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Abstract: In this paper, it is proved that, for any sequence of positive numbers ξn, n = 1, 2, . . . ,
which does not converge to zero faster than the exponential function, and any sequence
of positive numbers δn, n = 1, 2, 3, . . . , there is an uncountable set of positive numbers S
such that, for each α > 1 in S, there are infinitely many n ∈ N for which the fractional
parts {ξnαn} are smaller than δn, regardless of how fast the sequence δn tends to zero. In
particular, for any sequence bounded away from zero, namely, ξn ≥ ξ > 0 for n ≥ 1, it is
shown that infinitely many integers n for which the inequality {ξnαn} < δn is true can be
extracted from an arbitrary subsequence N of positive integers.
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1. Introduction
Starting from Weyl’s 1916 paper [1], various problems related to the distribution of

the sequence of fractional parts

{ξαn}, n = 1, 2, 3, . . . , (1)

where ξ > 0 and α > 1 are two real numbers, were studied. Weyl’s result implies that, for
each α > 1, the sequence (1) is uniformly distributed for almost all ξ > 0. See also [2] for a
more precise version of this result. In the opposite direction, Koksma [3] proved that, if
ξ > 0 is fixed, then the sequence (1) is uniformly distributed for almost all α > 1. In this
respect, the exceptional α are Pisot and Salem numbers. Recall that an algebraic integer
α > 1 is called a Pisot number if its conjugates over Q other than α itself (if any) all lie
in the open unit disc |z| < 1. An algebraic integer α > 1 is called a Salem number if its
degree over Q is an even number d ≥ 4 and d − 2 of its conjugates lie on the unit circle
|z| = 1. (Since such α is reciprocal its other conjugates are α and α−1.) See, for instance,
the paper of Pisot and Salem themselves [4], where they proved that, if ξ = 1 and α > 1
is a Salem number, then the sequence (1) is everywhere dense in [0, 1], but not uniformly
distributed in [0, 1]. The monographs [5,6] contain some basic information about Pisot
and Salem numbers, while in Smyth’s review paper [7] there are more recent references.
In some literature, Pisot numbers are also called Pisot–Vijayaraghavan numbers or PV
numbers; see, for instance, some early papers of Vijayaraghavan on this subject [8–11].

For algebraic numbers α, at least something can be said about the distribution of (1).
Extending an earlier result of Flatto, Lagarias, and Pollington for rational α > 1 [12],
in [13], it was proved that, for each ξ > 0 and each algebraic number α > 1, there should
be a gap between the largest and the smallest limit points of the sequence (1) which
depends only on α except if α is a Pisot number or a Salem number when we need an extra
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condition ξ /∈ Q(α). This result is not only of interest itself but also has several applications.
In particular, it seems to be useful in a so-called Erdős similarity conjecture [14]. The
cases when ξ ∈ Q(α) and α is a Pisot number or a Salem number were treated in [15,16],
respectively; see also [17]. Nevertheless, for example, Mahler’s 3/2-problem [18], where
he asks whether, for α = 3/2, there is a so-called Z-number, namely, ξ > 0, such that all
elements of (1) lie in (0, 1/2), is unsolved (see [19–21]). However, the situation with any
specific transcendental number α is more complicated and less known. For example, it is
not known if (1) with (ξ, α) = (1, e) has one or more than one limit point. Determining
whether there is a transcendental number α > 1 for which the sequence {αn}, n = 1, 2, 3, . . . ,
has only finitely many limit points is still a completely open problem as well.

We remark that the behavior of the sequence (1) for ξ = 1 and a transcendental number
α > 1 can be very different depending on α. In [22], it was shown that, for any sequence
of real numbers rn, n = 1, 2, 3, . . . , and any ε > 0, there is a transcendental number α > 1
such that

∥αn − rn∥ < ε (2)

for all n ∈ N. (Here, ∥y∥ is the distance from y ∈ R to the nearest integer.) See also two
subsequent papers [23,24]. In fact, if we want (2) to hold not for all n ∈ N, but only for
infinitely many n, then this follows from another paper of Koksma [25] with ε replaced
by a sequence of positive numbers εn such that the series ∑∞

n=1 εn are divergent. In [22], it
was also shown that, for any sequence of positive numbers δn, n = 1, 2, 3, . . . , there is a
transcendental number α > 1 for which the inequality

{αn} < δn

holds for infinitely many n ∈ N. This time, there are no conditions or restrictions whatso-
ever on the rate of convergence of δn to zero.

In this paper, it will be shown that, even if we replace in (1) a fixed number ξ > 0 by
any sequence of positive numbers ξn, n = 1, 2, 3, . . . , which is not converging to zero faster
than the exponential function, then there are “many” numbers α > 1 such that {ξnαn} is
smaller than an arbitrary positive number δn for infinitely many n ∈ N, regardless of how
fast the sequence δn, n = 1, 2, 3, . . . , converges to zero. (This type of sequence, specifically,
with ξn = 1/n and an integer α ≥ 2, was considered before; see [26], where their density
in [0, 1] was established, and [27–29].) Of course, the theorem stated below holds in the
special case when ξn = ξ > 0 for each n ∈ N and, more generally, when ξn is bounded
away from zero, namely, ξn ≥ ξ > 0 for n ∈ N.

Theorem 1. Let δ = {δ1, δ2, δ3, . . . } and ξ = {ξ1, ξ2, ξ3, . . . } be two sequences of positive
numbers such that

lim sup
n→∞

log ξn

n
≥ 0. (3)

Then, for any interval I = [a, b], where 1 ≤ a < b, there is an uncountable set S(δ, ξ, I) ⊂ I such
that, for each α ∈ S(δ, ξ, I), the inequalities

0 < {ξnαn} < δn (4)

hold for infinitely many n ∈ N.

Note that the condition (3) of Theorem 1 cannot be omitted. For example, if τ > 0,
ξn = e−τn and δn = 1/n!, then, for each α ∈ [1, eτ) and each sufficiently large n ∈ N,
we have

{ξnαn} = {e(log α−τ)n} = e(log α−τ)n >
1
n!

= δn,
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so there is no α in the interval I = [1, eτ) for which the inequality (4) is true for infinitely
many n ∈ N. Similarly, if ξn = δn = 1/n!, then there is no α > 1 at all for which (4) is true
for infinitely many n ∈ N.

Of course, since the set S(δ, ξ, I) is uncountable and Q is countable, S(δ, ξ, I) contains
an uncountable subset of transcendental numbers α with the property (4). Therefore,
Theorem 1 is already more general than Theorem 3 of [22] for ξn = 1.

Replace each δj by
δ′j := min(1/j, δ1, . . . , δj)

and set
Φj = ⌈1/δ′j⌉

for every j ∈ N. (Here and below, ⌈y⌉ is the ceiling function, namely, the smallest integer
greater than or equal to y ∈ R.) It is clear then that Φ1, Φ2, Φ3, . . . is an unbounded
nondecreasing sequence of positive integers such that each element of the sequence

U = {1/Φ1, 1/Φ2, 1/Φ3, . . . }

does not exceed the corresponding element of the sequence δ. Therefore, in order to prove
Theorem 1, it suffices to show that for each interval I ⊂ R>1, there is an uncountable set of
real numbers S ⊂ I such that, for every α ∈ S, the inequalities

0 < {ξnαn} <
1

Φn
(5)

hold for infinitely many n ∈ N.
We will prove the following more general statement:

Theorem 2. Let ξ = {ξ1, ξ2, ξ3, . . . } be a sequence of positive numbers satisfying (3), and let
Φ1 ≤ Φ2 ≤ Φ3 ≤ . . . be an unbounded sequence of positive integers. Then, for any interval
I = [a, b], 1 ≤ a < b, and any real number η > 1, there is an uncountable set S(ξ, Φ, I, η) ⊂ I
such that, for each α ∈ S(ξ, Φ, I, η), the inequalities

ηm < ξnαn < ηm +
1

Φn
(6)

hold for infinitely many pairs (n, m) ∈ N2.

It is clear that (6) implies (5), with, for example, η = 2, so Theorem 2 immediately
implies Theorem 1.

We will derive Theorem 2 from the following proposition of independent interest.

Proposition 1. Let γ1, γ2, γ3, . . . be a sequence of real numbers, and let 1 = ε1 ≥ ε2 ≥ ε3 ≥ . . .
be a sequence of positive numbers. Assume that I = [a, b], where 0 ≤ a < b, and let N be an infinite
subset of N. Then there is an uncountable set B ⊂ I such that, for each β ∈ B, the inequalities

0 < {nβ − γn} < εn (7)

hold for infinitely many n ∈ N .

Note that, if γ1 = γ2 = γ3 = . . .= 0 and if the sequence εn tends to zero faster
than any constant power of 1/n, then the numbers β satisfying (7) are Liouville numbers.
Recall that a Liouville number is a real number whose irrationality exponent is infinite,
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see p. 248 in [30]. This means that, for any C > 1, there is a pair of integers k, n, where
n > 1, such that

0 <
∣∣∣β − k

n

∣∣∣ < 1
nC .

Therefore, Proposition 1 is the construction of uncountably many Liouville type num-
bers with good approximation not just by rational fractions k/n, k, n ∈ N, but by fractions
with “moving numerator” (k + γn)/n. The author thanks Prof. Nikolay Moshchevitin for
a useful advice towards this construction. Note that the approximation (k + γn)/n to those
special Liouville type numbers is with k ∈ Z and with n being not just in N but in any
infinite sequence of positive integers N . For instance, N can be the set of squares or the set
of primes.

Next, we will prove Proposition 1 (Section 2) and then derive Theorem 2 from this
proposition (Section 3). In Section 4, we will give a stronger version of Theorem 1 under
a condition slightly stronger than that in (3). Then, in Section 5, we provide another
application of Proposition 1. Section 6 contains some final remarks.

2. Proof of Proposition 1
We begin with the following simple observation:

Lemma 1. Let I = [a, b] be a closed real interval with a < b, and let u < v be two real
numbers. Then, for each sufficiently large positive integer n, there is an integer k = k(n) such that
(k + u)/n, (k + v)/n ∈ I.

Proof. Take any integer n satisfying

n ≥ v − u + 1
b − a

. (8)

Note that n > 0. Select
k = k(n) = ⌈na − u⌉. (9)

Then k ≥ na − u, and hence a ≤ (k + u)/n. Next, from (8) and (9), it follows that

k + v
n

<
na − u + 1 + v

n
≤ na + n(b − a)

n
=

nb
n

= b.

Therefore, the numbers (k + u)/n and (k + v)/n both belong to the interval I, which
completes the proof of the lemma.

Next, for any sequence of real numbers γn, n = 1, 2, 3, . . . , and any infinite sequence
of positive integers N , we will prove the existence of a real number that is very close to the
fraction (k + γn)/n for infinitely many pairs (n, k), where n ∈ N and k ∈ Z.

Lemma 2. Let γ1, γ2, γ3, . . . be a sequence of real numbers, and let 1 = ε1 ≥ ε2 ≥ ε3 ≥ . . . be a
sequence of positive numbers. Let I = [a, b], where 0 < a < b, and let N ⊆ N be infinite. Then,
for any sequence u = {u1, u2, u3, . . . }, where uj ∈ {2, 4} for each j ∈ N, there is a positive real
number β(u) ∈ I and a sequence n1 < n2 < n3 < . . . in N such that, for every j ∈ N, we have

εnj

uj + 1
≤ {njβ(u)− γnj} ≤

εnj

uj
. (10)

Proof. We will construct the number β(u) using the method of nested intervals. Set
I0 = I = [a, b]. Take the least integer n1 in N satisfying
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n1 ≥ 13
10(b − a)

, (11)

and set
u = γn1 +

εn1

5
and v = γn1 +

εn1

2
.

Note that
0 < v − u =

3εn1

10
≤ 3

10
,

so n1 chosen in (11) satisfies the inequality (8). Choosing k1 as in (9), namely,

k1 = ⌈n1a − γn1 − εn1 /5⌉

and applying Lemma 1, we find that both endpoints of the interval

J1 = [n−1
1 (k1 + γn1 + εn1 /5), n−1

1 (k1 + γn1 + εn1 /2)]

belong to the interval I0. Consequently, as u1 ∈ {2, 4},

I1 = [n−1
1 (k1 + γn1 + εn1 /(u1 + 1)), n−1

1 (k1 + γn1 + εn1 /u1)]

is its subinterval, so it satisfies I1 ⊂ I0. Furthermore, for any number ζ ∈ I1, we have

εn1

u1 + 1
≤ n1ζ − γn1 − k1 ≤ εn1

u1
.

From εn1 ≤ 1 and u1 ∈ {2, 4}, it follows that k1 = ⌊n1ζ − γn1⌋ (where ⌊y⌋ is the
integral part of y ∈ R), so (10) is true for j = 1 and any number ζ from the interval I1.

We now argue by induction on j. Assume that l ≥ 1 is an integer such that, for
j = 1, 2, . . . , l, there is a nested collection of intervals

Ij = [n−1
j (k j + γnj + εnj /(uj + 1), n−1

j (k j + γnj + εnj /uj)] = [aj, bj] (12)

with uniquely chosen n1 < n2 < n3 < . . .< nl in N and k1, . . . , kl ∈ Z such that

Il ⊆ Il−1 ⊆ · · · ⊆ I1 ⊆ I0 = [a, b].

For any ζ ∈ Ij, we clearly have

εnj

uj + 1
≤ njζ − γnj − k j = {njζ − γnj} ≤

εnj

uj
,

so (10) is true for j = 1, 2, . . . , l and any number ζ from the interval Il .
Next, we will show how to choose the interval Il+1 of the form

Il+1 = [n−1
l+1(kl+1 + γnl+1 + εnl+1 /(ul+1 + 1)), n−1

l+1(kl+1 + γnl+1 + εnl+1 /ul+1)] (13)

contained in Il , with kl+1 ∈ Z and nl+1 > nl in N . To this end, we will apply Lemma 1,
with a = al being the left endpoint of Il , b = bl being the right endpoint of Il , and the
smallest integer n = nl+1 > nl in N satisfying

nl+1 ≥ 13
10(bl − al)

. (14)
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As above, applying Lemma 1 to

u = γnl+1 +
εnl+1

5
and v = γnl+1 +

εnl+1

2
,

due to 0 < v − u ≤ 3/10, we can choose an appropriate integer kl+1 by (9), namely,

kl+1 = ⌈nl+1al − γnl+1 − εnl+1 /5⌉. (15)

Then, by Lemma 1, both endpoints of the interval

Jl+1 = [n−1
l+1(kl+1 + γnl+1 + εnl+1 /5), n−1

l+1(kl+1 + γnl+1 + εnl+1 /2)]

belong to Il . Consequently, the subinterval Il+1 of Jl+1, which we defined in (13), satisfies
Il+1 ⊂ Jl+1 ⊆ Il .

By this construction, since the length of Ij, namely, εnj /(uj(uj + 1)nj), tends to zero
as j → ∞, the unique point of the intersection ∩∞

j=1 Ij is the required positive real number
β(u). (It is clear that β(u) ∈ I1 ⊆ I0 = [a, b].)

We now show that the numbers β(u) and β(u′) are distinct for distinct vectors

(u1, u2, u3, . . . ) and (u′
1, u′

2, u′
3, . . . ).

Indeed, let ℓ be the smallest positive integer for which uℓ ̸= u′
ℓ. Without restriction of

generality, we may assume that uℓ = 2 and u′
ℓ = 4. Since (u1, . . . , uℓ−1) = (u′

1, . . . , u′
ℓ−1),

the intervals Ij and I′j constructed in (12) are the same for j = 1, 2, . . . , ℓ− 1. Furthermore,
the integers nℓ and kℓ are also the same. (In view of (14) and (15), they do not depend on
uℓ.) Therefore, by (12) and (uℓ, u′

ℓ) = (2, 4), we find that

Iℓ = [n−1
ℓ (kℓ + γnℓ

+ εnℓ
/3), n−1

ℓ (kℓ + γnℓ
+ εnℓ

/2)]

and
I′ℓ = [n−1

ℓ (kℓ + γnℓ
+ εnℓ

/5), n−1
ℓ (kℓ + γnℓ

+ εnℓ
/4)].

Note that the intervals Iℓ and I′ℓ are disjoint. Since β(u) ∈ Iℓ and β(u′) ∈ I′ℓ, the
numbers β(u) and β(u′) are distinct. In fact, we always have the inequality β(u′) < β(u)
if the vector u is lexicographically smaller than the vector u′.

Clearly, there is a continuum of such distinct sequences u when u runs over all possible
infinite sequences consisting of 2 and 4. As we have shown above, the numbers β(u) are all
distinct, so there are continuum of numbers β(u). This completes the proof of Proposition 1,
because in (10) we have 0 < εnj /(uj + 1) and εnj /uj < εnj , so (7) is true for each n = nj.

3. Proof of Theorem 2
Fix any η > 1 and an interval I = [a, b], where 1 ≤ a < b. Note that, without

restriction of generality, we may assume that a > 1, because in case a = 1, one can consider
the subinterval [(a + b)/2, b] of I instead of I itself.

In order to apply Proposition 1, we will consider the sequence of positive numbers
ε1 = 1,

εn = min
(

1,
1

Φ22!ξ2
,

1
Φ33!ξ3

, . . . ,
1

Φnn!ξn

)
for each n ≥ 2. Then, 1 = ε1 ≥ ε2 ≥ ε3 ≥ . . . is a sequence of positive numbers. Let also

γn = − log ξn

log η
(16)
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for each n ∈ N.
Fix any ϵ in the interval (0, log a). Then, by (3), there is an infinite sequence N ⊂ N

such that, for each n ∈ N , we have
ξn ≥ e−ϵn. (17)

Furthermore, by (17), for α ≥ a, we have

ξnαn → ∞ as n ∈ N tends to infinity. (18)

Now, by Proposition 1 applied to the interval

J = [log a/ log η, log b/ log η] (19)

and (16), there is an uncountable in J set of positive numbers B such that, for each β ∈ B,
the inequalities

0 < nβ +
log ξn

log η
− m < εn ≤ 1

Φnn!ξn

hold for infinitely many pairs (n, m), where n ∈ N and m ∈ Z. Multiplying all this by
log η > 0, we derive that the inequalities

0 < nβ log η + log ξn − m log η <
1

Φn(n − 1)!ξn
(20)

hold for infinitely many pairs (n, m), where n ∈ N and m ∈ Z. Note that, by (17), we have

Φn(n − 1)!ξn → ∞ as n ∈ N tends to infinity. (21)

Let S be the set of numbers of the form α = ηβ, where β runs over every element of
B. Note that the map x 7→ ηx maps the interval J defined in (19) into the interval [a, b].
Therefore, the set S is a subset of [a, b]. Moreover, the set S is uncountable because so is the
set B.

Consider the difference

ξnαn − ηm = enβ log η+log ξn − em log η = ηm(enβ log η+log ξn−m log η − 1).

By (20), the exponent here is in the interval (0, 1/(Φn(n − 1)!ξn)). Additionally, ηm < ξnαn

by (20) as well. Consequently, from (21), it follows that

0 < ξnαn − ηm = ηm(enβ log η+log ξn−m log η − 1) < ξnαn · 2
Φn(n − 1)!ξn

=
2αn

Φn(n − 1)!
<

1
Φn

for a sufficient large n ∈ N . Here, in view of (18), for each sufficiently large n ∈ N , the
corresponding integer m must be positive. This completes the proof of (6).

4. A Different Version of the Main Result
Note that, in the proof of Theorem 2, we did not use (3) but rather the condition (18),

with a subsequence N . Therefore, we can change the initial condition (3) for the sequence
ξn, n = 1, 2, 3, . . . , by the condition

ξnan → ∞ as n ∈ N tends to infinity, (22)

where N is an arbitrary infinite sequence of positive integers and a > 1 is a fixed number.
Observe that (22) is true for any infinite sequence N ⊆ N and any a > 1 if, say, ξn ≥ ξ > 0
for every n ∈ N.
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Then, by the argument given in Section 3, we obtain the following version of Theorem 1:

Theorem 3. Let I = [a, b] be an interval with 1 < a < b. Assume that N is an infinite sequence
of positive integers, and ξ = {ξ1, ξ2, ξ3, . . . } is a sequence of positive numbers satisfying (22) with
this N . Then, for any sequence of positive numbers δ = {δ1, δ2, δ3, . . . }, there is an uncountable
set S(I,N , ξ, δ) ⊂ I such that, for each α ∈ S(I,N , ξ, δ), the inequalities

0 < {ξnαn} < δn (23)

hold for infinitely many n ∈ N .

We omit the proof, since it is exactly the same as that above.

5. An Application of Proposition 1
Recently, in [31], we studied the following problem. Given θ ∈ R>0 \N, let Rθ(N) be

the least nonzero value of ∥aθ∥ as a = 1, 2, . . . , N. Define

Eθ = lim sup
N→∞

log(1/Rθ(N))

log N
.

In Theorem 5 of [31], we provided several estimates for the quantity Eθ for some θ.
For example, it was shown that E2/3 ≥ 1, with the equality holding under assumption of
the abc-conjecture.

Then Iyer [32] showed that E(θ) can be infinite for some θ ∈ R>0 \N. This follows
from Theorem 1.9 of [32], where it was shown that, for any sequence of positive numbers
δn, n = 1, 2, 3, . . . , there are many τ ∈ R>0 \N for which the inequalities

0 < ∥nτ∥ < δn

hold for infinitely many n ∈ N. Indeed, selecting δn = 1/n! and all the corresponding
numbers τ, we see that Eτ = ∞ for each of those τ, because log(n!)/ log(n) → ∞ as n → ∞.

We will derive the following more general result:

Theorem 4. Let I = [a, b] be an interval with 0 < a < b. Assume that ξ = {ξ1, ξ2, ξ3, . . . } is a
sequence of positive numbers satisfying

ξnna → ∞ as n → ∞. (24)

Then, for any sequence of positive numbers δ = {δ1, δ2, δ3, . . . }, there is an uncountable set
W(I, ξ, δ) ⊂ I such that, for each τ ∈ W(I, ξ, δ), the inequalities

0 < {ξnnτ} < δn (25)

hold for infinitely many n ∈ N.

Proof. Without restriction of generality, we may assume that δn < 1 for each n ∈ N. In
all that follows, it will be shown that (25) holds for infinitely many powers of 2, namely,
the inequalities

0 < {ξ2n 2nτ} < δ2n (26)

are true for infinitely many n ∈ N.



Axioms 2025, 14, 420 9 of 11

To this end, we will apply Proposition 1 to I = [a, b],

γn = − log ζ2n

log 2
,

and the sequence of positive numbers εn, n = 1, 2, 3, . . . , where ε1 = 1 and

εn = min
(

ε1, . . . , εn−1,
δ2n

ξ2n 2nb

)
(27)

for n = 2, 3, 4, . . . . It is clear that 1 = ε1 ≥ ε2 ≥ ε3 ≥ . . . .
By Proposition 1, it follows that there is an uncountable in I set of positive numbers W

such that, for each τ ∈ W, the inequalities

0 < nτ +
log ξ2n

log 2
− m < εn

hold for infinitely many pairs (n, m), where n ∈ N and m ∈ Z. Multiplying by log 2, we
obtain that the inequalities

0 < nτ log 2 + log ξ2n − m log 2 < εn log 2 (28)

hold for infinitely many pairs (n, m), where n ∈ N and m ∈ Z.
Now, we consider the difference

ξ2n 2nτ − 2m = enτ log 2+log ξ2n − em log 2 = 2m(enτ log 2+log ξ2n−m log 2 − 1).

By (28), the exponent here is in the interval (0, εn log 2). Additionally, 2m < ξ2n 2nτ by (28),
and ξ2n

2nbεn ≤ δ2n by (27). Therefore,

0 < ξ2n 2nτ − 2m = 2m(enτ log 2+log ξ2n−m log 2 − 1) < ξ2n 2nτ · (2εn log 2) < ξ2n 2nbεn ≤ δ2n

for each of those n ∈ N.
Here, we have

ζ2n 2nτ → ∞ as n → ∞,

because
ζ2n 2na → ∞ as n → ∞.

Consequently, as
2m > ξ2n 2nτ − δ2n > ξ2n 2nτ − 1,

the corresponding integer m must be positive for each sufficiently large n ∈ N, and hence
2m ∈ Z.

Combined with 0 < δ2n < 1, this implies that 2m is the integer part of the number
ξ2n 2nτ . Thus, for infinitely many n ∈ N, we have

0 < {ξ2n 2nτ} = ξ2n 2nτ − 2m < δ2n

which is (26). This completes the proof of the theorem.

Note that we cannot omit the condition (24). Indeed, select, for instance, ξn = δn = 1/n!.
Then, for each τ > 0, we have 0 < ξnnτ < 1 for each sufficiently large n ∈ N. Therefore, for
each τ > 0 and all sufficiently large n ∈ N, we have

{ξnnτ} = ξnnτ > ξn =
1
n!

= δn,
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so (25) does not hold for τ > 0.

6. Concluding Remarks
In particular, Theorem 3 implies that, for any ξ > 0 and any sequence of positive

numbers δn, n = 1, 2, 3, . . . , there are uncountably many α > 1 for which the inequalities

0 < {ξαp} < δp

hold for infinitely many primes p, and uncountably many γ > 1 for which the inequalities

0 < {ξγn2} < δn2

hold for infinitely many n ∈ N.
On the other hand, we do not know whether our method can be extended to conclude

the same as stated in Theorem 3 with inequality (23) replaced by

0 < {ξnαn − ηn} < δn,

where ηn, n = 1, 2, 3, . . . , is an arbitrary sequence of real numbers. This problem is open
even if ξn = 1 for n ∈ N. More precisely, we do not know whether for any sequence of real
numbers ηn, n = 1, 2, 3, . . . , and any sequence of positive numbers δn, n = 1, 2, 3, . . . , there
is a real number α > 1 for which we have

0 < {αn − ηn} < δn

for infinitely many n ∈ N.
Similarly, with respect to Theorem 4, we may ask whether for any sequence of real

numbers ηn, n = 1, 2, 3, . . . , and any sequence of positive numbers δn, n = 1, 2, 3, . . . , there
is a real number τ > 0 for which the inequalities

0 < {nτ − ηn} < δn

hold for infinitely many n ∈ N.
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