
VILNIUS UNIVERSITY

CENTER FOR PHYSICAL SCIENCES AND TECHNOLOGY

VYTAUTAS ABRAMAVIČIUS

Theory of Energy and Charge Transport
in Organic Molecular Systems

Doctoral dissertation

Physical sciences, Physics (02P)

Vilnius, 2017



Dissertation was prepared at Vilnius university in 2013–2017.
Scientific supervisor –
prof. Darius Abramavičius (Vilnius university, Physical sciences, Physics – 02P).



VILNIAUS UNIVERSITETAS
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Introduction

Transport phenomena occupies a special and very important place in physics. In
a huge variety of physical processes we can observe either energy or matter being
transferred from one place to another, e. g., wave phenomena (energy transport)
or an ink droplet mixing with water (particle transport). Essentially, transport of
any kind is synonymous to motion. Thus describing energy or particle transfer in
different systems we, first of all, need to investigate the collective motion of many,
possibly interacting, constituents of the system. Although many interesting and sig-
nificant transport phenomena (diffusion in gases and liquids, electromagnetic energy
transfer) can be studied by applying models and methods from classical physics, a
wide range of processes that emerged with the advent of quantum mechanics (charge
motion in semiconductors and superconductors, photoelectric effect in metals) re-
quires non-classical treatment. Quantum mechanical description is also unavoidable
when studying energy and charge transfer effects in organic molecular compounds.

Molecular aggregates are usually modeled as open quantum systems contain-
ing relatively few observable degrees of freedom interacting with their environment.
The environment can consist of any degrees of freedom which are not included in
the open system under consideration: phonons, external electromagnetic fields or
other molecular electronic or vibrational levels. Due to a large variety of relevant
quantum states and coupling strengths between them, the excitation or charge dy-
namics in molecular compounds reveals a rich collection of phenomena occurring on
different timescales. Theoretical description of the evolution on different timescales
usually requires separate methods which are better suited in the particular param-
eter range. Thus, the most difficult systems for modeling are those which exhibit
dynamics falling in between two distinct timescales or regimes. Most theoretical cal-
culations either brake down in such intermediate cases or the computational effort
required to handle them is too large, hence unpractical. Thus, the development of
theoretical approaches must constantly be in progress in order to utilize the latest
achievements in computational technologies and be able to catch up with new ex-
perimental techniques and results revealing the extensive variety of phenomena in
organic molecular systems.

Studying energy and charge transport is especially important in one of the most
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10 Introduction

intriguing areas of research – the science behind the photosynthesis in plants and
bacteria. The process of photosynthesis used by these organisms to convert the
energy of the sunlight to chemical energy suggests that artificial photosynthesis
technology, if mastered, could revolutionize the way mankind satisfies its energy
needs [1–4]. One big advantage of artificial photosynthesis is the ability to convert
the solar energy to chemical energy by splitting water molecules and obtaining hy-
drogen which could be more easily stored than electric energy. The by-products
of this process are not harmful for the environment. However, current technologies
have not yet reached high enough energy conversion efficiency [5–7] and the organic
materials used in such devices degrade over time due to exposure to oxygen [2, 3].
Thus, it is necessary to investigate natural photosynthetic systems to reveal how the
evolution tailored them to become effective sources of energy for many organisms
on Earth.

Another approach to harness the power of the Sun is to use the photoelectric effect
in inorganic semiconductors. Current silicon-based solar cells are already widely
used and commercially viable [8–11] but they are still quite expensive and lack
flexibility which restricts mounting possibilities. An alternative to inorganic solar
cells are elements based on organic molecular materials. Such devices only recently
achieved energy conversion efficiency still lower but allowing them to compete with
silicon-based solar cells. However organic molecular technology is much cheaper
in production and it offers the advantage of being so flexible that layers of sunlight
absorbing material can be integrated in an endless variety of household products and
locations. In order to improve the efficiency and the service time of organic solar
cells it is necessary to thoroughly understand the fundamental processes of energy
and charge transport occurring in these devices, from light absorption to charge
extraction. A particularly important step in light to electrical energy conversion is
the dissociation mechanism of the initial molecular excitation and subsequent charge
separation.

The main goal of this thesis is to develop a consistent approach for de-
scribing open quantum system dynamics in a wide range of timescales and
system parameters and apply this method to study energy transport in
photosynthetic Fenna–Matthews–Olson complex and the characteristics
of charge separation process in organic solar cells. This goal was achieved in
the following steps:

• Deriving the general, formally exact stochastic Schrödinger equation and its
equivalent form – the hierarchical stochastic Schrödinger equation for calcula-
tions with linear system–bath coupling of arbitrary strength.

• Obtaining the weak system–bath approximation form of the stochastic Schrödin-
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ger equation and comparing its performance against other open quantum sys-
tems propagation methods for a simple toy system.

• Applying the stochastic Schrödinger equation to calculate the energy transfer
dynamics in the photosynthetic Fenna–Matthews–Olson system.

• Using the stochastic Schrödinger equation to simulate the initial charge sep-
aration dynamics in the bulk heterojunction organic solar cells on the several
picosecond timescale and comparing the results with experimental data to re-
veal the stages of coherent to incoherent transition of charge motion.

Relevance and novelty of the results

The ability to accurately describe the dynamics of an open quantum system is usu-
ally the cornerstone on which the machinery for the investigation of the specific
transport problem is based. Many methods for characterizing the evolution of an
open quantum system are approximating in some way either the dynamics of the
heat bath (classical mechanics description, Markovian fluctuations), the system-
–bath interaction (Born approximation), the model of coupling between the con-
stituents of the system or combining all of these simplifications. This is done in
order to efficiently investigate the dynamics of the system in some particular pa-
rameter range. Due to such limitations it is generally difficult to tackle problems
which lie on the boundaries between two or more different regimes of the processes
observed in the given system, e. g., the transition between coherent and incoher-
ent motion of the electron in the organic solar cell. In this thesis we suggest the
weak-coupling stochastic Schrödinger equation (Section 2.2) obtained from its full
formally exact form (Chapter 2) which is derived using the path integral formalism.
The weak-coupling stochastic Schrödinger equation is shown to describe very well
the dynamics of the spin–boson model system linearly coupled to the harmonic os-
cillator bath in a wide range of parameter values and temperatures in comparison
to the Redfield theory and taking the Hierarchical Equations of Motion result as the
benchmark. However, the full form of the stochastic Schrödinger equation is very
difficult to solve directly, hence we derive a hierarchical system of coupled stochastic
equations, the hierarchical stochastic Schrödinger equations, in Section 2.3 which is
completely equivalent to the formally exact original equation but more easily cal-
culated numerically to an arbitrary accuracy. Compared to the density operator
propagating methods, the stochastic nature of the stochastic Schrödinger equation
has a remarkable advantage when studying transport processes, namely a stochastic
realization of this equation can be interpreted as describing the fluctuating trajec-
tory of a single particle/excitation in a real-life experiment. Thus, we suggest a
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straightforward method to obtain distributions of a relevant observables by aggre-
gating the random values that we get from performing a quantum measurement on
the wave vector of a single stochastic Schrödinger equation realization (Section 3.2).
We use this procedure to calculate energy excitation transfer time distributions in
the photosynthetic Fenna–Matthews–Olson complex and investigate the obtained
excitation transfer pathways (Chapter (3)).

The versatility of the stochastic Schrödinger equation is elucidated investigat-
ing charge separation in organic solar cells. Photon absorption in these devices
primarily creates neutral molecular excitations, while their conversion to electron-
–hole pairs occurs at the heterojunction between electron donating (polymers or
small molecules) and electron accepting (fullerenes or their derivatives) materials.
Electron–hole pairs split into free charge carriers on a femtosecond time scale and
the efficiency of this process is approaching 100% despite the strong mutual Coulomb
attraction between charges. There is an ongoing debate about the exact mechanism
responsible for such efficient charge separation at organic heterojunctions. Although
several often conflicting models have been proposed, neither of them can address con-
sistently the dynamics of charge pairs from the shortest timescales to the longer ones.
Several explanations were suggested for the initial dissociation stage, e. g., charge
carrier delocalization over several polymer segments and/or fullerene molecules, hot
interfacial charge-transfer (CT) states with delocalized wave functions, or, alterna-
tively, with electron and/or hole wavefunctions localized on molecules situated at
large distances from the interface. Recently, a partially coherent model, assuming
electron delocalization over the entire aggregated fullerene domain, and a hybrid
model of a 1D polymer/fullerene lattice with semi-classical dynamics at short time
scales and Redfield relaxation theory at long time scales, have been proposed. Thus,
we can see that charge separation on an ultrafast timescale is usually considered to be
predominantly coherent. However, carrier delocalization and coherent propagation,
their extent and temporal evolution have only been qualitatively postulated. The
characterization of the gradual transition of the initial dynamics to later evolution
of charge separation, successfully described by incoherent hopping, was still absent.
Thus, we used the stochastic Schrödinger equation to fill this gap and model the
electron–hole pair separation consistently across sever the overlapping timescales
from femtoseconds to several picoseconds. These results are presented in Section
4.2. Here we reveal the importance of the electron delocalization and the role of
coherence in efficient charge pair separation. We also explore the interplay between
charge localization and delocalization at different times and illustrate the motion of
the electron wavepacket graphically.

In Section 4.3 further investigation of charge separation is conduced on the
timescale of tens to hundreds of picoseconds. On this timescale the charge separation
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process is still ongoing and one of the main questions is whether diffusion or drift
is responsible for pulling the electron-hole pair further apart. After several picosec-
onds from the start of the initial exciton dissociation quantum effects die out and
the dynamics of the electron’s motion in the organic solar cell can be adequately de-
scribed by the incoherent charge hopping implemented using computationally cheap
Monte-Carlo simulations. Comparing theoretical calculations with experimental re-
sults we find that the drift becomes noticeable only in the sub-nanosecond timescale
and stronger external electric fields whereas the diffusion is the main cause of charge
separation starting from tens of picoseconds. The motion of electron-hole pairs is
strongly dependent on the morphology of the organic materials inside the organic
solar cell. In Section 4.3 we investigate how the charge mobility and electron–hole
pair separation length depends on the size of donor and acceptor domains and show
that larger domains facilitate longer separation distances in sub- and nanosecond
timescales.

Statements of the thesis

1. The derived stochastic Schrödinger equation is a versatile tool for modeling the
dynamics of open quantum systems linearly coupled to environment applicable
in a wide range of parameter values. Its hierarchical form can be used to solve
the formally exact stochastic Schrödinger equation to an arbitrary accuracy
and approach the formally exact result.

2. Excitation transfer times distributions calculated with stochastic Schrödinger
equation reveal the excitation transport pathways in the Fenna–Matthews–
Olson complex which are not sensitive to high-frequency modes of the bath.

3. Charge separation in bulk heterojunction organic solar cells, as revealed by the
stochastic Schrödinger equation, occurs in three stages: coherent motion phase
of the exciton dissociation, the transient phase of partially delocalized charges
and the incoherent hopping phase of separated charges. The initial coherent
spreading of the electron wavefunction greatly facilitates further electron–hole
pair separation.

4. Diffusion is the main driving force behind the charge separation at long times.
Cell morphology greatly influences the charge pair motion as smaller donor and
acceptor material domains limit the range of charge separation distance.
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Chapter 1

Dynamics of open quantum systems

1.1 Reduced density matrix formalism

In quantum mechanics the wavefunction is the most general way of describing the
state of any system consisting of an arbitrary number of particles and/or fields. The
whole structure of such system is encoded in its Hamiltonian and the time evolution
is governed by the Schrödinger equation. However, in many cases, when the number
of constituents of the system is very large, the majority of them do not present
any interest on their own. For instance, we generally do not care about the motion
of each water molecule surrounding some protein aggregate and we do not track
the exact configuration of the quantized electromagnetic field interacting with an
atom. In both cases the state of only a small part (the aggregate or the atom) of
the huge system is relevant to us, and the rest of it acts as an influence-inducing
background. In more formal terms, it means that the global system Hamiltonian
Ĥ can be partitioned into the relevant system part ĤS, the environmental (bath)
part ĤB and the term characterizing the interaction between the two subsets – ĤI.
Thus, the Schrödinger equation describing the evolution of the whole composite
system reads

d

dt

∣∣Ψ (t)
〉

= −i
(
ĤS + ĤB + ĤI

) ∣∣Ψ (t)
〉
. (1.1)

Here the wave vector
∣∣Ψ (t)

〉
encodes the evolution of every degree of freedom in the

global system. We also set ~ = 1 in this equation and use this convention through-
out this thesis. Thus, to extract the relevant information about the small system
we could solve Eq. (1.1) and then simply pick out the corresponding components
of the global wave vector

∣∣Ψ (t)
〉
. However, in most practical cases the relevant

system is microscopic (has few degrees of freedom) and it interacts with some kind
of macroscopic environment having a nearly infinite number of degrees of freedom,
hence, solving the full Schrödinger equation is quite literally impossible.
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18 1. Dynamics of open quantum systems

At first glance a way out of this situation would seem only to calculate the
evolution of the relevant system wave vector

∣∣ψ (t)
〉
with some kind of an effective

Schrödinger equation

d

dt

∣∣ψ (t)
〉

= −i
(
ĤS + F̂E (t)

) ∣∣ψ (t)
〉

(1.2)

which incorporates the effect of the environment via operator F̂E (t). For this kind of
equation to be feasible in the first place, we have to be sure that a wave vector

∣∣ψ (t)
〉

describing the small system alone can be found. This requirement implies that the
global system wave vector

∣∣Ψ (t)
〉

=
∣∣ψ (t)

〉
⊗
∣∣χ (t)

〉
should be a tensor product

of the small system wave vector
∣∣ψ (t)

〉
and the wave vector

∣∣χ (t)
〉

describing
the remaining part of the complex system. Furthermore, wave vectors

∣∣ψ (t)
〉
and∣∣χ (t)

〉
must be pure states at all moments in time. However, strictly speaking such

situation can only be realized when the relevant system does not interact with its
environment and we essentially have two separate closed systems. In this case Eq.
(1.2) becomes the ordinary Schrödinger equation for the wave vector

∣∣ψ (t)
〉
because

the environmental term F̂E (t) is zero. The reason why the tensor product structure
cannot be maintained in the interacting system is that during the time evolution all
degrees of freedom in the global system become entangled and it becomes impossible
to assign separate wave vectors (pure states [12]) to different sub-units of the big
system [12, 13]. Thus, we see that an expression of the form (1.2) cannot be a
formally exact evolution equation for the state of a sub-unit of a big system.

We have seen that the wave vector as in Eq. (1.2) is not adequate for describing
the evolution of the open quantum system and a different approach is needed. Quan-
tum states can also be characterized by density operators [12, 13]. For a system in
some pure state

∣∣Ψ (t)
〉
the density operator Ŵ (t) =

∣∣Ψ (t)
〉〈

Ψ (t)
∣∣ is given by the

outer product of the ket and bra. The density operator can describe more general
mixed states [12] Ŵ (t) =

∑
n
pn
∣∣Ψn (t)

〉〈
Ψn (t)

∣∣ as well, which can be interpreted

as a sum of pure states
∣∣Ψn (t)

〉〈
Ψn (t)

∣∣ weighted by coefficients pn. The evolution
of the density operator of a system with the Hamiltonian Ĥ is governed by the
Liouville equation:

d

dt
Ŵ (t) = −i

[
Ĥ, Ŵ (t)

]
. (1.3)

Eq. (1.3) is completely analogous to the Schrödinger equation (1.1) and the
density operator Ŵ (t) contains the same amount of information as the wave vector∣∣Ψ (t)

〉
. However, the density operator has an advantage of allowing to get rid of the

unnecessary DOF by averaging over them using the partial trace operation [12,13].
Thus, we can define the reduced density operator
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ρ̂red (t) = TrB

[
Ŵ (t)

]
(1.4)

describing only the dynamics of the relevant part (reduced system) of the global
system by tracing out the bath DOF. The partial trace operation on a pure entangled
state results in a mixed state described by ρ̂red (t) which can be interpreted as a
statistical ensemble (not unique) of all possible pure states available to the small
system if it were isolated from the environment. Consequently, we see again that a
single pure state is not sufficient for the description of the reduced system dynamics
because there is no such thing as a “reduced wave vector”.

In the next section we will present several methods to deal with the explicit
calculation of the reduced density operator ρ̂red (t) and explore their strengths and
weaknesses.

1.2 Methods for propagating the reduced density matrix

One of the most popular theoretical models used for describing open quantum
systems in general and organic molecular compounds in particular is the spin-
boson model linearly coupled to the bath of harmonic oscillators. Popular meth-
ods working well in the weak system–bath coupling regime are Redfield [12, 14, 15],
Förster [12,15,16] and modified Redfield [12,15,17] approaches. The original Redfield
method is obtained from the general second-order quantum master equation [12,18]
for the system+bath density operator by applying the Born approximation and trac-
ing out the bath degrees of freedom, thus obtaining the equation of motion for the
reduced density operator. This equation is simplified further invoking the Markov
approximation leading to the time-local Redfield equation which is second-order in
system–bath coupling strength. Redfield equation is very useful when modeling the
dynamics of the photosynthetic aggregates consisting of strongly coupled electronic
levels, weakly interacting with their environment [19–21]. However, frequently the
system–bath interaction is much stronger than the inter-molecular couplings in the
aggregate. The evolution in such case can be adequately described by the Förster
theory. When the chromophores in the photosynthetic aggregate are coupled weakly
the dynamics of the system is incoherent – excitations are almost fully localized and
move by hopping between different chromophores. Such evolution is theoretically de-
scribed by Fermi golden rule-like rate equation where the so called Förster rates are
obtained from molecular absorption and emission lineshapes. It has to be noted that
the Förster theory does not take into account any coherences between different chro-
mophores and the rates are calculated solely based on the probabilities of excitation
transfer from one molecule to another. Both Redfield and Förster methods can be
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obtained as limits of the modified Redfield approach [12]. This method modifies the
original Redfield equation by treating the diagonal fluctuations non-perturbatively
and including correlations between diagonal and off-diagonal fluctuations.

When the inter-chromophore and system–bath couplings are large the pertur-
bative methods often are not accurate enough or even completely fail to describe
the evolution of the system [22]. For such cases there exist a number of approaches
treating the dynamics of the open quantum system exactly within the chosen model.
Such system can be exactly solved using methods based on the path integral rep-
resentation of the underlying problem. It can be shown that the reduced density
matrix of an arbitrary system linearly coupled to harmonic bath can be expressed
via the Feynman-Vernon influence functional [23] which in the general case is very
difficult to solve. All the exact methods for propagating the reduced density matrix
in some way try to calculate this functional. The Hierarchical Equations of Motion
(HEOM) method incorporates the effect of the influence functional through a set
of coupled differential equations for auxiliary density matrices [24, 25]. HEOM can
work only with an exponential correlation function of the bath fluctuations and it is
generally computationally expensive, especially at low temperatures and strong cou-
plings with the bath. A more direct approach for estimating the influence functional
is taken by QUasi-Adiabatic propagator Path-Integral (QUAPI) which discretizes
the paths of the system’s evolution and sums over them [26]. One drawback of such
scheme is that it converges easily only when the correlation function of the bath
fluctuations is not very broad which implies small memory time and nearly Marko-
vian bath dynamics. In other cases the numerical effort increases significantly and
often becomes unpractical. However, compared to HEOM the QUAPI method in
principle allows a bath with an arbitrary spectral density.

A completely different, although also exact, method for calculating the dynamics
of the open system is the time-dependent Density Matrix Renormalization Group
(tDMRG) approach [27–29]. It is based on the mapping of the system linearly inter-
acting with the bath to a chain of sites with nearest neighbor interactions only. Then
such system is solved with traditional DMRG methods by reducing the dimensional-
ity of the system’s Hilbert space [27]. The advantages of tDMRG include the ability
to perform calculations of the system’s evolution with arbitrary spectral densities
and coupling strengths. However, this method in is quite demanding numerically in
strong coupling cases due to increased number of required basis states [30].

Since the number of degrees of freedom scale exponentially with the number of
bath modes, approximate accurate approaches are always welcome to treat relatively
large systems. The time-dependent variational approach (TDVP) postulates the
functional form of the wavefunction of the whole system+bath complex [31,32]. As
the complete wavefunction is unknown, the guessed form of the wavefunction reduces
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the Hilbert space of solutions to a particular section, while the wavefunction in this
section is optimized with respect to the Hamiltonian. Hence, the approximation
enters not in the equations of motion, but into the boundary conditions of the
solution. One popular choice is using the DavydovD2 Ansatz and use the variational
principle to find the wavefunction with the least deviation from the exact one. Here
the bath modes are treated explicitly, thus no reduced density matrix formalism
is needed. The TDVP method includes polaronic effects in molecular aggregates,
hence it goes beyond the perturbative results, where the bath degrees of freedom
essentially do not evolve. However, the accuracy cannot be easily controlled: it
solely depends on the functional form of the Ansatz.





Chapter 2

Stochastic Schrödinger equation for
energy and charge transport

In this chapter we rigorously derive and thoroughly explore the features of the
main calculational tool used in this thesis – the stochastic Schrödinger equation. In
Section 2.1 we derive the most general form of the stochastic Schrödinger equation
using the path integral and coherent states formalisms. For a brief introduction
to both of them see Appendices B and A respectively. In Section 2.2 we present
the weak system–bath coupling approximation of the general stochastic Schrödinger
equation making it applicable to a wide range of transport problems. After that,
in Section 2.3 we further develop the general stochastic Schrödinger equation and
derive its hierarchical form thus obtaining the hierarchical stochastic Schrödinger
equation. Further, in Section 2.4 we describe the practical aspects of performing
calculations with the stochastic Schrödinger equation and compare its performance
against other theoretical methods.

2.1 Derivation of the stochastic Schrödinger equation [P1,

P3, P6]

Let us study a bosonic system coupled to a heat bath consisting of an infinite number
of harmonic oscillators. The Hamiltonian of such complex system is composed of
the small system part ĤS, the heat bath part ĤB and the interaction part ĤI.
Explicitly it reads

Ĥ =
∑
n

εnâ
†
nân +

∑
n 6=m

Jnmâ
†
nâm +

∑
k

ωkb̂
†
kb̂k + κ

∑
nk

â†nân

(
gnkb̂

†
k + g∗nkb̂k

)
.

(2.1)

23
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Here â†n(ân) is the creation (annihilation) operator of the n-th boson of the system,
εn is its excitation energy and Jnm is the coupling between n-th and m-th bosons.
Similarly, b̂†k (̂bk) is the creation (annihilation) operator of the k-th harmonic os-
cillator mode of the bath, ωk is its frequency and gnkis the coupling between the
n-th boson and k-th oscillator mode. κ parametrizes the overall interaction strength
between the system and the environment.

The big system+environment can be described using the wave vector
∣∣Ψ (t)

〉
or

equivalently the density operator Ŵ (t) =
∣∣Ψ (t)

〉〈
Ψ (t)

∣∣. The evolution of the
operator Ŵ (t) is given by the Liouville equation (1.3). Setting the initial time
t0 = 0 its solution can be written as Ŵ (t) = Û (t) Ŵ0Û

† (t) using the evolution

operator Û (t) = exp
[
−iĤt

]
. Here Ŵ0 is the initial density operator of the whole

complex system. We are usually interested only in the evolution of the small bosonic
system, thus, we limit ourselves with the study of the reduced density operator
ρ̂red (t) defined in Eq. (1.4).

Our immediate goal now is to obtain the coherent state path integral expression
of the Eq. (1.4). Firstly, we write Eq. (1.4) in the coherent state basis (see Appendix
A for details):

ρ̂red (t) =

∞∫
−∞

d2αf

∞∫
−∞

d2α′fe−α
∗
fαf−α∗′f α′f

〈
αf
∣∣ρ̂red (t)

∣∣α′f〉∣∣αf〉〈α′f ∣∣
=

∞∫
−∞

d2αf

∞∫
−∞

d2α′f

∞∫
−∞

d2βfe−α
∗
fαf−α∗′f α′f−β∗fβf

×
〈
αf
∣∣〈βf ∣∣Û (t) Ŵ0Û

† (t)
∣∣βf〉∣∣α′f〉∣∣αf〉〈α′f ∣∣. (2.2)

Here we denote coherent states acting in the system’s Hilbert space by αf and α′f
while for bath coherent states we use βf . The corresponding integration measures
have the form d2x ≡ dRe[x]dIm[x]

π . Note that we use the abbreviations
∣∣αf〉 =∏

n

∣∣αf,n〉, α∗fαf =
∑
n
α∗f,nαf,n and

∣∣βf〉 =
∏
k

∣∣βf,k〉, β∗fβf =
∑
k

β∗f,kβf,k. For the

initial density operator Ŵ0 we assume the uncorrelated tensor product structure
Ŵ0 = ρ̂0 ⊗ ρ̂T where ρ̂0 and ρ̂T describe the initial states of the system and the
bath respectively. For simplicity we prepare the system in some initial coherent
state ρ̂0 =

∣∣αi〉〈α′i∣∣ - more general states can always be constructed with the
superposition of coherent states. We also assume that the bath initially is in the
thermal equilibrium, thus, in the coherent states basis ρ̂T reads [33]
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ρ̂T =
∏
k

∞∫
−∞

d2βi,k
1

nk
e−β

∗
i,kβi,k(n−1

k +1)∣∣βi,k〉〈βi,k∣∣, (2.3)

where nk =
(
eβTωk − 1

)−1
is the Bose-Einstein function and βT = 1

kBT
.

Plugging Eq. (2.3) into Eq. (2.2) we obtain:

ρred
(
α∗f ,α

′
f ; t
)

=

∞∫
−∞

d2βf

∞∫
−∞

d2βi
∏
k

1

nk
e−β

∗
f,kβf,k−β∗i,kβi,k(n−1

k +1)

×K
(
α∗fβ

∗
f ,αiβi; t

)
K∗
(
α∗′i β

∗
i ,α

′
fβf ; t

)
. (2.4)

Here by ρred
(
α∗f ,α

′
f ; t
)

=
〈
αf
∣∣ρ̂red (t)

∣∣α′f〉 we denoted the α∗fα
′
f matrix el-

ement of the reduced density operator. We also introduce the forward propa-
gator K

(
α∗fβ

∗
f ,αiβi; t

)
=
〈
αfβf

∣∣Û (t)
∣∣βiαi〉 evolving the system from the

initial to the final state and the backward propagator K∗
(
α∗′i β

∗
i ,α

′
fβf ; t

)
=

〈α′iβi| Û † (t)
∣∣βfα′f〉 returning the system back to the initial state. In order to

obtain the coherent state path integral representation of the reduced density matrix
ρred

(
α∗f ,α

′
f ; t
)

we apply the usual time discretization procedure to the propa-

gators K
(
α∗fβ

∗
f ,αiβi; t

)
and K∗

(
α∗′i β

∗
i ,α

′
fβf ; t

)
(see Appendix B). For the

forward propagator we have

K
(
α∗fβ

∗
f ,αiβi; t

)
=

α∗f ,β
∗
f∫

αi,βi

D [α∗ (τ) ,α (τ)]D [β∗ (τ) ,β (τ)]

× eiSS(α
∗,α)+iSB(β

∗,β)+iSI(α
∗,α,β∗,β), (2.5)

where α (0) = αi, β (0) = βi and α
∗ (t) = α∗f , β

∗ (t) = β∗f , D [·] denotes the
measure of the functional integral and components of the action S (α∗,α,β∗,β) =

SS (α∗,α) +SB (β∗,β) +SI (α∗,α,β∗,β) correspond to the appropriate parts of
the Hamiltonian (2.1).
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2.1.1 Schrödinger picture stochastic equation

Actions defined in Eq. (2.5) explicitly read:

SS (α∗,α) = −i
∑
n

α∗n (t)αn (t) +

t∫
0

dτ
∑
n

(
iα∗n (τ)

∂

∂τ
αn (τ)

−εnα∗n (τ)αn (τ)−
∑
m

Jnmα
∗
n (τ)αm (τ)

)
, (2.6a)

SB (β∗,β) = −i
∑
k

β∗k (t) βk (t)

+

t∫
0

dτ
∑
k

(
iβ∗k (τ)

∂

∂τ
βk (τ)− ωkβ∗k (τ) βk (τ)

)
, (2.6b)

SI (α∗,α,β∗,β) = −κ
t∫
0

dτ
∑
nk

α∗n (τ)αn (τ) (gnkβ
∗
k (τ) + g∗nkβk (τ)) . (2.6c)

The expressions for the backward propagator K∗
(
α∗′i β

∗
i ,α

′
fβf ; t

)
are similar to

the ones in Eqs. (2.6a) - (2.6c) only complex conjugate and the path integral vari-
ablesα∗′ (τ) ,α′ (τ) ,β∗′ (τ) ,β′ (τ) are primed. In this case the following boundary
conditions are imposed: α∗′ (t) = α∗′i , β

∗′ (t) = β∗i and α
′ (0) = α′f , β

′ (0) = βf .
Inserting everything back into Eq. (2.4) we obtain:

ρred
(
α∗f ,α

′
f ; t
)

=

∞∫
−∞

d2βf

∞∫
−∞

d2βi
∏
k

1

nk
e−β

∗
f,kβf,k−β∗i,kβi,k(n−1

k +1)

×
∫
D [α∗ (τ) ,α (τ)]D [β∗ (τ) ,β (τ)] eiS(α

∗,α,β∗,β)

×
∫
D [α∗′ (τ)α′ (τ)]D

[
β∗′ (τ)β′ (τ)

]
e−iS

∗(α∗′,α′,β∗′,β′).

(2.7)

Further simplification of Eq. (2.7) can be achieved when we notice that the bath
degrees of freedom can be integrated-out analytically. Exact calculation in this case
is possible due to the Gaussian structure of the action [34]. Functional integrals
of this kind can be integrated using the stationary phase method. First we obtain
the equations of motion for the bath variables on the forward and backward time
branches βk (τ) and β∗′k (τ) by calculating the functional derivatives of the action
in Eq. (2.7) and its conjugate with respect to β∗k (τ) and β′k (τ) then equating the
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resulting expressions to 0. Thus, we get the equations for extremal paths of the
action:

i
∂

∂τ
βk (τ)− ωkβk (τ)− κ

∑
n

gnkα
∗
n (τ)αn (τ) = 0, (2.8a)

− i
∂

∂τ
β∗′k (τ)− ωkβ∗′k (τ)− κ

∑
n

g∗nkα
∗′
n (τ)α′n (τ) = 0. (2.8b)

Equations of motion for the variables β∗k (τ) and β′k (τ) can be obtained performing
complex conjugation of Eqs. (2.8a) and (2.8b) respectively. Solutions to the linear
differential equations (2.8a) and (2.8b) for forward and backward propagation vari-
ables are easily obtained and with the appropriate boundary conditions the extremal
paths read:

∼
βk (τ) = βi,ke

−iωkτ − iκ
∑
n

gnk

τ∫
0

dτ ′e−iωk(τ−τ
′)α∗n (τ ′)αn (τ ′) , (2.9a)

∼
β
∗

k (τ) = β∗f,ke
iωk(τ−t) − iκ

∑
n

g∗nk

t∫
τ

dτ ′eiωk(τ−τ
′)α∗n (τ ′)αn (τ ′) , (2.9b)

∼
β
′

k (τ) = βf,ke
iωk(t−τ) + iκ

∑
n

gnk

t∫
τ

dτ ′e−iωk(τ−τ
′)α∗′n (τ ′)α′n (τ ′) , (2.9c)

∼
β
∗′

k (τ) = β∗i,ke
iωkτ + iκ

∑
n

g∗nk

τ∫
0

dτ ′eiωk(τ−τ
′)α∗′n (τ ′)α′n (τ ′) . (2.9d)

Using these extremal path solutions we can express the bath trajectories as

β∗ (τ) =
∼
β
∗

(τ) + y∗ (τ) , (2.10a)

β (τ) =
∼
β (τ) + y (τ) . (2.10b)

Here y∗ (τ) and y (τ) are the deviations from the stationary path which are zero
at the endpoints of the trajectory. Inserting Eqs. (2.10a) and (2.10b) into the
expression (2.7) for the reduced density matrix, we can therefore factorize the path
integral over the bath trajectories into integrals over the endpoints and the deviations
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ρred
(
α∗f ,α

′
f ; t
)

=

∫
D [α∗ (τ) ,α (τ)]D [α∗′ (τ) ,α′ (τ)] ei[SS(α

∗,α)−S∗S(α∗′,α′)]

× I (α∗,α,α∗′,α′)

∫
D [y∗ (τ) ,y (τ)]D [y∗′ (τ) ,y′ (τ)]

× ei[Sdev(y
∗,y)−S∗dev(y∗′,y′)], (2.11)

where I (α∗,α,α∗′,α′) = d2βfd2βiF
(
α∗,α,α∗′,α′,β∗f ,βf ,β

∗
i ,βi

)
is the in-

fluence functional [23] which incorporates all effects of the bath and Sdev (y∗,y) is
the path deviation action given by

Sdev (y∗,y) =
∑
k

t∫
0

dτy∗k

(
i
∂

∂τ
− ωk

)
yk. (2.12)

Path integral with action (2.12) can be integrated out exactly because it is essentially
an infinite-dimensional Gaussian integral. Integration can be carried out easily in
the discrete representation and its result is unity [34]. The influence functional
I (α∗,α,α∗′,α′) can also be calculated exactly:

F
(
α∗,α,α∗′,α′,β∗f ,βf ,β

∗
i ,βi

)
=
∏
k

1

nk
e−β

∗
f,kβf,k−β∗i,kβi,k(n−1

k +1)

× e
β∗f,k

(
βi,ke

−iωkt−iκ
∑
n
gnk

t∫
0

dτe−iωk(t−τ)α∗n(τ)αn(τ)

)

× e
βf,k

(
β∗i,ke

iωkt+iκ
∑
n
g∗nk

t∫
0

dτeiωk(t−τ)α∗′n (τ)α′n(τ)

)

× e
−iκβi,k

∑
n
g∗nk

t∫
0

dτe−iωkτα∗n(τ)αn(τ)+iκβ∗i,k
∑
n
gnk

t∫
0

dτeiωkτα∗′n (τ)α′n(τ)

× e
−κ2

∑
nm
g∗nkgmk

t∫
0

dτ
τ∫
0

dτ ′e−iωk(τ−τ
′)α∗n(τ)αn(τ)α

∗
n(τ ′)αn(τ ′)

× e
−κ2

∑
nm
g∗nkgmk

t∫
0

dτ
τ∫
0

dτ ′eiωk(τ−τ
′)α∗′n (τ)α′n(τ)α

∗′
n (τ ′)α′n(τ ′)

, (2.13)

since the integrand F
(
α∗,α,α∗′,α′,β∗f ,βf ,β

∗
i ,βi

)
has Gaussian structure in

bath variables. Thus, we easily obtain the influence functional depending only on
system’s degrees of freedom:
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I (α∗,α,α∗′,α′) = e
κ2
∑
nm

t∫
0

dτ
t∫
0

dτ ′[Znm(τ−τ ′)+Wnm(τ−τ ′)]α∗′n (τ)α′n(τ)α
∗
m(τ ′)αm(τ ′)

× e
−κ2

∑
nm

t∫
0

dτ
τ∫
0

dτ ′[Znm(τ−τ ′)+Wnm(τ−τ ′)]α∗n(τ)αn(τ)α∗m(τ ′)αm(τ ′)

× e
−κ2

∑
nm

t∫
0

dτ
τ∫
0

dτ ′[Znm(τ−τ ′)+Wnm(τ−τ ′)]α∗′n (τ)α′n(τ)α
∗′
m(τ ′)α′m(τ ′)

.

(2.14)

Here we introduced functions Znm (τ − τ ′) =
∑
k

g∗nkgmke
−iωk(τ−τ ′) (nk + 1) and

Wnm (τ − τ ′) =
∑
k

g∗nkgmke
iωk(τ−τ ′)nk.

The influence functional (2.14) is not very convenient for further manipulations
because forward and backward path variables of the system are coupled. In order
to decouple them we need to use the Hubbard–Stratonovich transformation [35,
36] for the variables α∗n (τ)αn (τ) and α∗′n (τ)α′n (τ). In practice this means that
one introduces an additional Gaussian integral with appropriate sources over some
auxiliary variable which gives the original coupled expression as a result. Applying
this principle to the first exponent on the right-hand side of Eq. (2.14) we get

e
κ2
∑
nm

t∫
0

dτ
t∫
0

dτ ′Znm(τ−τ ′)α∗′n (τ)α′n(τ)α
∗
m(τ ′)αm(τ ′)

=

∞∫
−∞

d2xZe−x
∗
ZxZe

t∫
0

dτ

(
−iκ

∑
n
zn(τ)α

∗
n(τ)αn(τ)+iκ

∑
n
z∗n(τ)α

∗′
n (τ)α′n(τ)

)

(2.15a)

e
κ2
∑
nm

t∫
0

dτ
t∫
0

dτ ′Wnm(τ−τ ′)α∗′n (τ)α′n(τ)α
∗
m(τ ′)αm(τ ′)

=

∞∫
−∞

d2xW e−x
∗
WxW e

t∫
0

dτ

(
−iκ

∑
n
wn(τ)α

∗
n(τ)αn(τ)+iκ

∑
n
w∗n(τ)α

∗′
n (τ)α′n(τ)

)

(2.15b)

with notations z(S)n (τ) =
∑
k

√
nk + 1gnke

iωkτx∗Z,k, w
(S)
n (τ) =

∑
k

√
nkgnke

iωkτx∗W,k

and z(S)∗n (τ),w(S)∗
n (τ) as their complex conjugates. Here the superscript (S) is a

reminder that these functions were derived in Schrödinger picture.
Now we can insert Eqs. (2.15a) and (2.15b) back into Eq. (2.14) and obtain the

influence functional I (α∗,α,α∗′,α′) = IF (α∗,α) IB (α∗′,α′) as a product of
two functions acting on the forward and the backward time paths. Using this form
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of the influence functional we can express the reduced density matrix in Eq. (2.11)
as

ρred
(
α∗f ,α

′
f ; t
)

=

∞∫
−∞

d2xZ

∞∫
−∞

d2xW e−x
∗
ZxZ−x∗WxW

∫
D [α∗ (τ) ,α (τ)]D [α∗′ (τ) ,α′ (τ)]

× ψ(S)
F (α∗,α,x∗Z ,x

∗
W ; t)ψ

(S)∗
B (α∗′,α′,xZ ,xW ; t) , (2.16)

where ψ(S)
F (α∗,α,x∗Z ,x

∗
W ; t) and ψ(S)∗

B (α∗′,α′,xZ ,xW ; t) again (cf. Eq. (2.4))
can be interpreted as propagators of the system in the forward and backward time
direction respectively. The forward propagator explicitly reads

ψ
(S)
F (α∗,α,x∗Z ,x

∗
W ; t) = eiSS(α

∗,α)e
−iκ

∑
n

t∫
0

dτcn(τ)α
∗
n(τ)αn(τ)

× e
−κ2

∑
nm

t∫
0

dτ
τ∫
0

dτ ′Cnm(τ−τ ′)α∗n(τ)αn(τ)α∗m(τ ′)αm(τ ′)
. (2.17)

Here we denoted c(S)n (τ) = z
(S)
n (τ) +w

(S)
n (τ) and Cnm (τ − τ ′) = Znm (τ − τ ′) +

Wnm (τ − τ ′). The backward propagator can be obtained by complex conjugation
of Eq. (2.17) and substitution α∗,α→ α∗′,α′.

The last thing we have to do is to obtain the evolution equation for the forward
propagator (2.17). Differentiating Eq. (2.17) we obtain

d

dt
ψ
(S)
F (α∗,α,x∗Z ,x

∗
W ; t)

=

− iHS (α∗ (t) ,α (t−∆))

− iκ
∑
n

c(S)n (τ)α∗n (t)αn (t−∆)− κ2
∑
nm

α∗n (t)αn (t−∆)

×
t∫
0

dτCnm (t− τ)α∗m (τ)αm (τ)

ψ
(S)
F (α∗,α,x∗Z ,x

∗
W ; t) . (2.18)

Here the t−∆ time moment is the reminder that αn variables come one infinitesimal
time step ∆ before α∗n. We should note that direct differentiation of the system
action SS yields an additional term containing derivatives ∂α∗n(t)

∂t αn (t), however it
is demonstrated in Appendix B that they vanish. Eq. (2.18) still has one undesirable
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feature – the third term on the right-hand side contains a dependence on variables
α∗m (τ) and αm (τ) at time moments τ < t. In order to avoid such situation we
notice that if we calculate the functional derivative δ

δc
(S)
m (τ)

of Eq. (2.17) with respect

to the function cm (τ) we obtain the result −iκα∗m (τ)αm (τ). Plugging this result
into Eq. (2.18) we get the expression

d

dt

∣∣ψ(S) (x∗Z ,x
∗
W ; t)

〉
= −i

ĤS + κ
∑
n

c(S)n (t) â†nân − iκ2
∑
nm

â†nân

t∫
0

dτ

×Cnm (t− τ)
δ

δc
(S)
m (τ)

∣∣ψ(S) (x∗Z ,x
∗
W ; t)

〉
. (2.19)

In this final equation we switched to the operator form of the Eq. (2.18) with substi-
tutions ψ(S)

F (α∗,α,x∗Z ,x
∗
W ; t) →

∣∣ψ(S) (x∗Z ,x
∗
W ; t)

〉
, HS (α∗ (t) ,α (t−∆)) →

ĤS and α∗n (t)αn (t−∆) → â†nân. Such substitution is possible due to the fact
that the path integral in Eq. (2.16) is really a coherent state representation of some
evolution operator of the system. Correspondence between operators and their co-
herent state representations is explained in detail in Ref. [37].

With Eq. (2.19) we can write the reduced density matrix equation (2.16) in
operator form as

ρ̂red (t) =

∞∫
−∞

d2xZd2xWp (xZ ,xW )
∣∣ψ(S) (x∗Z ,x

∗
W ; t)

〉〈
ψ(S) (xZ ,xW ; t)

∣∣.
(2.20)

In this expression the reduced density operator ρ̂red (t) can be interpreted as the
average of the function

∣∣ψ(S) (x∗Z ,x
∗
W ; t)

〉〈
ψ(S) (xZ ,xW ; t)

∣∣ over multi-dimensional
Gaussian variables xZ and xW with the probability density

p (xZ ,xW ) =
∏
k

1

π
e−x

∗
Z,kxZ,k−x∗W,kxW,k . (2.21)

Exactly at this point after making the stochastic interpretation of the function under
the Gaussian integrals we can think of Eq. (2.19) as the stochastic Schrödinger
equation (SSE). This form of the SSE was first introduced by Diosi [38,39].
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2.1.2 Interaction picture stochastic equation

Deriving the stochastic Schrödinger equation (2.19) we used the time-independent
Hamiltonian (2.1). However, one can introduce the interaction representation of Ĥ
with respect to the bath

Ĥ (t) = eiĤBtĤe−iĤBt = ĤS + κ
∑
nk

â†nân

(
gnke

iωktb̂†k + g∗nke
−iωktb̂k

)
. (2.22)

With this time-dependent Hamiltonian we can write down the Liouville equation
(1.3) substituting Ĥ → Ĥ (t) and Ŵ (t) → Ŵ (I) (t) =

∣∣Ψ(I) (t)
〉〈

Ψ(I) (t)
∣∣ =

eiĤBtŴ (t) e−iĤBt. Interaction picture wave vector
∣∣Ψ(I) (t)

〉
is given by the corre-

sponding evolution operator expressed as time-ordered exponential

Û (I) (t) = T̂+e
−i

t∫
0

dτĤ(τ)
. (2.23)

We notice that the reduced density operator ρ̂red (t) does not change if we substitute
Ŵ (t) → Ŵ (I) (t) in Eq. (1.4). Thus, we can proceed with the same derivation
path as in Subsection 2.1.1 only this time use the evolution operator (2.23) instead
of Û (t) = exp

[
−iĤt

]
. In this case the system action S(I)

S (α∗,α) of the forward

propagator (2.5) is identical to SS (α∗,α) in the Schrödinger picture and the only
differences arise in bath and interaction parts:

S
(I)
B (β∗,β) = −i

∑
k

β∗k (t) βk (t) +

t∫
0

dτ
∑
k

iβ∗k (τ)
∂

∂τ
βk (τ) , (2.24a)

S
(I)
I (α∗,α,β∗,β) = −κ

t∫
0

dτ
∑
nk

α∗n (τ)αn (τ)

×
(
gnke

iωkτβ∗k (τ) + g∗nke
−iωkτβk (τ)

)
. (2.24b)

The corresponding equations of motion for the stationary paths read

i
∂

∂τ
βk (τ)− κ

∑
n

gnke
iωkτα∗n (τ)αn (τ) = 0, (2.25a)

− i
∂

∂τ
β∗′k (τ)− κ

∑
n

g∗nke
−iωkτα∗′n (τ)α′n (τ) = 0. (2.25b)

with the complex conjugates for β∗k (τ) and β′k (τ). The stationary path solutions
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in this case have the following form:

∼
βk (τ) = βi,k − iκ

∑
n

gnk

τ∫
0

dτ ′eiωkτ
′
α∗n (τ ′)αn (τ ′) , (2.26a)

∼
β
∗

k (τ) = β∗f,k − iκ
∑
n

g∗nk

t∫
τ

dτ ′e−iωkτ
′
α∗n (τ ′)αn (τ ′) , (2.26b)

∼
β
′

k (τ) = βf,k + iκ
∑
n

gnk

t∫
τ

dτ ′eiωkτ
′
α∗′n (τ ′)α′n (τ ′) , (2.26c)

∼
β
∗′

k (τ) = β∗i,k + iκ
∑
n

g∗nk

τ∫
0

dτ ′e−iωkτ
′
α∗′n (τ ′)α′n (τ ′) . (2.26d)

With these solutions we easily get the F
(
α∗,α,α∗′,α′,β∗f ,βf ,β

∗
i ,βi

)
function

from Eq. (2.13):

F
(
α∗,α,α∗′,α′,β∗f ,βf ,β

∗
i ,βi

)
=
∏
k

1

nk
e
−β∗f,kβf,k−

∑
k

β∗i,kβi,k(n−1
k +1)+β∗f,kβi,k+β∗i,kβf,k

× e
−iκ

∑
n

t∫
0

dτ
(
z
(I)
n (τ)+w

(I)
n (τ)

)
α∗n(τ)αn(τ)

× e
iκ
∑
n

t∫
0

dτ
(
z
(I)∗
n (τ)+w

(I)∗
n (τ)

)
α∗′n (τ)α′n(τ)

× e
−κ2

∑
nm

t∫
0

dτ
τ∫
0

dτ ′C(0)nm(t−τ)α∗n(τ)αn(τ)α∗n(τ ′)αn(τ ′)

× e
−κ2

∑
nm

t∫
0

dτ
τ∫
0

dτ ′C(0)∗nm (t−τ)α∗′n (τ)α′n(τ)α
∗′
n (τ ′)α′n(τ ′)

. (2.27)

In this expression we introduced the notations C(0)nm (t− τ) =
∑
k

g∗nkgmke
−iωk(τ−τ ′),

z
(I)
n (τ) =

∑
k

gnke
iωkτβ∗f,k and w(I)

n (τ) =
∑
k

g∗nke
−iωkτβi,k, and their complex con-

jugates. We can see that the function F can be written as a product

F
(
α∗,α,α∗′,α′,β∗f ,βf ,β

∗
i ,βi

)
= G

(
β∗f ,βf ,β

∗
i ,βi

)
FF

(
α∗,α,β∗f ,βf ,β

∗
i ,βi

)
×FB

(
α∗′,α′,β∗f ,βf ,β

∗
i ,βi

)
, (2.28)
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where FF and FB are the parts depending on system variables on forward and
backward propagation paths and G is the Gaussian term depending only on initial
and final states of the bath. Thus, we already have the forward and backward
propagation variables separated and there is no need to integrate out the bath
variables and then perform the Hubbard–Stratonovich transformation as we did in
Eqs. (2.15a) and (2.15b). In the present case the role of the auxiliary Hubbard-
–Stratonovich variables is played by β variables representing the initial and final
states of the bath, therefore, we readily obtain the expression for the reduced density
matrix analogical to Eq. (2.16):

ρred
(
α∗f ,α

′
f ; t
)

=

∞∫
−∞

d2βf

∞∫
−∞

d2βi
∏
k

1

nk
e−β

∗
f,kβf,k−β∗i,kβi,k(n−1

k +1)+β∗f,kβi,k+β∗i,kβf,k

×
∫
D [α∗ (τ) ,α (τ)]D [α∗′ (τ) ,α′ (τ)]

× ψ(I)
F

(
α∗,α,β∗f ,βi; t

)
ψ
(I)∗
B

(
α∗′,α′,β∗i ,βf ; t

)
, (2.29)

with the forward propagator having the form

ψ
(I)
F

(
α∗,α,β∗f ,βi; t

)
= eiSS(α

∗,α)e
−iκ

∑
n

t∫
0

dτc
(I)
n (τ)α∗n(τ)αn(τ)

× e
−κ2

∑
nm

t∫
0

dτ
τ∫
0

dτ ′C(0)nm(t−τ)α∗n(τ)αn(τ)α∗m(τ ′)αm(τ ′)
. (2.30)

Here we introduced the function c(I)n (t) = z
(I)
n (t) + w

(I)
n (t). From here we can

follow the same procedure as in the previous subsection and obtain a stochastic
differential equation for ψ(I)

F

(
α∗,α,β∗f ,βi; t

)
→
∣∣ψ(I)

(
β∗f ,βi; t

)〉
:

d

dt

∣∣ψ(I)
(
β∗f ,βi; t

)〉
= −i

(
ĤS + κ

∑
n

c(I)n (t) â†nân − iκ2
∑
nm

â†nân

×
t∫
0

dτC(0)nm (t− τ)
δ

δc
(I)
m (τ)

∣∣ψ(I)
(
β∗f ,βi; t

)〉
. (2.31)

The corresponding final expression of the reduced density operator reads
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ρ̂red (t) =

∞∫
−∞

d2βf

∞∫
−∞

d2βi
∏
k

pk
(
βf ,βi

) ∣∣ψ(I)
(
β∗f ,βi; t

)〉〈
ψ(I)

(
β∗i ,βf ; t

)∣∣
(2.32)

Here the Gaussian probability density is

pk
(
βf ,βi

)
=

1

nk
e−β

∗
f,kβf,k−β∗i,kβi,k(n−1

k +1)+β∗f,kβi,k+β∗i,kβf,k . (2.33)

.

2.1.3 Interpretation of SSE

Comparing the two stochastic Schrödinger equations (Eqs. (2.19) and (2.31)) it is
evident that both forms have the same structure: a coherent evolution term with
ĤS, the stochastic term with noises c(S)n (t) and c(I)n (t)and the memory term with
the time integral. In the mathematical sense both fluctuations c(S)n (t) and c(I)n (t)

are Fourier transforms of multidimensional (in principle infinite-dimensional) vec-
tors of random Gaussian variables xZ ,xW and βf ,βi respectively. Their physical
interpretation arises from the fact that both these functions are related to bath
degrees of freedom. In case of Schrödinger picture SSE (2.19) the noise c(S)n (t) is
constructed from terms containing the Bose–Einstein function nk which describes
the average number of excitations of energy ωk at temperature T in the bath. Thus,
c
(S)
n (t) must be related to the fluctuations of the heat bath and this function is
the manifestation of bath’s influence over the system. The same holds true for for
the noise c(I)n (t) only here the temperature dependence arises from the probability
density pk

(
βf ,βi

)
. In this case we also see more clearly the nature of fluctuation

c
(I)
n (t) as it depends on the initial and final points of bath trajectories βf and βi
(see Eqs. (2.2) - (2.5)), hence c(I)n (t) indeed represents the evolution of the bath
between two distinct configurations.

The main characteristic of any fluctuation is its correlation function. The corre-
lation function between two noises c(S)n (t) and c(S)m (t) can be calculated using the
formula

Cnm (t) =
〈
c(S)∗n (t) c(S)m (0)

〉
xZ ,xW

=

∞∫
−∞

d2xZ

∞∫
−∞

d2xWp (xZ ,xW )

× c(S)∗n,xZ ,xW (t) c(S)m,xZ ,xW (0) . (2.34)
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Here 〈· · · 〉xZ ,xW denotes the statistical average over the random variables xZ and

xW . Calculating the correlation function C(I)nm (t) =
〈
c
(I)∗
n (t) c

(I)
m (0)

〉
βf ,βi

in a

similar manner we can show that both functions are equal and read

C(S)nm (t) = C(I)nm (t) =
∑
k

g∗nkgmk
(
e−iωkt (nk + 1) + eiωktnk

)
=
∑
k

g∗nkgmk

(
cos (ωkt) coth

(
ωkβT

2

)
− isin (ωkt)

)
. (2.35)

Eq. (2.35) can be recognized as the standard correlation of function of bath fluc-
tuations arising in arbitrary thermodynamic system at small deviations from the
equilibrium [12, 13, 18]. It is very convenient to modify Eq. (2.35) by introducing
the bath spectral density function C′′nm (ω) =

∑
k

g∗nkgmkδ (ω − ωk) yielding

Cnm (t) =

∞∫
0

dω

(
cos (ωt) coth

(
ωβT

2

)
− isin (ωt)

)
C′′nm (ω) . (2.36)

Here C(S)nm (t) = C(I)nm (t) = Cnm (t). When the number of bath oscillators is very
large spectral density C′′nm (ω) essentially becomes a smooth function and represents
the continuous distribution of frequencies in the bath. The explicit form of the spec-
tral density depends on the microscopic model chosen to describe the environment,
e. g. the Debye model, the ohmic and super-ohmic models [18]. Functional form of
the Debye spectral density reads

C′′ (ω) =
2λωDω

ω2
D + ω2

(2.37)

and the super-ohmic is given by

C′′ (ω) =
πλ

Γ (s)

ωs

ωsSO
e
− ω
ωSO . (2.38)

In both models of the spectral density λ = 1
π

∞∫
0

dω C
′′(ω)
ω is the reorganization energy

[12, 13] parametrizing the system–bath coupling strength instead of the quantity κ
((2.1)) which in further calculations is set to 1. In Debye spectral density ωD is
the inverse bath fluctuations correlation time, while a similar quantity in the super-
ohmic model is denoted by ωSO. In the latter spectral density s is the parameter
distinguishing several regimes of the bath fluctuations: sub-ohmic when s < 1,
ohmic when s = 1 and super-ohmic when s > 1. Γ (s) is the Euler Gamma
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function.

As a consequence of having differently defined fluctuations in the two stochastic
Schrödinger equations (2.19) and (2.31) the time integral terms in both equations
are not identical. While Cnm (t) in Eq. (2.19) is identified as the finite-temperature
correlation function (2.35), the function C(0)nm (t) is actually the zero-temperature
version of Cnm (t).

Looking back at the discussion in Section 1 about the impossibility of describing
the reduced system’s dynamics with a single pure state or with a wave vector, it
is important to carefully interpret physical meaning of the stochastic wave vectors
obtained in Subsections 2.1.1 and 2.1.2. Stochastic Schrödinger equations (2.19)
and (2.31) are equations for the wave vector

∣∣ψ (t)
〉
, hence similar to Eq. (1.2).

However, in Section 1 we argued that such equation describing the exact dynamics
of the reduced system cannot possibly be found and it would seem that the SSE
formalism has an inherent flaw. To solve this discrepancy we must go back to the
definition of the reduced density operator (1.4). Let us denote the degrees of freedom
of the small system by q and those of the bath by Q. Then the wave vector of the
global system

∣∣Ψ (q,Q; t)
〉
can be expressed in the following way:

∣∣Ψ (q,Q; t)
〉

=

∫
dq

∫
dQf (q,Q; t)

∣∣q〉⊗ ∣∣Q〉. (2.39)

Here
∣∣q〉, ∣∣Q〉 are the orthonormal basis vectors of the system and the bath respec-

tively and the expansion coefficient f (q,Q; t) 6= fS (q; t) fB (Q; t) in general case
is not separable as the wave vector

∣∣Ψ (t)
〉
can be entangled. If we calculate the

partial trace of the global density operator Ŵ (t) we get

ρ̂red (q, q′; t) =

∫
dQ

∫
dQ′

∫
dQ′′

〈
Q′′
∣∣Q〉〈Q′∣∣Q′′〉

×
∫

dq

∫
dq′f (q,Q; t) f∗

(
q′,Q′; t

) ∣∣q〉〈q′∣∣
=

∫
dQ

∫
dQ′

∫
dQ′′p

(
Q,Q′,Q′′

) ∣∣F (q,Q; t)
〉〈
F
(
q′,Q′; t

)∣∣
(2.40)

with p
(
Q,Q′,Q′′

)
=
〈
Q′′
∣∣Q〉〈Q′∣∣Q′′〉 and

∣∣F (q,Q; t)
〉

=
∫

dqf (q,Q; t)
∣∣q〉.

We see that
∣∣F (q,Q; t)

〉
are wave vectors acting in the Hilbert space of the system

but they carry a functional dependence on bath degrees of freedom Q. Eq. (2.40)
clearly indicates that the reduced density operator here describes a mixed state but
what is the exact physical meaning of states

∣∣F (q,Q; t)
〉
? To answer that we

should address this problem from a different angle. Let us calculate the probability
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to find the bath in a particular state
∣∣Q′′〉 if the global system is described by the

wave vector (2.39). We obtain the expression

P
(
Q′′; t

)
=
∣∣〈Q′′∣∣Ψ (q,Q; t)

〉∣∣2 =

(∫
dQ
〈
Q
∣∣Q′′〉 ∫ dqf∗ (q,Q; t)

〈
q
∣∣)

×
(∫

dQ
〈
Q′′
∣∣Q〉 ∫ dqf (q,Q; t)

∣∣q〉)
=

∫
dQ

∫
dQ′

〈
Q′′
∣∣Q〉〈Q′∣∣Q′′〉〈F (q′,Q′) ∣∣F (q,Q)

〉
=
〈
F
(
q′,Q′′; t

) ∣∣F (q,Q′′; t)〉
=

∫
dqf∗

(
q,Q′′; t

)
f
(
q,Q′′; t

)
(2.41)

where we used the fact that
∣∣q〉 and ∣∣Q〉 span an orthonormal basis, thus,

〈
Q′
∣∣Q〉 =

δ
(
Q′ −Q

)
and

〈
q′
∣∣q〉 = δ (q′ − q).

Eq. (2.41) shows that the probability P
(
Q′′; t

)
to find the bath in a particular

configuration is equal to the overlap between the states
〈
F
(
q′,Q′′; t

) ∣∣F (q,Q′′; t)〉,
hence we can interpret them as being the wave vectors of the small system when the
bath is in a particular state. In other words it means we obtain the system wave
vector

∣∣F (q,Q′′; t)〉 if the state of the bath is continuously monitored (measured)
at every moment in time and thus, giving a definite stochastic trajectory Q′′ (t).
In practice such a scenario would be quite difficult to implement, especially when
the number of bath DOF to control is very large. However, as the reduced density
operator (2.40) is used to calculate experimentally measurable quantities, theoret-
ically we still can use the stochastic wave vector to give statistical information on
the system dynamics because ρ̂red (q, q′; t) is expressed as a statistical average over
bath DOF, thus, making

∣∣F (q,Q; t)
〉
a single realization of the statistical ensemble

of all configurations of the bath.

It is important to mention that the norm
∥∥∣∣F (q,Q; t)

〉∥∥ of the stochastic
vector is not necessarily unity. This it is understandable because P (Q; t) =∥∥∣∣F (q,Q; t)

〉∥∥2 is the probability of finding the bath in a particular state
∣∣Q〉,

hence it can vary between 0 and 1. If P (Q; t) always were equal to 1 it would
mean that there is only one available configuration of the bath which is obviously
not true. However, postulates of quantum mechanics tell us that the norm of a
wave vector has to remain constant and equal to 1 at all times so that it is regarded
as a proper state descriptor. Hence, in order to comply with this requirement the
stochastic wave vector

∣∣F (q,Q; t)
〉
has to be renormalized at each moment in time.

This renormalization can be done in two ways: analytical and numerical. In the an-
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alytical approach a normalized stochastic wave vector
∣∣∼F (q,Q; t)

〉
=

∣∣F (q,Q;t)
〉∥∥∣∣F (q,Q;t)
〉∥∥

is introduced and a non-linear stochastic equation is derived. Such equations for the
SSEs of the form (2.19) and (2.31) were first presented in [39]. The numerical ap-
proach consists of numerically solving the linear SSE while explicitly renormalizing
the stochastic wave vector at every time step. Such a procedure is justified because
renormalization is just a multiplication of the stochastic wave vector

∣∣F (q,Q; t)
〉

by a factor which does not change the relative magnitudes of different components
of the wave vector, thus the relative probabilities of different events calculated from∣∣F (q,Q; t)

〉
and

∣∣∼F (q,Q; t)
〉
also stay the same.

2.2 Weak system–bath coupling approximation [P1, P3, P6]

The memory terms in both Eqs. (2.19) and (2.31) contain a functional derivative
with respect to noise under the time integral. Such integrand is difficult to calculate
in practice, thus an alternative form of the memory term is desirable. The easiest
way to derive it is first to go back to Eq. (2.2) without encasing the reduced density
operator in coherent states

〈
αf
∣∣ and ∣∣α′f〉, hence obtaining the operator equation

ρ̂red (t) =

∞∫
−∞

∏
k

d2βf,kd
2βi,k

1

nk
e−β

∗
f,kβf,k−β∗i,kβi,k(n−1

k +1)

×
〈
βf
∣∣Û (t)

∣∣βi〉∣∣αi〉〈α′i∣∣〈βi∣∣Û † (t)
∣∣βf〉. (2.42)

Here the evolution Û (t) is the interaction picture evolution operator from Eq.
(2.23). In all subsequent chapters we will use only the interaction picture stochastic
Schrödinger equation derived in Subsection 2.1.2, hence we drop the (I) superscript
from the notations to make them less cluttered.

We can interpret the quantities Û (t) =
〈
βf
∣∣Û (t)

∣∣βi〉 and its Hermitian con-
jugate as the evolution operators in the Hilbert space of the system. Defining the
wave vector

∣∣ψ (β∗f ,βi; t)〉 = e−β
∗
fβiÛ (t)

∣∣αi〉 we can calculate its time derivative
and obtain the evolution equation:

d
dt

∣∣ψ (β∗f ,βi; t)〉 = e−β
∗
fβi
〈
βf
∣∣ d
dt
Û (t)

∣∣βi〉∣∣αi〉
= −iĤS

∣∣ψ (β∗f ,βi; t)〉− iκ
∑
nk

â†nângnke
iωktβ∗f,k
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×
∣∣ψ (β∗f ,βi; t)〉− ie−β

∗
fβiκ

∑
nk

â†nâng
∗
nke
−iωkt

×
〈
βf
∣∣̂bkÛ (t)

∣∣βi〉∣∣αi〉. (2.43)

We make the substitution b̂kÛ (t) = Û (t) b̂k (t) where b̂k (t) = Û † (t) b̂kÛ (t) is
the Heisenberg representation of the annihilation operator and it explicitly reads

b̂k (t) = b̂k − iκ
∑
n

t∫
0

dτgnkeiωkτ Û † (τ) â†nânÛ (τ) . (2.44)

Using Eq. (2.44) evolution equation for the system wave vector becomes

d
dt

∣∣ψ (β∗f ,βi; t)〉 = −iĤS

∣∣ψ (β∗f ,βi; t)〉
− iκ

∑
nk

â†nângnke
iωktβ∗f,k

∣∣ψ (β∗f ,βi; t)〉
− iκ

∑
nk

â†nâng
∗
nke
−iωktβi,k

∣∣ψ (β∗f ,βi; t)〉
− κ2

∑
nm

â†nân

t∫
0

dτ
∑
k

g∗nkgnke
−iωk(t−τ)

× Û (t) Û † (τ) â†mâmÛ (τ) Û † (t)
∣∣ψ (β∗f ,βi; t)〉, (2.45)

where Û (t) has the form (2.23) with (see Appendix A for details)

Ĥ (t)→ Ĥ (t) = ĤS + κ
∑
nk

â†nân

(
gnke

iωktβ∗f,k + g∗nke
−iωkt ∂

∂β∗f,k

)
. (2.46)

In Eq. (2.45) we notice that the fluctuation terms with the variables β∗f,k and
βi,k are exactly the same as in Eq. (2.27) and the function under the time integral is
C(0)nm (t− τ). We notice that the memory term now does not contain the functional
derivative with respect to the noise. The final form of this stochastic Schrödinger
equation is

d
dt

∣∣ψ (β∗f ,βi; t)〉 = −i

ĤS + κ
∑
n

cn (t) â†nân − iκ2
∑
nm

â†nân

t∫
0

dτC(0)nm (t− τ)
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× Û (t) Û † (τ) â†mâmÛ (τ) Û † (t)

∣∣ψ (β∗f ,βi; t)〉. (2.47)

Doing actual calculations with Eq. (2.47) is still difficult due to the dependence
of Û (t) on partial derivatives ∂

∂β∗f,k
. However, when the system–bath coupling is

weak (max
(∣∣κgnk∣∣) � min

(∣∣ĤS,nm

∣∣)) we can drop the term linear in κ in Eq.

(2.46), thus transforming the operator Û (t) ≈ e−iĤSt to a simple evolution operator
of the closed system ĤS alone. Inserting this expression into Eq. (2.47) we get the
weak coupling approximation form of the stochastic Schrödinger equation:

d
dt

∣∣ψ (β∗f ,βi; t)〉 = −i

ĤS + κ
∑
n

cn (t) â†nân − iκ2
∑
nm

â†nân

t∫
0

dτC(0)nm (τ)

× e−iĤSτ â†mâmeiĤSτ

∣∣ψ (β∗f ,βi; t)〉. (2.48)

2.3 Hierarchical stochastic Schrödinger equation [P6]

In the previous section we demonstrated how a practical form of stochastic Schrödin-
ger equation (2.48) suitable for numerical calculations can be obtained. However,
this equation is only approximate and valid only when the system–bath interaction
is sufficiently weak. It is important to find a way to harness the full power of the
formally exact SSE in Eq. (2.47). One way to deal with the difficult memory term
consisting of a product of evolution operators Û is to avoid introducing them in
the first place and derive a system of coupled stochastic equations equivalent to
the original equation. We start from the Eq. (2.43) and insert the unity operator
∞∫
−∞

d2γ1e
−γ∗1γ1

∣∣γ1

〉〈
γ1

∣∣ between the annihilation operator b̂k and the evolution

operator Û (t) in the third term of the equation:

− ie−β
∗
fβiκ

∑
nk

â†nâng
∗
nke
−iωkt

〈
βf
∣∣̂bkÛ (t)

∣∣βi〉∣∣αi〉
= −ie−β

∗
fβiκ

∑
n

â†nân

∞∫
−∞

d2γ1e
−γ∗1γ1

∑
k

g∗nke
−iωkt

×
〈
βf
∣∣̂bk∣∣γ1

〉〈
γ1

∣∣Û (t)
∣∣βi〉∣∣αi〉
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= −ie−β
∗
fβiκ

∑
n

â†nân

∞∫
−∞

d2γ1e
−γ∗1γ1+β

∗
fγ1+γ

∗
1βi

×
∑
k

g∗nke
−iωktγ1,ke−γ

∗
1βi
〈
γ1

∣∣Û (t)
∣∣βi〉∣∣αi〉. (2.49)

In the expression (2.49) we can define an auxiliary wave vector in the space of the
system

∣∣ψ (γ∗1,βi; t)
〉

= e−γ
∗
1βi 〈γ1| Û (t) |βi〉 |αi〉. With this definition Eq. (2.43)

can be written in the following way:

d
dt

∣∣ψ (β∗f ,βi; t)〉 = −iĤS

∣∣ψ (β∗f ,βi; t)〉− iκ
∑
n

â†nânzn (t)
∣∣ψ (β∗f ,βi; t)〉

− iκ
∑
n

â†nân

∞∫
−∞

d2γ1pβ∗f ,βi (γ∗1,γ1) s1,n(t)
∣∣ψ (γ∗1,βi; t)

〉
.

(2.50)

Here we introduced the function s1,n(t) =
∑
k

g∗nke
−iωktγ1,k and the probability den-

sity function pβ∗f ,βi (γ∗1,γ1) = e−γ
∗
1γ1+β

∗
fγ1+γ

∗
1βi−β∗fβi . The integral in the third

term of the Eq. (2.50) can be interpreted as the average over the multidimensional
Gaussian random variable γ1, analogically as it was done in Eq. (2.29). The re-
sulting Eq. (2.50) now depends on the wave vector

∣∣ψ (γ∗1,βi; t)
〉
. The form of this

wave vector is identical to the expression of the original wave vector
∣∣ψ (β∗f ,βi; t)〉,

thus, it is governed by the same equation (2.50) and we can write:

d

dt

∣∣ψ (γ∗1,βi; t)
〉

= −iĤS

∣∣ψ (γ∗1,βi; t)
〉
− iκ

∑
n

â†nâns
∗
1,n(t)

∣∣ψ (γ∗1,βi; t)
〉

− iκ
∑
n

â†nân

∞∫
−∞

d2γ2pγ∗1,βi (γ∗2,γ2) s2,n(t)
∣∣ψ (γ∗2,βi; t)

〉
.

(2.51)

where we again inserted another unity operator
∞∫
−∞

d2γ2e
−γ∗2γ2

∣∣γ2

〉〈
γ2

∣∣ in the third

term and defined the a new auxiliary wave vector
∣∣ψ (γ∗2,βi; t)

〉
. From the structure

of the Eq. (2.51) it is clear that performing the procedure described aboveM times
we can arrive at the equation for the wave vector

∣∣ψ (γ∗M ,βi; t)
〉
, thus obtaining a

system of coupled stochastic differential equation. This system will be completely
equivalent to the formally exact stochastic Schrödinger equation (2.47) only if the
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hierarchy is infinite. Such form is of little use for practical applications, thus the
hierarchy must be terminated at some finite order M , i. e., the last equation for∣∣ψ (γ∗M ,βi; t)

〉
should have a closed form as in Eq. (2.47). However, with increasing

order M of the hierarchy the equation (2.50) describing the evolution of the system
wave vector

∣∣ψ (β∗f ,βi; t)〉 effectively becomes of order M + 1 in system–bath
coupling strength κ. Thus in the last equation of the hierarchy we can make the weak
system–bath coupling approximation which introduces only higher thanM+1 order
errors in the final expression of

∣∣ψ (β∗f ,βi; t)〉. Alternatively, we can in principle
use the zero-order in κ equation:

d

dt

∣∣ψ (γ∗M ,βi; t)
〉

= −iĤS
∣∣ψ (γ∗M ,βi; t)

〉
. (2.52)

Thus the complete hierarchy of equations can be written in the following way:

d
dt

∣∣ψ (β∗f ,βi; t)〉 = −i

(
ĤS + κ

∑
n

â†nânzn (t)

)∣∣ψ (β∗f ,βi; t)〉
− iκ

∑
n

â†nân
〈
s1,n(t)

∣∣ψ (γ∗1,βi; t)
〉〉
γ1
,

d
dt

∣∣ψ (γ∗1,βi; t)
〉

= −i

(
ĤS + κ

∑
n

â†nâns
∗
1,n(t)

)∣∣ψ (γ∗1,βi; t)
〉

− iκ
∑
n

â†nân
〈
s2,n(t)

∣∣ψ (γ∗2,βi; t)
〉〉
γ2
, (2.53)

· · ·

d
dt

∣∣ψ (γ∗M ,βi; t)
〉

= −i

ĤS + κ
∑
n

â†nâns
∗
M,n(t) + κ

∑
n

â†nânwn(t)

−iκ2
∑
nm

â†nân

t∫
0

dτC(0)
nm(τ)e−iĤSτ â†mâme

iĤSτ

∣∣ψ (γ∗M ,βi; t)
〉
.

Here 〈· · · 〉γj denotes the average with respect to the Gaussian probability density

pγ∗j−1,βi

(
γ∗j ,γj

)
in the third term of the j-th equation of the hierarchy.

Let us investigate the average
〈
sj,n(t)

∣∣ψ (γ∗j ,βi; t)〉〉γj more closely. The prob-

ability density pγ∗j−1,βi

(
γ∗j ,γj

)
in this expression can be transformed to the stan-

dard Gaussian form by using the substitutions of variables γ∗j =
∼
γ
∗
j + γ∗j−1 and

γj =
∼
γj + βi. We get
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〈
sj,n(t)

∣∣ψ (γ∗j ,βi; t)〉〉γ(j) =

∞∫
−∞

d2∼γjp
(∼
γ
∗
j ,
∼
γj

)∑
k

g∗nke
−iωkt

×
(∼
γj,k + βi,k

) ∣∣ψ (∼γ∗j + γ∗j−1,βi; t
)〉

=

∞∫
−∞

d2∼γjp
(∼
γ
∗
j ,
∼
γj

)(
∼
sj,n(t) + wn (t)

)
×
∣∣ψ (∼γ∗j + γ∗j−1,βi; t

)〉
, (2.54)

where
∼
sj,n(t) =

∑
k

g∗nke
−iωkt∼γj,k. Relation (2.54) shows us that the j-th auxiliary

wave vector
∣∣ψ (∼γ∗j + γ∗j−1,βi; t

)〉
depends on all previous γ variables, thus γ∗j =

j∑
l=1

∼
γ
∗
l + β∗f and the hierarchy (2.53) reads

d
dt

∣∣ψ (β∗f ,βi; t)〉 = −i

(
ĤS + κ

∑
n

â†nânzn (t)

)∣∣ψ (β∗f ,βi; t)〉
− iκ

∑
n

â†nân

〈(
∼
s1,n(t) + wn(t)

) ∣∣ψ (γ∗1,βi; t)
〉〉
γ1

,

d
dt

∣∣ψ (γ∗1,βi; t)
〉

= −i

(
ĤS + κ

∑
n

â†nân

(
∼
s
∗
1,n(t) + zn (t)

)) ∣∣ψ (γ∗1,βi; t)
〉

− iκ
∑
n

â†nân

〈(
∼
s2,n(t) + wn(t)

) ∣∣ψ (γ∗2,βi; t)
〉〉
γ2

, (2.55)

· · ·

d
dt

∣∣ψ (γ∗M ,βi; t)
〉

= −i

ĤS + κ
∑
n

â†nân

(
M∑
l=1

∼
s
∗
l,n(t) + zn (t) + wn(t)

)

−iκ2
∑
nm

â†nân

t∫
0

dτC(0)
nm(τ)e−iĤSτ â†mâme

iĤSτ

∣∣ψ (γ∗M ,βi; t)
〉
.

2.3.1 Solving the hierarchical stochastic Schrödinger equation

Solving the hierarchy in Eq. (2.55) directly is a difficult numerical task due to the
necessity of generating many auxiliary noises and then calculating statistical average
over them. In order to avoid such problems one would need to obtain a form of the
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hierarchical stochastic Schrödinger equation were the Gaussian integrations over
auxiliary fluctuations are solved analytically. One way to achieve this is to start
with the last equation in the hierarchy (2.55) and write the formal solution of it
using the propagator ĜM (t):

ĜM (t)
∣∣αi〉 = T̂+e

−i
t∫
0

dτĤ ′M (τ)∣∣αi〉, (2.56)

where Ĥ ′M (τ) is the operator in the parentheses of the last equation in the hierarchy
(2.55). We can see that the propagator depends on the complex conjugate noises
∼
s
∗
M,n(t) =

∑
k

gnke
iωkt
∼
γ
∗
M,k, thus we can expand it with respect to the Gaussian

variables
∼
γ
∗
M,k:

Ĝj
[
∼
s
∗
M,n (t)

]
= ĜM [0] +

∑
k

∂ĜM
[
∼
s
∗
M,n (t)

]
∂
∼
γ
∗
M,k

∣∣∣∣∣∣∼
s
∗
M,n(t)≡0

∼
γ
∗
M,k + ... (2.57)

Here ĜM [0] = ĜM (t)
∣∣∣∼
s
∗
M,n(t)≡0

≡ ĜM,0 (t). Calculating the first order term is a bit

tricky due to the fact that ∂Ĥ ′M (t)

∂
∼
γ
∗
M,k

∣∣∣∣∼
s
∗
M,n(t)≡0

does not commute with ĜM
[
∼
s
∗
M,n (t)

]
.

In this case we must apply the general expression for the first order derivative of an
exponential operator [40]:

d

dη
eÂ+ηB̂

∣∣∣
η=0

=

1∫
0

dse(1−s)ÂB̂esÂ, (2.58)

where
[
Â, B̂

]
6= 0. Thus, the first order expansion term in Eq. (2.57) is given by

∂ĜM
[
∼
s
∗
M,n (t)

]
∂
∼
γ
∗
M,k

∣∣∣∣∣∣∼
s
∗
M,n(t)≡0

= −iκ

1∫
0

dsĜ1−sM,0 (t)

t∫
0

dτ
∑
n

â†nân
∼
s
∗
M,n (τ) ĜsM,0 (t) .

(2.59)

Now we insert this expression into the M − 1-th auxiliary equation of the hierarchy
(2.55) and for the Gaussian integral term we obtain

κ
∑
n

â†nân

〈(
∼
sM,n(t) + wn(t)

)
ĜM (t)

∣∣αi〉〉
γM

= κ
∑
n

â†nânwn(t)ĜM,0 (t)
∣∣αi〉
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− iκ2
∑
nm

â†nân

t∫
0

dτC(0)
nm(t− τ)

1∫
0

dsĜ1−sM,0 (t) â†mâmĜsM,0 (t)
∣∣αi〉

≡ Q̂M−1 (t)
∣∣αi〉. (2.60)

In Eq. (2.60) only the terms which contain the combination of noises(
∼
sM,n(t)

∼
s
∗
M,n (τ)

)q
where q = 0, 1, 2... survive the Gaussian integration due to

the unshifted form of the probability density. However, the noise
∼
γM,n(t) always

enters only with the q = 1, thus the highest order needed in expansion (2.57) is
only the first order and in this case the result (2.60) is exact. Now the hierarchy
contains M − 1 equations for auxiliary wave vectors where the last one reads

d
dt

∣∣ψ (γ∗M−1,βi; t)〉 = −i

(
ĤS + κ

∑
n

â†nân

(
M−1∑
l=1

∼
s
∗
l,n(t) + zn (t)

))
×
∣∣ψ (γ∗M−1,βi; t)〉− iQ̂j−1 (t)

∣∣αi〉. (2.61)

Eq. (2.61) again can be solved and the propagator of
∣∣ψ (γ∗M−1,βi; t)〉 has the

following form:

ĜM−1 (t) = P̂M−1 (t)− iP̂M−1 (t)

t∫
0

dτ P̂ †M−1 (τ) Q̂M−1 (τ) . (2.62)

Here P̂M−1 (t) = T̂+e
−i

t∫
0

dτ

[
ĤS+κ

∑
n
â†nân

(
M−1∑
l=1

∼
s
∗
l,n(τ)+zn(τ)

)]
. In order to use the prop-

agator ĜM−1 (t) in the M − 2-th auxiliary equation it has to be expanded in the
similar fashion as in Eq. (2.57) up to the first order in variables

∼
γ
∗
j−1,k. This process

must be continued until reaching the very first equation if the hierarchy (2.55) which
then reads:

d
dt

∣∣ψ (β∗f ,βi; t)〉 = −i

(
ĤS + κ

∑
n

â†nânzn (t)

)∣∣ψ (β∗f ,βi; t)〉− iQ̂0 (t)
∣∣αi〉.
(2.63)

Here the non-homogeneous contribution Q̂0 (t) takes into account all the effects
captured by the subsequent equation in the hierarchy, thus, in principle Eq. (2.63)
is absolutely exact and equivalent to Eq. (2.47).
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2.4 Performance of the stochastic Schrödinger equation [P3,

P6]

All forms of full stochastic Schrödinger equations in Eqs. (2.19), (2.31), (2.47) and
hierarchies (2.53), (2.55) in principle offer an exact treatment of the reduced system
dynamics when linearly coupled to a bath of harmonic oscillators. However, as it
was argued in chapters above the formally exact SSE is very difficult to solve, hence
the weak system–bath coupling was introduced in Eq. (2.48) which is more tractable
numerically. In this section we will compare the performance of the weak-coupling
stochastic Schrödinger equation to other popular methods used for studying the dy-
namics of open quantum systems such as Redfield equation and Hierarchical Equa-
tions of Motion (see Section 1.2 for more details about these approaches). We also
test similarly the performance of 1- and 2-level hierarchical stochastic Schrödinger
equation (2.55) calculated using the approach in Subsection 2.3.1. Both weak cou-
pling SSE and HSSE mathematically are systems of coupled first order homogeneous
differential equations. They can be solved using many different numerical methods,
however we chose the explicit embedded Runge-Kutta Cash-Karp (4, 5) method
implemented in the scientific GSL library [41].

2.4.1 Noise generation

The hierarchical and ordinary stochastic Schrödinger equations depend on the noise
functions cn (t) which must be known before solving the system itself. Thus, a major
part of obtaining the time evolution of the stochastic wave vector

∣∣ψ (β∗f ,βi; t)〉 ≡∣∣ψ (t)
〉
is the generation of fluctuation trajectories. One method for obtaining these

stochastic trajectories is by application of the Wiener–Khinchin theorem [12,42,43].
Suppose the autocorrelation matrix of the stationary ergodic noise vector c (t) =

(c1 (t) , c2 (t) , . . . , cn (t) , . . .) is C (t) =
∞∫
−∞

dτc∗T (t− τ) c (τ). Then the Wiener

–Khinchin theorem states that

C (t) =
1

2π

∞∫
−∞

dωe−iωtc∗T (ω) c (ω) . (2.64)

Here the function c (ω) is simply the Fourier transform c (ω) =
∞∫
−∞

dteiωtc (t) of the

time-domain fluctuation vector c (t). Next we notice that Eq. (2.64) is the inverse
Fourier transform of the function C (ω) = c∗T (ω) c (ω) and when the correlation
function [C (t)]nm is given by Eq. (2.36) its frequency domain representation reads
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[C (ω)]nm =

(
1 + coth

ωβT
2

)
C′′nm (ω) . (2.65)

Comparing Eqs. (2.64) and (2.65) we can deduce that c (ω) = φ (ω)
√

C (ω),
where φ (ω) =

(
eiφ1(ω), eiφ2(ω), . . . , eiφn(ω), . . .

)
. Thus, the fluctuation vector in

time domain can be obtained performing the inverse Fourier transform:

c (t) =
1

2π

∞∫
−∞

dωe−iωtφ (ω)
√

C (ω). (2.66)

Here the functions φn (ω) must be random-valued so that c (t) is stochastic as well.
According to the central limit theorem, the distribution of a sum obtained from a
large number of random variables is Gaussian. It follows that the probability density
function of the fluctuation c (t) remains Gaussian regardless of the distribution of
the function under the integral. For this reason, we use the simple uncorrelated
random process to generate the function φn (ω) in the interval [0, 2π). To have the
real-valued stochastic trajectory of c (t) at high temperature (classical fluctuations),
we also set φn (ω) = −φn (−ω).

One difficulty arising when applying Eq. (2.66) is the calculation of the square
root of matrix C (ω), which can be understood in terms of its as power series ex-
pansion. Since this matrix is real and symmetric by construction (see Eqs. (2.36)
and (2.65)) it is diagonalizable, thus it can be written as C = QDQ−1 where D
is the diagonal matrix of the eigenvalues and Q is the unitary transform matrix
consisting of eigenvectors of C. In this case it is known from linear algebra that for
any function f we have the relation f (C) = f

(
QDQ−1

)
= Qf (D)Q−1 and,

as D is diagonal, [f (D)]nm = f ([D]nm). Eq. (2.66) is valid for an arbitrary
matrix of spectral density C′′nm (ω), thus it describes correlated fluctuations when
C′′nm (ω) 6= 0 for n 6= m. However, in all applications of the stochastic Schrödinger
equation in this thesis we are assuming uncorrelated fluctuations – noises coupled
to different system sites are independent. In this case the spectral density matrix
C′′nm (ω) is diagonal and thus there is no need for diagonalization of C (ω) and the
matrix equation (2.66) can be simplified to

cn (t) =
1

2π

∞∫
−∞

dωe−iωt+iφn(ω)
√

[C (ω)]nn. (2.67)

We use this noise generation method when solving the weak-coupling SSE (2.48).

Another method for generating fluctuations consists of straightforward applica-
tion of the noise functions’ cn (t) and

∼
sj,n(t) definitions from Eqs. (2.27) and (2.54).
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For this we need to generate a set of Gaussian complex random variables with the
appropriate probability density distribution. Let us start with the generation of fluc-
tuations driving the weak coupling stochastic Schrödinger equation (2.48). Noises
cn (t) by their definition are sums of random variables

cn (t) = zn (t) + wn (t) =
∑
k

gnke
iωkτβ∗f,k +

∑
k

g∗nke
−iωkτβi,k. (2.68)

Here β∗f,k and βi,k are Gaussian random variables characterized by the probability

density (2.33). We can introduce new random vectors b∗k =
(
β∗f,k, β

∗
i,k

)
and bTk =

(βf,k, βi,k) and rewrite the probability density as

pk
(
βf ,βi

)
=

1

nk
e−

1
2b
∗T
k Σ−1

k bk (2.69)

with Σ−1k = 2

(
1 −1

−1 n−1k + 1

)
acting as the inverse of the covariance matrix. It

is obvious that variables βf,k and βi,k are not independent, thus they cannot be gen-
erated separately from each other. However, just as in 1D Gaussian in the current 2D
case the required random values can be obtained from the normal Gaussian distribu-
tion. In order to do that with substitution rk = Skbk we transform the exponent

in Eq. (2.69) to −1
2b
∗T
k Σ−1k bk = −1

2r
∗T
k D

−1
k rk where D−1k =

(
σ−21,k 0

0 σ−22,k

)
is the diagonal matrix consisting of the eigenvalues of Σ−1k and Sk is the trans-
form matrix constructed from the eigenvectors of Σ−1k . The transformed probabil-
ity density represents a simple Gaussian distribution of variables rk characterized
by the covariance matrix Dk. Thus, the n-th component of rk can be generated
by drawing a random variable from the normal distribution N (0, 1) and multi-
plying it by σn,k. Having the vector rk it is easy to obtain the original vector
bk using the relation bk = S−1k rk. According to Eq. (2.68) we construct vec-

tors zn =
(
gn1β

∗
f,k, . . . , gnkβ

∗
f,k, . . .

)
and wn = (g∗n1βi,k, . . . , g

∗
nkβi,k, . . .) where

we identify gnk = g∗nk =
√
C′′nm (ωk). Now the noises zn (t) and wn (t) can be

obtained by calculating respectively the inverse Fourier transform of zn and the
Fourier transform of wn using the numerical Fast Fourier Transform routines. We
use this noise generation method when solving the HSSE (2.55) where fluctuations
zn (t) and wn (t) appear not in a sum but separately.
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2.4.2 Calculation of observables

Stochastic Schrödinger equation (2.48) and corresponding hierarchy (2.55) are writ-
ten using the second quantization creation and annihilation operators â†n/ân, hence
they are already suitable for describing many particle system’s dynamics. However,
in this thesis we only study single particle systems which translates into the require-
ment that â†nâ

†
m = ânâm ≡ 0, thus there are only two available states for the n-th

bosonic degree of freedom -
∣∣0〉

n
containing 0 particles and

∣∣1〉
n

= â†n
∣∣0〉

n
con-

taining a single particle. Since we are solving the single-particle evolution problem
we can define a new basis in the Hilbert space of the system called site basis and
corresponding to states

∣∣n〉 ≡⊗
m

∣∣δnm〉m when the n-th bosonic degree of freedom

is populated. Now each bosonic degree of freedom is referred to as a site and in this
basis the stochastic wave vector can be written as

∣∣ψ (t)
〉

=
∑
n
ψn (t)

∣∣n〉.
Having a set of noises cn (t) we can solve the stochastic equation system and ob-

tain one realization of the stochastic wave vector. For each realization r of the statis-
tical ensemble a different set of noises cn (t) has to be generated. We usually want to
calculate some mean value of a quantum observable O (t) =

〈
ψ (t)

∣∣Ô∣∣ψ (t)
〉
, which

is a random quantity, different in each realization. In general the ensemble-averaged

mean value of an observable
〈
O (t)

〉
ens

= 1
R

R∑
r=1

〈
ψr (t)

∣∣Ô∣∣ψr (t)
〉
is calculated av-

eraging over R realizations of the stochastic wave vector
∣∣ψr (t)

〉
. If we gather the

random values of O (t) from every realization it is easy to group this data set into a
histogram and thus obtain an approximation of the probability density distribution
pt
(
O
)
. It is important to remember that stochastic Schrödinger equation (2.48)

and hierarchy (2.55) are not normalized just as Eqs. (2.19) and (2.31), thus we
renormalize numerically the stochastic wave vector

∣∣ψr (t)
〉
at every time step.

In order to test the suitability of the SSE to describe the dynamics of the re-
duced system we can calculate the whole reduced density matrix (populations and
coherences) of the system and compare it to the results obtained by other methods.
Averaged density matrix elements in the site basis

∣∣n〉 can be calculated using the
wave vector as

ρnm (t) = 〈ψ∗n (t)ψm (t)〉ens . (2.70)

A common situation encountered while investigating the dynamics of an open
quantum system is when we need to determine the time τtr it takes for the excitation
in the system to reach some defined state

∣∣ζ〉 starting with an initial state
∣∣ψ (0)

〉
.

Using the SSE (2.48) formalism we can naturally define this transition time τtr and
construct the distribution of its values from the vast ensemble of different realizations
of the stochastic wave vector

∣∣ψ (t)
〉
.
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The transfer time is a stochastic property, unique for each member of the ensem-
ble. Moreover τtr is a stochastic property even for a single member of the ensemble.
From the theory of stochastic Markovian systems [43], it is known that the actual
transition time from the initial state 1 to the final state 2, when the process is char-
acterized by a single rate constant, must be a random number distributed according
to the exponential law with the properly defined mean transition time equal to the
inverse of the rate, i.e., p (t) = Be−k1→2t. Consequently the mean transition time
is given by τ1→2 = 1/k1→2. Hence, using the Fermi Golden Rule (FGR) [13] (or
the Redfield theory), the mean transition time can be evaluated as the inverse of
calculated transition rates. However, the Redfield theory as well as the rate con-
cepts are valid only for the weak coupling regimes. In the case of intermediate or
strong couplings, the HEOM method allows to exactly propagate the density ma-
trix, however in this case it becomes difficult to define the rates and the transition
times. In general, additional heuristic arguments may be necessary to define the
transition times based on the density matrix population evolution. We next suggest
a stochastic method to simulate the excitation transition time using the stochastic
Schrödinger equation, which allows to properly define and evaluate the excitation
transition time distribution function even if it is not exponential.

The meaning of the transition time implies that we start with a predefined state
of the system and after some time we observe another state. Hence, to calculate
the transition time to an arbitrary state of the system, first we have to define the
process of the measurement (detection) of the excitation in the necessary state.
This measurement procedure can be constructed in the following way. The system
wave vector with components ψn (t) is a stochastic variable depending on a set of
fluctuations cn (t) according to Eq. (2.48). Additionally, the magnitudes of the
components of the wave vector are generally nonzero. For this reason, the system
can be found in an arbitrary state at an arbitrary time. We can calculate the overlap
of the final state and the wave vector of the system

〈
ζ
∣∣ψ (t)

〉
and according to the

postulates of quantum mechanics the probability of finding the system in the state∣∣ζ〉 is now pi→f =
∣∣〈ζ∣∣ψ (t)

〉∣∣2. If the excitation is found in the state
∣∣ζ〉, the system

state collapses to
∣∣ζ〉, we determine the arrival time and stop the propagation. This

measurement process can be modeled using the Monte Carlo method by drawing
a random number r uniformly distributed in the interval [0, 1) before starting the
propagation with the SSE (2.48). Now during the propagation as soon as we find
r <

∣∣〈ζ∣∣ψ (τtr)
〉∣∣2, we register the excitation in the state

∣∣ζ〉 and τtr is defined
as the transition time. Due to the fact that the system state evolves stochastically
and the random number r takes unique values for each propagation, the excitation
detection condition is fulfilled at different time moments in each realization. With
a sufficient number of realizations we can then calculate the distribution of the



52 2. Stochastic Schrödinger equation for energy and charge transport

transition time. Hence, the algorithm of the excitation registration in the state
∣∣ζ〉

and construction of the transition time distribution can be summarized as follows:

1. A uniformly distributed random number r is generated in the interval [0, 1).

2. The system wave vector is propagated, and at every time step the condition
r <

∣∣〈ζ∣∣ψ (τtr)
〉∣∣2 is checked.

3. If the condition is satisfied, the propagation is stopped and the excitation tran-
sition time to the state

∣∣ζ〉 is recorded; otherwise the propagation (step 2) is
continued.

4. Stages 1–3 are repeated for the same system until a statistically sufficient
amount of results is obtained.

5. The distribution of transition times is constructed as the histogram of the
recorded times τtr.

This procedure is illustrated in Fig. 2.1 for the special case when the final state∣∣ζ〉 =
∣∣2〉 is a site basis state of the system: the excitation detection time is marked

by crossing point of r and
∣∣〈2∣∣ψ (t)

〉∣∣2.
2.4.3 Application of the SSE to a toy system

To validate the stochastic Schrödinger equation theory, let us consider the evolution
of a simple two-site system and investigate the situation when the coupling between
the sites as well as the system–bath interaction is weak and the correlation time of
bath fluctuations is short. We set the parameters of the system Hamiltonian ĤS to
ε1 = 100 cm−1, ε2 = 0 cm−1, J12 = J21 = 9 cm−1 and generate the thermal noise
from the Debye spectral density (2.37) with inverse correlation time ωD = 10 fs−1

and system–bath coupling of λ = 2 cm−1 at temperature T = 300 K. The initial
wave vector of the system is chosen to be

∣∣ψ (0)
〉

=
∣∣1〉, thus populating the higher

energy site.
In Fig. 2.1 we illustrate the stochasticity of the SSE by showing two particular

realizations of the second site population ρ22 (t). It can clearly be seen that two
stochastic trajectories quickly diverge and it is impossible to make any conclusions
about the evolution of the system solely from individual realizations. This divergence
of the population trajectories reflects how quickly two distinct trajectories of the
bath degrees of freedom lead the system away from the coherent evolution. Summing
many such realizations leads to the ensemble-averaged population dynamics depicted
in Fig. 2.2 where the blue curve is calculated with J12 = 13.5 cm−1 and the red
one - with J12 = 9 cm−1. When the inter-site and system–bath couplings are weak
the dynamics of the system is incoherent and can be satisfactorily described by
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Fig. 2.1. Two different realizations
of population dynamics of the two-site
system. Green lines illustrate the pro-
cedure of the excitation transfer time
calculation.
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the Fermi Golden Rule approach which states that populations have an exponential
form, namely ρ22 (t) = A

(
1− e−

t
τ

)
with A = k1→2/ (k1→2 + k2→1) and τ =

1/ (k1→2 + k2→1). Here k1→2 and k2→1 are the population transfer rates from the
site 1 to site 2 and vice-versa, respectively. According to the Fermi Golden Rule
these rates must be proportional to the square of the inter-site coupling J . To test
this in Fig. 2.2 the curves obtained using the stochastic Schrödinger equation are
fitted with the exponential function of the FGR and the transfer rates k1→2 = A/τ

and k2→1 = (1− A) /τ are calculated from the fitting parameters A, τ . For the
blue curve we obtain Ab = 0.62 and τb = 24 ps and for the red curve we have
Ar = 0.65, τr = 54 ps. Calculating the ratio (Abτr) / (Arτb) we obtain ≈ 2.15

which is in good agreement with the value J2
12,r/J

2
12,b = 2.25. Hence in the weak

inter-site coupling limit, the stochastic Schrödinger equation is consistent with the
Fermi Golden Rule.

The corresponding distribution of excitation transfer time from site 1 to 2 in
the weakly coupled two-site system with parameters is presented in Fig. 2.3. As
the Fermi Golden Rule holds in this case, we find proper exponential distribution of
transfer times. The mean values of the transfer time indeed correspond to the inverse
transfer rates, determined from population evolution in Fig. 2.2: for J = 13.5 cm−1

and J = 9 cm−1 we get τ1→2 = 19.8 ps and τ1→2 = 40.2 ps, respectively.
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Fig. 2.3. Probability density func-
tions of the transfer time τtr from the
initially occupied state to the unoccu-
pied state in two-site systems with dif-
ferent coupling J between the states.
Parameters of the Debye spectral den-
sity are: λ = 2 cm−1, ωD = 10 fs−1.
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We must notice that the transfer time distributions in Fig. 2.3 contain a sharp
rise at short times which is not accounted by the probabilistic theory of Marko-
vian processes. This rise is the result of transient processes caused by slight non-
Markovianity of the bath at short times originating from the finite-time correlation
function for the environmental fluctuations. In our case the correlation time of the
environment fluctuations is 10 fs. This initial rise corresponds to this time. In the
ideal Markovian case, the fluctuation would be infinitely fast (white noise) and the
initial rise and transition into the exponential function would happen at infinitesimal
time interval.

We next consider the intermediate-to-strong coupling regime. Again we study
the two-site system, but now we choose model parameters for intermediate cou-
plings J12 = 100 cm−1. For the environment, we choose the same Debye spectral
density but increase both the reorganization energy λ = 100 cm−1 and the bath
fluctuations’ correlation time ωD = 100 fs−1 and study relaxation at two temper-
atures (T = 300 K and T = 77 K). The initial condition is

∣∣ψ (0)
〉

=
∣∣1〉. The

population of the second site is presented in Fig. 2.4∗ where the system’s evolution
is calculated with stochastic Schrödinger equation, time-dependent Redfield and
HEOM methods. We can see that at both temperatures, the population rises very
quickly in the first 100 fs and then performs oscillatory motion until it reaches the
equilibrium value. It should be noted that in case of higher temperature the ampli-
tude of the population oscillations is smaller and they are damped quicker (∼ 0.3 ps)
than in the case of low temperature when oscillations die out after ∼ 0.5 ps. The
oscillations are mostly Rabi beats due to coupling J12 and non-stationary initial
state. The damping is due to the coupling with the bath. It has been discussed in
Section 1.2 that the approximate Redfield theory is not appropriate for such system,
since the relaxation rates and consequently the excitation transfer times cannot be
accurately defined [44]. It is easily seen in Fig. 2.4 that the Redfield theory result
shows large deviations from the SSE calculation. However, as both are approximate,
∗HEOM and Redfield calculations performed by A. Gelzinis, Vilnius University.
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the provided information is not sufficient to judge about their correctness. There-
fore we additionally present population dynamics calculated using the exact HEOM
method. We can see that all methods give results that coincide perfectly at the very
beginning of the simulation. We can also notice that the equilibrium values of the
populations at T = 300 K calculated with the SSE agree well with those obtained
with the HEOM and Redfield methods. It is evident that the Redfield method gives
largest errors at short times at T = 300 K and overestimates the value of the pop-
ulation at T = 77 K. At low temperature there are moderate deviations between
HEOM and SSE however, the results of the stochastic method qualitatively repro-
duce the character of the HEOM dependencies from short to intermediate times
when transient processes are still present in the system.
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Fig. 2.4. Comparison of the population ρ22 (t) evolution calculated with SSE,
HEOM and Redfield methods.

The dynamics of the two-site strong-coupling system with the above-given pa-
rameters and heat bath characteristics should be rather non-Markovian due to the
long decay time of the bath correlation function (100 fs) and this behavior must
be reflected in the distributions of the excitation transfer time. These distributions
are presented in Fig. 2.5. Comparing these results with distributions obtained for
the weakly interacting Markovian system (Fig. 2.3), we clearly see that now the
distributions are not exponential which indicates the significance of non-Markovian
effects in this two-site system. The second peak in the transfer time distribution is a
sign of the coherent components. We can notice that the duration of the initial rise
of the probability density functions corresponds to the relaxation time of the heat
bath (ωD = 100 fs−1). Such non-exponential distributions do not correspond to any
process described by simple constant-rate equations, which define the transfer mean
times. Thus, in this respect, the stochastic Schrödinger equation approach has an
advantage in describing energy transfer over the density matrix approaches.

The process of transition time measurement described above closely resembles a
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Fig. 2.5. Probability density func-
tions of the transfer time τtr from
the initially occupied state to the un-
occupied state in the two-site system
at different bath temperatures T =
77 K and T = 300 K. Parameters of
the Debye spectral density are: λ =
100 cm−1, ωD = 100 fs−1.
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quantum measurement of the system state with the N -slit-like measurement device
in analogy with the two-slit experiment: the stochastic populations of the system
represent the probabilities to find the excitation on a particular site and the random
number r models the operation of the excitation detector at one of the “slits” [45].
The adequacy of this procedure of excitation transfer time calculation is clearly
illustrated in Fig. 2.3 by applying this method to a two level system interacting
with a nearly Markovian heat bath [12].

2.4.4 Application of the HSSE to a toy system

For investigating the hierarchical stochastic Schrödinger equations of different levels
we calculate the dynamics of the simple model 2-site system with the same Hamil-
tonian as that used for calculations in Fig. 2.4. Initially only the higher energy
site is populated. In Figs. 2.6 and 2.7 we present the dynamics of population of
the other site, ρ22 (t), of the model system calculated with Debye (2.37) and super-
ohmic (2.38) spectral densities respectively. Here we show the results of calculations
using the 2- and 1-level HSSEs, the latter being equivalent to the weak coupling
SSE (2.48). The 2-level HSSE is solved by first reducing it from a system of coupled
equations to a single effective equation as outlined in Subsection 2.3.1. In order to
simulate various regimes of the system’s evolution we choose different values of the
system–bath coupling and the bath fluctuation correlation time. It should be noted
that the fluctuations for HSSE are generated using the second method for obtaining
noise realizations described in Subsection 2.4.1.

Both 1- and 2-level hierarchical stochastic Schrödinger equations are approxi-
mate, thus for benchmarking purpose we use the HEOM approach which is formally
exact for systems linearly coupled to the bath where fluctuations are characterized
by exponential correlation functions. Brownian oscillator (Debye) spectral density
bath satisfies this requirement, in contrast with super-ohmic spectral density, thus
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we only present HEOM reference curves in Fig. 2.6†.

Calculations with Debye spectral density in Fig. 2.6 show little difference be-
tween HEOM and both versions of hierarchical stochastic Schrödinger equation in
cases when system–bath interaction is λ = 10 cm−1. However, when the cou-
pling is increased to λ = 100 cm−1 we notice that the effective 1-level stochastic
Schrödinger equation shows slightly faster dynamics for the fast environment fluc-
tuation case with ωD = 10 fs−1. For the last set of parameters, λ = 100 cm−1 and
ωD = 100 fs−1, during the first 400 fs the 1-level hierarchical stochastic Schrödinger
equation closely follows the HEOM.

0.0 0.2 0.4 0.6 0.8 1.0
t, ps

0.0

0.2

0.4

0.6

0.8

1.0

ρ
22

(t
)

λ = 100 cm−1, ωD = 100 fs−1

HEOM

1-level HSSE

2-level HSSE

Thermal equilibrium value

0.0 0.2 0.4 0.6 0.8 1.0
t, ps

0.0

0.2

0.4

0.6

0.8

1.0

ρ
22

(t
)

λ = 100 cm−1, ωD = 10 fs−1

0.0 0.2 0.4 0.6 0.8 1.0
t, ps

0.0

0.2

0.4

0.6

0.8

1.0

ρ
22

(t
)

λ = 10 cm−1, ωD = 100 fs−1

0.0 0.2 0.4 0.6 0.8 1.0
t, ps

0.0

0.2

0.4

0.6

0.8

1.0

ρ
22

(t
)

λ = 10 cm−1, ωD = 10 fs−1

Fig. 2.6. Comparison of the population ρ22 (t) evolution calculated with ordinary
and hierarchical stochastic Schrödinger equation and HEOM methods using the
Debye spectral density. Thermal equilibrium values were calculated using a method
based on stochastic unraveling of influence functional in imaginary-time path integral
formalism [46].

Results of calculations performed using the super-ohmic (s = 3) spectral density
are depicted in Fig. 2.7. Here we see that similarly to the results presented in Fig.
2.6 the parameter sets with weak coupling produce curves matching each other with
both versions of the hierarchical stochastic Schrödinger equation. However, the dy-

†HEOM calculations performed by A. Gelzinis, Vilnius University.
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namics with λ = 100 cm−1 and ωSO = 10 fs−1 is quite different when calculating
with the 1-level HSSE and 2-level HSSE. The 2-level HSSE shows modulation of fre-
quency for parameters λ = 100 cm−1 and ωSO = 10 fs−1), reminiscent to polaronic
feedback process of the system onto the bath. In the last case with strong coupling
and slow bath (λ = 100 cm−1 and ωSO = 100 fs−1) the equilibrium value is closer
to 2-level HSSE.
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Fig. 2.7. Comparison of the population ρ22 (t) evolution calculated with ordinary
and hierarchical stochastic Schrödinger equation methods using the super-ohmic
spectral density.

Hierarchy (2.55) can be compared to a number of other approaches based on solv-
ing a single or a system of coupled stochastic differential equations. One possible
form of the stochastic equation for calculating the evolution of the reduced system
was proposed by Peskin and Steinberg [47]. Their method relies on the assumption
that the system–bath interaction is so small that the wavefunction of the global sys-
tem can be factorized into system and bath wavefunctions and then the trajectories
of the environmental oscillators can be approximated by their classical analogues.
Due to this fact the noise driving the system evolution is purely classical, thus the
method works well only in the high-temperature regime when the quantum effects
of the bath lose their importance. In contrast, all forms of our ordinary and hierar-
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chical stochastic Schrödinger equations are completely quantum approaches which
account for all quantum effects in the bath with the only approximation applied to
the SSE (2.47) in order to obtain the easier to calculate weak-coupling version.

A direct analogue of the system of equations (2.55) is the Hierarchy of Pure States
(HOPS) method developed by Suess et al [48]. HOPS is obtained in a similar fashion
to our hierarchy only the starting point of the derivation is Eq. (2.19) and not Eq.
(2.43) as it is in our case. Hierarchical structure of the HOPS is obtained by defining
auxiliary wavefunctions equal to the integral term of the SSE (2.19). However, to
maintain the form of the time derivative of the auxiliary wavefunction similar for
all levels of the hierarchy the correlation function which enters the integral in the
original stochastic equation must have an exponential form. In order to use more
complicated correlation functions one would need to resort to Pade decomposition
mimicking the original functional form with a sum of complex exponentials. Such
extension of the allowed forms of HOPS correlation function might not be sufficient
in many cases where the experimentally measured correlation function of the en-
vironmental fluctuations is intended for use in numerical modeling. Our hierarchy
(2.55) does not have any limitation on the form of the correlation function or the
spectral density of the bath. However, compared to HOPS the directly calculating
the hierarchical stochastic Schrödinger equation requires additional noises driving
the stochastic equations for the auxiliary wavevectors which then have to be statis-
tically averaged over many realizations of these fluctuations. Such a scheme is very
demanding computationally and due to averaging over many Gaussian fluctuations
the convergence is slow. The convergence issue is also present when solving the hier-
archical stochastic Schrödinger equation using the method described in Subsection
2.3.1. Despite this fact we can see from Figs. 2.6 and 2.7 that already the 1-level and
2-level hierarchy produces good agreement with the formally exact HEOM and the
asymptotic thermal equilibrium value so the proposed set of stochastic Schrödinger
equations form a promising and solid background for further developments of ap-
proximations.

2.5 Conclusions

In Chapter 2 we derived the exact and approximate expressions of the stochastic
Schrödinger equation and its hierarchical form. We calculated the dynamics of a two-
site system with both stochastic Schrödinger equation and its hierarchical form and
by comparing the results with the data obtained using other theoretical approaches
we can state that the stochastic Schrödinger equation is a versatile tool for
modeling the dynamics of open quantum systems applicable in a wide
range of parameter values. Its hierarchical form can be used to solve the
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formally exact stochastic Schrödinger equation to an arbitrary accuracy
and approach the formally exact result. It is the first statement of this thesis.



Chapter 3

Energy transport in photosynthetic
Fenna–Matthews–Olson complex

In this chapter we apply the weak-coupling stochastic Schrödinger equation (2.48)
to investigate the dynamics of the photosynthetic Fenna–Matthews–Olson complex.
Its quantum mechanical model is presented in Section 3.1 and the excitation transfer
evolution is discussed in Section 3.2.

3.1 FMO model [P3]

Recent 2D spectroscopy studies of photosynthetic pigment-protein complexes [49,50]
have shown the evidence of coherent dynamics which may play a role in energy trans-
fer processes. These results sparked numerous debates whether the coherent system
dynamics are related to the observed high efficiency and speed of the excitation
energy transfer in such systems [51–56]. Persistence of the coherent beats over pi-
cosecond and their robustness contradict with predictions using conventional exciton
relaxation theory based on Markovian Redfield equation [57, 58]. Possible vibronic
contribution into some of these beats has been proposed in a number of recent
studies resulting in complex behavior of the excitonic/vibronic 2D spectra [59–61].
Although long lasting beats in photosynthetic complexes reported by Raman spec-
troscopy measurements are well known for a long time [62], the Raman experiments
only provide information about the molecular ground state. However, the coherent
beats observed by 2D spectroscopy have contributions from the electronic excited
states and hence the origin of the beats becomes obscure even in a such well studied
photosynthetic complex as Fenna–Matthews–Olson (FMO) [60,63,64]. A number of
experiments and theoretical studies has been recently accomplished to disentangle
the electronic/vibrational origin of these beats in simple systems [65–67].

FMO complex found in the green sulfur bacteria is the first pigment-protein which
had its structure revealed using the method of x-ray crystallography, hence it is one of

61
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Fig. 3.1. Arrangement of the bacte-
riochlorophylls in one monomer of the
FMO complex.
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Table 3.1. Matrix elements of the FMO Hamiltonian given in cm−1. Sites are
numbered according to the crystallographic nomenclature [70].

1 2 3 4 5 6 7

1 280 -106 0 0 0 -4 -4

2 420 28 0 0 13 0

3 0 -62 0 0 17

4 175 -70 -19 -57

5 320 40 -2

6 360 32

7 260

the best studied photosynthetic aggregates [49,50,63,68]. FMO complex is a trimer
consisting of 3 identical monomers which are formed from 8 bacteriochlorophyll
(BChl) molecules supported by a rigid protein carcass (Fig. 3.1). In green sulfur
bacteria, the FMO aggregate acts as a molecular wire which transports the excitation
energy from the light-harvesting chlorosomes to the reaction centers of the I type
located in the membrane [49, 50, 68]. We next apply the SSE theory to study the
energy transfer dynamics in the FMO aggregate [69].

We assume that the FMO system consists only of 7 sites corresponding to dif-
ferent BChl molecules. The 8th molecule is not taken into account due to its weak
coupling with the rest of the BChls. Setting the energy of the 3rd site, through which
the energy excitation travels to the reaction center, to zero, we obtain the Hamil-
tonian matrix presented in Table 3.1 [68]. In all simulations of the FMO system,
the initial state was chosen to be the superposition

∣∣ψ (0)
〉

= 1√
2

(∣∣1〉+
∣∣6〉). This

state is chosen because the 1st and the 6th BChl molecules are nearest to the light-
harvesting chlorosomes where the excitation is created [68]. The interaction with the
environment induces fluctuations of the excitation energies of the BChl molecules.
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Fig. 3.2. MD and Debye spectral den-
sities used for the FMO complex. Pa-
rameters of the Debye spectral density
are: λ = 35 cm−1, ωD = 100 fs−1 [72].

Classical correlation functions of these energy fluctuations for every BChl molecule
have been estimated by the Olbrich et al. molecular dynamics (MD) simulations of
the whole FMO complex in the solution [71]. These correlation functions have been
approximated by a combination of exponents and decaying oscillations. After per-
forming the Fourier transformation, the spectral density of the n-th BChl molecule
at room temperature (T = 300 K) is given by the expression

C′′MD,n (ω) =
2

π
tanh

(
βTω

2

) N0∑
m=1

ηnmγnm
γ2nm + ω2

+
1

2

N0∑
m=1

∼
ηnm

∼
γnm

∼
γ
2

nm +
(
ω − ∼ωnm

)2
 .

(3.1)

Here ηnm, γnm,
∼
ηnm,

∼
γnm and

∼
ωnm are parameters obtained from fitting the cor-

responding correlation functions and N0 is the number of terms in the sum. In
this expression, the hyperbolic tangent factor is introduced to take into account the
temperature dependence of the parameters. We denote this spectral density as the
MD spectral density.

The MD spectral density in Eq. (3.1) consists of two terms. The first is a Debye
term determining the overdamped low frequency modes. The second part reflects
the high-frequency modes. These should be associated with the intra-molecular
vibrations. As the intra-molecular vibrational frequencies are the same for all chro-
rophylls, while their amplitudes vary from site to site, for simplicity we assume
the averaged spectral density for all BChl molecules with N0 = 12 terms in Eq.
(3.1). As a reference, we use the Debye spectral density (Eq. (2.37)) without high
frequency intra-molecular vibrations. Both Debye and MD spectral densities have
similar low-frequency parts, while they are different at high frequencies as shown in
Fig. 3.2. The low frequency part also corresponds to the experimentally determined
spectral density in this range of frequencies.
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Fig. 3.3. Populations of the FMO system calculated in the site basis. Debye
spectral density parameters are λ = 35 cm−1 and ωD = 100 fs−1.

3.2 Energy transport through FMO [P3]

The dynamics and relaxation of the excitation in the FMO aggregate can be inves-
tigated by first analyzing the evolution of the site populations. They are averaged
over the ensemble according to Eq. (2.70) at the temperature T = 300 K and are
presented in Fig. 3.3. Here calculations with both spectral densities indicate that
when the system approaches equilibrium the value of the population ρ33 (t), corre-
sponding to the site with the lowest energy ε3 = 0, becomes the largest in accord
with previous simulations [73]. Equilibrium values of other sites’ populations are
also ordered in accord with their energy corresponding to proper thermal equilib-
rium. From the populations’ dynamics calculated with Debye spectral density we
can see that despite ρ44 (t), ρ55 (t), ρ66 (t), and ρ77 (t) reaching equilibrium after
∼ 2 ps, other curves are still not stationary, thus the full relaxation of the system
occurs in more than 5 ps. The results obtained with MD spectral density demon-
strate qualitatively similar but slightly quicker relaxation process. The coherent
evolution as well as delocalized excitons in the system can be recognized from the
oscillations of the presented populations. From the calculations with Debye spectral
density, we can see that oscillations decay after ∼ 500 fs. Using MD spectral density
we obtain smaller amplitudes of oscillations and they decay faster – after ∼ 300 fs.
This damping is the manifestation of the electronic coherences’ decay. Hence the
MD spectral density seems to slightly speed-up the relaxation dynamics without
noticeable qualitative differences.

In Subsection 2.4.2 we developed the algorithm to obtain the probability distri-
bution of the transition time between two states of the system using the stochastic
Schrödinger equation. We applied this method to obtain the distributions of the
transfer time from the initial state of the FMO to the seven states corresponding
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Fig. 3.4. Distributions of energy excitation transfer time calculated for all sites of
the system. Debye spectral density paramters are λ = 35 cm−1 and ωD = 100 fs−1.

to excitation localized on different BChl molecules. Calculations presented in Fig.
3.4 were performed with both Debye and MD spectral densities. It is evident that
due to transient processes in the system initial parts of all distributions calculated
with both spectral densities exhibit non-exponential form which in the log-linear
scale should manifest as a set of linear dependencies. We can notice that with both
spectral densities we obtain similar overall arrangement of the excitation transfer
time distribution curves and also the most probable transfer times. It is obvious
that the energy excitation can be registered at the 1st or the 6th site in the shortest
time. Analyzing the positions of the maxima of the probability distributions we can
see that the excitation travels through the FMO complex in such order: 2nd site,
5th site, 7th site, 4th site, and it takes the longest time for the excitation to arrive
at the 3rd site. Hence, the transfer time distributions reveal the excitation transfer
pathways in multi-site excitonic systems. From the Fig. 3.4, we can also see that
the transfer time distribution at the 3rd site is the broadest, which means that in
this case the time τtr has the biggest uncertainty.

From the results of population dynamics in Fig. 3.3 and transfer time distri-
butions in Fig. 3.4 we can draw the conclusion on the effect of intra-molecular
high-frequency vibrations on the energy transfer dynamics in the photosynthetic
FMO aggregate. 2D spectroscopy experiments revealed long-lasting quantum co-
herences in FMO and in a range of other systems [57,74,75]. There is a continuous
debate on the origin of these beats, while their assignment recently was shifted to
be vibrational. The role of the coherence is considered to be an important factor
for defining the excitation dynamics in molecular aggregates. We hence addressed
the very core of the problem and simulated the excitation transfer processes by in-
cluding or excluding the high-frequency vibrations. As revealed by the distribution
of the excitation transfer time to the 3rd FMO site shown in Fig. 3.5, the overall
dynamics becomes slightly faster; however, the excitation transfer pathways are not
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Fig. 3.5. Distributions of the exci-
tation transfer time to the 3rd site in
the FMO system calculated at different
system–bath interaction strengths. De-
bye frequency is ωD = 100 fs−1, tem-
perature T = 300 K .
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very sensitive to the choice of the spectral density, i.e., whether we have or do not
have high frequency vibrational modes. It could be argued that the system–bath
coupling strength parameters, the reorganization energies, of both spectral densities
are different so the results do not have complete one-to-one correspondence. The
reorganization energy includes contributions from both the low frequency and the
high frequency components, so obviously the two models of spectral density can-
not have the same reorganization energy. However, the low frequency parts of the
spectral densities are comparable, so the effect on the transfer times is necessarily
related to the high frequency spectral components.

3.3 Conclusion

In Chapter 3 we applied the stochastic Schrödinger equation to investigate the ex-
citation energy transfer dynamics in the photosynthetic FMO complex. Using two
different models for the bath spectral density (with and without high frequency
modes) we calculate the evolution of the populations in the FMO system, as well
as excitation transfer times distributions and reveal that the excitation trans-
port pathways in the FMO aggregate are not sensitive to high-frequency
modes of the bath. This is the second statement of the thesis.



Chapter 4

Charge transport in bulk
heterojunction organic solar cells

This chapter is dedicated to studying charge separation dynamics in organic solar
cells. In Section 4.1 we present an overview of the operating principles of organic so-
lar cells and difficulties associated with theoretical description of charge dynamics in
these devices. Later, in Section 4.2 we apply the stochastic Schrödinger equation to
calculate the short-time evolution of the charge pair and in Section 4.3 we investigate
the long-time charge separation dynamics using the Monte-Carlo method.

4.1 Charge generation mechanism [P2, P4, P5]

Organic solar cells (OSCs) in recent years have gained much attention as a possible
cheaper alternative to photo-voltaic elements based on inorganic materials, e. g.
silicon. However, the light conversion efficiency of OSCs was much lower compared to
their inorganic counterparts. A major improvement in cell efficiency was obtained by
the introduction of the bulk heterojunction device (BHJ) structure [76,77] consisting
of a mesostructured blend film of conjugated polymer and fullerene. This structure
is shown schematically in Fig. 4.1. Upon light absorption, excitons are produced
in the polymer phase and are converted into closely bound electron–hole pairs at
the polymer–fullerene interface, sometimes also referred to as charge transfer states.
In an operating solar cell, these bound charge pair states have to dissociate by
overcoming the mutual Coulomb attraction between electrons and holes, to form
free mobile charges (charge-separated states) that can be extracted as photocurrent.

Electron-hole pairs split into nearly-free charge carriers on a femtosecond time
scale and despite the strong Coulomb interaction between the charges this process is
known to be often close to 100% efficient. However, to this day it is not completely
clear what mechanism is responsible for efficient charge separation at organic het-
erojunctions. Several explanations were suggested for the initial dissociation stage,

67
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Fig. 4.1. Schematic representation of a bulk heterojunction OSC. The active layer
consisting of donor (light green) and acceptor (maroon) materials is sandwitched
between the transparent anode and metalic cathode. A photon excites a donor
molecule forming a molecular exciton, then the excited electron is transfered to the
acceptor molecule due to LUMO energy diference.

for example: charge carrier delocalization over several polymer segments and/or
fullerene molecules [78], hot interfacial charge transfer states with delocalized wave-
functions [79,80] or, alternatively, with electron and/or hole wavefunctions localized
on molecules situated at large distances from the interface [81]. Recently, a par-
tially coherent model, assuming electron delocalization over the entire aggregated
fullerene domain [82], and a hybrid model of a 1D polymer/fullerene lattice with
semi-classical dynamics at short time scales and Redfield relaxation theory at long
time scales [83], have been proposed. Consequently, charge separation on an ultra-
fast time scale is often considered to be predominantly coherent. However, carrier
delocalization and coherent propagation, their extent and temporal evolution have
only been qualitatively postulated. Although the later time scales of charge sepa-
ration have been successfully described by incoherent hopping (see Section 4.3 for
detailed discussion and calculations), a consistent model at the earliest time scales,
describing the coherent propagation of charge and the gradual transition into the
classical hopping regime, is still absent. As a consequence, the role of coherence
remains elusive.

4.2 Short-time charge separation dynamics [P5]

To elucidate the role of delocalization and coherence in the initial stage of charge
separation a full quantum mechanical description is necessary due to the non-
equilibrium nature of such process. In this section we use the stochastic Schrödinger
equation to describe the charge separation process by the principles of open quantum
systems on the timescale from femtoseconds to several picoseconds. This approach
allows us to evaluate the interplay between coherent dynamics and bath induced de-
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phasing, and predict the importance of delocalization in systems with a wide range
of inter-molecular couplings, leading to different charge separation scenarios [84].

4.2.1 Quantum mechanical model of the donor–acceptor interface

The acceptor medium together with a single donor site coupled to the bath of har-
monic oscillators is described as a quantum system characterized by the Hamiltonian
(2.1). Donor and acceptor sites are arranged into a cubic lattice with nearest-
neighbor interactions between different sites, as shown in Fig. 4.2. We consider only
single particle states

∣∣n〉 denoting the electron on the site n. The harmonic oscillator
environment is described by the Debye model (2.37). The model is implemented on
a 3D cubic lattice of 8×16×16 sites and this size corresponds to the expected size of
a PCBM aggregate in well-intermixed bulk heterojunction solar cells. Transmission
electron microscopy images of P3TI:PC71BM indicate a well-intermixed morphol-
ogy, in agreement with our assumption. In order to model photo-excitation in the
donor phase, we initially place both the electron and the hole at the donor site.
It has been recently experimentally demonstrated that mainly electron motion in
PCBM is responsible for the initial evolution of the charge separation process – hole
motion is significantly slower [82, 85, 86]. Therefore, in our treatment we consider
the hole to be immobile, thus the donor site is merely the source of the electro-
static Coulomb field and the electron is described quantum mechanically using the
stochastic Schrödinger equation. In this setup the charge transfer state is obtained
when the electron is transferred from the donor to the neighboring acceptor site.

The variable size of acceptor aggregates and the overall complexity of interfaces
in the hierarchical morphology of the bulk heterojunction blend does not allow
straightforward simulation of its entire structure using the stochastic Schrödinger
equation. In this case we reflect different morphologies by a variation of couplings
between the acceptor sites.

Site energies εn in the Hamiltonian of the system (Eq. (2.1)) are given by

εn =

εD + δn, n = 1

εn,C + εn,F + δn, n 6= 1
(4.1)

Here εD is the electron self-energy on the donor site (it is the molecular excitation
energy since the hole is localized on this site as well), while self-energies of the ac-
ceptor sites are set to zero, εn,C is the Coulomb interaction energy between the hole
and the electron, εn,F is the energy contribution due to some external electric field
and δn – the contribution due to the static energetic disorder of electron energies in
the lattice. δn is taken as a Gaussian random number, characterized by the standard
deviation σ, and all calculation results must be averaged over this parameter. In-
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Fig. 4.2. Schematic of the donor–
acceptor interface model. Red sphere
denotes the donor site, blue spheres de-
note the acceptor sites, F denotes the
arbitrary direction of the external elec-
tric field reflecting the random orien-
tation of the donor–acceptor interface
with respect to F (see the main text),
JDA and JA denote the interaction en-
ergies between the donor and the near-
est acceptor site and between the near-
est neighbor acceptor sites respectively.

Fig. 4.3. Energy profile in the di-
rection perpendicular to the donor–
acceptor interface plane (dashed cyan
line). The red and green curves rep-
resent the shift of the Coulomb poten-
tial due to the applied external elec-
tric field, the blue curve – the shifted
Coulomb potential when a net zero
electric field is applied. The donor site
corresponds to x = 0. εD is the donor
site excitation energy, εCT denotes the
state energy of the CT exciton and ∆E
is the driving force.
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teraction energy Jnm in the system Hamiltonian is equal to JDA if n and m denote
the donor and the nearest-neighbor acceptor site, otherwise, Jnm = JA if n and m
denote nearest-neighbor acceptor sites.

Coulomb potential between the hole and the electron contribution from Eq. (4.1)
has the form

εn,C = − q2

4πεε0 (rn + b)
, (4.2)

where |q| is the electron charge, ε0 and ε are the dielectric constants of empty-space
and of material, respectively, rn is the distance between the n-th site of the lattice
and the donor site, parameter b accounts for the finite size of the donor and ac-
ceptor molecules shifting up the CT exciton energy according to the experimentally
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determined binding energy. The energy term εn,F = qF · rn is due to the external
electric field F . Using Eq. (4.1) and expressions for εn,C and εn,F we can visualize
the energy profile in the x direction, perpendicular to the donor–acceptor interface
as presented in Fig. 4.2. Here, the energy profile is given for three different cases:
when the external electric field is applied perpendicular to the donor–acceptor in-
terface (with negative values of F pointing from the acceptor to the donor phase),
in the opposite direction (positive F values) and with no external electric field.

The main quantities we use to investigate the charge separation dynamics in our
model are the site populations (electron probability density) calculated with Eq.
(2.70) and the absolute electron–hole separation distance given by

dabs (t) =

〈∑
n

rnψ
∗
n (t)ψn (t)

〉
ens

. (4.3)

Using this expression we can calculate the ensemble-averaged value of the absolute
electron–hole separation distance, however, the stochastic Schrödinger equation for-
malism allows access to the stochastic and probabilistic parameters of the quantum
observable, as described in Section 2.4. Using this property of the SSE we can con-
struct the probability density distribution pt (d′abs) of the absolute charge separation
distance at some particular time t. The average absolute separation distance (4.3)
is then given by dabs (t) =

∫
dd′abspt (d′abs) d

′
abs (t) where d′abs is the value of the

absolute separation distance obtained from a single realization.

Since we are interested to study coherent effects at the very beginning of the
charge separation process we require a numerical measure to quantitatively describe
the degree of coherence present in the system. For this task we introduce introduce
the average coherence radius of the electron

Re (t) =
a

2
3

√∑
n 6=m

〈|ψ∗n (t)ψm (t)|〉ens (4.4)

which denotes the linear extent of delocalization. Here a is the lattice constant.
The main building block of the definition (4.4) is the sum of the density matrix
off-diagonal components’ absolute values [87]. Values of the parameter Re (t) are
bounded by two limiting cases of the electronic wave vector: when the system is
either completely coherent or incoherent. In the fully coherent case all N compo-
nents of the wave vector ψn (t) = 1√

N
are equal, thus the coherence radius is at its

maximum with Re (t) = a
2

3
√

(N − 1). When the system is completely incoherent
it means that its state must be described by a statistical mixture of fully localized
electronic states which all have equal probabilities of 1

N , thus the reduced density
of the system only has diagonal components and the off-diagonal elements are zero.
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In this case the extent of electron’s delocalization (4.4) is zero as well.

Previously introduced observables are difficult or even impossible to measure
experimentally, hence for checking our simulation results with experimental data we
calculate the electron-hole drift separation distance

dF (t) =

〈∑
n

ψ∗n (t)ψn (t) rn ·
F

|F |

〉
ens

(4.5)

along the direction of the applied external electric field. Using the calculated drift
distance we are also able to estimate the electron mobility

µ (t) =
d

dt

dF (t)

F
. (4.6)

4.2.2 Simulation results and comparison with the experiment

The donor–acceptor interface is characterized by the lattice constant a, the molecular
dimension parameter b (in the Coulomb potential expression (4.2)), the interaction
energies between sites JDA and JA, the donor site excitation energy εD, the site
energy disorder σ and the system–bath coupling strength λ. In addition, the overall
size of the lattice could be variable due to the complexity of interfacial domains at
hierarchical morphologies of the blend. We assume that differences in morphologies
are mostly reflected by a variation of couplings between the acceptor sites. Simula-
tion parameters were chosen as those typical for polymer–PCBM systems: driving
force ∆E = 0.1 eV for P3TI:PC71BM, CT exciton binding energy εCT = −0.27 eV

and the energetic disorder σ of PCBM was set equal to σ = 75 meV, corresponding
to the experimentally determined value [88] and JDA is set equal to 12.5 meV lead-
ing to an electron transfer time of 100 fs, in agreement with experimental transient
absorption data [84]. The lattice constant is equal to 1 nm. However, we point out
that absolute values of these parameters, such as for example the energetic disorder
of the PCBM phase, are model dependent. In order to determine the sensitivity
of our simulations to different parameters, we have calculated the dynamics of the
system by varying the parameters in the vicinity of the values given. For this inves-
tigation we used a smaller acceptor lattice of 8× 8× 8 sites. Results are presented
in Figs. 4.4. We find that the most important parameter governing the coherent
dynamics (< 500 fs) of the electron is the inter-acceptor coupling JA. While the
dynamics at later times (> 500 fs) somewhat differ, they remain qualitatively the
same within the range of parameter values reported by other studies. Hence, in later
analysis we have kept all of the parameters fixed to those outlined above, except for
the inter-acceptor coupling JA, which was varied.

Fig. 4.5 shows the simulated temporal evolution of electron density for the in-



4.2. Short-time charge separation dynamics [P5] 73

0 1 2 3 4
t, ps

0

1

2

3

4
d
F

(t
),

n
m

εCT = 1 meV

εCT = 12.5 meV

εCT = 31 meV

0 1 2 3 4
t, ps

0

1

2

3

4

d
F

(t
),

n
m

εD = 87 meV

εD = 174 meV

εD = 261 meV

0 1 2 3 4
t, ps

0

1

2

3

4

d
F

(t
),

n
m

JDA = 6 meV

JDA = 12.5 meV

JDA = 37 meV

0 1 2 3 4
t, ps

0

1

2

3

4

d
F

(t
),

n
m

λ = 49 meV

λ = 74 meV

λ = 99 meV

Fig. 4.4. Drift charge separation distance dynamics calculated for different values
of CT state energy εCT, donor site excitation energy εD, donor–acceptor coupling
strength JDA and system–bath interaction energy λ. Strength of external electric
field F is set to 5.7× 105 V · cm−1.

dicated values of inter-acceptor electron coupling JA. Data are projected in the
plane perpendicular to the donor–acceptor interface. External electric field is not
applied to highlight the effects of delocalization. Our results show that the electron
is transferred from the donor site to a nearby pool of coherently coupled acceptor
sites within ∼ 500 fs. The number of accessible sites in a given time interval grows
with increasing inter-acceptor coupling, allowing for the electron to be transferred
to more distant sites already at very early times. Electron transfer is quantitatively
characterized in the rightmost column of Fig. 4.5, where the kinetics of the absolute
electron–hole separation distance, dabs (t) (Fig. 4.5, red curves) and the average
electron coherence radius, Re (t) (Fig. 4.5, blue curves), are shown. The extent of
electron delocalization is also visualized by the blue circles which are the graphical
representations of the probability density distributions of the electron coherence ra-
dius (4.4). These results only weakly depend on the donor excitation energy εD, in
agreement with experimental studies of charge separation efficiency versus excitation
energy [89].

The kinetics of both dabs (t) and Re (t), for different JA exhibit a similarly rapid
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Fig. 4.5. Ensemble-averaged evolution of electron probability density in the plane
perpendicular to the donor (gray area) and acceptor (8 × 16 × 16 nm3 domain)
interface at different times following photoexcitation for the indicated values of inter-
acceptor coupling JA. The rightmost column shows the corresponding absolute
charge separation distance dabs (t) and delocalization radius Re (t). Filled blue
circles illustrate the extent of electron coherence at a given time. The color scale at
the bottom describes the probability of finding the electron at the indicated distance
from the interface.

initial rise. For very weak coupling both electron delocalization and initial electron
transfer distance are small, and thus the electron is only transferred from the donor
to the nearest acceptor site. For intermediate coupling the initial transfer distance is
increased and the electron is more, although still weakly, delocalized. In this regime
at later times> 500 fs the average electron distance increases while its delocalization
remains constant. In case of strong coupling, the electron is strongly delocalized, we
thus observe the largest electron transfer distance at early times, whereas the later
part of the transfer process is mainly determined by time-dependent localization.
Note that for strong couplings electron delocalization is confined by the size of
the acceptor lattice in our model, chosen to correspond to the expected PCBM
domain size (8× 16× 16 nm3) in efficient polymer–PCBM blends. Despite similar
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probability distributions at long times in the second and third rows of Fig. 4.5, the
extent of delocalization of individual electrons and, consequently, the character of
their motion is very different with the dynamics in the strong coupling case being
more wave-like.

To determine which regime corresponds to real polymer–PCBM blends, we have
compared our model prediction to experimentally measured carrier drift dynamics
probed by a recently developed experimental technique, time-resolved electric-field
induced second harmonic generation (TREFISH), enabling ultrafast measurements
[84, 90]. We have chosen a bulk heterojunction solar cell based on P3TI:PC71BM.
This system is of particular interest due its exceptionally low driving force ∆E ∼
0.1 eV for charge separation [91], nevertheless leading to an internal quantum ef-
ficiency (IQE) of 90%. Transient absorption spectroscopy also indicates ultrafast
photo-induced charge transfer on a < 100 fs time scale. Charge separation in
P3TI:PC71BM is thus expected to rely on charge delocalization and coherent elec-
tron propagation.

Figure 4.6 shows the experimental and simulated average electron–hole separa-
tion along the direction of the electric field of 5.7×105 V · cm−1, created by applied
voltage and the built-in field of the OSC contributing 0.7 × 105 V · cm−1. Tran-
sient absorption spectroscopy shows no signatures of delayed charge transfer due
to exciton diffusion, only prompt photo-induced charge transfer at a time scale of
< 100 fs. Thus, the experimental TREFISH data in Fig. 4.6∗ directly monitors
the motion of the photo-induced electron away from the donor–acceptor interface.
The experiment shows a fast ∼ 500 fs initial rise to a charge separation distance
of 0.4 nm. The later part of the charge separation process is considerably slower –
separation distance gradually rises up to 0.9 nm in 3.5 ps.

To simulate the experiment with the added external electric field we must take
into account the fact that donor–acceptor interfaces can be arbitrarily oriented with

∗Experiments performed by V. Pranculis in the group of V. Gulbinas, FTMC.
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respect to the direction of the field. This situation is reproduced by performing sim-
ulations with a randomly oriented electric field and averaging the obtained electron-
–hole separation distance projected along the direction of the field. Our model with
JA = 12.5 meV (intermediate coupling) reproduces the experiment (see Fig. 4.6)
and points to an absolute carrier separation distance of 2.5 nm in 500 fs as shown in
Fig. 4.5. It is considerably smaller than the 4 nm distance evaluated in Ref. [82] for
PCDTBT:PC61BM. The latter corresponds to our model prediction in the strong
coupling regime where we also obtain a carrier separation distance of 4 nm (third row
in Fig. 4.5). However, at least for the case of P3TI:PC71BM, comparison with exper-
iment indicates that such coupling and initial separation are overestimated. Given
that P3TI:PC71BM operates at an IQE of 90%, we thus suggest that intermediate
couplings, leading to electron delocalization just over two lattice sites (Fig. 4.5),
are already sufficient to facilitate efficient charge separation at organic interfaces.
To further support our results we calculate electron mobilities (4.6) using the same
set of parameters. The obtained values are 0.03, 0.37 and 1.26 cm2 · V−1 · s−1 for
JA = 1, 12.5 and 31.5 meV respectively. The predicted mobility at JA = 12.5 meV

is in excellent agreement with the experimentally measured electron mobility value
of 0.3 cm2 · V−1 · s−1 in PCBM at the picosecond time scale [92].

Classical hopping models have been used extensively to describe electron–hole
separation and subsequent charge motion in organic materials [93]. The simulations
rely on the initial e-h distance distribution following photoexcitation, which is diffi-
cult to access experimentally. Initial charge separation distances of 3 − 4 nm have
been estimated [94]. Our present simulations allows us to visualize the formation
of the electron–hole distance distribution with high spatio-temporal resolution. We
find that coherent electron transfer when its wavepacket rapidly expands lasts up to
∼ 500 fs and is responsible for shaping the “initial” electron–hole distance distribu-
tion. Following the coherent propagation stage charge separation kinetics gradually
switch to the slower phase (see, e.g., the dynamics of dabs (t) in Fig. 4.5 calcu-
lated with JA = 12.5 meV and exhibiting a two-phase evolution), which effectively
corresponds to the incoherent-hopping phase. Strictly speaking, in this slow phase
the motion of the electron is not completely incoherent because this would require
all coherences in the system to die-out, thus dropping the delocalization radius to
zero. However, as we see from Fig. 4.5 Re (t) saturates after approximately 500 fs

consequently, this regime can be interpreted as the particle-like hopping of the “big-
ger” slightly delocalized electron instead of the wave-like spreading of its wavepacket.
Hence, 500 fs marks the transition from coherent electron propagation to incoherent
hopping where classical hopping models become valid.

Figure 4.7 shows the probability density functions of the absolute charge sep-
aration distance calculated at different times without external electric field in the
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Fig. 4.7. Radial distribution of
electron-hole separation distance at
early times. The shaded gray area in-
dicates the position of the donor site.
Dashed black line represents the ex-
ponential character of the e-h distance
distribution after 800 fs.

intermediate coupling regime. The electron gets completely transferred from the
donor site to the acceptor lattice in ∼ 500 fs, however, it is still strongly bound to
the hole. Further charge separation is facilitated by incoherent electron hopping as
outlined in Ref. [95]. The resulting electron–hole distance distribution at 800 fs can
be approximated as an exponential (black dashed line in Fig. 4.7) and could be used
in classical hopping models as the initial distribution.

Our results suggest a complex coherence dynamics and their role in photo-induced
electron transfer at organic interfaces: electron delocalization occurs on a femtosec-
ond time scale, during which the electron wavefunction spreads in the acceptor phase.
This stage is followed by electron’s partial localization and gradual loss of coherence
which after several hundreds of femtoseconds leaves the electron dynamics incoher-
ent. Although the extent of the electron wavefunction in PCBM is limited to only
several molecules, it is already sufficient to facilitate an average electron-hole sepa-
ration distance of ∼ 2.5 nm on a femtosecond time scale. Coherent propagation also
shapes the “initial” electron–hole distance distribution, which can be implemented
in classical hopping models that are valid at time scales > 500 fs – the transition
time from coherent propagation to incoherent hopping. We have to point out that
our model does not include geminate recombination, which although considered in-
significant in efficient OSC systems, is necessary for a complete description. The
extent of electron delocalization, as elucidated here, may be one of the key factors
minimizing geminate recombination [96]. Finally, it should be noted that our model
based on the stochastic Schrödinger equation is not specific to OSCs and may be
generalized to explain charge transfer not only at any molecular interface but also
in other collectively coupled molecular systems.

4.3 Long-time charge separation dynamics [P2, P4]

In Section 4.2 we investigated the short-time dynamics of the electron-hole sep-
aration using the fully quantum stochastic Schrödinger equation approach which
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revealed complex interplay between system’s coherent evolution and bath-induced
relaxation. However, after several hundreds of femtoseconds the coherent quantum
effects no longer play a significant role in electron’s motion and its evolution can
be satisfactorily interpreted as incoherent hopping. In principle we could propagate
the system for tens and hundreds of picoseconds using the stochastic Schrödinger
equation, however this would be an overkill due to high computational demands
of the SSE and availability of much simpler rate equation-based approaches which
are completely adequate for describing incoherent dynamics. When the motion of
the electron is incoherent it generally means that the off-diagonal elements of the
reduced density matrix of the system (see Eqs. (1.3) and (1.4)) have already de-
cayed to zero. In this case the evolution of the system can be described by the Pauli
master equation [13,42]

d

dt
pm (t) =

∑
n

(νmnpn (t)− νnmpm (t)) . (4.7)

This equation describes the evolution of the system state characterized by a set of
probabilities pm (t) (populations of the density matrix) for a particle to occupy the
m-th site. If the coupling between different sites is small the transition between the
m-th and n-th sites is governed by the rate νmn given by the Fermi–Golden–Rule

νmn = 2π
∣∣∣〈m∣∣Ĥint

∣∣n〉∣∣∣2 δ (εm − εn). Here Ĥint is the interaction Hamiltonian

coupling states
∣∣m〉 and

∣∣n〉. The explicit expression of this interaction term de-
pends on the underlying microscopic model, hence the hopping rates in the Pauli
master equation are also model-dependent. One of the simplest models for hopping
rate calculation is the widely used Miller–Abrahams [97] model originally designed
for charge transport description in classical semiconductors. The Miller–Abrahams
hopping rates are given by

νmn = ν0exp (−2γrmn)

exp
(
− εn−εm

kT

)
, εn > εm

1, εn ≤ εm
, (4.8)

where ν0 is a characteristic frequency of the phonon field facilitating the hopping
process, γ is a parameter which characterizes the inverse localization length of the
charge density and is related to the overlap integral of the wavefunctions situated
on different sites, rmn is the distance between the origin site m and the target site
n, and εm and εn are their energies, respectively.

If the size of the simulated system is big, direct solution of Eq. (4.7) is quite
difficult due to the necessity to deal with a massive system of coupled differential
equations. For this reason we chose to investigate the incoherent evolution of the
electron-hole pair in the P3HT:PCBM blend using Monte-Carlo (MC) modeling. We
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simulate the charge separation process on the timescale from several picoseconds to
nanoseconds and assess the contribution of diffusion and drift to to the process of
charge separation [93]. Computational cheapness of the Monte-Carlo method allows
creating much bigger donor–acceptor lattices representing the whole active layer of
the OSC with its internal morphology, hence we also study the dependence of charge
separation parameters on the structure of donor and acceptor domains [98].

4.3.1 Monte-Carlo model of the solar cell

P3HT:PCBM blend has a different polymer P3HT as the donor material instead of
P3TI familiar from the short-time charge separation investigations in Section 4.2.
However, the properties of P3HT:PCBM and P3TI:PCBM blends are comparable
and the general features of charge separation dynamics are the same. Thus, in a
similar fashion to the short-time dynamical model we assume the structure of the
P3HT:PCBM blend to be represented by a cubic lattice, with the lattice constant a.
We assume two types of sites representing electron and hole transporting moieties.
The lattice is divided into the donor part, where only holes are allowed to reside and
the acceptor part for electrons. To simulate the blend structure, the acceptor sites
are defined by filling the lattice volume with ellipsoids described by a characteristic
volume Vc and having randomly distributed semi-axes. The lengths x = a, b, c of
the semi-axes are given by

x =
1

4
3
√
Vc (1 + rx) , (4.9)

where rx is a uniformly distributed random number from the interval [0, 1). These
ellipsoids are placed at random positions in the lattice. We generate as many el-
lipsoids as the required proportion between acceptor and donor sites requests. The
remaining space in the lattice is filled with donor sites, representing the polymer.
The chain length is chosen randomly from the interval [L − 3, L + 3], where L is
the average chain length. A fragment of the final structure can be seen in Fig. 4.8.

The energy of an electron or hole is given by Eq. (4.1), only in Monte-Carlo
simulations we let both charges to move through the lattice, thus the hole energy
has the contributions due to the Coulomb field ε(h)n,C and the external electric field

ε
(h)
n,F as well. We also set the excitation self-energies of both donor and acceptor sites
to zero. Electron and hole disorder energy contributions are sampled according to
a modified Gaussian distribution defined as a weighted sum of a normal Gaussian
distribution and an exponential distribution extended symmetrically to negative
energy values:
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Fig. 4.8. Scheme of the model
used for the Monte-Carlo calculations.
Black dots represent acceptor sites,
white dots represent donor sites, yel-
low dots represent folding points of the
polymer chains, which are represented
by red lines. The external electric field
F is oriented along the x direction.

p (δn) =
1− w√

2πσ
exp

(
− δ2n

2σ2

)
+
w

2σ
exp

(
−|δn|

σ

)
. (4.10)

Here the widths of the distributions are assumed to be different for electrons and
holes: σD in the donor part of the lattice (for holes) and σA in the acceptor part
(for electrons). Parameter w controls the shape of the distribution p (δn): when
w = 1 we have a purely exponential distribution and when w = 0 – Gaussian.
This coefficient is necessary to correctly capture the disorder profile of the blend
and, consequently, charge separation dynamics in the nanosecond timescale where
according to the experimental measurements charges tend to relax into deep traps
and the Gaussian distribution tails give insufficient number of such high energy sites.

At the start of the simulation, the hole and the electron are placed on neighboring
sites in the interfacial region of the donor and acceptor domains. Hopping rates for
both holes and electrons are given by the Miller–Abrahams formula (4.8). Only
nearest neighbor sites are taken into account for a hopping event. Thus, a charge
can hop into one of six surrounding sites when it is far from the interface, while
hopping possibilities are fewer in the interfacial region. In the acceptor domain the
rate prefactor ν0 ≡ νA is constant, whereas in the donor part we assume ν0 ≡ νD1

for hopping to a target site located in a straight part of the same polymer chain,
ν0 ≡ νD2 for hopping to a target site located on a folding point where orientation
of the polymer chain changes, and ν0 ≡ νD3 for hopping to a target site located
in a different polymer chain. Carrier motion in a hierarchical polymer structure
is expressed by defining νD1 > νD2 > νD3. Since in our model both types of
charges can hop through their respective domains we calculate the probability of
obtaining a new configuration of charges n from the previous configuration m using
the expression
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pmn =
νmn∑

k∈m→n
νk
. (4.11)

Here the summation is performed over the rates of all allowed jumps of both the
electron and the hole. These probabilities are used to determine the destination site
for either the hole or the electron, chosen by a linearly distributed random number.
The charge configuration is then switched to the one that has been determined and
the rates of the next hopping events are recalculated.

The time interval between two hops is taken as a random value described by
the exponential distribution, characterizing the total hopping rate. In the m-th
configuration, the time to reach the n-th configuration, τm, is a random number
drawn from

p (τm) =
1

τm
exp

(
− τm
τm

)
, (4.12)

where τm is the lifetime of the m-th configuration:

τm =
1∑

k∈m→n
νk
. (4.13)

Eqs. (4.12) and (4.13) determine the time flow of the simulation which allows us to
calculate the time-dependent characteristics of charge evolution.

4.3.2 Simulation results and comparison with the experiment

Stochastic Schrödinger equation simulations in Section 4.2 revealed the general fea-
tures of the initial charge separation dynamics up to several picoseconds. To in-
vestigate the evolution of charge pairs beyond this timescale we use the incoherent
Monte-Carlo model which is fully applicable in this case due to quantum effects in
the system becoming negligible already after several hundreds of femtoseconds.

For the simulation we choose a lattice of 100 × 400 × 400 nm representing the
actual structure of the blend, therefore, no cyclic boundary conditions are intro-
duced. Initially, charges are created at a random location on the interface and due
to the external electric field, diffusion and boundary effect they drift apart in op-
posite directions. While charges move through the lattice, we record the absolute
charge separation distance dabs (t) and the drift separation distance dF (t) between
them along the direction of the external electric field F . In order to give our sim-
ulations a connection to real-life measurements of the charge separation dynamics
in the P3HT:PCBM blend we fit the simulated drift separation distance kinetics to
the experimental data obtained using the TREFISH method [93]. These results are
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Table 4.1. Numerical values of the model parameters corresponding to the results
in Fig. 4.9.

Lattice

dimension in the

x direction, (nm)

Lattice

dimension in the

y direction, (nm)

Lattice

dimension in the

z direction, (nm)

Lattice constant

a, (nm)

Characteristic

volume of the

acceptor

ellipsoid, (nm3)

100 400 400 1 18000

Average length of

the donor chain,

(nm)

Hopping rate

prefactor in the

acceptor νA,

(s−1)

Hopping rate

prefactor in the

donor νD1, (s−1)

Hopping rate

prefactor in the

donor νD2, (s−1)

Hopping rate

prefactor in the

donor νD3, (s−1)

6 7.2× 1015 3× 1016 1× 1016 3.5× 1015

Parameter γ,

(nm−1)

Disorder in the

acceptor σA,

(meV)

Disorder in the

donor σD, (meV)

Temperature T ,

(K)

Mean dielectric

permittivity ε

5 70 80 293 3

Fraction w of exponential distribution in the

modified Gaussian distribution (see Eq. (4.10))

CT state energy, (eV)

0.14 0.2

Fig. 4.9. Experimental kinet-
ics of the drift charge separation
distance dF (t)(empty circles) to-
gether with simulated Monte-Carlo
results (solid curves). Thick solid
black curve represents the absolute
charge separation distance at zero
external electric field.
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shown in Fig. 4.9†. Parameter values of the simulation including those obtained
from the fitting procedure are given in Table 4.1. The obtained best-fit energy dis-
order values for acceptor and donor materials, 70 and 80 meV respectively are close
to those determined in the study by Deibel et al. [99]. The Coulomb potential (4.2)
profile is set to give the CT state energy of 0.2 eV, consistent with Ref. [100]. We
set the coefficient w in the distribution (4.10) to 0.14, implying that the modified
Gaussian distribution practically has the shape of an ordinary Gaussian distribution
only with the addition of somewhat longer exponential tails.

Random hopping of the electron–hole pair in our Monte-Carlo model is a simu-
lation of a diffusion process with the constraint of finite and irregular electron and

†Experiments performed by D. A. Vithanage and Y. Infahsaeng, Lund University.
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Fig. 4.10. Cross section of typical
simulated structures of annealed (left)
and as-spun (right) samples. Dark ar-
eas denote acceptor regions (PCBM)
and white areas denote donor regions
(P3HT). The red line represents the
length of 50 nm.

hole domains and the mutual attracting force between both charges. Adding the
external electric field introduces the drift component in the charge motion which
is quantified in our calculations by the drift charge separation distance dF (t). In
order to investigate the interplay between diffusion and drift contributions we must
first obtain the charge separation kinetic without the drift component. Thus, we
calculate the absolute charge separation distance dabs (t) at zero external electric
field (Fig. 4.9). Black curve in Fig. 4.9 shows that after 10 ps charge carriers are al-
ready dragged apart by ∼ 3 nm by diffusion, whereas the drift separation distances
are smaller with all but the strongest external electric fields. The drift starts to con-
tribute more substantially to the carrier separation during the slower (t > 20 ps)
phase, but diffusion still strongly dominates at typical electric fields in solar cells
(∼ 1× 105 V · cm−1), even on a sub-nanosecond timescale when the Coulomb elec-
tron–hole attraction is effectively overcome (∼ 7 − 8 nm). These observations are
confirmed by the calculations using the Einstein relation connecting the experimen-
tally measured charge mobility kinetics and the time-dependent diffusion coefficient
which is then used to obtain the diffusion distance distributions at different time
moments [93].

Absolute charge separation distance calculated with Monte-Carlo method (black
curve in Fig. 4.9) can be directly compared to analogous kinetics from Fig. 4.5
obtained using the SSE formalism. The latter gives the absolute e-h separation dis-
tance of approximately a few nanometers after several picoseconds. At this timescale
our Monte-Carlo simulations become valid and we can see from Fig. 4.9 that dif-
fusion separates the charge pair by several nanometers as well. As we mentioned
in Subsection 4.3.1 the polymers in the blends used for experimental measurements
in Figs. 4.6 and 4.9 were different. However, as the hole mobility is much lower
than the electron mobility we can safely assume that the overall charge separation
dynamics, at least on the timescale of a few picoseconds, is shaped by the electron
motion which is not sensitive to the donor material type.

The morphology of the blend, on the other hand, is a major factor influencing
the dynamics of charge separation. In Fig. 4.10 two simulated blend structures
are shown: annealed sample on the left and as-spun sample on the right. Anneal-
ing to a high temperature changes the morphology and enhances the hole mobil-
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ity [101, 102], resulting in it being only an order of magnitude below the electron
mobility [101]. A similar effect was achieved with slow solvent evaporation [103].
Using microsecond time scale techniques, a large spread in mobilities and their dif-
ferences in as-spun and annealed samples have been reported [101, 104, 105]. The
measurements show that the two different processing methods drastically affect the
mobility and charge separation time scales. Morphological studies have shown that
high temperature results in phase separation due to crystallization of the poly-
mer [101, 104, 106, 107] and formation of large PCBM clusters [104, 106, 108–110].
There is a consensus that thermal annealing results in improved device efficiency
due to enhanced phase segregation, which consequently leads to increased charge
separation efficiency [111, 112], improved hole conductivity and formation of opti-
mized charge transport pathways [102, 104] and consequently reduced bimolecular
recombination [113].

The mechanism through which the thermal annealing process enables higher
charge carrier mobilities is now fairly well understood. Annealing induced crys-
tallization of the polymer results in larger domains (thicker lamellae) of the pure
polymer and at the same time expels fullerene molecules out of the crystallizing poly-
mer, thereby making more fullerene available [104, 107, 114, 115] to build a robust
electron transport network. It is clear from such studies that the improvement in
charge collection (reflected through photocurrent quantum efficiency) is associated
with the growth in pure polymer and fullerene domains and resulting improvement
in charge carrier mobility relative to the recombination coefficient [101,102].

To investigate quantitatively charge separation dynamics in polymer–fullerene
blends with different morphologies we use the same Monte-Carlo model from Sub-
section 4.3.1 and calculate the drift and absolute electron–hole pair separation dis-
tances. Carrier drift kinetics in as-spun and annealed samples are modeled by using
exactly the same model parameters except for polymer and PCBM domain sizes.
The best agreement was obtained with an average acceptor domain diameter of
7.5 nm for the as-spun sample and 33 nm for the annealed sample. As a result
of fullerene aggregation the polymer domain dimensions were accordingly larger
for annealed samples as well, but because of non-regular shapes their quantitative
characterization, is more difficult. Fig. 4.10 illustrates the corresponding material
morphologies and Fig. 4.11‡ shows the simulated carrier drift dynamics. The quite
good agreement with experimental results obtained for all curves with only one free
variable, the domain size, validates the simulation results. The obtained domain di-
mensions of the annealed samples are somewhat larger than the ∼ 10 nm domains
estimated in similar samples from experimental results [116]. On the other hand,

‡Experiments performed by D. A. Vithanage and Y. Infahsaeng, Lund University.
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Fig. 4.11. Experimental (empty circles) and simulated (solid curves) charge drift
dynamics in the annealed (left) and as-spun (right) samples at various electric fields
strengths.

quite similar domain sizes of 10 to 30 nm were estimated by MC modeling of carrier
recombination in a P3HT:PCBM blend [113]. Monte-Carlo simulations do not per-
fectly reproduce the carrier drift kinetics in annealed samples at high applied electric
fields (6.7 × 105 V · cm−1) at times longer than 1 ns. This is not very surprising
taking into account the relatively simple blend structure used in calculations.

We proceed to infer effective charge carrier mobilities from the data of drift charge
separation distance as a function of time using Eq. (4.6). Note that these are not
mobilities as usually defined, describing drift of relaxed populations of charges in
the steady state, but instantaneous mobilities describing the instantaneous separa-
tion velocity of unrelaxed charge carrier populations. Since the experimental data
gives us information on the sum of electron and hole drift distances, the actual elec-
tron and hole mobilities remain undisclosed, the ratio between electron and hole
hopping rates being a free parameter. We have chosen the electron hopping rate
on the basis of additional available information on the ultrafast time-resolved elec-
tron mobility and on the basis of the best agreement between experimental and
calculated carrier drift kinetics. By means of time-resolved microwave conductiv-
ity [117], Savenije et al. obtained the electron mobility inside PCBM nanocrystals
of 8× 10−2 cm2 · V−1 · s−1 and a similar mobility of about 0.1 cm2 · V−1 · s−1 was
also obtained on a subpicosecond - several picosecond timescale in PCBM film by
dynamic Stark effect measurements [118]. Thus, we have chosen an electron hop-
ping rate prefactor νA to give an electron mobility of 0.1 cm2 · V−1 · s−1 at 0.3 ps,
while its subsequent evolution was obtained from the best fitting with experimen-
tal data. Similar information on the initial hole mobility in P3HT is not available
and therefore it was obtained from the modeling of the carrier drift kinetics. The
best agreement was obtained with about ten times lower hole mobility than that of
electrons. The simulation parameters used to obtain the best agreement between
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Table 4.2. Numerical values of the model parameters corresponding to the results
in Fig. 4.11.

Characteristic

volume of the

acceptor

ellipsoid, (nm3)

Hopping rate

prefactor in the

acceptor νA,

(s−1)

Hopping rate

prefactor in the

donor νD1, (s−1)

Hopping rate

prefactor in the

donor νD2, (s−1)

Hopping rate

prefactor in the

donor νD3, (s−1)

as-spun: 220,

annealed: 19800

2.8× 1016 2× 1015 1× 1015 5× 1014

Fraction w of exponential distribution in the

modified Gaussian distribution (see Eq. (4.10))

CT state energy, (eV)

0.19 0.17

calculated and measured drift kinetics (see Fig. 4.11) are presented in Table 4.2.
Other model parameters are the same as in Table 4.1.

Next we calculate the average absolute carrier separation distances dabs (t) caused
by both carrier drift and diffusion using the same set of parameters as for the carrier
drift kinetics. Fig. 4.12 shows a comparison of the absolute carrier separation dis-
tances in as-spun and annealed samples at different electric field strengths. At zero
electric field, only the diffusion drives the carrier motion, thus curves at zero field
represent diffusion driven charge separation dynamics. At 0 and 1.7×105 V · cm−1

electric fields the separation distances on a tens of picoseconds timescale are al-
most independent of the sample annealing. The difference appears on a nanosecond
timescale, when electrons approach the boundaries of small PCBM domains in the
as-spun sample, while in the annealed sample with larger PCBM domains, they
continue an unrestricted motion. At higher electric field, when the carrier drift con-
tributes more to their motion, charge carriers move faster and reach domain bound-
aries in the as-spun sample already on a picosecond timescale, thus the difference in
separation distances appears already during tens of picoseconds. Strongly restricted
carrier motion in the as-spun sample with smaller PCBM and polymer domains pre-
vents carrier escape from the Coulomb attraction. In devices such restricted carrier
motion leads to enhanced charge carrier recombination, which is apparently one of
the major factors limiting the carrier generation yield and performance efficiency of
non-annealed P3HT:PCBM solar cells [113].

Our MC simulations have been performed assuming that only nearest neighbor
electron–hole pairs are created by exciton splitting at the donor–acceptor interface
as was suggested in Refs. [93] and [119]. However, there are publications [79,99,120]
arguing that charge carrier separation at much longer distances takes place on a
femtosecond time scale and it helps for final separation of electron–hole pairs into
free charges. This point of view is also supported by the short-time charge separa-
tion dynamics results discussed in Section 4.2. Since this is still not a fully settled
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Fig. 4.13. Calculated time depen-
dence of the absolute carrier separa-
tion distance at zero electric field and
at various initial separation distances.

question, which could be also related to the blend annealing, we have also per-
formed additional calculations directed towards evaluation of the role of the initial
carrier separation distance in the charge separation process. Fig. 4.13 shows the
calculated absolute charge carrier separation distances at zero applied field with the
model parameters taken from Table 4.2. Diffusion driven separation at long times is
large with larger initial separation, but the influence of the initial separation grad-
ually decreases with time and after several nanoseconds the separation distance is
almost independent of the initial ultrafast separation if this separation is signifi-
cantly smaller than 8 ns. Thus, initial carrier separation only weakly influences the
final carrier separation process (at several nanoseconds when charges have reached
a distance where the electrostatic attraction energy is similar to the thermal en-
ergy quantum kBT ), unless the initial separation is comparable with the Coulomb
capture radius.

Our experimental investigations of the initial carrier motion in as-spun and an-
nealed P3HT:PCBM blends together with Monte Carlo simulations of the carrier
drift dynamics suggest a mechanism for the improved performance of annealed so-
lar cells. The carrier drift separation distances, on a subnanosecond–nanosecond
timescale are about two times larger in annealed samples (see Fig. 4.11). Monte-
Carlo simulations of the motion dynamics suggest that the increase in the carrier
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separation rate caused by blend annealing is related to the increased polymer and
PCBM domain sizes enabling longer distance carrier separation on a picosecond
time scale, which reduces the probability of their geminate recombination and thus
increases the free charge carrier generation yield in annealed samples. On the other
hand, the role of other material properties such as the presence of energy traps, or
formation of semi-crystalline polymer domains, which change as a result of anneal-
ing, cannot be completely ruled out.

Additional MC simulations directed towards evaluation of the role of the ini-
tial carrier separation distance showed that the more efficient carrier separation in
annealed samples can be hardly related to increased initial carrier separation dis-
tance. The initial separation distance only weakly influences the carrier separation
efficiency at times and distances where free charges are formed if it is shorter than
about 8 nm, while longer distance separation is non-compatible with the experimen-
tal data presented in both Sections 4.2 and 4.3.

4.4 Conclusions

In Chapter 4 Section 4.2 we used the stochastic Schrödinger equation to model short-
time charge separation dynamics in the organic solar cells. We calculated absolute
and drift charge separation distance kinetics for different inter-acceptor couplings
over the femtosecond to picosecond timescale and revealed the complex evolution of
the electron which allows us to state that the stochastic Schrödinger equation
adequately captures the dynamics of the charge separation in bulk het-
erojunction organic solar cells from the beginning of the coherent phase
of the exciton dissociation, through the transient phase of partially delo-
calized charges until the incoherent hopping phase of separated charges.
The initial coherent spreading of the electron wavefunction greatly facil-
itates further electron-hole pair separation. This is the third statement of
the thesis.

Further, in Section 4.3 we turned our attention to long-time charge separation dy-
namics in the organic blends and model this process using the Monte-Carlo method.
Calculation of absolute and drift charge separation distance kinetics together with
experimental data showed that diffusion is the main driving force behind the
charge separation at long times with minor contribution from the drift in
the internal electric field inside the organic solar cell. Performing the same
calculations using lattices that describe different morphologies of the organic blend
we found that cell morphology greatly influences the charge pair motion as
smaller donor and acceptor material domains limit the range of charge
separation distance. This is the fourth statement of the thesis.



Summary of the results

In this thesis we address the complex issues regarding the energy and charge trans-
port in various organic molecular systems such as photosynthetic aggregates and
organic material blends used in solar cells. These systems are generally described as
open quantum systems where the small part of the whole containing a few relevant
degrees of freedom (the reduced system) interacts with the rest of the system denoted
as the bath. Solving the dynamics of the reduced system is a highly non-trivial prob-
lem requiring sophisticated quantum mechanical approaches due to the necessity to
incorporate the influence of the bath on the evolution of the relevant system. The
problem becomes even more complicated when we want to perform calculations of
processes, e. g., energy transport and charge separation, manifesting over many dif-
ferent timescales, from femtoseconds to microseconds. In this case, several methods
of calculations are needed, and it is usually a difficult task to bridge them together
and ensure the correct description of the intermediate timescales. Another issue
encountered when investigating real-life organic molecular compounds is the wide
range of interaction strength between the system and its environment which again
requires different theoretical methods for calculations with different system–bath
couplings.

In Chapter 2 we develop the stochastic Schrödinger equation (SSE) formalism to
obtain a consistent approach for tackling open quantum system evolution problems
over a wide range of timescales and interaction strengths. We start with the general
path integral theory for the general reduced system’s dynamics and derive several
forms of stochastic equations incorporating the effects of the bath through the addi-
tion of Gaussian complex-valued fluctuations to the usual Schrödinger equation. We
further explore possible simplifications of the SSE and obtain its form with the ap-
plied weak system–bath approximation. Later we develop a systematic approach to
solve the general formally exact SSE with a linear system–bath coupling of arbitrary
strength up to a desired accuracy. This results in a hierarchy of coupled stochastic
equation which we denote as hierarchical stochastic Schrödinger equation (HSSE).
The accuracy of both weak-coupling SSE and HSSE is tested on a toy two-site sys-
tem and it is found to be satisfactory in a wide range of system parameters. We
also introduce a general procedure to calculate probabilistic characteristics of system
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observables using the stochastic Schrödinger equation. Particularly, we apply it to
obtain excitation transfer time distributions in an open quantum system.

The weak-coupling SSE is applied for calculation of excitation energy transfer
in the photosynthetic Fenna–Matthews–Olson (FMO) complex in Chapter 3. We
calculate the evolution of the 7-site FMO system interacting with the bath described
by two different spectral density models and reveal the influence of high-frequency
modes in the energy transfer dynamics. Using the transfer time distributions we
investigate the excitation transfer pathway through the FMO aggregate and find that
it only weakly depends on the presence of high-frequency modes in the environment.

We next turn to studying the charge separation process in organic solar cells
(OSCs). In Chapter 4 we model the OSC as a cubic lattice of sites representing
the donor and acceptor molecules of the organic blend material. Application of
the SSE allows us to reveal the complex dynamics of the electron during the initial
phase of the separation on the scale of several picoseconds. Calculations show how
the coherent evolution of the electron gradually transitions into incoherent hopping
motion due to the dephasing influence of the bath. For investigation of the incoherent
motion stage of the charge separation process we choose the Monte-Carlo method.
Hopping rates between the different sites of the system are described using the
Miller–Abrahams model. Calculations of the charge separation dynamics up until
the nanosecond timescale shows the dominating contribution of the diffusion in
moving charges apart from each other. We also investigate the influence of the
organic blend’s morphology on the charge separation distance and find that larger
clusters of donor material facilitate longer separation distances.
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Appendix A

Coherent states

The coherent state
∣∣α〉 is defined as the eigenvector of the annihilation operator â:

â
∣∣α〉 = α

∣∣α〉. (A.1)

The annihilation operator is not Hermitian, thus the quantity α in Eq. (A.1) is a
complex number and can acquire any value. The representation of the coherent state∣∣α〉 in the occupation number basis of the harmonic oscillator

∣∣n〉 can be obtained
by calculating the scalar product of both sides of Eq. (A.1) with the vector

〈
n
∣∣

which yields

∣∣α〉 = K
∞∑
n=0

αn√
n!

∣∣n〉. (A.2)

Choosing K to be equal to 1, we can calculate using Eq. (A.2) the scalar product
of two coherent states

〈
α
∣∣ and ∣∣β〉:

〈
α
∣∣β〉 = eα

∗β. (A.3)

From Eq. (A.3), we can see that the coherent states
∣∣α〉 are not normalized because〈

α
∣∣α〉 = eα

∗α 6= 1. Despite the fact that the coherent states
∣∣α〉 being the eigen-

vectors of a non-Hermitian operator â are not orthogonal, they still can be used to
construct the identity operator

Î =

∞∫
−∞

d2αe−α
∗α
∣∣α〉〈α∣∣, (A.4)

where d2α ≡ dRe[α]dIm[α]
π and the factor e−α

∗α ensures the proper normalization [34].

Another useful property of the coherent states can be obtained by noticing that
the vector

〈
α
∣∣â can be written as ∂

∂α∗

〈
α
∣∣:
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〈
α
∣∣â =

∞∑
n=0

(n+ 1)α∗n√
(n+ 1)!

〈
n+ 1

∣∣ =
∞∑
n=0

α∗n√
n!

〈
n
∣∣â =

∂

∂α∗
〈
α
∣∣. (A.5)

Using this property, we obtained the effective Hamiltonian expression in Eq. (2.46).



Appendix B

Coherent state path integrals

Derivation of general coherent state path integral

Let us consider a bosonic system described by the Hamiltonian Ĥ
(
â†, â

)
expressed

in the second quantization form with normal-ordered creation and annihilation
operators. The dynamics of such system is determined by the evolution oper-
ator Û (t) = exp

(
−iĤ

(
â†, â

)
t
)
. The probability to reach some final coher-

ent state
∣∣αf〉 at time t starting with an initial state

∣∣αi〉 at time 0 is given
by the modulus squared of the transition amplitude, also called the propagator,
K
(
α∗f , αi; t

)
=
〈
αf
∣∣Û (t)

∣∣αi〉. This matrix element cannot be evaluated exactly
for a finite time interval, however for an infinitesimal time ε we can expand the
evolution operator Û (ε) leaving only the linear term:

Û (ε) ≈ Î − iεĤ
(
â†, â

)
. (B.1)

Substituting this expression in the definition of the transition amplitude we obtain

K
(
α∗f , αi; ε

)
=
〈
αf
∣∣ (Î − iεĤ

(
â†, â

))∣∣αi〉 = eα
∗
fαi
(
1− iεH

(
α∗f , αi

))
≈ eα

∗
fαi−iεH(α∗f ,αi). (B.2)

Here we used the formula for calculating the matrix element of a normal-ordered
operator between coherent states [34]. In order to use the result (B.2) in case of
finite t we divide this interval into M → ∞ segments of size ε = t/M and the
propagator is given by

K
(
α∗f , αi; t

)
= lim

M→∞

〈
αf
∣∣ M∏
k=1

e−iεĤ(â†,â)∣∣αi〉. (B.3)
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We now insert the resolution of unity in the coherent state basis (A.4) at every time
step k in Eq. (B.3) and obtain

K
(
α∗f , αi; t

)
= lim

M→∞

∞∫
−∞

M−1∏
k=1

d2αke
−
M−1∑
k=1

α∗kαk
e

M∑
k=1

(α∗kαk−1−iεH(α∗k,αk−1))
, (B.4)

where we have for the endpoints α∗M = α∗f and α0 = αi.

In the limit when M →∞ the exponent in expression (B.4) can be cast into

α∗MαM−1 − iεH (α∗M , αM−1) + iε
M−1∑
k=1

(
iα∗k

αk − αk−1
ε

−H (α∗k, αk−1)

)

→ α∗ (t)α (t) + i

t∫
0

dτ

(
iα∗ (τ)

∂α (τ)

∂τ
−H (α∗ (τ) , α (τ))

)
. (B.5)

With Eq. (B.5) the propagator K
(
α∗f , αi; t

)
obtains its final form:

K
(
α∗f , αi; t

)
=

α∗f∫
αi

D [α∗ (τ) , α (τ)] e
α∗(t)α(t)+i

t∫
0

dτ(iα∗(τ)∂α(τ)∂τ −H(α∗(τ),α(τ)))

=

α∗f∫
αi

D [α∗ (τ) , α (τ)] eiS(α
∗,α;t). (B.6)

HereD [α∗ (τ) , α (τ)] = lim
M→∞

∞∫
−∞

M−1∏
k=1

d2αk is the measure of the functional integral

and S (α∗, α; t) is the action.

Equivalence of the coherent state path integral to Schrödinger equation

Propagator K
(
α∗f , αi; t

)
describes the evolution of the system from the initial to

the final state, thus from its path integral representation (B.6) we must be able to
recover the Schrödinger equation. For this we first obtain the expression for the
difference K

(
α∗f , αi; t+ ε

)
−K

(
α∗f , αi; t

)
where ε is an infinitesimal time step:
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K
(
α∗f , αi; t+ ε

)
−K

(
α∗f , αi; t

)
=

α∗f∫
αi

D [α∗ (τ) , α (τ)]

× e
α∗(t)α(t)+i

t∫
0

dτ(iα∗(τ)∂α(τ)∂τ −H(α∗(τ),α(τ)))

×
(

eα
∗(t+ε)α(t+ε)−α∗(t)α(t)+iε(iα∗(t)∂α(t)∂t −H(α∗(t),α(t))) − 1

)
. (B.7)

The expression in the exponent of the third line can be further simplified turning
back to the discrete representation of the action (B.4), hence α∗ (t+ ε)α (t+ ε)→
α∗fαM and α∗ (t)α (t)→ α∗fαM−1. With these substitutions we have

iS (α∗, α; t+ ε)− iS (α∗, α; t) = α∗f (αM − αM−1)− α∗M (αM − αM−1)
− iεH (α∗M , αM−1) . (B.8)

When the number of discretization intervals M goes to infinity α∗M approaches α∗f
and the two terms on the right-hand side of the first line in Eq. (B.8) cancel each
other. Thus, the propagator difference obtains the following form:

K
(
α∗f , αi; t+ ε

)
−K

(
α∗f , αi; t

)
=

α∗f∫
αi

D [α∗ (τ) , α (τ)]
(

eiS(α
∗,α;t+ε) − eiS(α

∗,α;t)
)

= −iε

α∗f∫
αi

D [α∗ (τ) , α (τ)]H (α∗ (τ) , α (τ)) eiS(α
∗,α;t). (B.9)

Here we expanded the exponent exp (−i∆tH (α∗M , αM−1)) ≈ 1−i∆tH (α∗M , αM−1)

and inserted this result into Eq. (B.7) also reverting to continuous notation
H (α∗M , αM−1) → H (α∗ (t) , α (t− ε)). Denoting eiS(α

∗,α;t) ≡ ψ (α∗, α; t) and
dividing both sides of Eq. (B.9) by ε → 0 we obtain the Schrödinger equation for
the function ψ (α∗, α; t):

d

dt
ψ (α∗, α; t) = −iH (α∗ (t) , α (t− ε))ψ (α∗, α; t) . (B.10)

Following Ref. [37] substitutions ψ (α∗, α; t)→
∣∣ψ (t)

〉
and H (α∗ (t) , α (t− ε))→

Ĥ allow us to recover the usual Schrödinger equation for the system wave vector.
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