that central bank policies and fiscal developments may
have amplified spillover effects into the crypto asset space. Therefore, establishing clear,
adaptive regulatory frameworks—such as MiCA in the EU or guidelines on exchange-
traded products—can help stabilize investor expectations and reduce market uncertainty.
Additionally, given the limitations of long-horizon predictability, policy communication
strategies should emphasize the inherent risks of speculative behavior, particularly for
retail investors.

4.1. Alternative Approaches for Covariate Selection

Given the impact of variable selection on forecast performance, various machine
learning methods were tested to gauge their suitability.
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4.1.1. Least Absolute Shrinkage and Selection Operator (LASSO)

First, LASSO was applied to the complete covariate set to isolate coefficients shrunk
to zero. However, the optimal λ (selected via cross-validation) retained essentially all
covariates, reflecting high dimensionality and multicollinearity. Adopting a larger λ (one
standard error from the minimum) only excluded INFL, which still left too many covariates
for the HMM structure, risking overfitting.

4.1.2. Elastic Net

An Elastic Net model with α = 0.5 (balancing L1 and L2 penalties) was then employed
under cross-validation. Nevertheless, no coefficients were shrunk to zero, paralleling the
outcome of LASSO. Thus, while these methods offer efficient shrinkage in conventional
regression contexts, they proved unsuitable for HMM-based analyses due to entrenched
multicollinearity and regime-switching dynamics.

4.1.3. Random Forest (RF)

A Random Forest algorithm was next used to rank covariates based on reductions
in out-of-bag accuracy. The top four—SPX, IXIC, INFL, and DJI—strongly overlapped,
capturing similar U.S. financial market trends. Incorporating all four into a rolling HMM
forecast induced convergence problems stemming from high correlation among indices.
These results reaffirm that solely algorithmic feature ranking must be reconciled with the
requirements of HMM-based methods.

4.1.4. Support Vector Machine (SVM)

Finally, a rolling-window SVM was tested on identical covariate sets. Despite the
same bootstrap logic, SVM forecasts for 1-day-ahead lagged substantially behind HMM
equivalents. For example, a rolling SVM using Set 2 over the full sample produced a MAPE
of 29.52%, compared to 15.78% with the homogeneous HMM. Coupled with higher compu-
tational expenses, SVM was deemed impractical for the studied regime-switching context.

Implications and Future Directions

Collectively, these alternative strategies highlight the distinctive requirements of
HMM-based forecasting. Methods like LASSO or Elastic Net could not adequately reduce
the correlated feature space. Random Forest offered feature importance insights but did
not address multicollinearity in transition models. Rolling SVM attempts incurred reduced
accuracy and heavier computation. In contrast, the Bayesian MCMC approach—tailored
for regime-switching—showed robust short-term performance when combined with rolling
windows and bootstrapping while also identifying high-impact covariates for the long run.

From a practical standpoint, investors may wish to monitor macroeconomic indicators
(e.g., exchange rates, stock indices) alongside Bitcoin-specific metrics (e.g., trading volume,
halving cycles) to anticipate major price swings. Policymakers could leverage such insights
to understand how cryptocurrencies interface with traditional financial systems, potentially
shaping more informed regulatory measures. Future research might extend this work
by incorporating structural break detection or investor sentiment variables directly into
state transitions, offering a finer-grained view of how exogenous events reshape Bitcoin’s
market regimes.

5. Conclusions
This paper investigates whether Bitcoin has become increasingly sensitive to macroe-

conomic variables, especially amid rising institutional adoption. While some studies char-
acterize Bitcoin as an autonomous asset, others posit growing convergence with traditional
financial markets. To clarify this debate, the Bayesian MCMC covariate selection method
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of [14] was extended to both homogeneous and non-homogeneous Hidden Markov Models
(HMMs). This study thoughtfully integrates established techniques—Bayesian MCMC-
based covariate selection, regime-switching modeling, and rolling-window forecasting—to
address challenges like overfitting, convergence, and predictive instability. While each
method individually is well established in the literature, their combined application to the
evolving cryptocurrency market offers new empirical insights.

A dataset comprising 16 macroeconomic and Bitcoin-specific variables from 2016 to
2024 was used to compare the MCMC-selected covariate sets against two benchmark sets:

• Set 1, a combination of macroeconomic and Bitcoin-specific variables;
• Set 2, Bitcoin-focused covariates only.

In non -homogeneous HMMs, the VIX uncertainty index served as a transition covari-
ate. Analyses across an early (pre-2019) and recent (post-2019) period demonstrate a clear
evolution in Bitcoin’s price determinants. Whereas early Bitcoin price movements were
dominated by internal metrics, including trading volume and halving cycles, the recent era
shows a stronger influence from macroeconomic indicators, particularly exchange rates and
U.S. market indices. Dynamic forecasting errors further reveal that sharp volatility often
aligns with regulatory shifts, major institutional announcements, and potential market
manipulation or sentiment-driven episodes.

By coupling Bayesian MCMC-based variable selection with rolling-window forecasts,
this study contributes a robust framework for uncovering the shifting drivers behind
Bitcoin’s price dynamics. Practical considerations—such as effectively sampling non-
linear transitions or managing high-dimensional covariate sets—proved crucial to the
methodology’s success.

Future Research

Potential extensions include (i) incorporating Bayesian change-point detection for ex-
treme volatility episodes, (ii) adding sentiment or social-media-based indicators to capture
behavioral effects, and (iii) testing structural break hypotheses tied to pivotal regulatory
or macroeconomic disruptions. These directions can further refine understanding of how
digital assets integrate into—and diverge from—traditional financial systems.
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Appendix A. Extended ESS Analysis
Tables A1–A3 present the Effective Sample Size (ESS) values for the homogeneous

HMM (States 1 and 2) and the non-homogeneous HMM (NH-HMM) emission and transi-
tion models, respectively. Values approaching 70,000 suggest minimal autocorrelation and
strong chain mixing.

For the homogeneous HMM, ESS values generally remain close to the post-burn-in
iteration count of 70,000, implying that the chains exhibit limited autocorrelation and
reliably sample from the posterior. State 1 and State 2 typically show similar ESS values,
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indicating that both states are equally well represented in the chain. An exception is
observed for EURUSD in the full sample, where the ESS in State 2 drops as low as 141.
Nonetheless, its final posterior inclusion probability remains below the threshold for
inclusion in the optimal covariate set.

Regarding the NH-HMM emission coefficients, most variables—apart from EURUSD—
achieve ESS values close to 70,000. This finding suggests that, despite the added complexity of
modeling dynamic transitions, the emission model still manages to sample effectively for most
variables. Conversely, the transition model exhibits markedly lower ESS counts, reflecting
stronger autocorrelation and the computational challenges associated with non-linear, time-
varying transitions. Furthermore, an asymmetry is observed between states: on average,
State 2 achieves a lower ESS, indicating that its posterior surface may be more difficult
to traverse.

Such behavior is explained in part by differences in the prior specification. For instance,
the initial model for State 1 used narrower priors, potentially anchoring the sampler more
efficiently around its true posterior mode. By contrast, wider priors in State 2 left the
sampler with more parameter space to explore, thereby reducing its ESS. Although these
factors complicate the convergence process, they also highlight the capacity of the NH-
HMM to capture nuanced, regime-specific phenomena that might be overlooked by a
simpler homogeneous approach.

Table A1. ESS values of the MCMC chains in the homogeneous HMM framework across the early,
recent, and full subsamples for States 1 and 2. Values near the maximum iteration count (70,000)
indicate sufficient chain mixing.

Early Sample Recent Sample Full Sample
Variable

State 1 State 2 State 1 State 2 State 1 State 2

Intercept 70,000 70,000 70,000 69,220 68,425 70,000
EURUSD 69,498 69,418 70,000 70,000 21,491 141
GBPUSD 70,000 70,000 67,816 70,000 69,314 69,743
JPYUSD 71,748 71,759 70,000 70,000 70,000 70,000
CNYUSD 72,276 72,404 70,000 70,000 70,000 70,000
SPX 70,000 70,000 68,834 68,852 69,665 69,671
DJI 69,135 69,145 70,000 70,000 67,836 67,853
IXIC 70,000 70,000 69,294 69,283 70,000 70,000
CL_F 69,012 69,031 70,000 70,000 70,000 70,000
GC_F 69,242 70,000 67,624 67,628 70,000 70,000
VIX 50,829 53,844 71,405 71,545 70,000 70,000
INFL 70,000 70,000 70,000 70,000 64,784 64,803
BLOCK 70,000 70,000 70,000 70,000 70,000 70,000
HASH 70,000 70,000 70,000 70,000 70,000 70,000
MINER 70,757 70,000 69,895 69,919 70,000 70,000
VOL 70,000 70,000 70,000 70,000 67,510 67,519
HALVING 70,000 70,000 69,380 69,978 70,000 70,000
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Table A2. ESS values of the MCMC chains in the non-homogeneous HMM (NH-HMM) framework
for the emission model, across the early, recent, and full subsamples for States 1 and 2. Values near
70,000 suggest robust mixing.

Variable
Early Sample Recent Sample Full Sample

State 1 State 2 State 1 State 2 State 1 State 2

Intercept 71,180 70,000 70,777 70,000 71,125 71,232
EURUSD 70,000 70,000 220 74 18,031 18,516
GBPUSD 69,859 70,076 70,000 70,000 70,000 70,000
JPYUSD 70,000 70,000 67,794 67,737 70,820 70,826
CNYUSD 72,008 71,971 52,599 30,452 70,000 70,000
SPX 70,764 70,000 69,200 69,197 70,000 70,000
DJI 70,000 70,000 30,540 30,432 70,000 70,000
IXIC 70,000 70,000 70,000 70,000 68,048 68,028
CL_F 70,000 70,000 71,547 71,563 70,000 70,000
GC_F 70,000 70,000 70,000 70,000 70,000 70,000
VIX 72,342 72,399 70,000 70,000 70,000 70,000
INFL 71,791 71,776 69,012 68,979 71,196 71,183
BLOCK 70,000 70,000 65,919 66,812 70,000 70,000
HASH 71,038 71,075 70,000 70,000 68,700 68,629
MINER 70,000 70,000 70,000 70,000 70,328 70,320
VOL 70,019 70,000 70,000 70,000 70,000 70,000
HALVING 70,000 70,000 70,770 70,840 70,000 70,000

Table A3. ESS values of the MCMC chains in the non-homogeneous HMM (NH-HMM) framework
for the transition model, across the early, recent, and full subsamples for States 1 and 2. Values near
70,000 suggest robust chain mixing.

Variable
Early Sample Recent Sample Full Sample

State 1 β State 2 β State 1 β State 2 β State 1 β State 2 β

Intercept 68,974 56,564 70,000 23,968 70,000 2226
EURUSD 62,539 5477 71,652 68,769 70,169 68,052
GBPUSD 70,000 70,000 16,679 1905 8971 1926
JPYUSD 70,000 70,000 70,000 70,000 12,816 1938
CNYUSD 70,000 69,246 64,957 54,275 38,085 4513
SPX 70,000 70,000 70,000 70,000 19,021 1686
DJI 70,000 67,015 70,000 68,867 9382 2244
IXIC 70,000 70,000 70,000 70,000 12,397 1801
CL_F 70,000 70,000 46,737 4399 70,000 70,000
GC_F 31,839 7789 70,000 68,838 38,853 3535
VIX 70,000 37,592 70,000 70,000 48,271 6305
INFL 70,000 70,000 20,567 2353 70,000 63,688
BLOCK 70,000 68,980 70,000 70,000 13,147 3602
HASH 69,168 70,000 70,000 65,189 6128 795
MINER 70,000 70,211 70,000 70,000 70,000 70,000
VOL 70,000 70,000 52,374 4409 65,981 63,015
HALVING 68,414 70,000 15,171 2082 67,071 70,000
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