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Introduction

The theory of optically excited molecular aggregates lies on the intersection of
physics, mathematics, chemistry and biology. On one hand, their properties are
unlike single molecules, on the other hand the lack of large-scale crystalline struc-
ture makes the well-developed approaches of solid state physics inapplicable. Di-
mensions of molecular aggregates are still microscopic, and hence quantum me-
chanics is essential for the description of anything that happens immediately after
optical excitations (the relevant timescales are from tens of femtoseconds to tens
of picoseconds). The other important factor that must be taken into account is that
under most circumstances the molecular aggregates cannot be considered isolated.
Even at very short times, the interaction with their environment leads to irreversible
evolution and decoherence of fragile quantum states. This is further complicated
by the fact that the environment can act differently on spatially separated elements
of molecular aggregates. The usual approach for theoretical analysis of such open
quantum systems is to consider only a few degrees of freedom, with the rest being
attributed to a bath (environment). The influence of the environment on the system
of study is well defined, however, the influence of the optically excited system on
the environment is usually neglected. From an experimental point of view the pri-
mary tool used to reveal the quantum dynamics of molecular aggregates is optical
spectroscopy.

Probably the most important concept in the study of molecular aggregates is
the Frenkel exciton. It defines a collective excitation delocalized over a number of
molecules constituting an aggregate. This collective excitation is coherent, i.e. the
phase relationships between the excitations of constituent molecules are conserved.
The coherence, though, can only be maintained for some time until environmental
decoherence sets in, reducing the quantum superposition to a probabilistic mix-
ture. Thus the optical excitation can evolve in a few different ways, with one being
coherent wavelike transfer and the other being irreversible dissipative dynamics.
If the timescales can be separated (i.e. the coherent wavelike transfer is fast and
the decoherence is slow), the theoretical description becomes much simpler. The
most difficult scenario is where both coherent transfer and decoherence happen on
a very similar timescale. This scenario requires the most sophisticated theoretical
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10 Introduction

approaches, and also it is the most frequent case in real-world molecular aggre-
gates. The governing attribute that lets us distinguish whether the timescales are
separable is the strength of coupling between the system and the bath relative to
the coupling between constituent molecules. The extreme cases when one is very
small compared to the other one let us treat the small coupling as a perturbation,
leading to the well-known Redfield theory (for weak system-bath coupling) and
Förster theory (for weak interaction between the optically active molecules). Any-
thing in between falls into the so-called “intermediate” regime where the physics
are much more complex. However (as we shall see throughout this thesis), this is
not all, and the timescales of correlations of fluctuations of the bath itself also play
a huge role even at relatively weak system-bath coupling.

The idea behind the description of the “intermediate” regime is the feedback, or
the formation of excitonic polarons. Taking into account the influence of the optical
excitation in molecular aggregates on the bath, the bath can become polarized. The
Frenkel exciton state that is attributed to purely electronic interaction between opti-
cally active molecules becomes “dressed” by the environmental vibrational states.
First, the system and the bath undergo collective evolution which transitions the
Frenkel exciton state into an excitonic polaron state. Then the evolution between
excitonic polaron states continues with the bath serving as a source of fluctuations
from its new point of equilibrium. The magnitudes and timescales of such pro-
cesses are dependent on lots of factors, including the spectral content of the bath,
all the relevant coupling parameters, temperature, fluctuation correlations in both
space and time, nonlinearities, etc.

Making any kind of valid model from first principles with such a huge amount
of free parameters is questionable. Fortunately, much information about molecular
aggregates can be obtained from spectroscopic experiments. Recent advances in
ultrafast spectroscopy gave an opportunity to see the molecular processes at very
short timescales after excitation, when most of the mentioned coherent transfer and
dissipation effects happen. Ultrafast time-resolved fluorescence (TRF) and two-
dimensional coherent spectroscopy (2D) are the two nonlinear techniques that can
reveal the electronic-vibrational dynamics, especially at low temperatures. Histor-
ically two-dimensional spectroscopy was the approach that kickstarted the whole
field of “quantum biology”, which considers the effects of coherent transfer in bi-
ological systems such as photosynthetic pigment-protein complexes. A very com-
plicated set of energy transfer pathways with long-lived quantum coherences was
revealed first in the Fenna-Mathews-Olson (FMO) complex, and then in various
other aggregates such as Light-harvesting complex 2 (LH2), Light-harvesting com-
plex 3 (LH3) and Photosystem II (PSII). Fitting modeled spectroscopic data to ex-
perimental data thus became a prominent way to test models of energy transfer
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in molecular aggregates. The other missing bits of information about parameters
of molecular aggregates come from high-resolution structural data and quantum
chemistry calculations. The spectral content of the environmental fluctuations is
also a very important variable. Some information can be obtained from quantum
chemistry calculations (for intramolecular vibrations) and the lineshapes of optical
spectra in absorption, TRF, and 2D experiments. The more accurate data is ob-
tained from hole burning, Raman, and low temperature fluorescence line narrowing
experiments.

Having established both the theoretical problem and the sources of experimen-
tal data, one needs to proceed with developing a model and a theoretical approach
for simulations of the quantum dynamics. From quantum dynamics one needs to
obtain the associated simulated spectroscopic data to compare it with the experi-
ment and test the validity of the model. However, at some point one still needs
to make some kind of approximation for one reason - the computational resources
are limited. Theoretically one could try to calculate everything exactly using the
Liouville-von Neumann equation. Practically, not so much, because the amount
of degrees of freedom in the environment is effectively infinite. So one very im-
portant requirement imposed on any kind of theoretical approach for simulations is
that the calculations can be done in a reasonable time. So, having defined the chal-
lenges, we shall proceed with developing a theoretical approach for investigating
the quantum dynamics of optical excitations in molecular aggregates tailored for
the “intermediate” regime and allowing for bath polarization and feedback effects.

Main goal

Themain goal of this research work is to develop an efficient theoretical approach
suitable for calculation of excitation dynamics and optical spectra in molecular ag-
gregates without restrictions on relative coupling strengths and timescales1. The
following research tasks were formulated in order to achieve this goal:

• Establish and develop a calculation scheme based on the time-dependent vari-
ational approach (TDVA) with the Davydov Ansatze, tailored for non transla-
tionally invariant systems coupled to damped/overdamped environments with-
out spatial correlations (at zero temperature). This includes deriving the equa-
tions of motion and writing code for the simulation.

• Investigate the effect of timescales of bath correlations on excitonic polaron
formation in a model system at zero temperature.

• Develop an extension of the approach allowing for finite temperature simula-
tions. Benchmark the accuracy of the finite temperature extension against an

1Throughout the text, citations1–5 will be referring to author’s own work.
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established theoretical approach.

• Apply the developed formalism to the simulation of dynamics and optical spec-
tra in a real molecular aggregate.

• Develop an extension of the approach allowing for treatment of vibrational
nonlinearities. Examine the effect of nonlinear system-bath coupling on en-
ergy transfer and optical spectra.

Novelty and relevance of the results

Despite the success of the perturbative theories in their respective ranges of validity,
it is the intermediate regime, when all interactions are of similar strength, that is of-
ten relevant, e.g. in the photosynthetic pigment-protein complexes.6 Conventional
Redfield and Förster theories are unable to explain all the dynamics in a system that
interacts strongly with vibrations, and where the intermolecular resonant interac-
tions span the range from small to relatively large values.

Non-perturbative theories that make no assumptions on the relative strength of
interactions have become available in recent decades.7–10 For example, the ap-
proach based on hierarchical equations of motion (HEOM) has been applied to
studymodel systemswith various strength of resonance interactions betweenmolecules
and with the inter- and intra-molecular vibrations.11–15 It has also been used to de-
scribe time resolved spectroscopy experiments.16–21 Nevertheless, exact theories
are usually very expensive computationally, and limited to rather structureless vi-
brational baths. Therefore in practice their application is often limited.

Other numerical approaches have been adapted from solid state physics. Ex-
act diagonalization22 is one of the more straightforward methods. One of its ma-
jor limitations is exponential scaling of required computational resources with the
number of electronic and vibrational states. The other major limitation is that damp-
ing of vibrations is especially difficult to consistently introduce with this approach.
Variational exact diagonalization23 scales better if only the lower lying bosonic ex-
cited states of phonons are considered, but generally suffers from the same prob-
lems. Quantum Monte Carlo approach is very computationally efficient, however,
its accuracy is not very high and it suffers from the well-known sign problem.24

Time-dependent density matrix renormalization group is an accurate and efficient
method, but its major restriction is that the system has to be one-dimensional and
non-disordered.25

While the time-dependent variational approach together with theDavydovAnsatze
is also a well-known and established method, some usual assumptions make it un-
suitable for the application to excitation dynamics in molecular aggregates. First,
traditionally it was used with translationally invariant one dimensional systems,
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such as linear aggregates and rings, and required adaptation to make it work with
disordered systems. Second, it assumed a phonon band with linear dispersion,
which is unlike the typical bath encountered in molecular aggregates. Third, the
phonons were assumed to be non-local, being coupled to every single site in the
system. Local coupling with an individual bath without spatial correlations pro-
duces qualitatively different dynamics. And last, it was only applied at zero tem-
perature, which cannot in principle describe the decoherence dynamics so much
relevant for energy transfer and optical signals in realistic experimental conditions.
The presented research gets rid of these assumptions and provides suitable exten-
sions, validating the approach for simulations of molecular aggregates.

In a model systemwewere able to show two distinct regimes of excitonic polaron
formation. A pair of strongly-coupled molecules was used to illustrate the dynam-
ics of the transition from the excitonic into the polaronic picture. We showed that
the excitonic states retain their character only in case of weak coupling to the fast
bath. If the coupling to the bath is strong or the bath is slow the excitonic picture
breaks down and an excitonic polaron forms. Slow bath leads to an adiabatic ex-
citonic polaron formation regime. Strong interactions with the fast bath induce a
rapid change in the elements of the Hamiltonian, causing the non-adiabatic dynam-
ical localization. The effective resonant coupling between sites decreases and the
amount of reduction is heavily dependent on the environment reorganization en-
ergy and the characteristic bath timescale. The timescale of change in this effective
resonant coupling defines the timescale of polaron formation.

The accuracy of TDVA was studied to some extent in its usual range of applica-
tions. But since the extension of TDVA to finite temperature (sTDVA) was devel-
oped as part of this research work, it naturally had no information on its validity.
So an important part of the development was testing the calculation scheme against
an established method to determine its limitations. After finding out that the accu-
racy is sufficient in relevant ranges of parameters, we modeled the energy transfer
within the B850 ring of the LH2 photosynthetic complex. The modeled results
demonstrate that polaronic effects are small and temperature-dependent in optical
absorption and fluorescence spectra. However, the dependence of wavefunction de-
localization parameters and especially their asymptotic values signify a transition
to the temperature-dependent polaronic picture. While other approaches have given
a measure of polaronic effects in long timescale asymptotic states of the system, we
were able to provide a completely dynamical picture of the state transition.

Finally, we used another advantage of the presented approach, namely the pos-
sible higher-order system-bath couplings. In experimental spectra some nonlinear
effects are well-known, such as the breaking of absorption/fluorescencemirror sym-
metry, the broadening of zero-phonon line and the dependence of peak positions on
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temperature. The sTDVA was furthermore extended with a more complicated vari-
ational trial wavefunction to simulate the dynamics in presence of nonlinearities.

Statements of the thesis

1. Formation of excitonic polarons is governed by two essential parameters: the
strength of the system-bath interaction, and the bath correlation timescale com-
pared to inverse couplings between the sites of the system. Depending on the
timescale, two qualitatively distinct regimes are possible, with one being the
adiabatic polaron formation when the bath timescale is slow, and the other
being the coherent polaron formation when the bath is fast. The system-bath
coupling strength scales this effect.

2. Thermal effects lead to increased state delocalization and decreased self-trapping,
impeding the excitonic polaron formation. In an ensemble measurement the
length of coherence decreases with temperature, and at room temperatures and
long times the excitonic representation remains valid.

3. A nonlinear coupling between electronic states and vibrational states or a bath
produces characteristic signatures (vibrational peak substructure, continuous
spectrum generation at finite temperatures, fluorescencemirror symmetry break-
ing) in linear and nonlinear optical spectra, but the electronic energy transfer
is very weakly affected by nonlinearities.
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Chapter 1

Theory of the variational approach to
quantum dynamics

In this chapter we present a short overview of the theory of non-equilibrium dissipa-
tive dynamics in open quantum systems. First we develop some common concepts
concerning the object of study, along with a review of other relevant methods ap-
plied in this thesis. Then we proceed to the approach forming the foundation of
all the research presented in this thesis, namely, the time-dependent variational ap-
proach (TDVA) and its generalizations and extensions. We finish the chapter with
a short review of alternative approaches to the theory of excitation energy transfer
and relaxation.

Without specifying the physical system, we may write the total Hamiltonian as

Ĥ = ĤS + ĤB + ĤSB + ĤF,

where ĤS is the physical system of study. That means that we wish to obtain the
time evolutions of anything assigned to the system part of the Hamiltonian explicitly
and as accurately as possible. ĤB denotes the environment of the physical system.
It is often considered that the amount of the degrees of freedom in the environment
is effectively infinite, so explicit evaluation of their dynamics is not usually sought.
Some approximation is used instead to evaluate the collective state of the environ-
ment. ĤSB is the interaction term between the system and the environment, which
mediates the effect of the environment on the physical system (and also mediates
the effect of the physical system on the environment). ĤF (where F stands for field)
usually contains the external factors defined by the experimental setup, which are
well-defined and controlled. The most relevant example is optical fields creating
excitations in the physical system.

The state of an isolated quantum system (disregarding the interactionwith the en-
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18 1. Theory of the variational approach to quantum dynamics

vironment) can be completely defined by its wavefunction1 - a vector in the Hilbert
space spanned by all available pure quantum states of the system. The time evolu-
tion of a pure quantum state is described by a time-dependent Schrödinger equation

− i~
∂

∂t
|ψ(t)〉+ Ĥ|ψ(t)〉 = 0. (1.1)

When the system is in a pure quantum state, all physical observables are defined
up to Heisenberg’s uncertainty relation for pairs of complementary variables. The
state of a system being in a pure quantum state is considered to be fully known, and
the entropy of such a state is always equal to zero.

In case we have only partial knowledge about the state of the system (or none
at all), we consider the state to be mixed, treating it like a probabilistic mixture of
pure states. This mixture is defined in terms of density operators

ρ̂(t) =
∑
i

pi|ψi(t)〉〈ψi(t)|, (1.2)

where pi is the classical probability of the system being in a pure state |ψi(t)〉.
Different mixtures of pure quantum states can give the same physical observables.
The entropy of a mixed state is

S =
∑
i

pi ln pi. (1.3)

The evolution of density operators is governed by the Liouville-von Neumann equa-
tion:

− i~
∂

∂t
ρ̂(t) +

[
Ĥ, ρ̂(t)

]
= 0. (1.4)

Most attempts of theoretical description of open quantum systems require the
use of the density operator approach due to the fact that the state of the environ-
ment is not measurable. However, mathematically both wavefunction and density
operator approaches are equivalent (at least, up until one traces over the environ-
mental degrees of freedom in the full system-environment density operator). The
approach used in this thesis is based on wavefunction propagation, and the density
operator used in evaluation of some quantities is constructed a posteriori according
to the Eq. (1.2).

In the following chapter we will first define the system of study in Section 1.1.
The properties of the environment and the corresponding definitions are given in
Section 1.2. In Section 1.3 we proceed to introduce the time-dependent variational
approach and derive the equations ofmotion used in subsequent modeling ofmolec-

1The wavefunction term technically only applies if the Hilbert space is a function space. However, in this thesis we will use the
terms state and wavefunction interchangeably.
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ular aggregate dynamics at zero temperature. In Section 1.5 we describe an exten-
sion to TDVA, allowing to simulate quantum dynamics at finite temperatures. And
last, in Section 1.6 we introduce a new trial wavefunction used for modeling of a
nonlinear interaction between the system and the environment.

For simplicity, we will assume natural units in the text, setting ~ = 1, c = 1,
1

4πεε0
= 1.

1.1 Electronic-vibrational systems

The central concept in the theory of quantum dynamics of molecular aggregates
is the Frenkel exciton. We consider an aggregate to be a cluster of neutral elec-
trostatically interacting molecules. The charge density is assumed to be strongly
localized on the molecules, and the overlap of the electronic wavefunctions be-
tween different molecules in the aggregate is considered to be zero. The ground
and excited states of each individual molecule can be then obtained solving the
time-independent Schrödinger equation with the molecular Hamiltonian (the ap-
proach can be readily found in ref.,26 but is beyond the scope of the thesis). Note
that we restrict the set of all possible excitations of a single molecule to only two
states, thus treating the molecule as a two-level system2. The basis vectors, which
we denote |ψn〉(g) for the ground state, and |ψn〉(e) for the excited state, are used
for construction of the global electronic state of the molecular aggregate. First we
denote the global electronic ground state as the product of ground states of all con-
stituent molecules:

|0〉el =
∏
n

|ψn〉(g). (1.5)

We use the ladder operator formalism for describing localized excitations: the cre-
ation operator for the local electronic excitation at molecule n is defined by

â†n|ψn〉(g) = |ψn〉(e). (1.6)

Then the first and second excitation manifolds of the molecular aggregate are (for
m 6= n):

|n〉 = â†n|0〉el, (1.7)
|mn〉 = â†mâ

†
n|0〉el. (1.8)

This set of product states |n〉 is known as the site basis, and the constituentmolecules
will be referred to as sites further in the text. The ladder operators for the electronic

2Higher-lying molecular excited states are difficult to access within an experimental setup, since their transition energy is approxi-
mately double the energy of the first excited state.
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excitations obey the following commutation relation (also known as Paulionic):[
âm, â

†
n

]
= δmn

(
1− 2â†nâm

)
. (1.9)

Solving the single-molecule Schrödinger equation (usually using some approx-
imate method like DFT) allows one to obtain the transition energies between the
ground and excited states, and also ground, excited state, and transition charge den-
sities, that we denote respectively by ρ(g), ρ(e), ρ(t). They are needed for construc-
tion of electronic block Hamiltonians. The diagonal elements corresponding to
the projectors â†nân are transition energies εn of single non-interacting molecules
modified by the correction term for the Coulomb interaction between the spatial
charge of the excited state of the molecule under consideration ρ(e)

n and the spatial
charges corresponding to ground states of other molecules in the aggregate ρ(g)

m6=n.
The off-diagonal elements correspond to projectors â†m6=nân and their values Jmn
are calculated as the Coulomb interaction between the transition charge densities
ρ

(t)
m6=n and ρ

(t)
n .

In most cases for naturally occurring aggregates the intermolecular distances are
assumed to be much larger than the localization length of local electronic densities.
Then the transition energy εn correction term can be assumed to be zero, and the
interaction between two sites can be calculated using the dipole approximation.
Denoting the transition dipole vector of site n as µn, and the spatial coordinate
vector of site n asRn the interaction strength is calculated as

Jm6=n,n =

(
µm · µn
|Rm −Rn|3

− 3
(Rm −Rn) · µm (Rm −Rn) · µn

|Rm −Rn|5

)
. (1.10)

Consequently, the total resulting electronic block Hamiltonian is written as

Ĥ =
∑
n

εnâ
†
nân +

∑
m6=n

Jmnâ
†
mân, (1.11)

however, we will use a slightly more compact notation in this thesis, setting the
diagonal elements of Jmn as

Jnn ≡ εn, (1.12)

and writing the electronic block Hamiltonian simply as

Ĥ =
∑
m,n

Jmnâ
†
mân. (1.13)

Another important basis is the excitonic basis, which is simply the set of eigen-
vectors of the electronic block Hamiltonian, easily obtained by direct diagonaliza-
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tion. The corresponding eigenvalues are excitonic energies. Excitonic basis vectors
are related to site basis vectors by a unitary transformation matrix

|α〉 =
∑
n

U †αn|n〉. (1.14)

1.2 Environment

In realistic scenarios molecular aggregates are not isolated from their environment.
The electronic degrees of freedom defined in the previous chapter are usually in-
teracting with vibrations of the nuclei, which are both intramolecular modes (re-
ferring to the vibrational modes of the optically active sites), and interactions with
the protein scaffold or solvent in which the aggregate is embedded. The number
of vibrational degrees of freedom is usually considered to be infinite, and for a de-
scription of this type of environment its statistical properties at finite temperature
have to be considered.

At the basic level the environment can be described as a bath of harmonic os-
cillators coupled to one or more sites of the electronic subsystem. The parameters
that define the bath are temperature and the set of coupling strengths between the
modes of the environment and the sites of the system. While other models are
sometimes used, we consider the coupling to be diagonal, i.e. the environmental
vibrations influence the site transition energies, which correspond to the diagonal
elements of the electronic block Hamiltonian. We define the energy operator for
each vibrational mode q as

ĤB =
∑
q

ωq b̂
†
q b̂q, (1.15)

denoting the creation and annihilation operators for the mode q of frequency ωq
as b̂†q and b̂q. In contrast to ladder operators for the electronic excited states, the
operators obey the bosonic commutation relation[

b̂q, b̂
†
s

]
= δqsb̂

†
sb̂q. (1.16)

The diagonal coupling between the electronic subsystem and the environment is
therefore realized using the bilinear operator:

ĤSB =
∑
n

â†nân
∑
q

ωqgqn

(
b̂†q + b̂q

)
. (1.17)

The essential property of the bath is the set of linear coupling strengths {gqn}.
The values of coupling parameters can be calculated from first principles or mea-
sured experimentally in some cases, but it is much more common to involve the sta-
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tistical properties of the collective bath for description of non-stationary dynamics.
The environment-induced fluctuations of the transition energy are then character-
ized by the correlation functions of the bath:

Cij(t) = 〈∆V̂i(t)∆V̂j(0)〉, (1.18)

where ∆Vi(t) is the system-bath interaction operator for site i in Heisenberg repre-
sentation, defined as

∆V̂i(t) = exp
(

iĤBt
)
â†i âi

∑
q

ωqgqi

(
b̂†q + b̂q

)
exp

(
−iĤBt

)
, (1.19)

and 〈· · · 〉 represents the expectation value. It is calculated as
〈
Â
〉

= Tr
(
ρ̂Â
)
,

where ρ̂ is the global density operator of both the system and the bath.
The set of linear coupling strengths can then be obtained from the Fourier trans-

form of the correlation function, where the temperature-independent odd partC ′′ij(ω)

is the spectral density of the environment:

Cij(t) =
1

π

ˆ
e−iωt

1

1− e
ω
kT

C ′′ij(ω) dω, (1.20)

C ′′ij(ω) = π
∑
q

gqigqjω
2
qδ(ω − ωq). (1.21)

An assumption that is often relevant for calculating the physical observables of
molecular aggregates is that the modes are local, meaning that each site of the
system is coupled to its own independent set of modes, and the fluctuations of the
local environment are uncorrelated. This allows to shorten the notation as Cii(t) =

Ci(t).
Due to dissipative processes, the correlation functions decay with time. This

causes the spectral density functions to be continuous instead of sets of discrete
delta-peaks centered at certain frequencies. In order to incorporate the dissipa-
tive effects the discrete damped modes are replaced with sets of fictitious harmonic
oscillators, discretizing continuous spectral densities of damped and overdamped
modes with large amounts of undamped modes. Throughout this thesis we dis-
cretize the spectral density uniformly in the argument range (0,W ], whereW is the
frequency width of the phonon band. This bandwidth should be chosen to be much
larger than all possible frequencies of the system (essentially the exciton bandwidth
for our problem). We use q = 1, 2...Q and the frequency of mode q is ωq = ∆ωq.
The minimum frequency interval ∆ω = W/Q defines a recurrence timescale equal
to 2πQ/W . In general the latter should be larger than any timescale of interest in
the system dynamics. These relations fix the parameters Q and W . The coupling
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... ... ... Fig. 1.1. Schematic
view of the system.
Blue circles denote
sites, yellow circles
denote modes of the
phonon field, with
couplings indicated by
arrows.

strengths can be assigned using Eq. (1.21): g2
qn ∝ C

′′

n(ωq)/ω
2
q . The sign of gqn re-

mains undefined, so we keep it positive, while the values are normalized using the
definition of the reorganization energy. The reorganization energy is defined as the
negative energy shift in the site electronic transition energy that appears after the lo-
cal environment of that site relaxes into the minimum of its potential surface in the
electronically excited state, and is also known as Stokes shift. The reorganization
energy is related to the spectral density simply as:

Λn =
1

π

ˆ ∞
0

1

ω
C
′′

n(ω) dω. (1.22)

Practically, the spectral density functions of the environment are either measured
experimentally (specifically, fluorescence line narrowing experiments) or are sim-
ply postulated by using a model for the environment. The model may be as simple
as assuming an exponential decay of the correlation function, which gives the well
known Brownian oscillator spectral density.

Combining the electronic and environmental subsystems we obtain the full Hol-
stein27 Hamiltonian3 as:

Ĥ =
∑
m,n

Jmnâ
†
mân +

∑
q

ωq b̂
†
q b̂q

−
∑
n

â†nân
∑
q

gqnωq(b̂
†
q + b̂q). (1.23)

Fig. 1.1 displays a schematic view of the system under consideration.

3The resulting state of the “global” system is described by a vector in [H2]
N ⊗

[
L2 (R)

]Q space, where H2 represents a two-
dimensional Hilbert space spanned by two orthogonal normalized states |0〉 and |1〉. The operator basis forH2 is realized by the Pauli
group.
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1.3 Time-dependent variational approach

Instead of solving the Schrödinger equation with the Hamiltonian defined by Eq.
(1.23) by direct propagation (which is not possible in our case due to the sheer
amount of degrees of freedom), we employ the Dirac-Frenkel variational princi-
ple to obtain the approximate quantum dynamics.28 We use a parametrized trial
wavefunction and optimize the variational parameters so that the deviation from
the solution of the Schrödinger equation would be minimal. With a generic form of
the parametrized wavefunction, written in terms of a set of time-dependent gener-
alized coordinates |ψ(t)〉 = |ψ {xn(t)}〉, we try to find the functions {xn(t)} that
would make the parametrized wavefunction evolve as close to the exact solution as
possible.

In case the wavefunction |ψ(t)〉 = |ψ {xn(t)}〉 is not an exact solution to the
Schrödinger equation, we have

− i~
∂

∂t
|ψ(t)〉+ Ĥ|ψ(t)〉 = |δ(t)〉, (1.24)

where |δ(t)〉 is the deviation vector. The procedure to obtain the parameter de-
pendences on time that would minimize the deviation from the exact solution is as
follows.29 First, we construct the quantum Lagrangian, which is given by

L =
i

2

(
〈ψ(t)|ψ̇(t)〉 − 〈ψ̇(t)|ψ(t)〉

)
− 〈ψ(t)|Ĥ|ψ(t)〉. (1.25)

With this Lagrangian we derive the equations of motion (EOM) using the Euler-
Lagrange equations for the variational parameters {xn(t)} :

d

dt

(
∂L
∂ẋ∗n

)
− ∂L
∂x∗n

= 0,∀n. (1.26)

The resulting set of equations gives in general a system of coupled first order ODE’s
of the form ẋn = f(x1 . . . xN), which can be solved using standard numerical meth-
ods given a set of initial conditions {xn(0)}.

This approach results in an initial value problem that can be solved numerically
using common methods (for example, the adaptive step Runge-Kutta (4,5) algo-
rithm).
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1.4 Trial wavefunctions

1.4.1 Coherent states

In this subsection we give a short description of coherent states. Widely used in
quantum optics for the description of quantized electromagnetic fields, coherent
states have an indefinite amount of quanta (particles). The product of amplitude
and phase uncertainties is always minimal (as allowed by the uncertainty principle)
for a coherent state. In this regard they are the closest to a classical description of
a field. These states can be generated using the one-mode displacement operator:

D̂(λ) = exp
(
λb̂† − h.c.

)
. (1.27)

Here λ is a complex displacement parameter. Its real part corresponds to the dis-
placement of the wavepacket along the generalized coordinate axis, and the imag-
inary part corresponds to the displacement along the momentum axis. A coherent
state |λ〉 is defined as the state obtained by acting with a displacement operator
D̂(λ) on the vacuum state |0〉. One important property of coherent states is that
they are eigenstates of the annihilation operator, as described by the relationship

b̂|λ〉 = λ|λ〉. (1.28)

The expansion of a coherent state in the number state basis is given as

|λ〉 = e−
1
2 |λ|

2
∞∑
n=0

λn√
n!
|n〉. (1.29)

To calculate expectation values of various physical observables we use the Baker-
Campbell-Hausdorff (BCH) lemma.30 For any pair of bounded operators X̂, Ẑ, we
may write a series expansion:

eX̂Ẑe−X̂ = Ẑ + [X̂, Ẑ] +
1

2!
[X̂, [X̂, Ẑ]] + · · · . (1.30)

Since the displacement operator is unitary (D̂(λ)† = D̂(−λ)) we may use the BCH
lemma to calculate the expectation values of any operators of the form

(
b̂†
)m (

b̂
)n

(in that case the series expansion is finite) in a coherent state. Some useful identities
that will be used in further derivations are:

〈λ|b̂|λ〉 = λ, (1.31)
〈λ|b̂†|λ〉 = λ?, (1.32)
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〈λ|b̂†b̂|λ〉 = |λ|2. (1.33)

The coherent states form an overcomplete basis for the Hilbert space spanned by
number states, meaning that the identity operator is expressed in the coherent state
basis as ˆ

|λ〉〈λ| d2λ = πÎ. (1.34)

For a system being in a coherent state |λ〉 the probability of measuring the num-
ber of quanta as n is calculated using the (1.29) expansion:

Pn(λ) = |〈n|λ〉|2 = e−|λ|
2

(
|λ|2
)n

n!
. (1.35)

1.4.2 Davydov Ansatze

The primary approximation involved in constructing a Davydov Ansatz is the as-
sumption that each vibrational state is parametrized using a few parameters. Al-
though the idea is conceptually similar to the vibronic model, instead of a truncated
set of amplitudes in number state basis one uses the coherent state basis for the rep-
resentation of the phonon states. For every phononmode qwe define a displacement
operator acting on the mode q:

D̂q(λ) = exp
(
λb̂†q − h.c.

)
.

In the simplest cases the state of each mode is represented with either a single co-
herent state or a superposition of coherent states. This is the case with the original
Davydov Ansatz,29,31–34 also denoted asD1, which describes the global wavefunc-
tion with a set of parameters {αn, λqn}:

|ΨD1(t)〉 =
∑
n

αn(t)â†n
∏
q

D̂q(λqn)|0〉. (1.36)

The parameters describing the system are site excitation amplitudes {αn(t)} and
phonon mode displacements {λqn(t)}. The Davydov AnsatzD2 is a simplified ver-
sion of the D1:

|ΨD2(t)〉 =
∑
n

αn(t)â†n
∏
q

D̂q(λq)|0〉, (1.37)

the difference being that λqn(t) = λq(t). In this case the global wavefunction is
separable (a direct product of the electronic subsystem state and the vibrational
subsystem state).

In some cases, translationally invariant variants of the Davydov Ansatz have sig-
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nificant computational advantages, e.g. Merryfield Ansatz and Global-Local (GL)
Ansatz.35,36 However, this study is focused on systems with broken translational
invariance, so for the larger part of the thesis we will use either the D1 or the D2

Ansatze. A more complicated S2 Ansatz that allows the treatment of nonlinear
system-bath interaction terms will be introduced in Section 1.6.

We will proceed with the derivation of equations of motion using the Holstein
Hamiltonian (1.23) and the Davydov Ansatze D1 and D2.

1.4.3 Equations of motion for the D1 Ansatz

Following the procedure outlined in Section 1.3, we first construct the Lagrangian
according to Eq. (1.25)

L =
i

2

(
〈ΨD1|Ψ̇D1〉 − 〈Ψ̇D1|ΨD1〉

)
− 〈ΨD1|Ĥ|ΨD1〉 (1.38)

The set of variational parameters is {αn, λqn}, with each variable being a time-
dependent function. Next we will evaluate each term in the Lagrangian individu-
ally using the explicit form of the D1 Ansatz. We start with calculating its time
derivative:

|Ψ̇D1〉 =
d

dt

(∑
n

αn(t)â†n
∑
q

exp

[
−1

2
|λqn|2

] ∞∑
k=0

λkqn√
k!
|k〉

)
(1.39)

=
∑
n

{
α̇nâ

†
n (1.40)

+ αnâ
†
n

∑
q

[
λ̇qnb̂

†
q −

1

2

(
λ̇qnλ

∗
qn + c.c.

)]}∏
q

D̂q(λqn)|0〉.

Taking the inner product of D1 Ansatz and its time derivative, and applying rela-
tions (1.31)-(1.32) we obtain

〈ΨD1 | Ψ̇D1〉 =
∑
n

{
α̇nα

∗
n + |αn|2

∑
q

λ̇qnλ
∗
qn −

1

2
|αn|2

∑
q

(
λ̇qnλ

∗
qn + c.c.

)}
.

(1.41)

Using the calculated inner product and its complex conjugate, we arrive at the so-
called kinetic term of the Lagrangian
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i

2

(
〈ΨD1|Ψ̇D1〉 − 〈Ψ̇D1|ΨD1〉

)
=

i

2

∑
n

(
α̇nα

∗
n − α̇∗nαn + |αn|2

∑
q

{
λ̇qnλ

∗
qn − c.c.

})
. (1.42)

For the “potential” term we calculate the system, bath and interaction terms sepa-
rately:

ES = 〈ΨD1|ĤS|ΨD1〉

=
∑
m,n

Jmnα
∗
nαm · Sn,m, (1.43)

EB = 〈ΨD1|ĤB|ΨD1〉

=
∑
n

|αn|2
∑
q

ωq|λqn|2, (1.44)

ESB = 〈ΨD1|ĤSB|ΨD1〉

= −
∑
n

|αn|2
∑
q

gqnωq
(
λ∗qn + λqn

)
, (1.45)

here Sn,m is the Debye-Waller factor (coherent state overlap integral), equal to:

Sn,m = exp
∑
q

[
λ∗qnλqm −

1

2

(
λ∗qnλqn + λ∗qmλqm

)]
. (1.46)

Taking the kinetic and substracting the potential terms, we obtain the Lagrangian
as a function of the variable set {αn, α̇n, λqn, λ̇qn} :

L =
i

2

∑
n

(
α∗nα̇n − αnα̇∗n + |αn|2

∑
q

[
λ∗qnλ̇qn − c.c.

])
−
∑
m,n

Jmnα
∗
nαm · Sn,m −

∑
n

|αn|2
∑
q

ωq|λqn|2

+
∑
n

|αn|2
∑
q

gqnωq
(
λ∗qn + λqn

)
(1.47)
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The Euler-Lagrange equations are usedwith the set of variational parameters {α∗n, λ∗qn}:

d

dt
(
∂L
∂α̇∗n

)− (
∂L
∂α∗n

) = 0∀n, (1.48)

d

dt
(
∂L
∂λ̇∗qn

)− (
∂L
∂λ∗qn

) = 0∀{n, q}. (1.49)

Inserting the calculated full Lagrangian (1.47) into the Euler-Lagrange equations
we obtain the explicit partial derivatives:

d

dt
(
∂L
∂α̇∗n

) = − i

2
α̇n, (1.50)

∂L
∂α∗n

=
i

2
α̇n +

i

2
αn
∑
q

[
λ∗qnλ̇qn − c.c.

]
−
∑
m

Jmnαm · Sn,m

− αn
∑
q

ωq|λqn|2

+ αn
∑
q

gqnωq(λqn + λ∗qn), (1.51)

d

dt
(
∂L
∂λ̇∗qn

) = − i

2

d

dt
(|αn|2λqn)

=
i

2
(α̇∗nαnλqn + α∗nα̇nλqn + |αn|2λ̇qn), (1.52)

∂L
∂λ∗qn

= − i

2
|αn|2λ̇qn

−
∑
m

Jmnα
∗
nαm(λqm −

1

2
λqn) · Sn,m

−
∑
m

Jmnα
∗
nαm(−1

2
λqn) · Sn,m

− |αn|2ωqλqn
+ |αn|2gqnωq. (1.53)

Rearranging and simplifying the expressions for the partial derivatives we get a first
order ODE system for variables {αn, α̇n, λqn, λ̇qn}:

α̇n = − i

2
αn
∑
q

[
λ∗qnλ̇qn − c.c.

]
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− i
∑
m

Jmnαm · Sn,m − iαn
∑
q

ωq|λqn|2

+ iαn
∑
q

gqnωq
(
λ∗qn + λqn

)
, (1.54)

λ̇qn = i
∑
m

Jmn
α∗nαm
|αn|2

Sn,m (λqm − λqn)

− iωqλqn + igqnωq. (1.55)

1.4.4 Equations of motion for the D2 Ansatz

The derivation for the D2 Ansatz is similar, using the condition λqn = λqm∀m,n.
In this scenario the Debye-Waller factor Sn,m = 1 and the equations have a simpler
form. First the Lagrangian is simplified to

L =
i

2

∑
n

(
α∗nα̇n − αnα̇∗n + |αn|2

∑
q

[
λ∗qλ̇q − c.c.

])
−
∑
m,n

Jmnα
∗
nαm −

∑
n

|αn|2
∑
q

ωq|λq|2

+
∑
n

|αn|2
∑
q

gqnωq
(
λ∗q + λq

)
. (1.56)

Using the set of variational parameters {α∗n, λ∗q} we have the following form of
Euler-Lagrange equations:

d

dt
(
∂L
∂α̇∗n

)− (
∂L
∂α∗n

) = 0∀n, (1.57)

d

dt
(
∂L
∂λ̇∗q

)− (
∂L
∂λ∗q

) = 0∀{n, q}. (1.58)

Explicitly calculating the partial derivatives we have

d

dt
(
∂L
∂α̇∗n

) = − i

2
α̇n, (1.59)

∂L
∂α∗n

=
i

2
α̇n +

i

2
αn
∑
q

[
λ∗qλ̇q − c.c.

]
−
∑
m

Jmnαm

− αn
∑
q

ωq|λq|2
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+
∑
n

αn
∑
q

gqnωq(λq + λ∗q), (1.60)

d

dt
(
∂L
∂λ̇∗q

) = − i

2

d

dt
(
∑
n

|αn|2λq)

= − i

2

∑
n

(α̇∗nαnλq + α∗nα̇nλq + |αn|2λ̇q)

= − i

2

∑
n

|αn|2λ̇q, (1.61)

∂L
∂λ∗q

= − i

2

∑
n

|αn|2λ̇q

−
∑
n

|αn|2ωqλq

+
∑
n

|αn|2gqnωq. (1.62)

We use the normalization condition
∑

n |αn|2 = 1 to obtain the final simplified
form of the equations of motion for the variational parameters {αn, α̇n, λq, λ̇q} :

α̇n = − i

2
αn
∑
m

|αm|2
∑
q

gqmωq

(
λ∗q + λ̇q

)
(1.63)

− i
∑
m

Jmnαm + iαn
∑
q

gqnωq
(
λ∗q + λq

)
,

λ̇q = −iωqλq + i
∑
n

|αn|2gqnωq. (1.64)

One advantage of the simplerD2 Ansatz is the lack of diverging terms at |αn|2 → 0,
which allows the stable simulation of dynamics with local site excitations.

1.5 Stochastic extension (sTDVA)

Historically the Davydov Ansatze were used for simulation of dynamics of systems
coupled to high-frequency bosonic modes. In this case their energy gap between
eigenstates ~ω � kT , and so the environmental modes could be assumed to be in
the ground state prior to any excitation in the system. However, to obtain the density
operator at finite temperatures with lower frequencymodes an extension of the time-
dependent variational approach is needed. Here we use a straightforward procedure
by constructing the time-dependent density operator from individually propagated
wavefunctions using aMonte-Carlo type procedure. Consider the electronic system
being in the ground state. The bath equilibrium density operator is then diagonal
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and corresponds to the canonical ensemble. The system contains thermal energy
in all vibrational modes. Hence, the temperature of the environment determines
the energy and displacements of the environmental modes. The modes prior to
optical excitation of the system are in thermal equilibrium and hence can be sampled
from the thermal state. The equilibrium density operator of the thermal state is the
canonical ensemble:

ρ̂ =
1

Z
exp

−∑q ωq

(
b̂†q b̂q + 1

2

)
kT

 . (1.65)

Using the Glauber-Sudarshan P representation of the equilibrium thermal state30

for a single mode q we may write the density operator in a coherent state basis:

ρ̂ph,q(0) =

ˆ
Pq(λq)|λq〉〈λq| dReλqdImλq, (1.66)

where Pq (λq) is a generalized probability distribution for each vibrational mode.
The Pq(λq) function is equal to:

Pq (λq) = Z−1
q exp

(
−|λq|2 exp

[ ωq
kT

])
, (1.67)

where Zq is the partition function of a single harmonic oscillator. Consequently,
the initial conditions for the environmental phonon states prior to optical excitation
are sampled from distribution (1.67). Due to the lack of coupling between phonon
modes of the harmonic bath in the electronic ground state (before optical excita-
tion), the full reduced density operator for the phonon bath can be factorized as
ρ̂ph(0) =

∏
q ρ̂

ph,q(0). Note that the mean energy of a phonon mode sampled using
the provided Pq (λ) function is equal to 1

2ωq coth ωq

2kT , so the high frequency modes
of the system are at ground state prior to the excitation of the system.

Random sampling of initial values for the displacements λq from the Pq(λq)
distribution and propagation of the equations of motion leads to a set of stochastic
realizations {R}. From these realizations we then explicitly construct all thermally
averaged observables, e.g. the reduced density operator for the electronic subsystem
with its matrix elementsm,n is given by:

ρmn(t) = 〈α∗m(t)αn(t)〉R , (1.68)

where 〈· · · 〉R denotes averaging over realizations. The mixed state in this approach
is constructed by stochastic ensemble averaging of pure states corresponding to
individual wavefunctions. Thus, even though a single realization of the sTDVA so-
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lution is a pure state, the averaging procedure allows us to reconstruct the mixed
state density operator. This is the only way the temperature comes in when deter-
mining the dynamics of the system. The zero temperature case then corresponds to
every environmental oscillator being in the ground state initially (with displacement
parameter λq = 0).

1.6 Squeezed coherent state Ansatz

One of the advantages of the TDVA approach is the ability to go beyond bilinear
models of system-bath interaction. Here we will apply a new form of variational
Ansatz together with a Hamiltonian term for nonlinear corrections. One of the sim-
plest models for nonlinear interactions is that the vibrational modes are harmonic
but the phonon frequency is slightly different in the electronic ground and the ex-
cited state manifolds (displayed in Figure 1.2 ).

With the ground state frequency ωg and excited state frequency ωe, the nonlinear
interaction Hamiltonian term becomes

Ĥnonlinear =
∑
n

â†nân
∑
q

(
ωe
q − ωg

q

) (
b̂†q + b̂q

)2

. (1.69)

For calculations of system-bath dynamics in the single excitation manifold we use
the Dirac-Frenkel variational approach with a squeezed coherent state Ansatz (S2)
for the global wavefunction, defined as

|S2(t)〉 =
∑
n

αn(t)â†n ·
∏
q

D̂ (λq(t)) Ŝ (ξq(t)) |0〉, (1.70)
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with the displacement and squeezing operators

D̂ (λq(t)) = exp
(
λq b̂
†
q − λ∗q b̂q

)
, (1.71)

Ŝ (ξq(t)) = exp

(
1

2
ξq b̂
†2
q −

1

2
ξ∗q b̂

2
q

)
, (1.72)

respectively. This is a generalization of the well-known Davydov D2 Ansatz, with
the wavefunction approximated by a product state of local electronic excitations
and single squeezed coherent states for each phonon. While Davydov Ansatze
have been shown to provide an adequate description in case of linear coupling
to harmonic modes, the higher order terms in the Hamiltonian corresponding to
nonlinearities and anharmonic corrections can deform Gaussian wavepackets. The
squeezing operator expands the Hilbert space spanned by the wavefunction to ac-
count for the nonlinear effects. The parameter λq corresponds to displacement in
the coordinate-momentum space and

ξq = sq exp (iθq) (1.73)

corresponds to squeezing. The set of parameters {αn(t), λq(t), ξq(t)} follow the
equations of motion, which are determined from a set of Euler-Lagrange equations:

d

dt

(
∂L
∂α̇∗n

)
− ∂L
∂α∗n

= 0,∀n, (1.74)

d

dt

(
∂L
∂λ̇∗q

)
− ∂L
∂λ∗q

= 0,∀q, (1.75)

d

dt

(
∂L
∂ξ̇∗q

)
− ∂L
∂ξ∗q

= 0,∀q. (1.76)

First, let us consider the general case without explicitly specifying the nonlinear
term of the Hamiltonian. Using the same definition of the Hamiltonian as in the
previous chapters (Eq. (1.23)), we define the Lagrangian as

L =
i

2

(
〈S2(t)|Ṡ2(t)〉 − 〈Ṡ2(t)|S2(t)〉

)
− 〈S2(t)|Ĥ + Ĥnonlinear|S2(t)〉. (1.77)

The explicit calculation of all the terms in the Lagrangian is very long and technical,
and so here I will provide only a guideline on how to arrive at these results. As in
the previous sections, the derivation requires obtaining the time derivative |Ṡ2(t)〉
and the expectation values of elements of the Hamiltonian. First we obtain the time
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derivative of a squeezing operator applied to a vacuum state:

|ξq〉 = Ŝ (ξq) |0〉 = |sq, θq〉

= (sechsq)
1/2

∞∑
n=0

√
(2n)!

n!

{
−1

2
exp (iθq) tanhsq

}n
|2n〉 . (1.78)

Applying the same principle of expanding in a number state basis, we have:

∣∣∣ξ̇q〉 =
˙̂
S (sq, θq) |0〉 =

=
1

2

(
sinh sq · (sechsq)

3/2 · ṡq
)

·
∞∑
n=0

√
(2n)!

n!

{
−1

2
exp (iθq) tanhsq

}n
|2n〉

+

{
− i

2
θ̇q exp (iθq) tanhsq −

1

2
exp (iθq) · sech2sq · ṡq

}
· (sechsq)

1/2
∞∑
n=0

√
(2n)!

n!
n

{
−1

2
exp (iθq) tanhsq

}n−1

|2n〉 . (1.79)

·

Simplifying the equation we obtain:

∣∣∣ξ̇q〉 =
1

2
sinh sq · ṡq · Ŝ (sq, θq) |0〉

+

{
−1

2
iθ̇q exp (iθq) tanhsq −

1

2
exp (iθq) · sech2sq · ṡq

}
b̂†2Ŝ (sq, νq) |0〉 .

(1.80)

The expression for the time derivative |Ṡ2(t)〉 follows from calculation of a deriva-
tive of a product of functions:∣∣∣Ṡ2(t)

〉
=
∑
n

α̇n (t) â†n
∏
q

D̂ (λq) Ŝ (sq, θq) |0〉+

+
∑
n

αn (t) â†n
∑
q

˙̂
D (λq) Ŝ (sq, θq)

∏
k 6=q

D̂ (λk) Ŝ (sk, θk) |0〉

+
∑
n

αn (t) â†n
∑
q

D̂ (λq)
˙̂
S (sq, θq)

∏
k 6=q

D̂ (λk) Ŝ (sk, θk) |0〉 . (1.81)

Referring to the Eqn. 1.40 for the calculation of the derivative of the displacement
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operator applied to the vacuum state, we obtain the kinetic part of the Lagrangian:

K =
∑
n

i

2
{α∗nα̇n − α̇∗nαn}+

i

2

∑
n

|αn|2
∑
q

{(
λ̇qλ

∗
q − c.c.

)
+ iθ̇q sinh2 sq

}
.

(1.82)
Calculating the potential part requires obtaining the expressions for expectation
values of form 〈S2(t)|

(
b̂†q

)m (
b̂q

)n
|S2(t)〉. While it is still a technical part, I would

like to refer to ref.,30 where expectation values of such ladder operator products in
squeezed coherent states are calculated in a general case. The final expression for
the Lagrangian is:

L =
∑
n

i

2
{α∗nα̇n − α̇∗nαn}+

i

2

∑
n

|αn|2
∑
q

{(
λ̇qλ

∗
q − c.c.

)
+ iθ̇q sinh2 sq

}
−
∑
m,n

Jmnα
∗
mαn −

∑
n

|αn|2
∑
q

ωq

(
|λq|2 + sinh2 sq

)
+
∑
n

|αn|2
∑
q

ωqgqn
(
λq + λ∗q

)
− 〈S2(t)|Ĥnonlinear|S2(t)〉. (1.83)

Applying the same procedure of deriving the equations of motion as in previous
subsections we get the following equations of motion without an explicit form of
the nonlinear contribution term:

α̇n = −1

2
αn
∑
q

{(
λ̇qλ

∗
q − c.c.

)
+ iθ̇q sinh2 sq

}
(1.84)

− i
∑
m

Jmnαm − iαn
∑
q

ωq
(
|λq|2 + sinh2 sq

)
+ iαn

∑
q

ωqgqn(λq + λ∗q)

+
∂

∂α∗n
〈S2(t)|Ĥnonlinear|S2(t)〉,

λ̇q = −iωqλq + i
∑
n

|αn|2gqnωq (1.85)

+
∂

∂λ∗q
〈S2(t)|Ĥnonlinear|S2(t)〉,

ṡq = − ∂

∂θq
〈S2(t)|Ĥnonlinear|S2(t)〉 (1.86)
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θ̇q = 2ωq −
1

sinh 2sq

∂

∂sq
〈S2(t)|Ĥnonlinear|S2(t)〉 (1.87)

As can be seen here, the squeezing amplitude stays constant if no nonlinear in-
teractions are present in the Hamiltonian. First, this signifies that the D2 Ansatz
is sufficient to describe linear system-bath interactions. Second, the ground state
propagator (where the nonlinear terms are absent) is significantly simpler, with the
squeezing amplitude in the ground state being sq(t) = const and the squeezing
phase being θq(t) = 2ωqt+ θq(0).

Now adding the specific form of the nonlinear term described by Eq. (1.69), we
calculate the contributions to the equations of motion:

∂

∂α∗n
〈S2(t)|Ĥnonlinear|S2(t)〉 = (1.88)

iαn
∑
q

(
ωe
q − ωg

q

) [(
λ∗q + λq

)2 − cos θq sinh 2sq + cosh 2sq

]
,

∂

∂λ∗q
〈S2(t)|Ĥnonlinear|S2(t)〉 = (1.89)

2i
∑
n

|αn|2
(
ωe
q − ωg

q

) (
λ∗q + λq

)
,

∂

∂θq
〈S2(t)|Ĥnonlinear|S2(t)〉 = (1.90)

4
∑
n

|αn|2
(
ωe
q − ωg

q

)
sin θq,

1

sinh 2sq

∂

∂sq
〈S2(t)|Ĥnonlinear|S2(t)〉 = (1.91)

4
∑
n

|αn|2
(
ωe
q − ωg

q

)
cos θq (coth 2sq + 1) .

The obtained equations of motion with the nonlinear contributions will be used
in Chapter 4 for modeling of nonlinear interactions.

1.7 Observables and optical response of quantum systems

For the spectroscopy simulations presented in this thesis we model the absorption
and emission events using a broad-band optical pulse (ideally of an infinitely small
duration and infinitely broad spectrum). The elementary optical excitation event
(in the sense of perturbation theory) is then realized by acting with the system-field
interaction Hamiltonian, ĤF = d̂ ·E with

d̂ =
∑
n

µn(â†n + ân), (1.92)
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on the electronic ground state leading to the initial excited state

|ΨD2(0)〉 ≡ N−1
∑
n

(µn ·E) â†n|0〉e
∏
q

|λq(0)〉, (1.93)

with E being the electric field vector, µn the site transition dipole vector, N the
normalization of the wavefunction. The direction of the electric field is generated
randomly for each realization to account for an arbitrary orientation. This excitation
defines the initial conditions for the electronic subsystem and takes into account the
orientational properties of the site dipoles.

In this thesis the primary observables of interest are the absorption and time-
resolved fluorescence spectra, the occupation probabilities of individual sites or
groups of sites and the delocalization length of the excitation. The absorption spec-
trum is obtained from the linear response theory by calculating the time-domain
response functions and averaging over the realizations of both the static disorder
and randomly sampled initial conditions for the vibrational states.2 Using the wave-
function approach we have the following form for the linear absorption:37

F abs(ω) = Re

ˆ ∞
−∞

dt eiωt
∑
R

Fabs
R(t), (1.94)

whereFR(t) is the linear optical response function for a single fluctuating trajectory
(realization) R. Using the Davydov D2 Ansatz, it can be explicitly evaluated in
terms of dynamical variables αn, λq (Eqns. 1.84,1.85) as the inner product of a
state evolving in the ground state manifold and a state evolving in the excited state
manifold:

Fabs
R (t) = 〈ΨD2(0)|eiĤBt|ΨD2(t)〉

=
∑
m,n

(µm · µn)α∗m(0)αn(t)

· exp
∑
q

(
eiωqtλ∗q(0)λq(t)

−1

2

[
|λq(0)|2 + |λq(t)|2

])
, (1.95)

with ĤB =
∑

q ωq b̂
†
q b̂q. The time-resolved auxiliary fluorescence optical response

function38 is calculated similarly:

F trf(ω, τ) = Re

ˆ ∞
−∞

dt eiωt
∑
R

F trf
R(t, τ), (1.96)
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where the contribution from a single realization is given by

F trf
R (t, τ) = 〈ΨD2(τ)|d̂eiĤBtd̂|ΨD2(t)〉

= SR ·
∑
m,n

(µm · µn)α∗m(τ)αn(t)

· exp
∑
q

(
eiωq(t−τ)λ∗q(τ)λq(t)

−1

2

[
|λq(τ)|2 + |λq(t)|2

])
, (1.97)

with SR =
∑

n(E · µn)2 being the weight factor for the realization characterizing
its excitation probability. This expression is analogous to absorption except the time
arguments are shifted to allow the partial equilibration in the electronic excited state
for a time period τ .

For the optical response calculations with squeezed coherent states the expres-
sions are slightly more complicated due to the overlap of two squeezed coherent
states. In the case of linear absorption measurements we have

Fabs
R = 〈S2(0)|eiĤBte−iĤt|S2(0)〉

=
∑
m,n

(µm ·E) (µn ·E)α∗m(0)αn(t)

· 〈λ(t), s(t), θ(t)|λ′(t), s′(t), θ′(t)〉, (1.98)

where we denote the electric field polarization vectors of the measurement appara-
tus as E.

The 〈λ(t), s(t), θ(t)|λ′(t), s′(t), θ′(t)〉 term is the vibrational overlap integral for
two distinct squeezed coherent states (writing the squeezing parameter in polar
form), and is expressed as:

〈λ, s, θ|λ′, s′, θ′〉 =
1√
ζ

exp

[
−|λ|

2 + |λ′|2

2
+
λ∗λ′

ζ

+
λ∗2

2ζ

(
e−iθ

′
cosh s · sinh s′ − e−iθ cosh s′ · sinh s

)
+
λ′2

2ζ

(
eiθ cosh s′ · sinh s− eiθ

′
cosh s · sinh s′

)]
, (1.99)

where
ζ = cosh s · cosh s′ − ei(θ

′−θ) sinh s · sinh s′. (1.100)
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Similarly, for the ATRF signal we have the two-time response function as

F trf
R (t, τ) = 〈S2(τ)|d̂eiĤBtd̂|S2(t)〉

〉
(1.101)

=
∑
m,n

1

3
(µm · µn)α∗m(τ)αn(t)

〈λ(t), s(t), θ(t)|λ′(t), s′(t), θ′(t)〉.

One observable of interested used throughout the thesis is the site/exciton occu-
pation probability. It is straightforwardly calculated both in site and excitonic bases
as the diagonal element of the electronic excited state density operator ρ̂mn(t) (de-
fined in Eq. (1.68)), taken either in site or respectively excitonic basis. So for site n
its occupation probability is equal to ρnn(t). Another important set of observables
also follows from the calculated density operators: to investigate the localization
behaviour of the excitonic states we use three quantities. The first one is the exciton
participation ratio which is defined as:

L(t) = 〈

(∑
n

|αn(t)|4
)−1

〉, (1.102)

here angular brackets denote thermal averaging. The second one is the site coher-
ence length:39

L[2](t) =
∑
m6=n

|ρ̂mn(t)|. (1.103)

Similarly, we obtain the third parameter, the excitonic coherence length as

L[2]
e (t) =

∑
m6=n

|ρ̂excmn|, (1.104)

where ρ̂excmn is the density operator in the eigenbasis of the electronic Hamilto-
nian (obtained by a unitary transformation). It represents the quantified amount of
coherence between distinct excitonic states. The density operators are normalized
according to the condition

Trρ̂el = Trρ̂exc = 1. (1.105)

In contrast to staticmodels, all parameters are averages of time-dependent stochas-
tic quantities and include the dynamic disorder. The three definitions become very
important to investigate the effect of finite temperature on exciton delocalization to
isolate the dephasing effects of the thermal environment.



Chapter 2

Formation of excitonic polarons

2.1 Introduction

Electronic excitation in translationally invariant lattices (e. g. molecular crystals)
is usually completely delocalized. However, the molecular excitation induces the
redistribution of the electron density in the molecule and in its local molecular envi-
ronment, which could be solvent molecules in solutions, polymer matrix in films, or
protein surrounding in biological pigment-protein complexes. Such static polariza-
tion field can essentially affect the relationship of coherent superpositions between
themolecular excitations and reshape the exciton states. In the case when the energy
of the induced polarization is large in comparison with the characteristic energy of
intermolecular interactions6,40, 41 the exciton self-trapping process, named the ex-
citonic polaron formation in analogy to the electronic polaron known in crystals, is
expected. The possible appearance of the excitonic polaron states has been revealed
by analyzing absorption and fluorescence spectra of various molecular crystals and
films.42–44 More recently such concepts were applied to polymers45 and photosyn-
thetic pigment-protein complexes.46–48 Polaron formation thus changes the system
states from “free” or infinite radius states to “self-trapped” or finite radius states.
On the other hand, realistic molecular aggregates and polymers often possess a high
degree of conformational disorder and so the excitation is localized to some extent
over several molecules. Thus the excitonic polaron formation in this case does not
change the character of system states completely. However, compared to excitons,
the polarons havemore compact localization, different energies and a reduced band-
width.46,49

Variational methods are often applied to large systems possessing translational
invariance, like molecular crystals. The quantities of interest in these studies are the
polaron ground state energy, the effective bandwidth and the effective mass.50–54

The static polaron properties are obtained, yet the dynamics of polaron formation

41
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are usually ignored. In this chapter, we focus on the dynamical irreversible pic-
ture of polaron formation and analyze how the Brownian environment affects this
process. Hence, the phonons in our treatment represent the overdamped harmonic
bath having a continuous spectral density. To capture the qualitative character of po-
laron formation dynamics starting from an optical exciton in a disordered molecular
aggregate, we perform numerical simulations on the simplest two-site molecular
aggregate (a heterodimer), which exhibits very rich excitation dynamics12,20, 55, 56

despite the small number of sites.
In this chapter we use the D1 Ansatz to construct the general procedure for in-

vestigating the excitation dynamics in systems coupled to the bath. The approach,
described in Chapter 1.3, allows to directly evaluate the full polaronic effective
Hamiltonian, which appears to be a complex-valued matrix hence including damp-
ing effects. Time dependence of the effective coupling is used to define the po-
laron formation timescale and as a guidance to understand distinct system evolution
regimes.

2.2 Model parameters

We use a simple electronic block Hamiltonian (as in Eqn. (1.13)) given by

Ĥs =

(
0 J

J ∆

)
. (2.1)

The values J = −100 cm−1 and ∆ = 100 cm−1 represent realistic molecular ag-
gregates of dyes or photosynthetic complexes. As described in Chapter 1.1, the
excitonic Hamiltonian is obtained from Ĥs by direct diagonalization. Here we as-
sume that each phonon mode is coupled to a single site, and thus fluctuations of site
energies are independent. The quantum overdamped Brownian oscillator model is
used for the environment, with its spectral density function defined as57

C
′′
(ω) =

4Λγ3ω

(ω2 + γ2)
2 . (2.2)

It depends on two characteristic parameters: the reorganization energy Λ and the
characteristic relaxation rate γ. This spectral density implies the exponential decay
(∼ exp(−γt)) of the bath correlation function of environmental fluctuations,6,26

which allows to describe the dephasing and relaxation processes. In order to obtain
different regimes of the evolution we use four distinct cases for the spectral den-
sity function parameters: Markovian environment (fast bath relaxation) with large
reorganization energy

(
γ−1 = 10 fs, Λ = 100 cm−1

)
, Markovian environment with
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Fig. 2.1. Spectral den-
sity functions of the
environment scaled by
the resonant interaction
strength J .

small reorganization energy
(
γ−1 = 10 fs, Λ = 10 cm−1

)
, slow bath with large re-

organization energy
(
γ−1 = 100 fs, Λ = 100 cm−1

)
and slow bath with small re-

organization energy
(
γ−1 = 100 fs, Λ = 10 cm−1

)
. Similar parameters have been

used in simulations of optical spectra of various molecular complexes18,58 and the-
oretical investigations.12,59, 60 All used spectral density functions are shown in
Fig. 2.1. As we will demonstrate further, these cases give distinct qualitative char-
acteristics in the time evolution of the excitons.

The total phonon bandwidth W is chosen depending on the relaxation rate γ
so that the coupling strength of the largest considered frequency g(W ) is taken to
be approximately 1% of the maximum coupling strength gmax. Explicitly in case
of the fast bath the phonon bandwidth was set to 2000 cm−1 and in the case of
slow bath the cutoff frequency was set at 500 cm−1. In order to achieve numerical
convergence in our simulations we used 1000 modes per site, which is sufficient
for our spectral density. In general the number of the modes required to achieve
convergence depends on the shape of the spectral density function, e.g. for the
Debye spectral density12 the required number must be higher because of the slower
coupling strength decay at high frequencies.

For the initial conditions (at t = 0) we set the electronic excitation vector

(
α1

α2

)
as the eigenvector of the electronic Hamiltonian ĤS in site basis corresponding to
the optically prepared higher energy excitonic state, with its amplitudes equal to(
−0.526

0.851

)
. All the initial displacements of the phonons λqn(t = 0) are set to zero

as the bath is in the ground state before excitation. As a reference, for this initial
condition the site populationswould remain stationary if the systemwas not coupled
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to the bath, i.e. gqn = 0. Additionally, when gqn = 0, other initial conditions,
which are not eigenvectors of the bare Hamiltonian (e.g. single site excitation),
would result in quantum oscillations of the site populations (these are known as Rabi
oscillations), arising from the resonant coupling J . When the coupling between the
system and the bath is switched on, the optically prepared eigenvector of the bare
Hamiltonian is no longer a stationary solution and relaxation dynamics of the site
populations of the composite system must take place. In the following we study the
dynamics for several types of the bath.

2.3 Population dynamics

The evolutions of the populations |α2|2 with different bath parameters are shown in
Fig. 2.2, while |α1|2 = 1− |α2|2 follows the from normalization condition. Notice
that in this representation we can discuss the exciton delocalization explicitly: if
|α1|2 = |α2|2 = 0.5, the state is completely delocalized (the populations are dis-
tributed evenly among the sites), while |αn|2 = 1 denotes complete localization.
First, let us consider dynamics with fast (Markovian) bath. In the case of weak
system-bath coupling, the populations of the excited states show small amplitude
oscillations around the initial values, which correspond to a stationary state of the
pure excitonic Hamiltonian. Thus, in this case the bath induced effects on the elec-
tronic system dynamics are minimal. By increasing the reorganization energy, the
amplitude of oscillations increases and oscillations are shifted away from the initial
population lines, thus the excitation becomes more localized. Stronger system-bath
coupling thus leads to self-trapping, or excitonic polaron formation. The remain-
ing Rabi oscillations reflect the coherence between sites, or the existence of a new
polaronic basis, which is delocalized between the sites.
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In the case of a slow bath, the evolution of the electronic populations demon-
strates dynamic decoherence and localization. This self-trapping process is qual-
itatively different from fast reversible oscillations, observed in the case of the fast
bath. The effects of increased system-bath coupling are twofold. First, a stronger
coupling leads to a more localized state. Second, it quenches all oscillatory behav-
ior.

As indicated above, the four cases described above demonstrate that the initial
optically prepared excitonic eigenstate is not the stationary state of the full system
including the environment. However, in the case of weak coupling to the fast bath
the minimal deviations from the pure excitonic case indicate that the purely ex-
citonic picture holds. In all other considered cases we have a qualitative change,
which we denote as the excitonic polaron formation. Its formation dynamics are
very dependent on the bath timescale.

Another observable in the evolution of the system is the total energy of the
phonon field, which can be evaluated as

Eph =
∑
n

|αn|2
∑
q

ωq|λqn|2. (2.3)

As demonstrated in Fig. 2.3 the normalized phonon energy behaves similarly in
all four cases under consideration. Its evolution is determined only by the relaxation
time of the environment and scales linearly with the reorganization energy. Hence,
from the point of view of the environment, all four systems behave identically.
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2.4 Effective Hamiltonian

The equilibrium density operator of excitonic states is not described by the bare
excitonic Boltzmann distribution, since the bath effectively reduces the excitonic
bandwidth.12 Using the present theorywe can introduce the effective systemHamil-
tonian by inspecting the very equations of motion. Our system of interest can be
mapped to an effective two-level system with its electronic Hamiltonian elements
depending on time, i.e., the phonon field being absorbed by the effective system
parameters: site energies and inter-site couplings:

Ĥeff =

(
ε1(t) Jeff (t)

Jeff (t) ε2(t)

)
.

We have the same dynamics of the electronic amplitudes as calculated using the
equations of motion (1.54)-(1.55) when the above matrix is given by :

ε1(t) = −1

2

∑
q

gq1ωq(λq1 + λ∗q1), (2.4)

ε2(t) = −1

2

∑
q

gq2ωq(λq2 + λ∗q2) + ∆, (2.5)

Jeff (t) =
3

2
JS1,2

∑
q

[
|λq1|2 − λ∗q1λq2

]
+J

α∗2α1

α2α∗1
S2,1

∑
q

[
|λq1|2 − λ∗q2λq1

]
. (2.6)

In the present case, where the spectral density is the same for both sites, the differ-
ence ε2(t)− ε1(t) = const, while the effective coupling Jeff (t), shown in Figs. 2.4
and 2.5, determines all characteristics of the dynamics of the electronic amplitudes.
Inspecting closer both the real and the imaginary parts we notice that the full evo-
lution of Jeff consists of a primary envelope governed by the first term in Eq. (2.6)
with the second term determining the rotation around the primary term in the com-
plex plane, dependent on the relative phases of the electronic excitation amplitudes.

The complex-valued effective Hamiltonian is a clear indication of dissipative
phenomena. In the phenomenological description of relaxation, the finite lifetimes
of the states can be often accounted for by adding imaginary parts to the energies
εn → εn + i/τn. The imaginary part of the effective coupling hence contains a
similar time-dependent damping.

The real part of Jeff shows different evolutions for different regimes of parame-
ters (see Fig. 2.4). In the case of the fast bath and weak coupling, its amplitude stays
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approximately the same at all times, while closer inspection reveals a very fast drop
with subsequent stabilization and oscillations (however, the change is only within
0.1%). Increasing the system-bath coupling strength noticeably increases the devi-
ation from the initial value and oscillations. Turning to the case of the slow bath
and weak coupling, the real part of Jeff shows a slow decay without any noticeable
oscillations. However, when the system-bath coupling is stronger, the amplitude of
Jeff drops dramatically with discernible oscillations in this case. Decay of the ef-
fective coupling with the increase of the system-bath coupling qualitatively agrees
with an empirical formula obtained for the Debye bath at finite temperature in ref.12

The imaginary part of Jeff (see Fig. 2.5) adds additional phase factors to the am-
plitudes.

Analysis of the real part of Jeff allows us to explain the different regimes of elec-
tronic population evolutions shown in Fig. 2.2. In the case of the weak coupling to
the fast bath, the real part of Jeff remains almost constant and correspondingly,
the electronic populations remain unaffected. With stronger coupling Jeff drops
by almost 10% and induces some localization. It is also the case with the weak
coupling to the slow bath. When the electronic system is strongly coupled to the
slow bath, the amplitude of the real part of Jeff drops dramatically and, conse-
quently, the electronic amplitudes become more localized than in all other cases
under consideration.

Whether the electronic populations show oscillations or slow relaxation can be
explained considering the rate of change of the effective coupling compared to the
timescale of excitonic coherence oscillations, which given by the reciprocal exci-
tonic bandwidth of the coupled system (

√
4J2 + ∆2 w 220 cm−1 giving a 152 fs

oscillation period in our case). In the case of the fast bath the real part of Jeff
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changes rapidly over a timescale of about 30 fs, thus, the change in the effective
coupling is abrupt compared to the intrinsic frequencies of the wavefunction. This
rapid change generates a “quantum leap” followed by Rabi oscillations with respect
to the "new" system. When the system-bath coupling is weak, this deformation is
vanishing and can be ignored. When the system-bath coupling is strong, the ex-
citonic amplitudes are affected considerably and we can denote the new states as
the coherent polaron states formed in the non-adiabatic regime. On the other hand,
the slow evolution of Jeff caused by long relaxation times of the environment is
on timescales longer than the excitonic coherence oscillations, which leads to an
adiabatic relaxation in the system. Consequently, this is the adiabatic regime of the
excitonic polaron formation, and the resulting polaron is highly incoherent.

The timescale of polaron formation can be obtained from the time that Jeff needs
to stabilize. From Fig. 2.4 we see that in the nonadiabatic polaron formation regime
it is ∼ 100 fs, while in the adiabatic regime it is ∼ 300 fs. The polaron formation
timescale is thus deeply related to the timescale of bath relaxation.

Our results show that the excitonic picture is only then not perturbed when the
bath relaxation is fast and the coupling to the bath is weak. In other case we observe
excitonic polaron formation. The first condition can be quantified by comparing the
reciprocal resonant coupling to the characteristic bath timescale. For the second
condition we should compare the resonant coupling to the reorganization energy.
Note that usually only this condition is considered in the literature,6,41 while this
study shows that the bath timescale is also an important factor in polaron formation
dynamics. It follows from our analysis that the excitonic polaron forms when either
Λ & J or γ−1 > J−1. When the latter condition is satisfied, the excitonic polaron
formation proceeds in the adiabatic regime irrespective of Λ and we obtain the
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incoherent polaron. When γ−1 < J−1 and Λ & J we have the non-adiabatic
polaron formation which leads to the coherent polaron. These findings are fully
consistent with our previous calculations.12

Excitonic polaron formation conditions described above are expressed using two
bath parameters: the reorganization energy Λ and the timescale γ−1. While the for-
mer is a well-defined characteristic, the timescale cannot be unambiguously defined
for an arbitrary spectral density, since the fluctuation correlation function may de-
cay non-exponentially. However, the characteristic timescale of the environment
relaxation could be estimated as61 :

τchr =
1

Λ

∞̂

0

Γ (t) dt. (2.7)

Here Γ (t) is the phonon relaxation function, which can be obtained from fluores-
cence Stokes shift experiments.62 It is related to the spectral density by

Γ (t) =

∞̂

−∞

C ′′ (ω)

ω
cos (ωt)

dω

2π
. (2.8)

For the quantum overdamped Brownian oscillator spectral density function we ob-
tain

τQODchr =
2

γ
. (2.9)

For environments described by other spectral densities one would have to compare
τchr with J−1 when considering polaron formation.

In this work the phonon field is chosen to represent an overdamped environment.
This means it can show relaxation and dephasing dynamics. This is in contrast to
investigations where only a limited number of explicitly chosen phonon modes cor-
responding to specific intra- and/or intermolecular vibrations are considered and the
total system is thus closed. Polaron formation due to high frequency intramolecular
vibrational modes is extensively studied.45,63, 64 Here we show that the Brownian
environment is another source of polaron formation, which should be accounted
even at zero temperature. It is straightforward to add the intra- and/or intermolec-
ular vibrational modes with their respective couplings (Huang-Rhys factors) ex-
plicitly to the continuous environmental spectral density by adding weighted delta
functions at corresponding frequencies, but this is out of scope of this thesis.

Usually, the weak coupling in theMarkovian bath limit is analyzed in the context
of the Redfield relaxation theory,26,65 which is formulated in the purely excitonic ba-
sis. We find that there is no excitonic polaron formation in this regime and, thus, the
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Redfield picture holds perfectly. However, in the case of the slow bath, the Redfield
approach breaks down even in the case of the weak coupling with the bath.66 In light
of our results, this can be explained by the decrease of the effective coupling and
emergence of polaronic states. In the case of the strong system-bath coupling and
weak inter-molecular couplings, the Förster theory should be invoked,67,68 which,
as was recently demonstrated, provides good agreement with exact calculations in
the case of the fast bath.18 However, in the case of the slower bath the Förster theory
provides noticeably faster excitation transfer rates compared to the exact calcula-
tions. The Förster transfer rate between two molecules is proportional to the square
of the inter-molecular resonant coupling. As it is demonstrated here, in the case of
the slow bath, the coupling between the sites is reduced, thus the real transfer rate
should become slower than the one estimated by the Förster theory.

2.5 Conclusions

We have performed simulations of excitonic polaron transition dynamics using a
two-site molecular aggregate. Despite the small size the dimeric system already
shows excitonic effects: excitonic energy splitting and redistribution of transition
dipole moments.6 Moreover, such systems are common in nature. Dimers are typ-
ical constituents of various molecular crystals.69 They are also relevant, because
strong disorder can induce localization of excited states even in translational invari-
ant molecular systems.70,71 Additionally, photosynthetic complexes often contain
dimeric elements. The reaction centers, where charge separation occurs72–75 , con-
tain two very closely interactingmolecules. Dimers are also the simplest aggregates
that can be created artificially. Recently, a series of heterodimers were engineered
in order to study the coherence between the excited states and its spectroscopic sig-
natures.76 Thus, our theory applies to arbitrary molecular aggregates, while our
results are directly useful for studies of small molecular systems with complex ge-
ometry, molecular crystals and aggregates possessing impurities that break transla-
tional invariance.

Polaronic effects should be taken into account when considering the charge trans-
fer (CT) processes in molecular systems. A recent attempt to describe the excitation
dynamics in the reaction center of plant photosystem II showed deviations from ex-
perimental data at short timescales.58 The CT states interact strongly with their
environment,58,77, 78 thus, the system-bath interaction should quench couplings of
the CT states with other CT states, or with excitonic states, especially if the bath is
not Markovian. This should affect system dynamics in two ways. First, the initial
time evolution of the system would be heavily influenced by polaron formation dy-
namics. Second, the quenched coupling should slow down energy or charge transfer
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between the relaxed states. As such, we propose the excitonic polaron formation
mechanism as a viable candidate for the explanation of this discrepancy.

Here we considered only the zero temperature case, hence, our simulated evolu-
tion reveals the lowest energy excitonic polaron state, which is mostly relevant for
exciton trapping.51 Thus the results of this chapter aremost relevant when analyzing
real systems at low temperatures.79 The qualitative agreement with a study done us-
ing a formally exact calculational approach (HEOM),12 where the high temperature
case was considered, means that the main features of excitonic polaron formation
are also valid at higher temperatures. However, the question whether the excitonic
polaron formation makes a significant impact on the observables at higher tempera-
tures still remains, and a more detailed analysis of the temperature effects in polaron
formation dynamics will be the foundation of the next chapter.





Chapter 3

Polaronic effects at finite temperature

3.1 Introduction

Two theoretical schemes are commonly used to represent the limiting cases used for
the description of the excitation evolution in molecular aggregates at finite temper-
ature. Taking the bare exciton states as a perpetual representation of the molecular
aggregate not changeable in the course of time after excitation, the time-resolved ex-
citon evolution is usually attributed to relaxation processes defined by exciton inter-
action with a vibrational bath. This type of behavior is qualitatively easily explained
in terms of the Redfield theoretical scheme. In the case when the intermolecular
interaction is weak compared to the coupling to phonons, the excitation dynamics
are described in the real space site representation and the resonance interaction is
treated perturbatively in terms of the Förster theory. Such type of approximations
are commonly used when trying to model the electronic excitation dynamics. In
realistic molecular aggregates, such as photosynthetic systems, the couplings be-
tween monomers can be of the same order as couplings to vibrations, which makes
the perturbation theory a rough approximation. When there is no small parameter,
the perturbational approaches fail. The simplest approximate treatment is possible
when timescale separation is possible, e. g. when electronic dynamics are fast,
while phonons are slow. The nonlinear Schrödinger equation can then be derived,
which signifies the transformation of excitons into polarons. This can be understood
in terms of a feedback relation between excitons and phonons. When the timescale
separation is unavailable, the time dependence can still be treated approximately up
to the desired accuracy using the variational approaches, where the accuracy solely
depends upon the choice of trial wavefunctions. In these approaches the interaction
between sites and their local phonons may cause non-uniform polarization of the
immediate environment, creating excitonic polarons (as discussed in the previous
chapter).

53
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Performing measurements on molecular aggregates at zero temperature is tech-
nically impossible, and very low temperatures (below 4K) are difficult to achieve
in an experimental setup. The vast majority of the experimental spectroscopic data
exists at either liquid nitrogen temperature (77K) or room temperature (300K). So
formodeling of population dynamics and optical spectra a pure single-wavefunction
approach becomes unsuitable, requiring ensemble-basedmethods, such as the stochas-
tic time-dependent variational approach presented in this thesis. In this chapter we
will first test the validity of the approach in different parameter regimes, and then
proceed to the modeling of dynamics in a real photosynthetic aggregate, the LH2
complex.

3.2 Benchmarking the stochastic time-dependent variational ap-
proach

3.2.1 Introduction

Non-perturbative theories that make no assumptions on the relative strength of in-
teractions have become available in recent decades.7–10 For example, the approach
based on hierarchical equations of motion (HEOM) has been applied to studymodel
systems with various strengths of resonant interactions between molecules and with
the inter- and intra-molecular vibrations.11–15 It has also been used to describe time
resolved spectroscopy experiments.16–21 Nevertheless, exact theories are usually
very expensive computationally, and sometimes limited to rather structureless vi-
brational baths. Therefore in practice their application is often limited. This leads
to a search for alternative non-perturbative theories that could possibly be used in
the intermediate coupling regime.80–82

The application of the TDVA is thus very promising as the method is not per-
turbative, and is not expected to fail for specific ranges of parameters. Moreover,
this approach allows one to keep track of bath degrees of freedom explicitly. This
is of great advantage for nonlinear optical response function calculations, as corre-
lations between different time intervals of the free system propagation without the
optical field are accounted for. In comparison, when using reduced master equation
based approaches, each time interval of the response function is described by an in-
dependent equation and dynamics in all time intervals become uncorrelated.83,84

Previously, the validity of the TDVA was examined for the zero temperature case.85

The approach was extended (called sTDVA for stochastic TDVA) to include the fi-
nite temperature case via stochastic sampling of the initial conditions, as described
in section 1.5 of the thesis. This opened a possibility for a direct comparison with
exact methods over a wide parameter range, which is the goal of the present study.
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Here, we present a systematic comparison of the excitation dynamics obtained
with sTDVA for different interaction parameters and temperatures with the exact
HEOM approach. First, we compare population evolutions for a molecular dimer
in three parameter regimes: when the resonant coupling is small, when the interac-
tion with the vibrations is small, and when both parameters are of similar strength.
We also calculate absorption and auxiliary time resolved fluorescence spectra38 to
determine whether the sTDVA can reproduce accurate spectral lineshapes.

3.2.2 Model parameters

We used a heterodimer as the model system, with the electronic Hamiltonian as
follows:

Ĥel =

(
0 J

J ∆

)
. (3.1)

The state energies are assumed to be shifted by an optical energy gap which is
not important for our calculations. The three used sets of parameters were chosen
to represent either the weak system-bath coupling regime (a), with reorganization
energy much smaller than the inter-site resonant coupling, the weak resonant cou-
pling regime (b), when the resonant coupling is small in comparison to the reor-
ganization energy, or the intermediate regime (c) when both parameters are equal.
The exact values that we used for modeling are a) J = 100 cm−1, Λ = 20 cm−1,
b) J = 20 cm−1, Λ = 100 cm−1, c) J = 100 cm−1, Λ = 100 cm−1. The en-
ergy gap ∆ was set equal to 100 cm−1. We fixed the bath correlation timescale to
γ−1 = 100 fs. These parameters are similar to those of realistic pigment-protein
complexes,6 and a similar set of parameters was used in the previous chapter. The
initial condition for the electronic subsystem state was chosen as

ρ̂(0) =

(
0 0

0 1

)
, (3.2)

which corresponds to only the higher energy site being excited at the initial time.
This initial condition was used in both population evolution and auxiliary TRF
spectra calculations, while for the linear absorption calculation we set the initial
condition as described in subsection 3.2.4 .

The functional form of the spectral density function depends on the model for
the environmental fluctuations. Here we apply the widely used overdamped Brow-
nian oscillator model,37 which corresponds to the Drude-Lorentz spectral density
function:

C
′′

n(ω) =
2Λnγnω

γ2
n + ω2

. (3.3)
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It is different from the spectral density function described in the previous chapter
due to requirements of the HEOM approach used for benchmarking. The param-
eters related to discretization of the spectral density function were as follows: the
number of modesQ = 4000 (2000 per site) the bandwidthW = 3000 cm−1 and the
minimum frequency ω0 = 0.001 cm−1. The observables were averaged over 10000
stochastic realizations, which is the number sufficient for convergence at 300K tem-
perature in the strong system-bath coupling case. For lower temperatures the results
converge with less realizations.

To describe the interaction with the optical field we add a system-field interaction
term to the Hamiltonian

ĤF = −d̂ ·E(t)

= −
∑
n

(µn · o)E(t)
(
â†n + ân

)
. (3.4)

Here d̂ is the dipole moment operator, µn is the transition dipole vector for site
n, o is the polarization vector of the optical field and E(t) is the time-dependent
electric field amplitude. We selected the site transition dipole moment vectors as
having an identical magnitude. In absorption calculations we selected them to be
parallel to each other: µ1 = (1, 0, 0), µ2 = (1, 0, 0), and in auxiliary TRF calcula-
tions they were set perpendicular to each other: µ1 = (1, 0, 0), µ2 = (0, 1, 0) for
demonstration purposes: setting the dipoles perpendicular allows for better visual
identification of energy transfer in the corresponding spectra.

3.2.3 Hierarchical equations of motion approach

In this subsection we give a short overview of the hierarchical equations of motion
(HEOM) approach used for benchmarking. HEOM approach is a non-perturbative
method to calculate the electronic excitation dynamics and the optical response
functions.7,86, 87 The main idea of this method is to replace the reduced density op-
erator ρ̂ by a set of auxiliary density operators (ADOs) ρ̂n (here n = {n10, . . . , n1K ;

. . . ;nN0 . . . , nNK} is a set of indices) and expand the bath correlation function into
exponential functions18,60 as

Cn (t) =
K∑
k=0

cnke
−γnkt + ∆nKδ (t) . (3.5)
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The ADOwith indices all equal to zero (0) represents the reduced density operator.
The HEOM then read as:60

d

dt
ρ̂n = −i

[
Ĥel, ρ̂n

]
−
∑
m

K∑
k

γmknmkρ̂n

−
∑
m

∆mK

2
[|m〉〈m|, [|m〉〈m|, ρ̂n]]

+ i
∑
m

K∑
k

nmk

(
cmk|m〉〈m|ρ̂n−mk

− c∗mkρ̂n−mk
|m〉〈m|

)
+ i
∑
m

K∑
k

[
|m〉〈m|, ρ̂n+

mk

]
. (3.6)

Here

n±mk = {n10, . . . , n1K ; . . . ;nm0, . . . , nmk ± 1, . . . , nmK ; . . . ;nN0, . . . , nNK}.
(3.7)

The coefficients ∆mK , γmk and cmk for the spectral density defined in Eq. 3.3 can
be taken from, e. g.18

The tier of ADO is defined asL =
∑N

m

∑K
k nmk.The hierarchy is then truncated

in two dimensions - first, by limiting the number of exponential functions K in
the expansion (Eq. (3.5)), and, second, by limiting the maximum tier L of ADOs
included in calculations. In all our calculations both these parameters were chosen
such that convergence was achieved.

3.2.4 Absorption spectra

For calculation of linear absorption spectra using the sTDVA approach we com-
pletely follow the methodology described in chapter 1.7. To set the initial condi-
tions we have used the Ansatz e−iĤtµ̂|0〉 = |ΨD2(t)〉, with

αn (0) = (µn · o) /

√∑
m

(µm · o)
2
. (3.8)

Orientational averaging is performed by a Monte Carlo procedure: we generate
randomly oriented electric field polarization vectors of unit magnitude o, and thus
obtain (µm · o). The averaging is then done at the same time as the ensemble aver-
aging of realizations. The ensemble- and orientationally-averaged response func-
tion is then given by

Rabs(t) =
〈
Rabs(t)(R)

〉
R,or

. (3.9)
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The calculation of the linear response function using the HEOM approach was
described in ref.11 Briefly, we start by taking ρ̂0 (0) = |0〉〈0| and ρ̂n6=0 (0) = 0 as
the initial condition. We multiply ρ̂n from the left by the polarization operator µ̂,
which is equal to

µ̂ =
∑
l

µl (|l〉〈0|+ |0〉〈l|) . (3.10)

We then obtain
µ̂ρ̂n (0) =

∑
l

µl|l〉〈0|ρ̂n (0) , (3.11)

using the fact that that ρ̂n (0) has nonzero elements only for the ground state. We
introduce a shorthand notation for the product of site state projectors and the density
operators as: |a〉〈b|ρ̂n (τ) = ρ̂n (ab, τ) and ρ̂n (τ) |a〉〈b| = ρ̂n (τ, ab). Using this
notation the linear response function is expressed as

Rabs (t) =
∑
m

∑
l

〈(µm · o) (µl · o)〉orρ
0
m0 (l0, 0; t)

=
∑
m

∑
l

1

3
(µm · µl) ρ

0
m0 (l0, 0; t) . (3.12)

The factor 1
3 arises from the orientational averaging of themolecular system.88 Note

that only the reduced density operator and not the rest of ADOs contribute to the
observable response function.

3.2.5 Time-resolved fluorescence spectra

The time-resolved fluorescence (TRF) experiment is characterized by four inter-
actions between the system and the optical field, with the first two being with the
incoming laser pulse creating an optical excitation and the later two being the vac-
uum fluctuations leading to spontaneous emission.12,37, 38, 89 From the theoretical
point of view, the TRF spectrum is obtained by a convolution of the optical response
function of the system with the response function of the instrument. Under the as-
sumption of instantaneous excitation, all the information about the system available
from the TRF experiment is contained in the system response functionRTRF (t, τ).
Since the convolution hides some information, we will follow ref.38 and calculate
auxiliary TRF spectra defined as :

F (ω, τ) = Re

ˆ ∞
0

dt eiωtRTRF(t, τ). (3.13)

In addition, in this case we simplify the model even further by factorizing out the
first two interactions corresponding to the excitation process completely by setting
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an explicit initial excited state for the system. The optical response function in the
density operator formalism is then given as

RTRF(t, τ) =
〈

Tr
{
d̂ exp

(
−iĤt

)
exp

(
−iĤτ

)
ρ̂(0)ρ̂ph(0)

· exp
(

iĤτ
)
d̂ exp

(
iĤt
)}〉

or
. (3.14)

For sTDVA the response function is calculated exactly as in chapter 1.7. In this
particular case the single-realization optical response function is given in terms of
the variational parameters as

RTRF(t, τ)(R) =
〈
〈ΨD2(τ)|d̂eiHBtd̂|ΨD2(t)〉

〉
or

=
∑
m,n

1

3
(µm · µn)α∗m(τ)αn(t)

· exp
∑
q

(
eiωq(t−τ)λ∗q(τ)λq(t)

− 1

2

[
|λq(τ)|2 + |λq(t)|2

])
. (3.15)

The ensemble averaging is then performed numerically in the same way as for the
linear response.

Calculation of the nonlinear response functions using the HEOM approach for-
mally requires an introduction of somewhat abstract concepts as theHEOMspace,60

which are beyond the scope of this thesis. Nevertheless, the required steps can be
explained rather simply as follows, having in mind Eq. (3.14). First, we propagate
the HEOM for time τ using the initial condition ρ̂0 (0) = ρ̂ (0) and ρ̂n6=0 (0) = 0

to obtain ρ̂n (τ). Here ρ̂ (0) is the chosen initial electronic density operator of
the primary excited state. Then we multiply it from the right by µ̂ and obtain
ρ̂n (τ) µ̂ =

∑
l µlρ̂n (τ) |l〉〈0| =

∑
l µlρ̂n (τ, l0) . Next we propagate the HEOM

for time t using the initial condition ρ̂n (τ, l0), and obtain ρ̂n (τ, l0; t). Using the
matrix element ρn0m (τ, l0; t) = 〈0|ρ̂n (τ, l0; t) |m〉 we can write the response func-
tion as

R (t, τ) =
∑
l

∑
m

〈(µm · o) (µl · o)〉orρ
0
0m (τ, l0; t)

=
∑
l

∑
m

1

3
(µm · µl) ρ00m (τ, l0; t) . (3.16)
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Fig. 3.1. Comparison of population dynamics of a heterodimer system in weak
system-bath coupling regime, calculated with sTDVA and HEOM approaches

3.2.6 Results

First we show the population evolutions obtained with the sTDVA and HEOM ap-
proaches for five different temperatures. The evolutions in site and exciton bases
are shown in Figs. 3.1, 3.2, and 3.3. Every figure shows the population of either
the higher energy site or the higher energy exciton, and the populations of the lower
energy site/exciton follow from the condition

∑
n ρnn = 1.

Let us consider the weak system-bath coupling regime. For early times (t >

50 fs) the populations in both bases match exactly between the sTDVA and the
HEOM methods (see Fig. 3.1a), which also applies to other regimes. At later
times, the HEOM approach displays a faster decay of coherences (the off-diagonal
elements of the reduced density operator) and faster population transfer (between
the diagonal elements of the density operator). The qualitative behavior of both
approaches is similar, with the frequency of the coherent oscillations coinciding.
The agreement is better at higher temperatures, with the sTDVA approach showing
similar timescales for the coherence decay, but the population transfer rate is still
somewhat lower than the one obtained with HEOM.

Now let us turn to the weak resonant coupling regime. Considering first the site
basis (Fig. 3.2a), the agreement between the sTDVA and HEOM populations at low
temperatures is worse than in the weak system-bath coupling regime. Although for
early times the evolutions still coincide identically, the sTDVA approach predicts
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Fig. 3.2. Comparison of population dynamics of a heterodimer system in weak
resonant coupling regime, calculated with sTDVA and HEOM approaches

faster energy transfer during the first 500 fs of the evolution and slower energy
transfer on later times, with the kinetics being non-exponential. At higher temper-
atures the results obtained with both approaches coincide almost exactly. Since the
resonant coupling is weak, results in the excitonic basis (Fig. 3.2b) are not much
different from the site basis.

In the case of the intermediate regime (Fig. 3.3a and Fig. 3.3b) a slower coher-
ence decay is obtained by the sTDVA at low temperatures, though the population
transfer rate is similar. At higher temperatures the timescales of coherence decay
start to coincide, but the energy transfer rate is slightly lower in the sTDVA case,
though the difference in all cases is less pronounced than in the weak system-bath
coupling regime. The asymptotic population is slightly higher in the sTDVA case
at higher temperatures. Overall, the agreement between the two approaches is rea-
sonable.

The calculated absorption spectra corresponding to the intermediate regime are
presented in Fig. 3.4. The lineshapes obtained with the two approaches are quali-
tatively very similar, displaying perfect match at higher temperatures. The sTDVA
approach generally predicts a slightly lower intensity of the lower energy peak at all
temperatures. The corresponding absorption spectra for the two other regimes (not
shown) display a similar agreement. The population dynamics match exactly for
the first 50 fs, and this is approximately the decay timescale of the linear response
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Fig. 3.3. Comparison of population dynamics of a heterodimer system in interme-
diatecoupling regime, calculated with sTDVA and HEOM approaches
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Fig. 3.4. Linear absorption spectra for in-
termediate coupling regime.

function, which is relevant for absorption spectra. The auxiliary time-resolved fluo-
rescence spectra at 150 K demonstrate poor agreement between the two methods in
the weak system bath coupling case (see Fig. 3.5a). Though the agreement between
the spectral lineshapes is good, the effect of the slower energy transfer is very no-
ticeable in this case as the time evolution of peak intensities follows the populations
of the excitonic states. Indeed, the peak intensities given by the sTDVA at 1000 fs
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Fig. 3.5. Auxiliary time-resolved fluorescence spectra at T = 150K .
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Fig. 3.6. Auxiliary time-resolved fluores-
cence spectrum at T = 150K in interme-
diate regime

are similar to the intensities given by the HEOM at 400 fs. On the other hand, in
the weak resonant coupling regime (see Fig. 3.5b) the spectra coincide nearly iden-
tically, with the only difference being slightly slower bath reorganization. In the
intermediate regime (see the Fig. 3.6) the difference between the two methods is
minor, displaying slightly slower transfer replicating the population dynamics. The
redshifts and spectral broadening coincide using both approaches.

3.2.7 Summary of the accuracy study

From the three different sets of parameters that were examined, we conclude that
the sTDVA gives better agreement with the HEOM when the system-bath coupling
is large and the resonant coupling is small. These results are in a qualitative agree-
ment with the results corresponding to the zero temperature case.85 The error in
populations from sTDVA comes from underestimating the rate of energy transfer.
Additionally, we have found that the agreement between the two methods becomes
better for higher temperatures. This is somewhat surprising, as the D2 Ansatz as-
sumes that the phonon modes are described as coherent states, which are an exact
representation of a harmonic oscillator in the ground electronic state. The wave-
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functions of low energy oscillator states, that are important at low temperatures,
have high overlap with the ground state wavefunction, and thus should be repre-
sented accurately. On the other hand, at lower temperatures the low frequency part
of the spectral density becomes critical, and, as discussed below, the specific form
of the spectral density might be responsible for the differences between the two
methods.

Our results show that the sTDVA gives considerably longer lasting oscillations of
site populations in the weak system-bath coupling regime. In principle, they reflect
the Rabi oscillations, arising because the initial condition for propagation does not
correspond to an eigenstate of the system Hamiltonian. It is noteworthy that these
longer oscillations are less evident in the excitonic basis. This means that the errors
of site coherences and populations add up in such a way that excitonic populations
given by the sTDVA are closer to the ones given by the HEOM.

The spectral density is chosen according to the demands of the HEOM calcula-
tions (Eq. (3.3)). Nevertheless, this spectral density has several issues, which are
as follows. First, the relatively slow decay for larger frequencies implies that a rela-
tively large number of modes has to be included when using the sTDVA approach,
which slows down the calculations. Moreover, the behavior of this spectral density
for low frequencies is proportional to the frequency ω, which means that the total
Huang-Rhys factor defined as

∑
q g

2
q =
´∞

0 dω C ′′ (ω) /πω2 diverges for this spec-
tral density. Therefore, the minimum frequency ω0 cannot be set to an arbitrary low
value and the spacing between the mode frequencies cannot be made too small, to
avoid numerical instabilities. In case of the continuous spectral density, the min-
imum frequency should be arbitrarily small. As discussed in ref.,90 two spectral
densities that differ minimally in the small frequency range may nevertheless give
somewhat different results, especially at lower temperature. This might explain the
worse agreement between the sTDVA and HEOM at lower temperatures.

We should also emphasize that the equations of motion for the sTDVA with the
D2 Ansatz preserve the norm of the wavefunction. Therefore, physical solutions
(populations are nonnegative and sum up to 1 in all bases) at all times are guaran-
teed. This is a considerable advantage of this approach. Conversely, the evolutions
for all considered parameter regimes obtained using the second order quantummas-
ter equation (usually termed as the Redfield equation) give negative populations at
lower temperatures (not shown), even when the system-bath coupling is small. This
is because the Redfield approach relies not only on the weak system-bath coupling,
but also on theMarkov approximation, which requires a short bath correlation time.
The decay timescale of the bath correlations chosen in this work (γ−1 = 100 fs) is
too slow for the Redfield equation to be accurate. In cases like these, the secular ap-
proximation is often employed, but then the relation between excitonic coherences
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and populations is lost. In contrast, in the sTDVA the bath degrees of freedom are
included explicitly, and this automatically accounts for memory effects.

From both calculations of the absorption and auxiliary TRF spectra, it follows
that the sTDVA accurately reproduces the spectral lineshapes for all considered
parameter regimes. As demonstrated in our recent publication,15 it is most impor-
tant to correctly capture the initial part of the relevant response function. Since
the sTDVA accurately reproduces the initial part of the population dynamics, this
means that the initial part of the response function should also be reproduced well.
We also note that the response functions calculated in terms of the sTDVA include
the coherence transfer effects, which is somewhat difficult to do in approaches based
on the cumulant expansion approach.91

The calculation of nonlinear response functions is required for simulations of
nonlinear spectroscopy experiments. Theoretically, it is a very complicated prob-
lem, as it requires to keep track of the correlations between distinct time inter-
vals.83,84 Approaches that use a reduced description by tracing out the bath degrees
of freedom are difficult to apply for this problem. As the sTDVA allows to explic-
itly account for the bath degrees of freedom, it holds a great promise for nonlinear
response function calculations. Our calculated auxiliary TRF spectra show that the
spectral lineshapes are reproduced accurately with this approach, and the difference
from the exact results are only due to somewhat slower energy transfer. Therefore,
the sTDVA should be considered as a suitable method for simulations of other non-
linear spectroscopy experiments, such as two-dimensional electronic spectroscopy,
especially in the intermediate coupling regime.

The accuracy of the TDVA with Davydov Ansatze as trial wavefunctions was
previously examined for the zero temperature case.85 To the best of our knowledge,
our work is the first systematic exploration of the sTDVA with a finite temperature
taken into consideration. While finite temperature was included in calculations of
refs.,92–94 that was done via a secondary bath, that was not treated on equal footing
with the primary bath. The sTDVA, introduced in ref.2 and analyzed in detail here,
does not require any secondary bath and allows to treat both high and low frequency
phonons on the same level, explicitly tracking the degrees of freedom. We must
highlight another key difference between earlier contributions and the present work.
In refs.35,85, 92–94 it was assumed that the phonons couple to each site non-locally.
Therefore, the site energy fluctuations were totally correlated, and no incoherent
energy transfer was possible. Conversely, the model presented here assumes local
coupling between phonons and sites. This is more in line with, e. g., photosynthetic
complexes, as it was demonstrated that the site energy fluctuation correlations can
often be neglected in this case.95,96

The Davydov Ansatze are often used to describe polaron dynamics, thus we
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would like to make a few comments on the relation of the present approach with
that of small polaron transformation. First, we must note that the polaron trans-
formation by itself corresponds only to the transformation of the Hamiltonian,97

thus it reflects static properties, not dynamical ones, and as such it cannot be easily
compared to the sTDVAwith the Davydov Ansatze. The variational procedure with
Anzatze similar to the D2 could be used for determination of polaron ground state
energy and other properties,50 but again this reflects static properties. Nonetheless,
the polaron transformation can be combined with perturbation theory to yield a
polaronic quantum master equation.80 Then one gets an equation for the reduced
density operator of an open quantum system, and this differs in principle with the
wavefunction (of a closed system) approach presented here.

The sTDVA, as it is constructed, can work with any trial wavefunction. In prin-
ciple, the more complicated the wavefunction with more degrees of freedom, the
less deviation from the exact results should be obtained. Even though here we use
the Davydov D2 Ansatz, other Ansatze, such as the more complicated Davydov
D1 Ansatz, are possible as well. The only requirement is that the chosen Ansatz
must allow for a consistent procedure of sampling the initial conditions, i.e. it must
be possible to find a generalized probability distribution for the thermal state in
the basis constructed with the Ansatz functions. It was recently shown that for a
molecular crystal model, the usage of theD2 Ansatz with higher multiplicity greatly
increased the accuracy of the solution in the zero temperature case.94 The multi-D1

Ansatz applied to the traditional spin-boson model was shown to improve numer-
ical accuracy by a large factor,98 and a generalized coherent state Ansatz provides
similarly accurate results in the zero-temperature case for a model excitonic polaron
system.99

Although the sTDVA approach requires averaging over stochastic realizations,
whichmassively increases the computation time in comparison to the zero-temperature
case, with theD2 Ansatz, the scaling of the computational effort is quadratic in the
number of the system sites and linear in the number of considered modes, band-
width and propagation time. This makes it completely feasible to apply for large
molecular complexes, as shown in ref.2 Since the averaging is performed over com-
pletely independent realizations, the approach takes full advantage of parallel com-
puting techniques and is very suitable for running on supercomputers.

3.3 Variational study of the LH2 aggregate

3.3.1 Introduction

One of the basic light harvesting agents in studies of photosynthesis is the LH2,
the peripheral light harvesting complex of purple bacteria.100,101 The complex
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demonstrates outstandingly high circular symmetry and the atomic structure ob-
tained by X-ray crystallography102 is known for two bacteria species: Rhodospiril-
lum molischianum103 and Rhodopseudomonas acidophila73,104 (now Rhodoblastus
acidophilus105). The latter complex consists of 27 bacteriochlorophyll (BChl) a
pigments bound to a protein matrix and arranged in two concentric C9-symmetry
rings: one having 9 pigments and the other 18. The complex has two prominent
absorption bands at 800nm and 850nm at room temperature. The rings are com-
monly associated with these absorption peaks and named correspondingly to their
absorption maxima (in nanometers) as B800 and B850. The 9 Bchl a pigments that
compose the B800 ring are weakly interacting, and the B850 ring is grouped into 9
strongly interacting heterodimeric pairs of Bchl a pigments.49,106–111 The lowest-
energy optical transition of isolated Bchl a pigments shows a peak approximately
at 770nm (dependent on the solvent), and the large shift in transition frequency
of LH2 is caused by the excitonic splitting and the reorganization of the local en-
vironment. The Frenkel exciton model has been successful to explain absorption
spectroscopy101,112,113 as well as ultrafast dephasing in two dimensional coherent
spectroscopy experiments114–117 showing the relevance of a k-band electronic struc-
ture.72,77, 118–120 However, the temperature dependencies of the spectra require to
include dichotomous corrections,121,122 ormore complex anharmonic phonon prop-
erties.117 Simulations of the experimental emission spectra of LH2 suggested that
the exciton model is not enough to explain the broadening of the lowest exciton
state and the temperature dependence of the fluorescence lifetime. Exciton self-
trapping in the B850 ring has been suggested to explain the effects.49,123,124 The
same concept of exciton self-trapping has been used to explain the experimental data
on site-selective spectra46 and single-complex fluorescence excitation and emission
spectra in various pigment-protein complexes.125

However, the polaronic effects are not trivial to confirm at ambient temperature
because superpositions of states are in play. It has been shown in ref.12 that the
off-diagonal elements of the density matrix not decaying to zero asymptotically
corresponds to a non-optimal choice of representation (quantum mechanical basis
set). According to statistical physics the thermal equilibrium density operator in
the global eigenstate basis is necessarily diagonal, i. e. the off-diagonal elements
of the density matrix are zero. The search for polaronic effects then corresponds
to the search of the global eigenbasis (also known as the pointer basis set of the
system undergoing decoherence)126,127 and comparing it to the excitonic basis. The
excitonic polaron picture has been demonstrated to be relevant in the case of an
overdamped phonon bath at an arbitrary temperature in a model system.1,12

In the following sections we describe excitation dynamics and trapping in the
strongly coupled B850 ring of the LH2 aggregate utilizing the sTDVA approach.
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The exciton wave-like propagation, the self-trapping and delocalization effects in
this ring are obtained and characterized via simulations of excitation relaxation dy-
namics together with linear absorption / fluorescence spectra.

3.3.2 Model parameters

We choose to investigate separately the absorption spectrum of the full LH2 system,
and then focus on the excitation dynamics and TRF spectra of the B850 ring. The
site energy and coupling matrix is used as it is described in ref.113,117 Addition-
ally we average energies of identical pigments: B800, α-B850, and β-B850; where
α-B850 and β-B850 refer to the pigments bound to the α (outer) and β (inner)
transmembrane proteins of the LH2 complex, respectively. In the model the site
energies of the α-B850 pigments are about 310 cm−1 higher than those of β-B850.
The site-dependent conformational disorder δn was generated according to a Gaus-
sian distribution with standard deviations σB800 = 60 cm−1, σB850 = 220 cm−1,
where σB800 is the value for every pigment belonging to the B800 ring, and σB850

for every pigment belonging to the B850 ring.
The form for the spectral density function was chosen as a sum of Ohmic and

super-Ohmic spectral densities to correctly account for the low-frequency behaviour,128

which is the most relevant for intra-ring energy transfer. The parameters are as-
sumed from comparison to experimental absorption lineshape studies:47

C
′′

n(ω) =
2∑
i=1

ωi+1e
− ω

ωc,i
αi

ωic,i (i+ 1)!
. (3.17)

Here ωc,1 = 50 cm−1, ωc,2 = 15 cm−1, α1 = 1, α2 = 2. ΛB800 = 45 cm−1,

ΛB850 = 135 cm−1 denote the reorganization energies (Eqn. (1.22)) of pigments
belonging to the B800 and B850 rings, respectively. We must note that the chosen
form of spectral density function with the specified parameters does not account
for the inter-ring energy transfer processes, since the spectral density approaches
zero at frequencies that correspond to the energy gaps between the B800 and the
B850 excitons. Additional high frequency modes may be necessary for the inter-
ring relaxation.129

For simulations, the vibrational modes of each site are defined by uniformly dis-
cretizing the spectral density function with a frequency step ∆ω in the frequency
range (0,W ], where W = ∆ωQsite is the bandwidth. W should be chosen to be
larger than all relevant vibrational frequencies of the system (essentially it should
match the frequency of the highest vibrational mode which is coupled to the elec-
tronic states strongly enough to influence its dynamics), while the minimum fre-
quency interval ∆ω defines a recurrence timescale equal to 2π/∆ω. In general
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the latter should be larger than an arbitrary timescale of interest in the system dy-
namics. The phonon bandwidth (cutoff parameterW ) was set to 425 cm−1, while
Qsite = 200 and consequently ∆ω = 2.125 cm−1. The coupling strengths are as-
signed using Eqn. (1.21): g2

qn ∝ C
′′

n(ωq)/ω
2
q . The sign of gqn remains arbitrary,

so we keep it positive, while the values are normalized using the definition of the
reorganization energy (Eqn. (1.22)). Every simulation is averaged over 25000 re-
alizations of static disorder and initial conditions for the vibrational states.

3.3.3 Population dynamics and spectra

The set of parameters for the electronic block of the Hamiltonian and the transition
dipole moments is directly taken from refs.,113,117 and here we did not perform any
additional fitting of the model parameters to experimental spectra. Thus, the direct
comparison between the simulation results can be performed. We first calculate
the linear polarization and the corresponding absorption spectrum of the full LH2
complex. Using the Eqn. (1.94), we calculate the dynamics of the system and
construct the time-domain optical response function for the ensemble. It decays
rapidly on a timescale of ∼200 fs, so only the initial femtosecond dephasing and
energy transfer processes contribute to the absorption spectrum of the system, with
later times being relevant only to other spectral signals (such as fluorescence). The
absorption spectrum at T = 100 K (Fig. 3.7) reveals the expected double-peak
structure with peaks at∼11600 cm−1 and∼12500 cm−1 (see ref.111,113,117,130). The
lineshapes and the peak heights calculated using the present variational approach
closely match the previous simulations (these were fitted to experiment), which
demonstrates that both the Redfield or the present variational simulation approaches
do describe the complexity of the excitation dynamics relevant to the absorption
process. Consequently, the set of parameters is sufficiently accurate to describe the
absorption process.

The electronic excitation causes energy relaxation within the aggregate through
both electronic and vibrational degrees of freedom. In the following we proceed
to simulate the dynamics in the B850 ring and do not consider the B800. The
B850 ring is relevant for the fluorescence process since only B850 is emitting at
long times. Additionally, the excitation dynamics in B850 fall into a regime where
excitonic interaction as well as static and dynamic disorder are of comparable mag-
nitudes. Thus, the excitation dynamics is expected to involve complex polaronic
effects.

The population dynamics of the B850 ring, shown in Fig. 3.8, demonstrate a
number of expected phenomena in this kind of model, namely energy redistribution
among the dimeric subunits of the ring consistent with the kinetic relaxation scheme
and decaying coherent oscillations which can be observed throughout the first 100
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Fig. 3.7. Absorp-
tion spectrum of the
full LH2 system at
T = 100 K, calculated
with sTDVA approach
and with Redfield
approach.117

fs of evolution.

At all temperatures the duration of the coherent oscillations stays roughly the
same, which implies that the dephasing process is dominated by the static disor-
der instead of the thermal effects. To further reinforce the statement we simulate
the dynamics at 100K temperature without the static conformational disorder (Fig.
3.9). As can be seen, in this case, the coherent oscillations persist up until 500 fs
implying that the coherent processes last much longer in a single B850 ring vs. the
disordered ensemble. Additionally notice that the final populations weakly depend
on the temperature and on the static disorder. Hence, they must be determined by
the energy splitting between various sites and by the intermolecular couplings.

Even though the electronic site populations become quasistationary after 100 fs
(with static disorder) or 500 fs (without static disorder), the relaxation process con-
tinues due to the evolution of the phase relationships. This is demonstrated by plot-
ting the populations in the excitonic picture (Fig. 3.10). For the symmetric circular
aggregate the lowest energy excitonic state is denoted by quasimomentum k = 0,
while next two excitonic states are degenerate with k = ±1. We recover this result
when static disorder is not included. From Fig. 3.10 follows that the evolution to-
wards a thermally equilibrated state continues to 2 ps, with the excitonic populations
approaching a Boltzmann distribution. For comparison, at T = 100 K, kBT ≈ 70

cm−1 and the energy gap between the apparent k = 0 and k = ±1 states is equal
to ∆k=0,k=±1 = 108 cm−1. With Boltzmann distribution, exp(

−∆k=0,k=±1

kBT
) ≈ 0.21

which is consistent with the observed asymptotic distributions of the excitonic pop-
ulations and the excitonic picture (with the second highest excited state populations
having approximately the value 0.2). The inclusion of static disorder lifts the degen-
eracy between k = +1 and k = −1 states, also slightly slowing down the relaxation



3.3. Variational study of the LH2 aggregate 71

Fig. 3.8. Time dependences of site populations of B850 ring at various temperature,
averaged over static disorder and thermal fluctuations. Different lines represent
excitation populations at various sites, |αn(t)|2 (18 lines totally).

Fig. 3.9. Time dependences of site pop-
ulations of B850 ring at 100 K temper-
ature, averaged over thermal fluctuations
without static disorder. Different lines
represent excitation populations at vari-
ous sites, |αn(t)|2 (18 lines totally).



72 3. Polaronic effects at finite temperature

(a) With static disorder (b)Without static disorder

Fig. 3.10. Time dependences of excitonic populations as a function of time at
T = 100 K. We specifically mark the three lowest energy states (labeled by their
quasimomentum k in order of increasing energy), the rest of the lines correspond
to higher energy states.

process. Higher energy degenerate states k = ±2, 3 . . . are similarly split. With the
degeneracy lifted we denote the lower and higher energy states correspondingly as
k = 1−, 2−, . . . for the lower energy states and k = 1+, 2+, . . . for the higher en-
ergy states. Note that without static disorder we observe a slow redistribution of
populations in the interval from 1 to 2 ps when the population of the lowest en-
ergy excitonic state slightly decreases. This effect implies slow reorganization of
excitonic energies which hints on the transition to polaronic states.

Since the polaronic effects seem to appear at a ∼1 ps timescale, auxiliary time-
resolved fluorescence (TRF) spectra38 allow us to probe the spectral relaxation dy-
namics of the system including the complex interplay between the electronic and
the vibrational degrees of freedom in these timescales. The results at four values
of temperature are presented in Fig. 3.11. We normalize each of the lines to the
maximum of the spectrum at t = 0.

Some of the features already evident from the site/exciton populations can be
seen in the spectra. First, the spectral line at low (20, 50 K) temperatures show fine
structure of excitonic bands. At the high temperature of 300 K the homogeneous
broadening becomes larger and the excitonic bands become hidden. Second, the
decay time of the absolute intensity of the spectrum coincides with the decay of
coherent effects (Fig. 3.8), and is attributed first and foremost to the electronic
coherence decay process. The second factor playing a role from 500 fs to 1 ps is
the relaxation to the k = 0 state carrying a relatively low dipole strength. This
can be clearly seen in the TRF spectra at lower temperatures, where the peak height
decays rapidly to a value of about 0.6 during the initial 50 fs, and then the relaxation
to the k = 0 state located at∼11400 cm−1 redshifts the peak on a slower time scale.
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Fig. 3.11. Time resolved fluorescence spectra of the B850 ring.

At higher temperatures the thermally induced decoherence manifests on a faster
time scale, leading to approximately exponential relaxation kinetics (see Fig. 3.11).
Consequently time-resolved fluorescence follows the populations of excitonic states
quite accurately and polaronic effects remain difficult to identify unambiguously.

As it turns out with the present set of parameters the polaronic effects remain
hidden in the absorption or time-resolved fluorescence spectra. However, to test
whether they need to be considered at all we perform an analysis of thewavefunction
itself. We thus investigate the exciton participation parameter (Eqn. 1.102) and
the coherence length parameter (Eqn. 1.103). The exciton participation ratio is
calculated separately for each realization and then averaged, thus representing the
wavefunction delocalization behaviour for each member in the statistical ensemble.
The coherence length is obtained from the electronic density operator, so it includes
the decoherence due to diagonal disorder in a different way.

As can be seen in Figs. 3.12 and 3.13a, at t = 0 the state is highly delocalized
due to an excitation by a broadband pulse, with average exciton participation ratio
of 11.5 and site coherence length of 10.5. Both delocalization parameters, partic-
ipation ratio L(t) and site coherence length L[2](t), undergo a small decay in the
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Fig. 3.12. Time evolution of the partici-
pation ratio, L(t).

initial stages of the evolution (∼100 fs) consistent with the decay of coherences.
Then the participation ratio, L(t), decays further at low temperatures, demonstrat-
ing characteristics of exciton self-trapping. However, at 300 K temperature the
exciton participation starts to slightly increase in value from 500 fs. Overall at the
time of 2 ps the participation grows with temperature. This result suggests that high
temperatures counteract the self-trapping, inhibiting the localization process.

The coherence length, L[2](t), shows a different temperature dependence. It de-
cays rapidly up to 500 fs at all temperatures. It further decays down to∼2 at time 2
ps at the high temperature of 300 K. However at low temperature (20 K) the coher-
ence length grows up to the value of∼7 from 500 fs to 2 ps. Thus, the overall picture
is the following: at short times both parameters decay together with electronic co-
herences leading to the primary mixed state formation; later exciton participation
grows with temperature, while the coherence length drops with temperature.

The coherence length not decaying completely and remaining at some fixed value
confirms the non-optimality of the site basis. The site basis certainly is not the
eigenbasis due to non-zero couplings between sites. Therefore we switch to the
excitonic basis and show the coherence length in the excitonic basis set (Eqn. 1.104)
in Fig. 3.13b. Again the length decays within a few hundred fs in accord with
coherence decay and stays constant from 1 ps. Note that asymptotic values ofL[2]

e (t)

are generally much smaller, with the values being lower than 0.5. This implies that
the excitonic states are close to the global eigenstates for the system. However,
non-zero asymptotic values demonstrate the existence of polaronic effects.

The delocalization parameters demonstrate a complicated temperature depen-
dence, which is revealed by the asymptotic values of L, L[2] and L[2]

e . This is an
additional proof for the formation of a polaronic picture at temperatures from 20
to 100 K. At 300 K L

[2]
e asymptotically decays to zero signifying that only at room

temperature the excitonic picture is valid.
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(a) Site basis L[2](t). (b) Exciton basis L[2]
e (t).

Fig. 3.13. Time evolution of the coherence length in site and exciton representa-
tions.

3.3.4 Discussion

The impact of the thermally fluctuating environment on the properties of the elec-
tronic excitations in the molecular aggregates is poorly understood. In the presented
stochastic time-dependent variational wavefunction approach a large number of the
environmental vibrational modes is treated explicitly and individual trajectories of
the excitations with an initial stochastic state of the environment at a given tempera-
ture can be traced. Thus the environmental effect on the excitation dynamics can be
explored in great detail. The distinctive feature of the presented approach in com-
parison to other similar ones131,132 is that finite temperature is explicitly included:
the energy of initial displacements of the vibrational modes follows a canonical dis-
tribution in accord with statistical physics. Each site is coupled to a separate pool
of oscillators, with initial thermal states sampled independently. The presented
method is non-perturbative, which lets us probe realistic systems where the reso-
nant coupling and the reorganization energy are of the same order, without having
to consider one of them as a small perturbation. Also due to the explicit treatment
of phonon modes an arbitrary form of the spectral density function can be assumed,
including both continuous spectral density functions and specific prominent molec-
ular vibrational modes. Timescales of various relaxation processes, attributed to
electronic coherence decay, which is caused by static disorder, and to the influence
of the thermal bath can be extracted using the present model. A direct comparison
to ultrafast time-resolved spectroscopy experiments can be drawn using the mod-
eled spectra.

LH2 is an ideal object to study the complexity of dissipative excitation dynamics.
The approach and the parameters of the electronic subsystem and the vibrational
bath are validated by studying absorption (and fluorescence) spectra as well as pop-
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ulation dynamics. The energy transfer times within rings of LH2 complexes were
experimentally established. The relaxation within the B800 ring was estimated to
take about 0.3 - 0.4 ps. at all temperatures.107 Fast intraband equilibration of 100
- 200 fs was estimated for the excited states of B850 at 77 K for the LH2 complex
of Rhodospirillum (Rs.) molischianum.120 Indeed, we obtain rather similar excita-
tion relaxation and transfer times at 100 K (Fig. 3.10) considering only the B850
ring. The relaxation dynamics in LH2 of Rhodobacter (Rb.) sphaeroides at room
temperature obtained from the polarization controlled two-dimensional electronic
spectroscopy shows a 200 fs component for the relaxation of the B850 high-excited
states (identified at 770 nm),114 which is slightly higher than what we observe in
our modeled time-resolved fluorescence spectra. This can be partially explained by
relaxation pathways involving intramolecular high-frequency molecular vibrations
which were not included in our simulations.

An additional property which we can address using our approach is the con-
troversial high-excitonic component of the B850 ring.47,109,111,133 The question of
existence and spectral prominence of the high-excitonic component becomes sig-
nificant since the excitonic effects at ambient temperatures are apparently highly
prominent. The broadband pulse excitation creates populations in the higher en-
ergy excitonic states, whichmanifest themselves as a broad shoulder extending from
∼12500 cm−1 to∼13000 cm−1, and its fast decay during the initial 30 fs of the evo-
lution can be observed (Fig. 3.11). Its low amplitude makes it difficult to discern in
experimental measurements. The high-excitonic component of the B850 band was
estimated to be at approximately 780 nm (12820 cm−1) for Rb. sphaeroides at 77
K109 or near 755 nm (13245 cm−1) at 100 K111 similarly for Rb. sphaeroides and
Rhodoblastus (Rps). acidophila. As expected, it is superimposed with the line of
the B800 ring in the total spectrum.

The interplay between excitonic effects and nuclear relaxation can cause the evo-
lution of polaronic dynamics and the variational approach includes these effects
non-perturbatively. Here we show that the polaronic properties do not affect prop-
erties of optical absorption. Its associated spectrum is determined by the decay
time of the linear response function (∼100-200 fs). The ultrafast time-resolved
fluorescence of LH2 also hardly reveals any polaronic properties because the spec-
tral composition reflects the structure and the symmetry of excitonic energy levels
(Figs. 3.10 and 3.11).

Therefore we look at intrinsic wavefunction properties. The calculated participa-
tion parameter exceeds the corresponding parameter measured in experiments. An
exciton delocalization factor of 5 pigments was estimated from the analysis of the
LH2 single-complex emission at 1.2 K.125 This value is in agreement with the de-
localization we obtain at low temperatures. However, the simulations of the exper-
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imental femtosecond transient absorption and time-dependent pump-probe spectra
of bulk LH2 samples performed by different groups suggested the delocalization
over 4 - 6 sites around 1 ps. (or steady-state limit) at room temperature and 77
K.106,134,135 The authors stayed within the excitonic picture with the Redfield re-
laxation approximation, thus the delocalization was essentially determined by the
interplay of the resonance coupling and the energy disorder in the system. Our
previous modeling of nonlinear spectra of an LH2 ensemble using the Redfield
approach117 showed that excitons are delocalized over 3-4 pigments in B850 ring
both at 77 K and at room temperature. These values are significantly smaller than
the ones we obtain at corresponding temperatures and delay times for a single re-
alization averaged value in present simulations (Fig. 3.12). However the present
approach is qualitatively different from the ones used in a previous work117 and in
refs.,106,134,135 and allows us to take into account thermal fluctuations already at the
wavefunction level.

In essence, the wavefunction of every individual realization (corresponding to
single complexes in a medium) is largely delocalized as shown by the L(t) parame-
ter. Highly populated sites contribute heavily to the self-trapping effect, leading to
the decay of the exciton participation ratio. We find that asymptotic long time values
of delocalization parameters are most relevant to inspect the polaronic effects. At
low temperatures exciton participation L(t) becomes small denoting self-trapping.
At the same time the excitonic coherence length L[2]

e becomes large signifying large
departure from the excitonic picture. At high temperature the thermal fluctuations
impede self-trapping, increasing the delocalization of the wavefunctions. How-
ever, this does not imply some kind of different polaron formation, because at high
temperature the wavefunction represents a thermally excited superposition of many
excitons. The decay ofL[2]

e at 300 K on the contrary signifies the validity of the exci-
tonic picture: the resulting wavefunction delocalization in real space is merely due
to thermal activation of several excitons. We thus find that the proper description of
delocalization and polaron formation requires the inspection of both participation
and coherence parameters simultaneously.

However, whether large participation ratios necessarily correspond to the pres-
ence of coherence between the pigments is a nontrivial question. Notice that even
with large exciton participation ratios at high temperatures in individual rings we
do not have large exciton coherence lengths, L[2]. These become even more reduced
by increasing temperature. This seemingly conflicting result implies a fluctuation-
induced decoherence process between distant sites inside a single B850 ring: the
fluctuations will randomize phase relationships between distant sites in a single
wavefunction. We thus observe the decoherence effects within a single B850 ring
at large temperature and this explains the temperature-induced reduction of the co-
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herence length.
Both parameters demonstrate signatures of excitonic polaron formation. If the

picture were purely excitonic, the wavefunction coherence properties must be tem-
perature independent. Now both parameters, L(t) and L[2](t) demonstrate a strong
temperature dependence implying a transition from temperature-independent exci-
tonic system symmetries to the temperature-dependent polaronic picture.

The timescale of polaron formation is yet another important parameter charac-
terizing the spectral signature of the polarons. Coherence decay between the wave-
functions in the thermal ensemble (the fast decrease of delocalization during the
first 500 fs) mostly coincides with the decay time of the optical response function
and of the electronic coherences shown in Fig. 3.8. These coherences shape the
absorption spectrum. This makes the polaronic effects impossible to observe in ab-
sorption spectra of the system. The time-resolved fluorescence, according to our
simulations, approximately follows excitonic populations. This may be the result
of the fact that our long-time coherence length in the excitonic basis is considerably
smaller than 1, which may be related to our restrictions of the model parameters.
Specifically, we did not include the vibration-induced variations of intermolecular
couplings. This is the major cause of exciton self-trapping observed by the tempera-
ture dependence of the fluorescence lifetime47,49 in real photosynthetic aggregates.

The delocalization also depends on the specific spectral content of bath fluctu-
ations. If the bath fluctuations are very slow, as demonstrated in ref.1 and in the
previous chapter, the wavefunction becomes adiabatically trapped by energy defor-
mation. More specifically, the slow phonon modes act as quasi-static disorder and
hence necessarily localize the excitonic wave function in the Anderson sense, i. e.
the disorder parametrically or adiabatically localizes quantum particles. Thus, the
localization does not necessarily involve the response of vibrational coordinates to
the excitation or the feedback of the interaction. Simple thermal fluctuations will
induce localization. Consequently higher temperature will cause more localization.
If the high frequency molecular vibrations are in place, the polaronic effects mostly
manifest due to the feedback action. In this case the higher temperature will cause
detrapping. In the present simulations we observe thermal detrapping. The effect
is due to the thermal reduction of interaction feedback, thus our vibrational modes
are in a high frequency regime.

The vibrational frequencies strongly overlap with excitonic energy splittings and
the thermal energy kBT . Overlapping energies allow a strong mixing of electronic
and vibrational degrees of freedom, while thermal activation leads to the vibronic
dynamics. Finally, this phenomenon may assist fast relaxation between energy
bands in LH2 and fast exciton transport in other photosynthetic systems.

There is another temperature-related issue that should not be ignored while de-
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scribing realistic LH2 aggregates. Numerous experiments and modeling show that
various system and environment related parameters of the LH2 complex depend on
temperature and this dependence is not simply linear.47,111,117,121,136 The present
model is therefore not fully comprehensive to accommodate all features of the LH2
aggregate.128,137,138 The parameters used in the present modeling are those previ-
ously determined for 100 K temperature.117 Consequently, the direct comparison
of the results presented here with those obtained elsewhere for the LH2 complex is
tenable only for 100 K. We intentionally keep the same parameters at all tempera-
tures in order to reveal the manifestation of the temperature effects in the properties
of the wavefunction. However, this opens up a new topic in the study of polaronic
effects in molecular aggregates: the inclusion of nonlinearities. The next chapter
is dedicated to construct a model for nonlinear system-bath interactions within the
sTDVA framework.

Summing up, we have applied the sTDVA approach to model the energy trans-
fer within the B850 ring of the LH2 photosynthetic complex. In contrast to other
applications of the variational wavefunction approach, which consider the zero-
temperature case,131,132 we simulate the dynamics at finite temperatures by ran-
domly sampling initial amplitudes of vibrationalmodes. Themodeled results demon-
strate that polaronic effects are small in optical absorption and fluorescence spectra
in this specific aggregate. However, the dependence of wavefunction delocalization
parameters L(t), L[2](t) and L[2]

e (t) and especially their asymptotic values signify
a transition to a temperature-dependent polaronic picture.





Chapter 4

Nonlinear effects in energy transfer and
spectroscopy

4.1 Introduction

One of the advantages of the sTDVA approach is that it is not restricted to a bilinear
form of the system-bath coupling, allowing more sophisticated forms of vibrational
potentials. The two well-established consequences of the linear coupling to vibra-
tions, the mirror-image of absorption and fluorescence as well as zero linewidth of
the so-called zero-phonon line are usually violated in experiments. The effects of
higher order couplings on the dynamics of electronic states have to be included,
while they are poorly studied. In this chapter we use the TDVA approach with a
new type of trial wavefunction to investigate the effects of frequency shifts in vibra-
tional potentials between different electronic state manifolds (a quadratic coupling
effect) on quantum dynamics and optical spectra of coupled electronic-vibrational
systems. We find that squeezing of vibrational wavepackets is necessary for the
proper description of molecular states and to recover nonlinear effects. The deriva-
tions of the equations of motion and the theoretical background between the added
terms in the Hamiltonian are all presented in Chapter 1.6, and here we will focus
on constructing a model, describing the numerical simulations and interpretating
the results.

4.2 Squeezing dynamics and lineshapes of a single absorber

First we look at the simplest possible scenario, which is a single molecule (tran-
sition energy is shifted to zero) coupled to a single vibrational mode with slightly
different vibrational frequencies for ground and excited states. We set the frequency
of the mode to ω = 200cm−1 and the linear coupling strength between the site and
the mode corresponding to a Huang-Rhys factor S = 0.5, which corresponds to a
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Fig. 4.1. Time evolutions
of vibrational wavepacket
displacement and squeezing
with different values of ∆ω
(frequency difference between
the ground and excited state
mode). The blue line denotes
the real part of displacement
parameter (position of the
wavepacket on the generalized
coordinate axis), the orange line
corresponds to the real part of
squeezing parameter (stretch-
ing of the wavepacket along the
generalized coordinate axis).

reorganization energy of Λ = 100cm−1. The calculations are performed for a set of
frequency shifts between the ground and excited state manifolds as marked by ∆ω

in Fig. 4.1.
Figure 4.1 shows the time evolutions of the real part of the displacement param-

eter λ and the real part of the squeezing parameter ξ, corresponding to the general-
ized coordinate of the wavepacket and its squeezing along the coordinate axis. The
imaginary parts of the same parameters (not shown) correspond to generalized mo-
mentum and squeezing along the momentum axis accordingly. The oscillations of
the wavepacket position in the excited state are consistent with the frequency shift of
the excited state potential, producing a lower frequency with increasing nonlinear-
ity parameter (longer period of oscillations). The absolute value of the squeezing
parameter also increases with the nonlinearity parameter, consistent with the hy-
pothesis that nonlinear interactions cause deformations of the Gaussian wavepack-
ets. The frequency of the oscillations of the squeezing parameter is consistent with
Eq. (1.87) (with the base frequency equal to double the frequency of the harmonic
oscillator and modulated by the nonlinear term). This particular form of the non-
linear term does not introduce any bias in the squeezing dynamics, and the average
value of squeezing along any axis over time is equal to zero.

The effect of nonlinear terms on the optical response is highly dependent on the
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Fig. 4.2. Auxiliary time-resolved fluorescence signals of a single absorber coupled
to a single mode with nonlinearity at zero temperature.

strength of the nonlinear interaction. In Figure 4.2a we show the ATRF spectrum.
The ATRF at τ = 0 fs shows a peak corresponding to a (1−0) transition at τ = 0 fs

which does not manifest when there is no nonlinearity. Its intensity increases with
the nonlinearity parameter. It rises because of the different wavepacket evolution in
the excited state compared to the ground state. In the absence of the nonlinearity,
the lowest energy peak at τ = 0 fs corresponds to a (0 − 0) transition, with the
(1− 0) peak amplitude being zero. The presence of this peak is usually attributed
to temperature effects and absorption from the hot ground state in linear models,
although it is a feature of non-parabolic potentials.139 There is an additional subtle
broadening of the lineshapes due to nonlinear terms.

Increasing the nonlinearity parameter (Figure 4.2b) increases the intensity of the
(1 − 0) peak at τ = 0 fs and overall we obtain a rich structure where every peak
in the vibrational progression splits over time, generating a sub-progression in the
low energy direction. The fine structure gets increasingly prominent with the time
evolution of the system.

The spectral splitting due to the nonlinearity is highly dependent on the position
of the wavepacket, resulting in a set of Frank-Condon peaks that do not adhere to
the well-known Poisson distribution at zero temperature. With higher temperature
the set of relative transition frequencies becomes very dense, leading to continuous
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Δ

Fig. 4.3. Auxiliary time-
resolved fluorescence signals
of a single absorber coupled to
a single mode with nonlinearity
at room temperature.

spectral features even in a simple one site/one mode scenario. This is shown in
Figure 4.3.

For this calculation we used a lower-frequency mode to emphasize the thermal
features. As can be seen, the combination of high temperature and nonlinearity
introduces additional broadening and fine features in the spectrum due to the density
of the possible transition frequencies. This type of line broadening is often seen in
fluorescence line narrowing experiments.79

4.3 Continuous spectral density

For the calculations of relaxation in the presence of a nonlinearity and of associated
spectral signals we couple the site to Q = 200 modes with frequencies equally
spaced in the range ω ∈ (0.01, 300)cm−1 . We use the super-Ohmic form for the
spectral density function, defined as

C
′′

n(ω) = ω3 exp

(
− ω
ωc

)
, (4.1)

where ωc is the cutoff frequency. The reason for choosing this specific form is
that the super-Ohmic spectral density function features a prominent zero-phonon
line in the optical spectra, which is missing in models where C

′′

n(ω) ∼ ω1 at low
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Fig. 4.4. Auxiliary time-resolved fluorescence signals of a single absorber coupled
to a super-Ohmic phonon bath with nonlinearity at zero temperature. The frequency
of each mode is shifted by a constant multiple of its frequency.

frequencies. The coupling constants are determined from Eqn. (4.1), and the bath
timescale is set to ωc = 53cm−1 ≡ 100fs. For each phonon mode we set the
nonlinearity parameter as

(
ωe
q − ωg

q

)
= ∆ω = uωq, where u is a constant. The

temperature is set to T = 0 K. Positive u corresponds to phonon frequencies being
higher in the electronic excited state manifold.

In Figure 4.4 we show the calculated ATRF spectra. The first apparent effect
is the expected breaking of mirror symmetry between τ = 0 and τ → ∞ spec-
tral signals (i.e. between absorption and relaxed fluorescence). Second, in case of
a positive nonlinearity the zero-phonon line features a slight redshift and decays
during the time evolution of the spectrum. As the phonon bath is overdamped, we
do not observe any oscillatory dynamics. Only the gradual redistribution of the
phonon-induced sideband from r.h.s. to l.h.s. of the ZPL is prominent. Notice that
at a certain configuration of parameters we observe the complete disappearance of
the sharp ZPL because of the varying shifts of phononless transitions of different
oscillators (very small negative amplitudes appear due to numerical propagation er-
rors, however, their amplitudes can be diminished by improving the accuracy of the
numerical propagation). The ZPLs and phonon sidebands are usually well resolved
in fluorescence line narrowing (FLN) experiments79 . The level of nonlinearity
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in our parameters is certainly exaggerated. However, we essentially learn that the
FLN experiments detect the phonon side-bands of the emission process. The same
side-bands of the absorption process may show a completely different picture.

4.4 Population dynamics and associated spectral signals of a multi-
site system

A much more complex scenario involves a set of sites where each site is coupled
to a set of local modes or a phonon bath. The interplay between the electronic
energy transfer and the local bath polarization can drive the system to various qual-
itatively different regimes of time evolution, as shown in multiple studies of ring
systems2,34, 131 , spin-boson models,98,140 etc. Here we wish to investigate the ef-
fect of a nonlinearity on the electronic energy transfer and the associated spectra
in a model ring system. Although calculations of the LH2 aggregate are a tempt-
ing topic (as shown in the previous chapter), it is too complicated if one wants to
specifically isolate the effects of nonlinearities. So for the following calculations
we use a simplified ring model.

We use a ring ofN = 11 sites labeled as -5, -4, ... 5, each coupled to a single local
mode of frequency ω = 100], cm−1 , chosen to be close to the excitonic splitting.
The Huang-Rhys factor for each site is S = 0.5. All site transition energies are
set to 0, and the nearest-neighbor coupling is set to Hel

n 6=m = 20 cm−1. We choose
an initial state of |α0|2 = 1 for excitation dynamics calculations, and an optical
excitation for calculations as an initial condition for the spectral calculations. The
site transition dipoles of the ring system are set as dn =

(
cos 2π

N n, sin
2π
N n, 0

)
.

The evolutions of the site excitation populations and the phonon displacements
along the coordinate are shown in Figure 4.5. The electronic evolutions displayed
in the pictures are very weakly affected by the mode frequency shifts. The phonon
displacements display a similar oscillatory behaviour consistent with the frequency
shifts caused by the nonlinearity. However, the squeezing parameters (not shown)
develop a slight bias, with the wavepackets getting stretched along the coordinate
axis in coordinate-momentum space in case of negative frequency shifts, and stretched
along the momentum axis in case of positive frequency shifts. The TRF spectra
(Figure 4.6) also show weak secondary sidebands for each peak in the vibrational
progression. Spectral shifts of the vibrational sidebands depending on the sign of
the nonlinear coupling parameter are obvious. However, the intensities of sidebands
are weakly affected.

We also simulate the dynamics of a ring system with the same parameters for
the electronic transition energies and the resonant couplings, but this time we cou-
ple each site to a bath of Q = 100 phonon modes with coupling strengths set ac-



4.4. Population dynamics and associated spectral signals of a multi-site system
87

-4 -2 0 2 4
0

1000

2000

3000

4000

5000

Site

t,
fs

|αn
2

ω=100 cm-1, S=0.5, Δω=-20 cm-1

-4 -2 0 2 4
0

1000

2000

3000

4000

5000

Site

t,
fs

<Re λn>

ω=100 cm-1, S=0.5, Δω=-20 cm-1

(a) Negative nonlinearity

-4 -2 0 2 4
0

1000

2000

3000

4000

5000

Site

t,
fs

|αn
2

ω=100 cm-1, S=0.5, Δω=20 cm-1

-4 -2 0 2 4
0

1000

2000

3000

4000

5000

Site

t,
fs

<Re λn>

ω=100 cm-1, S=0.5, Δω=20 cm-1

(b) Positive nonlinearity

Fig. 4.5. Population dynamics and phonon mode displacement dynamics of a ring
system of N = 11 sites, with each site coupled to a single phonon mode with
positive or negative nonlinearity.
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Fig. 4.6. Auxiliary time-resolved
fluorescence signals of a of a ring
system of N = 11 sites, with each
site coupled to a single phononmode
with positive or negative nonlinear-
ity.

-4 -2 0 2 4
0

1000

2000

3000

4000

5000

Site

t,
fs

|αn
2

Λ=10 cm-1, Δω=0

(a) Population dynamics without nonlinearity

-4 -2 0 2 4
0

1000

2000

3000

4000

5000

Site

t,
fs

|αn
2

Λ=10 cm-1, Δω=0.1ω

(b) Population dynamics with nonlinearity

Fig. 4.7. Population dynamics of a ring system of N = 11 sites, with each site
coupled to a super-Ohmic bath of Q = 100 phonon modes with and without non-
linearity.

cording to a super-Ohmic spectral density. We choose a very slow bath timescale
ωc = 53 cm−1 = 100 fs so that the maximum of the spectral density function would
be close to the resonant coupling strength, enabling resonant effects in energy trans-
fer. As shown in Figure 4.7, in case of an overdamped bath the effect of a small fre-
quency shift applied to each mode has little effect on population dynamics. Hence
the energy transport in excitonic aggregates is robust against vibrational nonlinear-
ities, at least in symmetric aggregates. The exchange narrowing mechanism40 (the
resonant interaction between constituent sites of the system) is known to reduce the
effective linear system-bath coupling, and this also applies to nonlinear interactions.
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4.5 Numerical properties of the approach

The lineshape theory for complex potentials is well-developed for single absorbers
coupled to a single mode, see ref.139 for a review of established methods for polyno-
mial, Morse, and general potentials. In principle, the extension of these approaches
to larger systems is usually possible, but computationally prohibitive. For methods
such as exact diagonalization or the multiconfigurational time-dependent Hartree
approach, the exponential growth of the Hilbert space restricts the dynamical cal-
culations to very small systems with a few nonlinear modes. The time-dependent
variational approach requires a solution of a large system of coupled ODE’s, how-
ever the computational effort scales linearly with propagation time, linearly with the
number of included phonon modes and quadratically with the number of included
system sites. For calculations at finite temperature the calculation scheme is highly
parallelizable and scales well to any number of available computing cores.

Unlike perturbative methods, sTDVA does not make any assumptions about the
relative strength of the interactions. However, benchmarking has shown that the
accuracy of this method is worse in the Redfield regime, where the system-bath
coupling is much weaker than the resonant coupling.3 The accuracy of the sTDVA
approach in presence of strong nonlinear interactions is presently being evaluated,
and making a direct comparison with a multi-site and multi-mode system is difficult
because state of the art exact methods such as HEOM assume a linear system-bath
coupling. In this set of simulations we have used low values of nonlinearity param-
eters in line with what is expected in real molecular aggregates.

The solution of the ODE system is done using an adaptive time step Runge-Kutta
solver. Depending on the nonlinearity term used, the equations of motion may have
a term that exhibits a divergence at low values of the squeezing parameter when
the phase of the squeezing becomes undefined. We regularize the diverging terms
using an additional multiplier (1− exp(−αcξ)), with αc being the numerical cutoff
of the order 10−10.

4.6 Final remarks

The fine structure of spectral lineshapes introduced by higher-order couplings is in-
visible in room-temperature experiments due to an abundance of broadening mech-
anisms, obscuring the weak non-linear features. It can be argued that weak nonlin-
ear effects are mostly hidden at liquid nitrogen temperature (T = 77 K) as well
since the thermal broadening of the ZPL becomes very large. The thermal energy
kBT at 77 K is equal to 53 cm−1, which is well above the energies corresponding to
the nonlinear part of the Hamiltonian for realistic values of frequency shifts. How-
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ever, experiments at (T = 4 K) may reveal the vibrational substructures caused by
nonlinearities and anharmonicities of vibrational potential surfaces.

Aside from the fine vibrational structures at low temperatures, we also observe
spectral broadening and generation of continuous spectra when including a nonlin-
earity at finite temperatures. Although there is a multitude of mechanisms that
could lead to the same result, for example damping or ensemble-wise disorder
among the phonon frequencies, usually the effects are included on the phenomeno-
logical level, using secondary baths or hyperparameters for the simulation.11,141 In
this chapter we showed that a continuous spectrum may be obtained with only one
mode from first principles, without the inclusion of any explicit relaxation mecha-
nism and as a direct effect of nonlinearities.

The ring system model displayed a very weak effect of the nonlinearity on the
coherent energy transfer within the ring even with vibrational frequencies close to
the excitonic splitting. This is not surprising, as the nonlinear effects are still an or-
der of magnitude weaker than the linear system-bath coupling using a realistic set of
parameters. So while it is still somewhat relevant for describing the energy transfer
and relaxation in molecular aggregates, the nonlinear effects are expected to play a
bigger role in intramolecular conversion and relaxation, e.g. in carotenoids,142 as
opposed to intermolecular energy transport.

The sTDVA approach allows direct simulation of excitation dynamics for large
aggregates coupled to large numbers of nonlinear modes, but the electronic dynam-
ics are already nonlinear in non-perturbative regimes, where the system-bath and
resonant couplings are of the same order, even using only the linear terms in the
Hamiltonian (strictly speaking the electron-phonon coupling is bilinear). This is
due to bath polarization effects and the transition to a polaronic basis, as discussed
in refs.1,2 and throughout this thesis. The combined dynamics can be driven to-
wards qualitatively different regimes, depending on relative couplings, phonon fre-
quencies and bath timescales. As a result, separating the effects using only linear
spectroscopy is impossible, and even time-resolved methods require a substantial
analysis considering all the parameters of the studied system both at low and high
temperatures. For example, it was proposed that nonlinear effects may influence
the surface shape of the peak in 2D spectroscopic signals,143 which is consistent
with continuous spectrum generation (a high-temperature feature). Temporal dy-
namics of vibrational fine structures and the effect of different potential surfaces on
2D spectroscopic data so far remain a promising field of study.



Summary of the results

According to the goals formulated in the beginning of the thesis, two milestones
were achieved in the presented research. The first one was the development of
the stochastic time-dependent variational approach for the simulation of quantum
dynamics and optical response signals in molecular aggregates. The second was
studying the dynamics of excitonic polaron formation using the developed approach.
The specific purpose of developing sTDVA was to analyze the quantum dynamics
in a complex regime, where no interaction can be considered small and the bath
polarization (excitonic polaron formation) is expected to play a big role in energy
transfer and molecular optical response. Another very important distinction from
other applications of the variational approach encountered in recent literature93 is
that we introduced local couplings: the absence of correlations between fluctuations
and reorganizations of spatially separated sites.

At the time the research was mostly motivated by the idea that excitonic states of
molecular aggregates are not the pointer states of the electron-phonon supersystem.
This means that after a long time (compared to all timescales of electronic energy
transfer and bath relaxation) the reduced density operator of the electronic system
is not diagonal, and coherences between purely excitonic states persist indefinitely.
The search for a way to find out the “true” quantum states of such systems began
long before the author’s own research, dating back to W. Zurek’s einselection the-
ory.126 However, in application to the theory of molecular aggregates more recent
developments come to mind, for example a model of fluorescence in LH2 aggre-
gates46 and the HEOM approach analysis of time dynamics of a model two-site
system.12 The goal of the research was to construct a theoretical description that by
design incorporates the possibility of electronic states being “dressed” by phonons,
and examine the whole dynamics of “how the transition occurs”. The methods for
obtaining only the “final” polaronic state without focusing on the evolution were
already present at the time.

Using the zero-temperature case, initially we were able to show the dynamical
picture of polaron formation. Using a few chosen parameter combinations we have
found two major qualitative regimes of polaronic state evolution, which depend on
the ratio between the timescale of bath reorganization and the timescale of elec-
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tronic energy transfer. Simply explained, if the bath timescale is much faster, then
the environment rapidly reorganizes after the molecular aggregate is excited to an
electronic eigenstate, and this produces Rabi oscillations between the local site ex-
citations that are driven by a rapid energy shift caused by local polarization. If the
bath timescale is comparatively slow then the dynamics are driven by slow adia-
batic transition of the excitonic states into polaronic states, and in this case no Rabi
oscillations occur.

The effective Hamiltonian approach was used for analysis and interpretation of
the results, mapping the coupled exciton-phonon system into a reduced purely elec-
tronic system with time-dependent couplings between electronic states. This al-
lowed the interpretation of the polaronic state transition as a time-dependent screen-
ing (reduction of the effective resonant coupling between electronic states) and gave
the possibility to draw parallels with established results in the theory of solid state
systems. We have also obtained intrinsic relaxation with the effective electronic
Hamiltonian due to off-diagonal elements obtaining complex-numbered values.

Most of the processes associated with physics of molecular aggregates, such as
light harvesting, electronic energy transfer, charge separation etc., usually happen at
ambient temperatures in the outside world, or at least at liquid nitrogen temperature
in spectroscopy experiments. So naturally the zero-temperature case was not the
end goal, though useful for model applications. The theory had to be expanded to
include the possibility of the bath being at a higher temperature than absolute zero.
Using a stochastic sampling scheme for the initial conditions of the bath and ther-
mally averaging over high numbers of initial conditions we were able to reconstruct
the density operator approach, this time with the complete dressed electronic states.
The new stochastic scheme was first benchmarked against an established method to
test its limitations and find regimes where the novel calculation scheme would dis-
play insufficient accuracy. This benchmarking became an important part of the
presented research, affirming the validity of all other results presented throughout
the thesis.

The next step was applying the developed calculation scheme to a real photo-
synthetic molecular aggregate. We have investigated the excited state dynamics
and the transition to a polaronic state at finite temperatures in the LH2 complex.
Taking the parameters featured in calculations done with a different approach, we
have shown that the optical absorption spectrum (which only features the very early
post-excitation dynamics) are consistent with the traditional Redfield scheme. The
auxiliary time-resolved fluorescence modeling, where the Redfield approach is ex-
pected to fail for this specific aggregate due to the large system-bath coupling, was
also presented. The interplay of polaron transition dynamics, electronic energy
transfer, disorder-induced broadening, coherence decay and other contributions to
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this spectral signal was analyzed using the obtained electronic state dynamics and
auxiliary calculations to isolate all the mentioned contributions.

We have also introduced measures to quantify how “polaronic” a state is for
this analysis. The combination of the averaged exciton delocalization of a single
wavefunction and coherence lengths in different representations allowed to pro-
vide a temperature-dependent picture of the dynamics of polaron formation in the
LH2 complex. The limit cases were successfully captured, such as the state being
least polaronic at ambient temperatures, and the timescales of the transition were
extracted. This also helped address the confusion between the multiple reported
values of the delocalization length from experiments. We have shown that the de-
localization length reported from single-molecule experiments and the coherence
length inferred from ensemble measurements are not the same quantity, and our
modeling results were able to consistently incorporate both numbers in the con-
text of experimental data. The delocalization length grows with temperature, and
higher numbers are associated with a decreased self-trapping effect. The coherence
length decays with temperature, and higher values of coherence length in excitonic
basis signify that the density operator is not diagonal, and excitonic states are not
the pointer states of the global electron-phonon system.

The last part of the research presented in this thesis was focused on yet another
expansion of the approach, this time to incorporate the possible nonlinear couplings
between the system and the bath. Experimentally some of the nonlinearity effects
were observed already, such as mirror symmetry breaking between absorption and
fluorescence signals, and zero-phonon line broadening.137 To account for nonlinear
effects we have introduced a new variational Ansatz based on squeezed coherent
states, well known in quantum optics. To isolate the effects without getting con-
fused by large amounts of free parameters we once again performed simulations on
model systems. One of the essential results of this modeling was that the spectral
signals displayed a range of characteristic signals. The first one was a vibrational
fine structure, where every peak in the vibrational progression would split into a se-
quence of smaller vibrational peaks. This is an intuitive result that one would expect
from exact calculations (in case of a single absorber at zero temperature they can
be performed). However, we were also able to show that at finite temperature the
vibrational fine structure gets progressively dense to the point when even a single
vibrational mode can generate seemingly continuous regions in an optical absorp-
tion spectrum. These continuous regions are often seen in experiments and they
are usually described phenomenologically. In contrast, we obtain the result with a
purely ab initio calculation.

The result of mirror symmetry breaking was also achieved with a single absorber
nonlinearly coupled to a continuous bath. We have shown that different signs of the
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nonlinear coupling terms lead to scaling of late-time sideband shoulder lengths in
different directions on the energy axis. The time evolutions were shown using the
tool applied throughout the research presented in the thesis, namely the simulated
auxiliary time-resolved fluorescence spectra.

Finally, we have performed calculations on a system that, to our knowledge, no
other modern theoretical approach can currently handle: a multi-site system nonlin-
early coupled either to local high-frequency vibrational modes or to a local phonon
bath. Using this model system we were able to show that the vibrational nonlinear-
ities produce the characteristic mirror symmetry breaking in the ATRF spectra, but
the influence of the nonlinear couplings on electronic energy transfer is negligible.
The exchange narrowingmechanismwas proposed to explain the robustness of state
dynamics. We believe that the results are important when interpreting experimen-
tal data, because discerning between electronic and vibrational effects in nonlinear
optical spectra is a long-standing question and an important research direction at
the moment.
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