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ERDVININIS IR LAIKINIS ELGESYS PAVIRŠIŲ AUGIMO KONTINUUMO
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Preface

Various surfaces found in nature, produced in laboratories or manufac-

tured during technological processes are interesting and important not only be-

cause of their vast practical applications, but also from the theoretical point of

view — as complex systems evolving in non-equilibrium conditions.

The geometric form of the surfaces often determines their physical prop-

erties. It is therefore useful to have a theoretical apparatus for the description

of surface structures and a basic understanding of processes that create them.

Surface roughness, characteristic length and other statistical quantities derived

from the height distributions and autocorrelation functions are used to describe

surface properties. However, since many disordered surfaces of scientific inter-

est possess self-affinity — statistically similar features appearing on a wide range

of scales — the values of these quantities depend on the scale of observation.

Therefore the properties of such systems are described not as much by the val-

ues of the quantities themselves, but, rather, by their relation to the observation

scale — the scaling properties. According to their scaling behavior, many phys-

ical systems can be classified into a small number of universality classes that

describe common properties arising in very different models.

Modeling plays an important role in surface investigations. Simplified

models that reproduce surfaces with features equivalent to those observed ex-

perimentally allow a better understanding of the actual surface forming pro-

cesses. However, most of the models that accurately describe disordered surface

formation cannot be solved analytically and one has to resort to numerical sim-

ulations.

This work focuses on one successful example of such models based on the

generalized Kuramoto-Sivashinsky (gKS) equation. Equations of this type repro-

duce, quite accurately, the experimental results in amorphous thin film growth

and, moreover, their terms can be convincingly related to the physical processes

taking place at the surface. In the rescaled dimensionless form, the gKS equation

depends on a single parameter whose value determines the evolution of the sur-

face: from kinetic roughening leading to the saturation and stationary chaotic

dynamics at small parameter values to the nonstationary coarsening behavior

when the parameter values are large.
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The dynamical behavior and scaling properties of gKS have not, as of yet,

been sufficiently investigated. Even the scaling properties of the much more re-

searched Kuramoto-Sivashinsky equation (KS), a special case of the gKS model

considered here, have caused controversy. Many of the difficulties arising when

attempting to look for the universal properties are due to the fact that these

equations produce a band of exponentially growing modes selected by the linear

part of the equation. This linear instability which is not present in the paradig-

matic models of the universality classes, interacting with the nonlinear terms,

produces patterns of definite characteristic size on top of the scale-free height

variations obscuring the universal properties of the latter. Thus, the resulting

scaling properties strongly depend on the parameter value even for the largest

system sizes considered, even though the renormalization group arguments sug-

gest that this dependence should not come about on the large scales.

This work systematically investigates the patterns, the scaling properties

and the dynamics of surfaces evolving according to gKS by analysing both the

surface morphologies and the kinetics of the global surface roughness in order

to extract the scaling properties in finite size systems. While these properties

might not be universal in the sense that they would, perhaps, differ from those

expected in the infinite size systems, the results presented here are still valid

and, hopefully, make a useful contribution to the understanding of surface for-

mation in this finite-size world.
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1 Introduction
A detailed understanding of surface growth physics has fueled several ad-

vances in science and technology, including more accurate dating in archeol-

ogy [1], better integrated circuit technology [2], as well as production of novel

materials [3]. In many cases of scientific and technological interest, the evo-

lution of growing surfaces can be described by so-called continuum models that

consist of nonlinear partial differential equations and often display rich and in-

teresting dynamics [4]. Even though not all of this dynamics is currently acces-

sible experimentally, it still is worthwhile to investigate, especially in the view

of rapid experimental [5] and theoretical [6] progress.

The object of this study is a continuum surface growth model described

by the two-dimensional generalized Kuramoto-Sivashisky equation with a single

independent parameter α,

∂th = −∇2h−∇4h− α∇2(∇h)2 + (∇h)2 , (1)

considered in [7], that produces chaotically evolving disordered spatial patterns.

Equations of this type (with and without added noise) have been successfully

used as models for amorphous solid surface growth [8–10] and nano-scale pat-

tern formation induced by ion beam sputtering (IBS) [11–15].

Eq. (1) in two spatial dimensions describes the evolution of a (2+1)-

dimensional interface, i.e., a surface whose height h(r, t) is defined as a function

on a two-dimensional plane r ∈ R2 that is growing in the direction h perpen-

dicular to that plane as time t goes by. Numerical studies of Eq. (1) in one

dimension have also been performed by Muñoz-Garcia et. al. [16], and a good

correspondence to the IBS experiments has been found [17].

Eq. (1) has the celebrated Kuramoto-Sivashinsky (KS) equation [18–21]as

its special case when parameter α = 0:

∂th = −∇2h−∇4h+ (∇h)2 . (2)

The latter equation stands as a paradigmatic model for chaotic spatially ex-

tended systems and has been used to study the connections between chaotic dy-

namics at small scales and apparent stochastic behaviour at large scales [22–24].
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Various generalizations and modifications of the KS equation (2) with local and

non-local damping terms, anisotropy, and noise have been used to study pattern

formation due to ion-beam erosion [25–30]. Eq. (2) itself in one- and two-

dimensional cases has been a subject of active research for about three decades,

and its scaling properties have even been an object of controversy.

It has been suggested by Yakhot [31] and subsequently confirmed and

reiterated by different authors (see e.g., [22, 23, 32]) that the large-scale be-

haviour of the deterministic KS equation (2) in the one-dimensional case can be

described by a stochastic equation

∂th = ∇2h+ (∇h)2 + η (3)

where η represents random uncorrelated Gaussian noise.

Equation (3) has become known as the Kardar-Parisi-Zhang (KPZ) equa-

tion [33]. It was originally proposed as a continuum model for surface growth

due to ballistic deposition [34], since it showed the same large-scale dynamic

scaling behaviour [35]. 1

However, the correspondence between KS and KPZ in two-dimensions has

led to disagreements by the same authors [23, 32, 41, 42], because of the lack

of conclusive analytical results. More recent results [24, 43] tend to support

the conjecture that KPZ and KS equations belong to the same universality class,

although the numerical results for the deterministic (noiseless) KS are not con-

clusive due to the extremely long transient effects. Recent numerical results for

the two-dimensional KS [7] with much longer simulation times show the same

scaling properties of the saturated surface roughness as obtained by Manneville

and Chaté [44] where the Edwards-Wilkinson (EW) [45] type of behaviour is

observed. The EW regime is the pre-asymptotic (in terms of system size) be-

haviour, and is expected to cross over to the KPZ scaling at much larger system

sizes [46], thus, further supporting the argument that the two-dimensional KS

and KPZ equations, in the large size limit, belong to the same universality class.

However, [7] has reported a finite-size scaling behaviour that is different from

1Correspondence of large-scale properties in models that are very different in their micro-
scopic details is quite common in the field of complex systems. One of the most successful
examples of such a correspondence are the so-called lattice gas models. Such discrete, cellular-
automaton-type models are capable of reproducing fluid dynamics described by Navier-Stokes
equations [36–39]. An article on this topic [40] has been published by the author of this disser-
tation.
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both the EW and the KPZ scaling in the less researched generalized KS case (1)

with α > 0.

1.1 Objective of the dissertation

This work attempts to “scratch the surface" of the wast discipline of dis-

ordered surface growth by presenting author’s research on one particular less-

investigated model from this field.

One of the main purposes of this work is to introduce the reader to the

continuum model for amorphous solid surface growth that is able to reproduce

experimentally observed surface structures. The model is expressed in a nonlin-

ear partial differential equation that contains the widely known and much re-

searched Kuramoto-Sivashinsky equation as its special case. Even this — simpler

— continuum model has caused some controversy concerning its scaling proper-

ties in the two-dimensional case. A systematic investigation of those properties

in the much less researched equation presented in this thesis — another purpose

of this thesis — thus, seems interesting and timely.

The goal is to demonstrate, in a wider parameter range, the validity of the

scaling relations for the surface roughness reported in the previous work by the

author [7], and to present the recent investigation of dynamics of the scale-free

low-wavenumber spatial variations that these relations imply [47].

1.2 Scientific novelty

The scaling properties, although quite thoroughly investigated in similar

equations, are relatively little researched in the case presented in this thesis.

The investigation of the finite-size scaling and analysis of surface dynamics by

analyzing the time series of the global surface roughness presented in the pub-

lications by the author [7,47] have not been previously done for this particular

model. Also, the simulations of unprecedented length with higher parameter

values reveal, in addition to the previously reported global coarsening of the

surface patterns, the occurrence of local coarsening behavior that has not been

reported in the literature.
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1.3 Scientific statements
The research conducted by the author allows to make the following state-

ments supported by the results presented in this thesis:

1. The continuum model for amorphous solid thin film growth expressed by

the generalized Kuramoto-Sivashinsky equation (gKS) on small scales pro-

duces cellular patterns that possess a characteristic length and, simultane-

ously, generates long-range height variations of self-affine character.

2. The gKS equation in its dimensionless form has a single independent pa-

rameter that determines the structure and dynamics of the surfaces evolv-

ing according to this equation. The parameter obtained for the surface

growth model has to be non-negative, and there are two limiting cases for

the gKS:

(a) Kuramoto-Sivashinsky (KS) equation is obtained producing station-

ary spatio-temporal chaos when the parameter is zero, and

(b) Conserved Kuramoto-Sivashinsky (cKS) equation producing a mound-

like pattern coarsening in a non-stationary way is obtained by differ-

ent rescaling as the parameter value goes to infinity.

The dynamics for finite parameter values lies in between these limiting

cases, as specified in further statements.

3. The KS — a special case of the gKS — demonstrates the finite-size sca-

ling of the same type that is expected for the KPZ equation in the pre-

asymptotic regime, suggesting that KS equation belongs to the KPZ uni-

versality class.

4. The gKS in the range of small positive parameter values produces station-

ary dynamics in the saturated regime, but with scaling properties that are

different from those of the KS (and the KPZ) equation and vary with pa-

rameter value in the range of system sizes considered.

5. Small-scale patterns are also influenced by the equation parameter: the

saturated pattern becomes coarser when the parameter value is increased,

but the shape of mounds remains similar on average, as can be shown by

13



a simple geometrical argument. Therefore, the same argument allows for

indirect, but many times faster estimation of the characteristic length in

the cellular surface pattern.

6. The time series analysis of the global roughness for varying system sizes

produces relations between the dynamical time scales of the long range

height variations and the spatial scales. The resulting relations are power

laws whose exponents are equivalent to the dynamic exponents of the

model. They are found to decrease with increasing parameter value.

7. Further increase in parameter value results in non-stationary evolution of

surfaces. The observed non-stationary behavior coincides with the occur-

rence of local coarsening structures that eventually become much higher

than the rest of the surface.
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1.4 Outline of the dissertation

The model for amorphous thin film growth expressed in the generalized

two-dimensional isotropic Kuramoto-Sivashinsky equation (gKS) with a stochas-

tic term is introduced in Sect. 2. The form of the model equation is first derived

using the underlying symmetries and low-order expansion (Subsect. 2.1). Then,

in Subsect. 2.2, the terms in the resulting model equation are related to the phys-

ical processes taking place during the surface growth, thus, also determining the

signs of the coefficients before at each term. Subsect. 2.3 presents the numerical

schemes used for computer simulations presented in this thesis.

Sect. 3 considers the deterministic version of the gKS. In Subsect. 3.1, it is

demonstrated how the equation can be brought into dimensionless form with a

single independent parameter. In the proposed scaling, the parameter value zero

results in the famous Kuramoto-Sivashinsky (KS) equation that produces sta-

tionary spatio-temporal chaos. It is also shown how, in a different rescaling, the

limit of the same parameter going to infinity results in another equation (cKS)

that produces non-stationary coarsening of the surface profile. Subsects. 3.2 and

3.3 then discuss the behavior of gKS that is in between the above mentioned KS

and cKS limits that results, after some initial transient period, in a stationary

regime with surface patterns of different coarseness.

Next, Sect. 4 presents, in some detail, the measures for the characteri-

zation of disordered surface patterns, such as: the height distribution (Sub-

sect. 4.1), height autocorrelation function and surface spatial spectrum (Sub-

sect. 4.2). These are then calculated for surfaces resulting from numerical simu-

lations of gKS (Subsect. 4.3) showing how the parameter value influences both,

the small scale cellular patterns and the long-range height variations. The latter

are shown to become more distinct in larger systems while the small scale pat-

terns remain virtually unchanged. Subsect. 4.4 then shows how the assumption

of the power-law behavior of the surface spectrum, at small-wavenumbers may

give rise to the certain finite-size scaling relations for the global surface rough-

ness and demonstrates a remarkable agreement between these relations and the

numerical results obtained from gKS.

Sect. 5 investigates the small-scale cellular patterns where the individual

surface elements (cells) appear as round humps of similar size giving a charac-
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teristic length for the patterns. This length can be estimated from the position of

the peak in the surface spectrum defined in the previous section, as explained in

Subsect. 5.1. The characteristic length is obviously related to the surface rough-

ness and the surface area. Subsect. 5.2 explores this connection. By making an

ansatz relating the size, height and surface area of a single surface element, the

scaling relation for a pattern of statistically similar elements is derived. This sca-

ling relation is then compared to the corresponding numerical results produced

by the gKS in a wide parameter range and a good agreement with the theoretical

considerations is demonstrated indicating that the disordered surface patterns

of different coarseness are, nevertheless, geometrically similar on average.

Sect. 6 and Sect. 7 focus on the dynamics of the surface evolution in the

stationary regime. By analyzing the time series of the global surface roughness,

the slowest time scales are estimated for the systems of different sizes. These

time scales are related to the large-scale spatial variations and are found to

increase with the system size as a power law. Since the exponent in this power

law relates the spatial scales with the time scales, it must be connected to the

dynamic exponent of the system.

The non-stationary dynamics that sets in for larger parameter values in

the gKS model is considered in Sect. 8. The non-stationary regime sets in when

the coarsening starts locally at some place on the surface. This results in a

formation of a mound-like structure that peaks above the rest of the surface

and exhibits peculiar pentagonal symmetry in its center while being surrounded

by disordered smaller humps. The fast increase (by several times) of the global

roughness caused by this local growth times is shown to have almost no effect on

the surface area. Some arguments are presented, supporting the notion that this

previously ureported effect is not merely an artifact of the numerical scheme.

Finally, Sect. 9 summarizes the results presented in this work and draws

some conclusions.
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2 A continuum model for amorphous solid
thin film growth

Experimentally grown or eroded amorphous surfaces tend to exhibit pat-

tern formation on the coarse-grained mesoscopic scale — the nanoscale [48–

50]. In order to investigate such structures, one does not necessarily need to

look at the complicated interatomic interactions between the depositing par-

ticles and the surface atoms. In many important cases coarse-grained contin-

uum models describe the roughening and smoothing mechanisms at the sur-

face which lead to the formation of mesoscopic — regular or irregular — pat-

terns [51]. The surface in these models is described by a continuous function

called the surface morphology H(r, t) — the height of the surface above the point

r = (x, y) on the (in the simplest case) flat substrate at time t (see Fig. 1, left).

The evolution of the surface can then be described by a partial differential equa-

tion (PDE).

The goal of this section is to present the derivation of a minimal continuum

model for the spatio-temporal evolution of the surface morphology which contains

all dominant relaxation mechanisms, and to compare some characteristic sta-

tistical measures (surface roughness, correlation length) for surfaces resulting

from numerical simulations of this model to the results from experiments with

ZrAlCu thin films [8, 48, 49]. The most of what is presented in this section is

based on the works by Raible et. al. [8–10,52,53].

flat substrate

vapor particle beam

amorphous film

No overhangs 
allowed!

Figure 1: Left panel: schematic experimental setup of the amorphous thin film
growth by particle deposition. Right panel: schematic example of an overhang
that is not permitted by a 2D continuum growth model described by a PDE.
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2.1 Physical symmetries

Here we begin our theoretical description of amorphous surface growth.

We focus on the growth of solid, amorphous thin films, generated by vapor de-

position. There are no long-range ordering phenomena are present and there-

fore the characteristics of the growing film should be spatially isotropic. The

formation of disordered mound-like or cellular patterns observed in amorphous

film growth experiments [48,49,54–56], however, suggests some underlying or-

dering mechanism that must stem from the interplay between roughening and

relaxation phenomena taking place on the growing surface.

The system is schematically shown in Figure 1. The growth process starts

from an initially flat substrate. The beam of incoming particles is directed per-

pendicular to the substrate. It is assumed to be low-energetic, so that no kick-off

or desorption of the already deposited particles is possible, and almost constant

in space and time — with only weak superimposed fluctuations. The growing

layer built up by deposited particles forms a spatio-temporally evolving free sur-

face that could be described at any time t by the surface morphology H(r, t),

i.e. the height of the surface above the flat substrate where r = (x, y) is the

point on the substrate. Therefore, the model can be called a (2 + 1)-dimensional

system (a two-dimensional surface growing in the third dimension), following

the notation that is common in theoretical description and modeling of surface

growth [51,57,58].

A model equation for amorphous solid surface growth described above

must include the height changes due to the deposition and relaxation (surface

diffusion) of just deposited particles before finally sticking and becoming a part

the solid surface. A well-established phenomenological approach suggests an

underlying partial differential equation of first order in time. The most general

ansatz for such an equation is

∂tH(r, t) = G[H, {∇kH}, r, t] + I(r, t). (4)

Here, G[H, {∇kH}, r, t] is a functional that contains all physical mechanisms

leading to growth, relaxation and pattern formation processes taking place on

the surface. For simplicity, it is assumed that all these mechanisms are local.

Thus, the functional G can not contain any non-local contributions such as in-
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tegration over space or time, time delay or instantaneous interactions over dis-

tance. In this case G can still include the surface height H and all its spatial

derivatives {∇kH} in various combinations. It can also explicitly depend on the

position r and time t. I(r, t) represents the flux of depositing particles, which

also depends on the position and time.

Assuming some underlying symmetries in description of the growth process

puts further constraints in the form of the functional G in (4). We assume the

following symmetries:

• Stationarity (homogeneity of time). For a steady process in a constant

environment, there is no dependence on the specific choice of the origin

of time — invariance against translations in time. Thus G can not depend

on t.

• Homogeneity of space. The physical processes on the surface should not

depend on the specific choice of the origin of the coordinate system on

the substrate — invariance against translations parallel to the substrate

(perpendicular to the growth direction). Thus no dependence of G on r is

allowed.

• Invariance under translations in growth direction, which implies that no

dependence on the specific choice of the origin of H is possible. Together

with the assumption of a low-energetic beam of depositing particles, this

leads to independence of G on H. 2

Therefore, under the symmetries given above the functional G can only

depend on the various combinations of spatial derivatives of H:

G[H, {∇kH}, r, t] −→ G[{∇kH}] .

2Note that this symmetry does not completely exclude the dependence of G on H, but rather
the dependence on the average surface height H̄ = 〈H〉r. This leaves the possibility that G
could still depend on the height, relative to the average surface height h = H − H̄, if no further
assumptions are made. The dependence on h would allow the so-called damping terms [25,59]
that might cause the appearance of hexagonal patterns. These damping terms correspond to
the desorption or kick-off of the deposited particles from the surface and are equivalent to the
redeposition terms in surface erosion models [28, 59–61], where the effect is that some of the
eroded particles land back on the surface, i.e. are redeposited. The nonlocality of the term h can
be disposed of by mapping it on the local equation by a simple transformation, as shown in [60].
However, in the model considered here, it is assumed that the particle beam is low-energetic, so
that kick-off of the surface particles is negligible.
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In the model considered here the deposition flux I(r, t) is assumed to be

basically constant F , with some small fluctuations, and these fluctuations do not

have any noticeable effect on the relaxation processes described by G: they only

result in some small, additive spatio-temporal noise η(r, t) in the deposition flux

I(r, t),

I(r, t) = F + η(r, t) , (5)

where F ≡ 〈I〉 is a constant (in space and time) mean deposition flux and η

is assumed to be Gaussian (normally distributed) white (totally uncorrelated)

noise

〈η(r, t)η(r′, t′)〉η = 2Dδ2(r − r′)δ(t− t′) (6)

with zero mean

〈η(r, t)〉η = 0 , ∀r, t .3 (7)

Here 〈· · · 〉η denotes ensemble average, and D is the fluctuation strength

(in the sense that 2Dt is the variance a half of the mean square fluctuation

produced by the noise in time t per unit area). Since the mean deposition flux is

constant, it is useful to introduce the profile of the surface morphology, h(r, t) =

H(r, t) − Ft, which is the surface morphology H(r, t) transformed into frame

of reference which is co-moving with the mean deposition flux4 (moving along

the H axis with a constant speed F ). This transformation has no effect on the

spatial derivatives of the height (∇kh = ∇kH, ∀k ≥ 1), thus, the equation for

the surface profile h(r, t) is simply

∂th(r, t) = G[{∇kh}] + η(r, t). (8)

Amorphous surface growth with set up in such a way that the incom-

ing particle beam is perpendicular to the substrate (as schematically shown in

Fig. 1) implies one more symmetry for G:

• Isotropy of the growth process — invariance under rotations and reflec-

tions in the plane, perpendicular to the growth direction. Thus, there can

be only scalar combinations of spatial derivatives of h in G, for example:

3also 〈η(r, t)〉r = 0 , ∀t and 〈η(r, t)〉t = 0 , ∀r.
4If no density inhomogeneities occur in the growing surface, then Ft = 〈H(r, t)〉r which

means that the average surface height grows at the constant rate with the mean deposition flux
F , and h̄ = 〈h(r, t)〉r is a conserved quantity [52].
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- even derivatives of h: ∇kh, where k = 2, 4, 6, . . .

- odd derivatives multiplied in couples by scalar multiplication:

(∇mh) · (∇nh), with m,n = 1, 3, 5, . . .

- even derivatives of the latter: ∇k(∇nh)2.

- or terms like this: ∇m · ((∇nh)(∇kh)).

For a minimal model of the surface evolution G is expanded in a series

where of all terms allowed by the above mentioned symmetries only those terms

which are linear or quadratic in h and only posses a maximum of fourth order

spatial derivatives are kept. These terms are: ∇2h, (∇h)2,∇4h,∇2(∇h)2, (∇2h)2

and ∇ · [(∇h)(∇2h)]. The latter term can be expanded:

∇ · [(∇h)(∇2h)] =
1

2
∇2(∇h)2 + 2M ,

where

M = det

 ∂2
xh ∂y∂xh

∂x∂yh ∂2
yh

 . (9)

Finally, after all of the above considerations, the general form (4) becomes

minimal model equation which reads:

∂th = a1∇2h+ a2∇4h+ a3∇2(∇h)2 + a4(∇h)2 + a5(∇2h)2 + a6M + η . (10)

The evaluation of the coefficients and further simplifications of this model

can be made by considering the underlying processes governing the surface

growth.

2.2 Underlying physical processes
The derivation of the model equation (10) from the underlying symmetries

and assumptions, as presented in the previous subsection, does not give any in-

formation yet about the size or even a sign of the coefficients ai, i = 1, . . . , 6.

Also no insight in to the physics of the growth process has yet been provided

in the previous argument. Thus, in this subsection, a possible interpretation of

the terms in the model equation is proposed, in which each term corresponds to

some physical process that can take place on the surface. The deposited particles
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interact with the surface atoms and each other. They therefore experience vari-

ous steering processes due to interatomic interactions and relaxation processes

(surface diffusion) before they stick to the surface. As demonstrated in [9],

the density inhomogeneities in the growing surface should also be taken into

account, that is, the possibility that newly arriving particles stack up with differ-

ent densities, depending on the height gradients and curvatures of the already

formed surface.

There are four most important competing microscopic mechanisms which

lead to smoothing, roughening and pattern formation on the surface:

• Surface tension

• Concentration equilibration of deposited particles

• Steering of arriving particles

• Inhomogenous density distribution

This subsection discusses discusses the processes listed above in more de-

tail relating them to the terms in the model equation (10) that has been obtained

in the previous subsection using only some basic assumptions and symmetry ar-

guments.

Interaction with the surface atoms

The terms in the model equation (10) proportional to a1 and a6 are found

to be responsible for the surface roughening and can be related to the micro-

scopic processes of deflection of the arriving particles [53, 62] and not, as pre-

viously suggested, to the finite size of particles being deposited, [63]. The basic

idea is that the incoming particles experience a deflection close to the surface

due to the attractive interatomic interaction with the already condensed surface

atoms. The arriving particles do not hit the surface perpendicular to the sub-

strate (in the growth direction), but rather perpendicular to the surface itself

as schematically shown in Fig. 2. This results in the effect that more particles

arrive at the positions with negative surface curvature −∇2h < 0 (peaks) than

at the positions with a positive curvature −∇2h > 0 (valleys). This, in turn,

produces a growth instability which causes surface roughening, since the peaks

22



tend to grow faster and the valleys slower than the average deposition rate F

(see right panel of Fig. 2).

Figure 2: A schematic representation of the deflection of the arriving particles due
to the attractive interaction with the surface atoms (left panel) and the effects of
this process on the surface profile (right panel).

The effect of the particle deflection described above can be demonstrated

mathematically when suitable simplifications are applied. An idealization used

in [53] assumes that the arriving particles undergo the change in direction men-

tioned above instantaneously when they reach a critical distance b (left panel of

Fig. 2), the effective range of interaction, from the surface.

The unit vector perpendicular to the surface h(r, t) can be expressed as

n(r, t) =
1√

1 + (∇h)2

 −∇h
1

 (11)

where ∇h ≡ x̂∂xh + ŷ∂yh is the gradient of the surface height h on the flat

substrate — the (x, y)-plane. Then, the coordinates5 of a point R′ = (x′, y′, h′)

on an imaginary surface located a distance b in the n-direction from point R =

(x, y, z) on the real surface can be expressed as

R′ = R + bn , (12)

that is, using (11),
x′ = x− b√

1+(∇h)2
∂xh ,

y′ = y − b√
1+(∇h)2

∂yh ,

h′ = h+ b√
1+(∇h)2

.

(13)

5Now meaning the coordinates in tree-dimensional space
(
x, y, h(x, y)

)
.
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Now, the amount of incoming particles deposited on the surface above

an infinitesimal area dS = dxdy on the substrate is actually the amount of

particles passing through the area dS ′ = dx′dy′. Therefore, the local deposition

flux is equal to the mean particle flux F multiplied by the factor detA, since

dS ′ = detA dS, where A is the transformation matrix dx′

dy′

 = A

 dx

dy

 , (14)

which, according to (13), is

A =

 ∂xx
′ ∂yx

′

∂xy
′ ∂yy

′

 =

 1− b∂x ∂xh√
1+(∇h)2

−b∂y ∂xh√
1+(∇h)2

−b∂x ∂yh√
1+(∇h)2

1− b∂y ∂yh√
1+(∇h)2

 . (15)

The continuum model equation describes the coarse-grained scales where

the radii of the surface curvature are much larger than the effective reach of

the interatomic interaction, and thus, b|∇h| � 1. Therefore, b can be consid-

ered a small parameter, and the terms proportional to b2 can be omitted when

calculating detA. This leads to

detA = 1− b∇ ·
(

∇h√
1 + (∇h)2

)
. (16)

By using the small gradient expansion,

1√
1 + (∇h)2

≈ 1− 1

2
(∇h)2 , (17)

and taking only the lowest order terms, one ends up with the following trans-

formation for the local deposition flux

F −→ F − Fb∇2h (18)

which not only accounts for the term ∝ ∇2h in the model equation (10), but

also relates its coefficient a1 to the physical quantities F > 0 and b > 0 showing

that its sign must be negative:

a1 = −Fb < 0 . (19)

24



A more detailed derivation would show that this scenario of particle de-

flection due to interatomic interaction simultaneously gives rise to the two con-

tributions in the model equation (10): a1∇2h and a6M with M given by (9).

Moreover , the coefficients a1 and a6 can be related to the mean deposition flux

F and the effective range of interaction b yielding a1 = −Fb and a6 = Fb2. Since,

as mentioned before, the size of b should typically be of the order of one atomic

diameter and therefore much smaller than the curvature of the coarse-grained

surface, the contribution of the term proportional to a6 can be considered small

in comparison to the contribution of a1-term and can therefore be neglected

leaving only the term a1∇2h (with a1 < 0) to account for the surface roughen-

ing due to the deflection of incoming the particles. This term, if it was alone on

the rhs of (10) would result in extreme roughening of the surface, which can be

seen by substituting a single mode of wavenumber k, h(r, t) = hk(t) exp(ik · r),

into the linear equation ∂th = −∇2h. The result shows that the amplitude of

any mode of wavenumber k would grow exponentially with the rate propor-

tional to |k|2 and would result in the ultraviolet catastrophe. This, however, does

not happen, because there are other processes in play, that manifest themselves

by smoothing the surface.

Surface tension

A surface is an interface between two different media (two different ma-

terials or two different phases of the same material), and thus, the particles at

the surface interact with either one or the other medium, depending on direc-

tion. This leads to asymmetric (anisotropic)of particles interactions with their

surroundings (as opposed to the bulk particles) which lead to additional forces

known as surface tension.

The effect of surface tension is present in many different surfaces. It acts

to minimize the potential energy of the surface. In the case of two different

materials, if there is a stronger attraction between the same kind of particles, the

surface particles experience stronger attraction to the bulk of the same material

relative to the bulk of the other material. Thus, their potential energy is lower,

when they are surrounded more by the same material.

In the case of two phases of the same material (as in the surface growth

model considered here), the particles are more attracted to the denser phase.
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Therefore the surface particles have different potential energies depending on

their positions relative to the bulk of the material — the potential energy is

lower, when the particle is surrounded more densely by other particles.

The particles tend to minimize their potential energy and therefore try

to move to the regions on the surface where they would have lower potential

energies. In the case of surfaces between fluids (gases or liquids), this surface

tension results in spherical or flat surfaces, when a homogeneous field (e.g.

gravity) is present.

However in the case of solid growing surfaces, the particles are able to

move only for a limited time — before they finally stick to the bulk of material,

so that only recently deposited particles may participate in surface restructuring.

This results in the so-called surface diffusion [64] which acts as a kind of surface

tension [52]. The strength of the effect of surface tension then depends on the

diffusion length of the particles (the mean distance a deposited particle is able

to move until it sticks to the surface).

Figure 3: A schematic representation of surface diffusion of deposited particles
(left panel) resulting in the effect of to the surface tension which smooths the
surface (right panel).

In the model equation (10) the above described surface diffusion is ac-

counted for by the term proportional to a2. As already mentioned, the deposited

particles tend to move to the regions of lower potential energy (higher binding

energy) before they stick. These are the regions with positive surface curvature

∇2h > 0 (valleys). Thus, the potential energy of the particle at the surface is

assumed to be proportional to the negative surface curvature Epot ∝ −(∇2h).

The diffusion current is proportional to the negative gradient of the potential

energy jm ∝ −∇Epot ∝ ∇(∇2h), so that, depending on the local curvature, the
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current can be uphill or downhill (Fig. 3). Analogously to the continuity equa-

tion, this diffusion current contributes to the rate of change of surface height

∂th as −∇· jm ∝ −∇4h. The coefficient a2 in (10) must therefore be negative in

order to give the correct sign for the term a2∇4h, so it would be able to account

for the effect of surface diffusion described above. This term basically tries to

minimize the area of the surface and, as a consequence, to smooth the surface

morphology as illustrated in the right panel of Fig. 3.

The smoothing of the surface due to the term −∇4h can be demonstrated

by, again, looking at how the amplitude hk(t) a single mode of wavenumber k,

h(r, t) = hk(t) exp(ik · r) changes according to the linear equation ∂th = −∇4h.

The result shows that the amplitude of any mode of wavenumber k would decay

exponentially with the rate proportional to |k|4 and would result in the flat

surface if the surface diffusion term −∇4h acted alone.

Lienear instability

As has been demonstrated above, the linear terms a1∇2h and a2∇4 with

a1 < 0 and a2 < 0 in (10) represent physical mechanisms that manifest in rough-

ening and smoothing effects, respectively. It is easy to demonstrate that both of

these terms acting together result in the growth instability where a finite band

of spatial modes is amplified while the rest of the modes are decaying exponen-

tially. The same reasoning also leads to conclusion that no other combination

of the signs of the coefficients a1 and a2 would produce such an instability. The

demonstration goes as follows.

Taking only the two linear terms on the rhs of (10) produces the linear

equation

∂th = a1∇2h+ a2∇4h (20)

which can be solved analytically with the surface profile h(r, t) expressed as the

sum of its Fourier modes

h(r, t) =
∑
k

hk(t) exp(ik · r) . (21)

By substituting (21) into (20), one ends up with uncoupled equations for the
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amplitude of each mode:

ḣk(t) = (−a1|k|2 + a2|k|4)hk(t) . (22)

These linear first order ODEs have simple exponential solutions

hk(t) = hk(0) exp
(
σ(k)t

)
(23)

with σ(k) = −a1k
2 + a2k

4, k ≡ |k|, that is, the amplitudes of the modes with the

wave vectors k for which σ(k) > 0 will be exponentially amplified, whereas the

modes whose k is such that σ(k) < 0 will decay exponentially. It is clear that

for only the case where both a1 < 0 and a2 < 0 will result in the finite band of

wavenumbers k that are amplified. In this case (see Fig. 4), 0 < k <
√

a1
a2

are

amplified and the rest experience decay. After a short evolution time the mode

of wavenumber |k| =: kc that is amplified the strongest will start to dominate

producing patterns of size lc = 2π
kc

. Obviously, kc is the value at which σ(kc) has

its maximum.

Figure 4: The instability caused by the linear terms of (10), a1∇2h and a2∇4, in
the case where a1 < 0 and a2 < 0. The graph shows σ(k) (thick red line) and the
wavenumber kc of the maximally amplified mode (vertical dashed line).

For an almost flat surface with only minor height variations, the linear
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terms dominate the growth process described by (10). In this case, the band

of modes whose wave numbers are 0 < k <
√

a1
a2

grow exponentially. Since

the modes with wavenumber kc =
√

a1
2a2

are amplified the most, they begin

to dominate the surface morphology creating structures of characteristic length

lc = 2π
kc

that increase exponentially in height. However, this exponential growth

cannot last indefinitely. Once the amplitudes of the modes reach certain size, the

nonlinear terms come into play by coupling the modes stopping the exponential

increase of their amplitudes.

Concentration equilibration at the surface

The term proportional to a3 in the model equation (10) can be related

to the tendency for the inhomogeneous concentration of the arriving particles

to strive towards equilibrium before settling down and sticking to the surface.

The reason for the occurrence of these inhomogeneities can be explained in the

purely geometrical way.

More particles per surface area arrive at the positions with a small or zero

absolute value of the slope |∇h| than at the positions which are strongly inclined

with respect to the particle beam (see Fig. 5). The local concentration c of the

particles arriving at some infinitesimal surface element is inversely proportional

to its area divided by the area of its projection on the flat surface. Thus, the

local concentration is c ∝ 1/
√

1 + (∇h)2 or, in the small gradient expansion,

c ∝ 1− 1
2
(∇h)2.

Figure 5: Surface diffusion of deposited particles due to the inhomogeneous con-
centration of deposited particles.
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The inhomogeneous concentration causes the diffusion current jc ∝ −∇c ∝
∇(∇h)2, which contributes to the height changes as −∇· jc ∝ −∇2(∇h)2. Thus,

it follows that the contribution of the concentration equilibration can be ac-

counted for by the term a3∇2(∇h)2 ≡ −∇ · jc with a3 < 0. Fig. 5 provides

a schematic illustration of this process and its contribution to the surface pro-

file. Note that under the influence of this term (if the other terms are ignored)

the valleys become deeper and sharper while the peaks become more blunt and

round. In combination with the linear instability, this would produce the pat-

tern of mounds growing in size. In fact, if one considers only the linear terms

a1∇2h and a2∇4 considered above and the term a3∇2(∇h)2 with a1, a2, a3 < 0,

the resulting equation

∂th = a1∇2h+ a2∇4h+ a3∇2(∇h)2 (24)

would be of the form of the conserved Kuramoto-Sivashinsky (cKS) equation [52]

which produces a coarsening pattern that only saturates when the diameter of

the growing hills extends to the size of the whole system. Since the surface

growth experiments exhibit saturation in the surface patterns [48, 49], further

processes must be considered that produce the results consistent with these ob-

servations. Raible et. al. [9] have found that in order be able to reproduce the

experimental results, density inhomogeneities in the growing surface must be

considered.

Effects of density inhomogeneities

The terms in the model equation (10) that are proportional to a4 and a5,

in contrast to those previously considered,cannot be transformed to represent

a divergence of some current. These terms also cannot result from the particle

desorption since it is assumed that the energy of the particles in the vapour is too

low to cause such effects and therefore all arriving particles finally contribute to

the surface growth.6 As a consequence, these terms can only arise from changes

of the coarse grained density. Assuming for a moment that the deposition noise

is zero η = 0, particle conservation implies that the rate of change of the number

of particles per substrate area above a given position on the substrate, C(r, t),

6This assumption is valid in most of the experimental setups for thin films at room- or lower
temperatures
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is determined by the balance equation

∂tC = −∇ · jC + ρ0F (25)

The divergence of the current jC is induced by the combination of all sur-

face relaxation processes (the arguments mentioned before in this section), i.e.

−∇·jC = ρ0[a1∇2H+a2∇4H+a3∇2(∇H)2 +a6M ], where ρ0 is the constant par-

ticle density. Allowing for density variations at the growing surface, the rate of

change of C is related to the change of height H by ∂tC = ρ({∇kH})∂tH. Here

ρ({∇kH}) denotes the density at the surface which can depend in the derivatives

of the height {∇kH}. If the density variations are not allowed (ρ = ρ0 = const),

there is a direct proportionality between C and H and therefore ∂tC = ρ0∂tH.

If small density variations are taken into account, ρ({∇kH}) can be expanded

in the derivatives of H7 yielding ρ({∇kH}) = ρ0[1 + q1(∇H)2 + q2∇2H] in the

lowest order approximation. Therefore

∂tH = ρ−1({∇kH})∂tC (26)

holds with the inverse of the density (again, in the lowest order approximation)

ρ−1({∇kH}) = ρ−1
0 [1− q1(∇H)2 − q2∇2H] (27)

By putting (25) into (26) with (27) one finally gets

∂tH = a1∇2H+a2∇4H+a3∇2(∇H)2−q1F (∇H)2︸ ︷︷ ︸
=:a4(∇H)2

−q2a1(∇2H)2︸ ︷︷ ︸
=:a5(∇2H)2

+a6M+F (28)

Thus, it is shown that the terms proportional to a4 and a5 in the model equation

(10) can indeed arise from density inhomogeneities.

From the physical point of view , however, the density changes are primar-

ily connected to the gradients of the surface profile reflecting the local arrange-

ment of particles at the surface and not so much to the surface curvature. This

implies that the a5-term can be disregarded in the minimal model. Furthermore,

since the density variations result from an increase of the mean interparticle

7The allowed derivatives in this expansion are given by the same argument from symmetry
as was used in the previous subsection for the derivation of (10), because for the density the
same symmetries must hold
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distances at the surface positions with larger absolute values of height gradi-

ents |∇H|, one has to expect that the local particle density is decreased, which

implies that a4 > 0 holds.

Finally, after considering the above arguments (neglecting the terms pro-

portional to a5 and a6, transforming into the moving frame of reference h =

H − Ft and adding the noise term), the minimal model equation for the amor-

phous thin film growth can be given by:

∂th = a1∇2h+ a2∇4h+ a3∇2(∇h)2 + a4(∇h)2 + η (29)

with a1, a2, a3 < 0 and a4 > 0. This is a nonlinear stochastic partial differential

equation. Since such an equation cannot be solved analitically, it has to be

investigated by numerical methods (computer simulations). The methods used

for this thesis will be discussed in the next section.

The terms in the equation (29) proportional to a1, a2 and a3 can be written

as divergence of some current. Thus, the equation without a term proportional

to a4 would have a form of a continuity equation and would give a constant

mean of the height profile h: 〈h〉r = const. This would correspond a linear

increase of the mean height in time with a velocity F : 〈H〉r = Ft + const, the

constant, of course, being zero for any initial condition with 〈h〉r = 0.8 Only

the term proportional to a4 does not fit in the form of the continuity equation.

It is also clear that the contribution of this term can only be positive (or equal

to zero for a completely flat surface). Thus, the a4-term causes the mean height

〈H〉r grow with the velocity higher than the mean deposition rate F , that is

〈∂tH〉r = F + 〈∂th〉r = F + 〈a4(∇h)2〉r =: F + vex, where vex > 0 is a so-called

excess velocity.

After applying all of the above considerations to (10), one ends up with

the equation

∂th = a1∇2h+ a2∇4h+ +a3∇2(∇h)2 + a4(∇h)2 + η (30)

where a1, a2, a3 < 0 and a4 > 0.

8It is, of course, for the boundary conditions that do not allow particles to leave the system,
e.g. periodic boundary conditions
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2.3 Numerical methods

This subsection introduces some of the numerical methods that have been

used in the research presented in this work for computer simulations of the

model equation (30). In [53], three numerical methods for this equation have

been presented and compared: the finite difference approximation, the spectral

Galerkin method and the Finite Element method. It has also been found that

the finite difference approximation and the spectral Galerkin method yield, for

this particular problem, the same results within the same accuracy and roughly

the same computation time.

Since the finite difference approximation is the simplest to implement and

also more intuitive, this method has been chosen for the research presented in

this thesis. It is also the most common method to integrate stochastic field equa-

tions like (30) numerically. The method is based on a direct spatio-temporal dis-

cretization on a square grid (for two spatial dimensions) and discrete moments

in time tk, k ∈ N with, in general, variable time step ∆tn = tn+1 − tn.

The height profile h(r, t) is defined for every instance t on a square region

of the two-dimensional space [0, L]2 ⊂ R2. In the finite difference approximation

this region is divided into a lattice of N2 squares with the lattice constant ∆x =

∆y = L/N . This way the continuous surface h is approximated by the average

height h(n)
i,j of each of the squares (i, j) having the side length ∆x and center

coordinates ((i− 1
2
)∆x, (j − 1

2
)∆x) where i, j = 1, . . . , N , at time tn, i.e.

h
(n)
i,j =

1

(∆x)2

i∆x∫
(i−1)∆x

dx

j∆x∫
(j−1)∆x

dy h(x, y, tn) (31)

and its continuous evolution in time is approximately expressed by calculating

h
(n)
i,j for discrete times tn. The first order finite difference scheme for the equation

of the general form ∂th = G[{∇h}] + η (see Eq. (4)) of the stochastic growth

equation with time step ∆tn can then be expressed as:

h
(n+1)
i,j = h

(n)
i,j + ∆tnGi,j[{h(n)

k,l }] + q
(n)
i,j . (32)

Here q(n)
i,j is the set of uncorrelated random numbers representing the con-

tribution of the stochastic term η. Each stochastic contribution q
(n)
i,j on the
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rhs of equation (32) represents the noise η integrated over the time interval

[tn, tn+∆tn] and spatially averaged on the (i, j)-th lattice square with the center

at the point ((i−1/2)∆x, (j−1/2)∆y) as in the definition of h(n)
i,j , equation (31):

q
(n)
i,j =

1

(∆x)2

tn+∆tn∫
tn

dt

(i+1/2)∆x∫
(i−1/2)∆x

dx

(j+1/2)∆x∫
(j−1/2)∆x

dy η(x, y, t) (33)

For the spatially and temporally uncorrelated (white) noise η(x, y, t) of

intensity D, the total variance of the contribution (33), q(n)
i,j , is given by

Var[q
(n)
i,j ] = 2D

∆tn
(∆x)2

. (34)

Thus the noise term can be represented by independent random variables

q
(n)
i,j = Pnξ

(n)
i,j where the factor Pn,

Pn =
√

2D∆tn/(∆x)2 , (35)

is the rms deviation on a lattice site produced by the noise during the time ∆tn,

and ξ(n)
i,j is a normally distributed random variable with the unit variance.

The resulting evolution remains practically unchanged if, instead of nor-

mally distributed, one uses uniformly between −1
2

and 1
2

distributed random

variables ξ
′(n)
i,j whose variance is 1

12
with

P ′n =
√

24D∆tn/(∆x)2 , (36)

because the contribution of q
′(n)
i,j would produce the same zero mean 〈q

′(n)
i,j 〉 =

〈P ′nξ
′(n)
i,j 〉 = 0 and the same variance 〈(q

′(n)
i,j )2〉 = 〈(P ′nξ

′(n)
i,j )2〉 = 2D∆tn/(∆x)2 as

the normally distributed, and their higher moments would be small, that is, of

the order of O(∆t2n) [65].

For the derivation of the finite difference scheme of equation (29),

∂th = a1∇2h+ a2∇4h+ a3∇2(∇h)2 + a4(∇h)2 + η , (37)
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one can decompose this equation into the system of equations9

v = (∇h)2 ,

w = a1h+ a2∇2h+ a3v ,

∂th = ∇2w + a4v + η . (38)

By using central difference approximations in space and an explicit Euler

method in time one obtains the following detailed scheme of the procedure (32)

for the model equation (37):

v
(n)
i,j =

1

3(∆x)2

[
(h

(n)
i+1,j − h

(n)
i,j )2 + (h

(n)
i+1,j − h

(n)
i,j )(h

(n)
i,j − h

(n)
i−1,j)

+(h
(n)
i,j − h

(n)
i−1,j)

2 + (h
(n)
i,j+1 − h

(n)
i,j )2

+(h
(n)
i,j+1 − h

(n)
i,j )(h

(n)
i,j − h

(n)
i,j−1) + (h

(n)
i,j − h

(n)
i,j−1)2

]
(39)

w
(n)
i,j = a1h

(n)
i,j +

a2

(∆x)2

[
h

(n)
i+1,j + h

(n)
i−1,j

+h
(n)
i,j+1 + h

(n)
i,j−1 − 4h

(n)
i,j

]
+ a3v

(n)
i,j (40)

h
(n+1)
i,j = h

(n)
i,j +

∆tn
(∆x)2

[
w

(n)
i+1,j + w

(n)
i−1,j + w

(n)
i,j+1 + w

(n)
i,j−1 − 4w

(n)
i,j

]
+∆tna4v

(n)
i,j + Pnξ

(n)
i,j (41)

Also a more straight forward finite difference approximation of v = (∇h)2

can be used instead of (39):

v
(n)
i,j =

1

4(∆x)2

[
(h

(n)
i+1,j − h

(n)
i−1,j)

2 + (h
(n)
i,j+1 − h

(n)
i,j−1)2

]
. (42)

However, [53] insists that the scheme (39)-(41) is produces better numer-

ical stability than the scheme with (42).

In order to reduce the number of operations, one can precalculate the

9This decomposition is slightly different from the one presented in [53]. It has been chosen
because it requires less arithmetical operations when implemented numerically.
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terms that appear in the scheme multiple times:

a = h
(n)
i+1,j − h

(n)
i,j ,

b = h
(n)
i,j − h

(n)
i−1,j ,

c = h
(n)
i,j+1 − h

(n)
i,j ,

d = h
(n)
i,j − h

(n)
i,j−1 . (43)

Substituting these into (39) and (40) results in the following scheme:

v
(n)
i,j =

1

3(∆x)2

[
a2 + ab+ b2 + c2 + cd+ d2

]
, (44)

w
(n)
i,j = a1h

(n)
i,j +

a2

(∆x)2

[
a+ c− (b+ d)

]
+ a3v

(n)
i,j . (45)

Expressions (44),(45) with (43) and (41) with (35) constitute an explicit

first order (Euler) scheme, that can be directly used to simulate the stochastic

growth equation (37). In order to increase the numerical stability, one might

want to implement a higher order scheme. The second order scheme that has

been used in most calculations for this thesis follows directly from the so-called

Heun’s method for ordinary differential equations.10 This method basically ap-

plies the first order scheme presented above twice. In fact, the second order

scheme,

h̃
(n+1)
i,j = h

(n)
i,j + ∆tnGi,j[{h(n)

k,l }] ,

h
(n+1)
i,j = h

(n)
i,j +

∆tn
2

(Gi,j[{h(n)
k,l }] +Gi,j[{h̃(n+1)

k,l }]) + Pnξ
(n)
i,j . (46)

is constructed from the first order scheme (32) as follows. First, one calculates

the intermediate surface profile h̃(n+1)
i,j at time tn+1 from the initial profile h(n)

i,j at

time tn by using the first order scheme (32), but without adding the noise term

Pnξ
(n)
i,j .11 For this new surface, the values of G, Gi,j[{h̃(n+1)

k,l }], are found and then

10A spatially discretized scheme for a PDE is, of course, equivalent to a system of coupled
ordinary differential equations, so the same integration methods can be applied.

11In higher order schemes the noise for the intermediate stages can change in some non-trivial
way. So instead of trying to evaluate these contributions, it has been chosen here to calculate
the new surface by using the second order scheme without the stochastic term and then to add
the stochastic term to the final result, therefore leaving it in the same form as in the first order
scheme (32). Actually, it does not make a difference for the simulation results in the case of
uncorrelated noise of zero mean.
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the second order approximation h(n+1)
i,j is produced by adding the average value

of G at the time tn, Gi,j[{h(n)
k,l }], and the first order approximation of G at time

tn+1, Gi,j[{h̃(n+1)
k,l }], (multiplied by the time step ∆tn) and, finally, contribution

of noise Pnξ
(n)
i,j to the initial h(n)

i,j .

All numerical simulations of the surface growth presented in the further

this work have been performed using the methods presented in this section with

periodic boundary conditions and the following parameter values. The time step

was held constant equal to ∆t = 0.005 (unless stated otherwise). The lattice

constant, unless stated otherwise, has been set to ∆x = 0.71086127010534. Such

a seemingly bizarre number for the discretization step ∆x is actually a good

approximation of the value that is needed in order for the system with periodic

boundary conditions to be able to contain hexagonal patterns that appear in

some other versions of the generalized KS equation (see for example [25,30]).

Other numerical methods used in this work consisted mostly of implemen-

tations of algorithms for statistical analysis of the data produced by the com-

puter simulations of (30): calculation of height distributions, autocorrelation

functions and spectra, and filtering of the simulated surface profiles, also anal-

ysis of the time series for global quantities (like surface roughness) during the

surface evolution. All of these were written by the author of this thesis using C

programming language.
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3 Deterministic gKS equation

For most part of this work, the noise term η in (30) is omitted and the

deterministic version of the growth equation,

∂th = a1∇2h+ a2∇4h+ a3∇2(∇h)2 + a4(∇h)2 , (47)

is considered.

This section demonstrates how the gKS (47) can be rescaled transforming

it into the dimensionless form with only one independent parameter that de-

termines the behavior of the surfaces evolving according to this equation. The

transient kinetics and the saturation in the dynamics are shown.

3.1 Dimensionless form

The equation (47) has four parameters a1, a2, a3 and a4 and three physical

dimensions — height, time and length. According to dimensional analysis, it

should be possible to rescale this equation and obtain a dimensionless form

with only one parameter. Denoting the units for the height, time and length

units as SH , ST and SL, respectively, it is possible to express h, t and r in the

corresponding dimensionless quantities h̃, t̃ and r̃ as follows:

h = SH h̃ ,

t = ST t̃ ,

r = SLr̃ . (48)

Since the nabla operators represent spatial derivatives, they are expressed

accordingly:

∇r = S−1
L ∇r̃ ≡ S−1

L ∇̃ . (49)
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Using (48) and (49) the terms in (47) can be expressed as

∂th = (SH/ST )∂t̃h̃

∇2h = (SH/S
2
L)∇̃2h̃

∇4h = (SH/S
4
L)∇̃4h̃

(∇h)2 = (S2
H/S

2
L)(∇̃h̃)2

∇2(∇h)2 = (S2
H/S

4
L)∇̃2(∇̃h̃)2 (50)

From the latter expressions and equation (47) follow the dimensions of

the coefficients a1, a2, a3, a4:

[a1] =

[
S2
L

ST

]
,

[a2] =

[
S4
L

ST

]
,

[a3] =

[
S4
L

SHST

]
,

[a4] =

[
S2
L

SHST

]
. (51)

The signs for the coefficients {ai} in 47 are fixed. They follow from the

model and have been determined in Sect. 2 to be a1, a2, a3 < 0 and a4 > 0. Since

it is more convenient to have all positive coefficients, we can make the following

simple transformation to the new set of coefficients {bi},

a1 −→ −b1 ,

a2 −→ −b2 ,

a3 −→ −b3 ,

a4 −→ b4 , (52)

thus, putting the gKS (47) in the form

∂th = −b1∇2h− b2∇4h− b3∇2(∇h)2 + b4(∇h)2 (53)

where all coefficients are positive, i.e. b1, b2, b3, b4 > 0.

By substituting the expressions (50) in the equation (53), one obtains the
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dimensionless form of the gKS with four dimensionless coefficients c1, c2, c3, c4:

∂t̃h̃ = − b1
ST
S2
L︸ ︷︷ ︸

c1

∇̃2h̃− b2
ST
S4
L︸ ︷︷ ︸

c2

∇̃4h̃− b3
SHST
S4
L︸ ︷︷ ︸

c3

∇̃2(∇̃h̃)2 + b4
SHST
S2
L︸ ︷︷ ︸

c4

(∇̃h̃)2 (54)

Thus, we have the equation with four dimensionless coefficients c1, c2, c3 and

c4. However, since there are three physical dimensions, only one of these coeffi-

cients is independent of scaling. The value of the coefficient c3 has been chosen

as the only independent parameter of the equation in the dimensionless form

and will be called α, and all of the remaining three coefficients have been set

equal to 1:

c1 = b1
ST
S2
L

= 1 ,

c2 = b2
ST
S4
L

= 1 ,

c3 = b3
SHST
S4
L

= α ,

c4 = b4
SHST
S2
L

= 1 . (55)

The choice of the independent parameter to be the coefficient by the non-

linear term ∇2(∇h)2 has been made because this term generalizes the widely

known and much researched Kuramoto-Sivashinsky (KS) equation [18–21],

∂th = −∇2h−∇4h+ (∇h)2 , (56)

and gKS then has the KS as a special case when α = 0.

Solving the system (55) of algebraic equations provides the scaling param-

eters

SH =
b1

b4

, ST =
b2

b2
1

, SL =

√
b2

b1

. (57)

which are needed if one desires to return to dimensional quantities.

By setting the values (55) into (54) and omitting the tildes one obtains

the final form of the deterministic generalized Kuramoto-Sivashinsky equation
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(gKS),

∂th = −∇2h−∇4h− α∇2(∇h)2 + (∇h)2 , (58)

with

α =
b1b3

b2b4

> 0 (59)

which is the main object of this thesis.

It is clear from (57) that, with the particular choice (55) of dimensionless

coefficients, the length scale parallel to the substrate SL and the time scale ST

are determined by the values of the coefficients b1 and b2 in (53), and the height

scale SH is proportional to b−1
4 whereas the behavior of the equation only de-

pends on the ratio b3/b4. It is sometimes convenient to have two parameters

(at both nonlinear terms) in gKS. By setting c3 = α1 and c4 = α2 in (55), the

equation can be given as

∂th = −∇2h−∇4h− α1∇2(∇h)2 + α2(∇h)2 . (60)

However, it is clear that the parameters α1 and α2 are not independent. Indeed,

the dynamics, resulting from the equation (60) depends only on (α1/α2) exactly

like dynamics of (58) depends on α, only the height is rescaled in the two-

parameter case (60) by the factor α−1
2 . Nevertheless, in this form, one can see

that reducing the value of α2 by some finite factor κ−1, κ > 1, does the same (up

to the rescaling of the height by κ) as increasing the value of α1 by κ.

Moreover, by choosing the single independent parameter α′ to be the co-

efficient by the nonlinear term (∇h)2, that is, by setting c3 = 1 and c4 = α′ in

(55), one would end up with the equation

∂th = −∇2h−∇4h−∇2(∇h)2 + α′(∇h)2 , (61)

where

α′ =
b2b4

b1b3

= α−1 (62)

and the resulting scaling parameters

SH =
b2

b3

, ST =
b1

b2
2

, SL =

√
b2

b1

. (63)

Then the limiting case α′ → 0 in this equation resulting in the so-called con-
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served Kuramoto-Sivashinsky equation (cKS) [52],

∂th = −∇2h−∇4h−∇2(∇h)2 , (64)

would correspond to the limit α→∞ in (58).

3.2 Kinetics produced by the gKS: initial stages
and saturation

In almost all of the numerical simulations presented in this work we will

use the rescaled form of the deterministic gKS equation (58),

∂th = −∇2h−∇4h− α∇2(∇h)2 + (∇h)2 , (65)

with a single independent parameter α.

In this thesis, the generalized gKS without the noise term — as well as

the stochastic growth equation (29), discussed in Sect.2 — is interpreted as an

evolution equation for some surface profile h(x, t). Computer simulations on

the gKS (65) show that the resulting surface morphologies and the kinetics of

statistical parameters, like surface roughness, are very similar to those of the

stochastic model equation (30) for moderate noise levels. At the initial stages

(starting from an almost flat surface), the evolution is also dominated by the

linear terms −∇2h and −∇4h, and thus results in the exponential growth of

modes around the critical wavelength kc = 1/
√

2 (see the argument in Sect. 2,

Subsect. 2.2). In the very short time, this critical mode starts to dominate the

surface profile and, as a result, the surface roughness w also grows at the expo-

nential rate. At later stages, the nonlinear terms −α∇2(∇h)2 and (∇h)2 become

more important. The term (∇h)2, known from the KPZ equation (3), see Sect. 1,

leads to the slowing down of the exponential roughening and, eventually, causes

the kinetics to saturate into a stationary behavior which then persists in the long

time limit. The other nonlinear term∇2(∇h)2 causes the coarsening of the small

scale pattern, that is, it leads to the increase in size of the individual humps in

the cellular patterns, as will be demonstrated in later sections.
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Figure 6: Initial transient kinetics of the roughness w(t), (67), of a surface evolv-
ing accourding to (1) with several values of parameter α. Each simulation starts
from a random uncorrelated surface profile with initial roughness w(0) = 10−4.
The left panel shows w(t) on linear scale for 3 realizations with each α. The
right panel highlights the initial exponential increase of w(t) by using a semi-
logarithmic scale. The inset demonstrates the saturation roughness wsat and the
cross-over time t×.

3.3 Transient dynamics and saturation

In computer simulations presented in this work, the equation (65) is solved

numerically for different values of α using the methods presented in Sect. 2,

Subsect. 2.3 with periodic boundary conditions, the time step ∆t = 0.005, and

spatial discretization step ∆x = 0.71086127010534 , unless stated otherwise. The

equation is solved for system sizes L ranging from about 36 to about 1422 (i.e.,

on the N ×N lattices with N from 50 to 2000, where L = N ∆x).

In the KS case (α = 0), the evolving surfaces reach the regime where

the dynamics is chaotic, but statistically stationary. This type of behaviour also

persists for α > 0, at least up to α = 5. However, for larger values of α, this

stationary chaotic behaviour gives way to non-stationary effects that prevent

the saturation in the surface evolution. Indeed, in the limiting case when α →
∞ in (65), by rescaling h, one arrives at the conserved Kuramoto-Sivashinsky

equation [52] (see Subsect. 3.1 of this section),

∂th = −∇2h−∇4h−∇2(∇h)2 , (66)
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which produces a non-stationary regime with ever increasing surface roughness

due to the uninterrupted coarsening of the surface patterns. Thus, by increas-

ing α, there must be a route from the stationary chaotic evolution (Sect. 6) to

non-stationary coarsening behaviour (Sect. 8). The coarsening behaviour for

relatively larger parameter values (up to α = 50) has been investigated in a

one-dimensional case and, to some extent, in the two dimensional case [66].

Nonetheless, the long-time behaviour at the intermediate α values seems to be

quite complicated and has not been studied in detail so far. The author of this

work offers his humble contribution on the matter in Sect. 8 of this thesis.

Even though negative α values do not follow from surface growth or ero-

sion models (see, e.g., [9,15]), it is desirable to understand the dynamics in that

range for completeness.

However, the range of negative α values available for investigation is lim-

ited. In our numerical simulations with α < −0.14, we find that large local

gradients in the surface emerge and grow. They eventually exceed the numeri-

cal capacity of the simulation, thus making the required long-time calculations

unstable. The reason for this most likely are the so-called cancellation modes

(see, e.g., [15, 67]). Indeed, when α < 0, the contributions of the nonlinear

terms in (65) cancel each other out for some mode, so that the dynamics of this

mode is governed only by the linear part of (65). If, moreover, the wave number

of this mode belongs to the linearly unstable band, then its amplitude blows up

exponentially, thus, causing the simulation to break down.

Therefore, this work (with the exception of Sect. 8) focuses on the evo-

lution of surfaces produced by (65) in a moderate range, −0.12 ≤ α ≤ 5, of

parameter values where the long time behaviour is stationary.

One of the most important quantities characterizing a surface [51, 57] is

the surface roughness w(t), also called the surface width:

w(t) :=

√〈(
h(r, t)− h̄(t)

)2
〉
r
. (67)

The scaling properties of this quantity are often used to characterize and classify

various surface growth models into various universality classes [22, 35, 43, 51].

The roughness of an evolving surface changes with time. In the range of pa-

rameter values considered here, the kinetics of w(t) due to the surface evolution
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according to (65) seems to follow a distinct pattern (see, e.g., [7,9,10,52,68]):

starting from a random surface with some small initial roughness w(t = 0)� 1

the instability produced by the linear part of (65) dominates over nonlinear

terms, and the roughness begins to grow at an exponential rate, but at some

time t× < 100 this growth slows down significantly, and, eventually, crosses

over to a stationary regime where it oscillates about some average (saturation)

value wsat. This transient behaviour is shown in Fig. 6) for several parameter

values. For large enough systems another regime can be observed where w(t)

exhibits growth that is much slower than the initial exponential increase. For

α = 0 (KS case), this growth is approximately w(t) ∼
√

log t, as shown in Fig. 7

where the growth w2(t) ∼ log t appears as a straight line in the log-linear scale,

which is consistent with pre-saturation behavior reported in [44]. The duration

of this regime before finally reaching saturation increases with increasing sys-

tem size which suggests that this growth is due to the development of large-scale

height variations (see Sect. 4).

The value of saturated surface roughness can be defined as follows:

wsat = lim
T→∞

〈
w(t)

〉
t∈[t0, t0+T )

. (68)

Here t0 � t× is a time at which all initial transient effects have decayed and

are virtually undetectable, i.e., the time at which the stationary regime has been

reached. In practice, the total observation time T has to be much larger than

the typical time scale in the kinetics of w(t). In the investigation presented here,

the saturation values for surface roughness wsat are calculated using t0 = 2 · 104

and T = 8 ·104. Note that these times are significantly larger than those recently

achieved by Muñoz-Garcia et. al. in the numerical investigation of an equation

equivalent to (65) in the one-dimensional case [16, 17]. There, although the

’interrupted coarsening’ is observed, the saturated stationary regime appears

not to have been fully reached.

The surface roughness w(t) represents the integral effect of all modes con-

tributing to the surface morphology. Therefore, in this work, the time series

of chaotic fluctuations of w(t) in the stationary regime are used to investigate

the long-time dynamics of surfaces, in particular, the temporal behaviour of the

large-scale height variations observed in Ref. [7].
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Figure 7: Transient bahavior of w2(t) (each curve is an ensemble average of 10 to
30 realizations) for α = 0 and system sizes (in lattice units) N = 125 (black), N =

250 (red), N = 500 (green), N = 1000 (blue), N = 2000 (orange). Black dashed
line corresponds to the logarithmic fit for the N = 2000 case. The corresponding
system sizes L can be found from L = N∆x where ∆x ≈ 0.711 is the spatial
discretization step used in the simulations.
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Figure 8: Surface morphologies produced by (69) for different parameter values
at system size N = 350 (L ≈ 249).
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4 Characterization of surface morpholo-
gies and the scaling of roughness

The surface profiles produced by gKS (65),

∂th = −∇2h−∇4h− α∇2(∇h)2 + (∇h)2 , (69)

in the stationary regime have a disordered cellular structure on the small scales

and slow height variations over the entire system [7,9] (c.f. Fig. 10 and Fig. 11).

This section presents the quantities used to statistically describe the geometry

of these surfaces and then goes on to show how these quantities depend on the

parameter α and the system size in the gKS (69) model.

4.1 Height distributions

One important characteristic in the statistical description of the morphol-

ogy of disordered surfaces is its height distribution. Since the average height

plays virtually no role in the present investigation, the height fluctuation ∆h =

h − h̄, i.e., the deviation from the average h̄ is considered. In order to esti-

mate the probability density of ∆h, first the rms deviation of the surface height

h from its average (equivalent to the surface roughness), w =
√
〈(h− h̄)2〉, is

calculated. Then the interval equal I = [−alow, ahiw) is divided into Nb non-

overlapping subintervals (or ‘boxes’) of equal size:

Ik = [hk, hk+1) (70)

where

hk = w
(ahi + alo

Nb

(k − 1)− alo

)
, k = 1, 2, . . . , Nb . (71)

The lower and upper limits (in standard deviation w units) alo > 0 and

ahi > 0 of the interval I = [−alow, ahiw) are chosen in such a way that most of

the heights on the lattice (usually over 99%) belong to this interval. In this work

it has been found that alo = ahi = 4 and Nb = 100 gives reasonably good results.
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The probability density p(∆h) is then estimated as

p(∆h) =
nk

ntot sh
(72)

with nk being the number of points where ∆h ∈ Ik, ntot being the total number

of points where ∆h ∈ I, and sh = |Ik| ≡ w(ahi + alo)/Nb is the size of the

box (subinterval Ik). Some probability densities estimated in this way from the

simulation results are shown in Fig. 9.
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Figure 9: Estimations of the height fluctuation ∆h probability densities in the
surfaces produced by the gKS (69) in the stationary regime, t = 105, with differ-
ent parameter α values and various system sizes (in lattice units N): N = 150

(dot-dashed lines), N = 200 (dotted lines), N = 300 (dashed lines), N = 500

(solid lines). Top half: α = −0.12, 0, 0.5, 1, bottom half: α = 1, 2, 3, 5 . Left half:
probability densities p(∆h) plotted directly. Right half: the same probability den-
sities plotted as log p(∆h) vs |∆h| ·∆h in order to compare them with the normal
(Gaussian) distributions which would appear as straight lines forming a triangle
with the symmetry axis ∆h when plotted this way.

One might wish to compare the resulting probability densities with the

normal (Gaussian) probability density,

pGauss(∆h) ∝ exp

(
− (∆h)2

2w2

)
. (73)
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By denoting u = log pGauss and v = |∆h|∆h one obtains from (73) the following

expression:

u(v) = const− |v|
2w2

(74)

which has the shape of a ‘tent’ — an isosceles triangle with the symmetry axis

at v = 0. Therefore, by plotting the transformed probability densities log p vs

|∆h|∆h, as shown on the right half of Fig. 9, it is easy to visually compare

them to those produced by the normally distributed quantities. One can see

that at, small parameter values α in (69), the probability densities of ∆h are

symmetric and quite similar to those of normally distributed quantities, but by

increasing the parameter value the resulting distributions become not only nar-

rower, but also increasingly negatively skewed, thus, deviate further from the

normal distribution. This negative skew can be explained by considering the

morphologies of the surfaces. When the parameter is increased, the long range

height variations are diminished and, at the same time, the small-scale surface

patterns grow larger in size forming round bumps with peaks at a very similar

height separated by deep sharp valleys, as can be clearly seen in their morpholo-

gies Fig. 8 and autocorrelation functions Fig. 10. This results in the negatively

skewed distributions.

4.2 Height autocorrelation and surface spectrum

The height distributions give the range of the expected surface height fluc-

tuations. However, it does not convey any information about how these height

fluctuations are correlated in space. Therefore other quantities must be used in

order to describe surface morphology.

The usual way to investigate the surface patterns is by calculating the sur-

face height-height correlation function C(r), which is the two-dimensional au-

tocorrelation function of the surface height h(r):

C2D(r) =
〈
(h(r′)− h̄) (h(r′ + r)− h̄)

〉
r′ . (75)

Since (69) is isotropic, and, consequently, the resulting profiles have no

distinct direction on the r-plane, the surface morphologies can be investigated

by using the surface height autocorrelation function averaged over all directions
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at a distance r = |r| that only has the radial dependence:

C(r) =
〈〈

(h(r′)− h̄) (h(r′ + r)− h̄)
〉
r′

〉
|r|=r

. (76)

The isotropic height-height correlation function C(r) (76) gives a good

description of disordered surface morphologies. An equivalent, and in some

cases more intuitive, description is given by the surface spectrum which we

define in the following.

In order to avoid the zero wavenumber mode, we consider the ‘centered’

surface profile hc(r) = h(r)− h̄ whose average height is subtracted.

A two dimensional Fourier transformation of such surface profile is

hk =

∫
d2r hc(r) exp(−ik · r) , (77)

and its two-dimensional power-spectral density can be expressed

S2D(k) =
1

L2
|hk|2 . (78)

Now, from the Parseval’s identity it follows that

1

(2π)2

∫
d2k |hk|2 =

∫
d2r

(
hc(r)

)2
. (79)

Therefore, recalling that the square of the surface roughness is defined as

the variance of the height profile,

w2 ≡ Var[h] =
〈(
hc(r)

)2〉
r

=
1

L2

∫
d2r

(
hc(r)

)2
, (80)

from (78) follows that it can be expressed as the integral of the power spectral

density:

w2 =
1

(2π)2

∫
d2k S2D(k) . (81)

Since the surfaces considered in this work are statistically isotropic, it is

desirable to have a one− dimensional surface spectrum S(k) that depends only

on the wave number k = |k|. The main requirement in defining such a spectrum

is that it should relate to the square of the surface roughness w2 in an analogous
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way as the two-dimensional spectrum S2D(k) in (81), that is,

w2 ≡ Var[h] =:
1

2π

∫
dk S(k) . (82)

By expressing the double integral in (81) in polar coordinates k = (k, φ),

1

(2π)2

∫
d2k S2D(k) =

1

(2π)2

∫
dk k

∫ 2π

0

dφS2D(k(k, φ)) ,

and performing the integration over the angles φ, it is easy to see that the one-

dimensional spectrum defined in (82) is expressed as

S(k) = k 〈S2D(k)〉|k|=k , (83)

or, substituting (78), as

S(k) =
k

L2
〈|hk|2〉|k|=k . (84)

The Wiener-Khinchin theorem, applied for the two-dimensional case, states

that the two-dimensional surface power-spectral density S2D(k) (78) can be ex-

pressed as the Fourier transform of the two-dimensional autocorrelation func-

tion C2D(r) (75),

C2D(r) =
〈
(h(r′)− h̄) (h(r′ + r)− h̄)

〉
r′ . (85)

This can be easily shown by substituting (77) into (78),

S2D(k) =
1

L2

∫
d2r′

∫
d2r′′ hc(r

′)hc(r
′′)e−ik·(r

′′−r′) . (86)

Changing the variable r′′ → r′+r and switching the order of integration results

in

S2D(k) =

∫
d2r e−ik·r

1

L2

∫
d2r′ hc(r

′)hc(r
′ + r) , (87)

where

1

L2

∫
d2r′ hc(r

′)hc(r
′ + r) ≡

〈
hc(r

′)hc(r
′ + r)

〉
r′ = C2D(r) (88)

is the height correlation function of the surface h(r). Thus, finally, we get

S2D(k) =

∫
d2r C2D(r) e−ik·r (89)
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which is exactly the statement of Wiener-Khinchin theorem.

From (89) the expression relating the one-dimensional correlation C(r)

and spectrum S(k) is obtained as follows.

Taking an average over all directions of k on the lhs of (89) results in the

integration over all directions of r on the rhs, since C2D(r) should not depend

on the direction of r, and the scalar product k · r = kr cosφ depends only on

the relative angle φ, thus, the integration over all |k| = k is equivalent to the

integration over all |r| = r. Thus, using (83), the final relation between the

one-dimensional surface spectrum S(k) (82) and the radial height correlation

function C(k) (76) results as [7,69]:

S(k) = k 2π

∫
dr r C(r) J0(kr) . (90)

Here J0(kr) is the Bessel function of the 1st kind:

J0(kr) =
1

2π

∫ 2π

0

dφ eikr cosφ . (91)

Examples of numerically calculated surface PSD S(k) using (76)-(91) for

α = 0 and α = 1 first calculated in [7] can be seen in Fig. 12. There, one can

see a distinct peak that corresponds to an average size of a hump-shaped cells in

the surface pattern (see Figs. 10 and 11), and a power-law trend for small wave

numbers.

4.3 Numerical results

Fig. 10 shows some of the resulting surface patterns and the corresponding

normalized height correlation functions C(r)/w2 for relatively small systems (of

size N = 200, in lattice units) for different parameter α values. The shape of

the autocorrelation function at smaller distances gives an insight into the small-

scale surface patterns. For example, in Fig. 10, one can see how the cellular

patterns change, by increasing α: the autocorrelation function (76) changes

from monotonically decreasing at α = −0.12 (corresponding to ’flaky’ surface

profiles, with ’flakes’ of widely varying size) to having a short flat region at α = 0

(corresponding to a profile with ’cells’ of similar size), and to a function with at

least one distinct peak at α > 0 whose distance increases with α (corresponding
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to the surface ’cells’ becoming almost round ’humps’ whose size increases with

α). See Sect. 5 for a broader discussion of these small-scale patterns.

0 10 20 30 40 50
0.0

0.1
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0.3

0.4

0.5

0.6

Figure 10: Top panel: Surfaces h(r, t) (values of the surface height h coded in
gray-scale) evolving according to (69) at system size N = 200 (L ≈ 142) with
parameters α = −0.12, . . . , 3 at time t = 105 (in the stationary regime). Bot-
tom panel: Normalized autocorrelation functions C(r) as defined in (76) of the
surfaces that are shown in the top panel.

Another thing that can be noticed in Fig. 10 is that the normalized correla-

tion function C(r)/w2 decays slowly for α = 0 and faster for increasing α. Also,

perhaps surprisingly, the autocorrelation function for α < 0 decays faster than

for α = 0. These are the first indications of the influence of parameter α on

long-range height correlations.

Simulations show that the resulting saturated surface roughness (68) in-

creases with the system size. This indicates that the surface profiles of larger

systems contain additional spatial Fourier components of smaller wave number

k, since the structure on smaller scales remains virtually unchanged [7].

54



Large-scale height variations in surfaces produced by (69) become more

distinct as the system size is chosen to be many times larger than the typical cell

size (see Fig. 11).

Figure 11: Surfaces (values of the surface height h coded in gray-scale) for the
system size N = 1000 (L ≈ 711) evolving according to (69) with parameters
α = −0.12, 0, 1, 5 at time t = 6 · 104.

4.4 Finite-size scaling of roughness

As shown before in (82), the integral of the PSD S(k) (90) over all wave

numbers k equals the variance of the surface profile which is the square of sur-

face roughness:
1

2π

∫
dk S(k) = w2 . (92)
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Since the surfaces in numerical simulations are represented on a discrete (N ×
N) lattice of finite size L with a discretization step ∆x and periodic boundary

conditions, the wave numbers that can fit into the system are kn = n∆k with

n = 1, . . . , N and ∆k = 2π/L. For large enough systems with N � 1, according

to (92), the square of the surface roughness can then be approximated as:

w2 ≈ 1

2π

∫ kmax

kmin

dk S(k) , (93)

where

kmin ≈
2π

L
=

2π

N∆x
, kmax ≈

2π

∆x
. (94)

If the discretization step ∆x is kept constant (implying kmax = const), and

the surface patterns at different system sizes L (up to the smallest wave number

kmin ∝ L−1) remain statistically the same, then, by increasing the system size L,

the calculated dependence w2(L) should yield, according to (94), the shape of

the surface PSD S(k) for small wave numbers k → 0.

Fig. 12 shows examples of surface spectra S(k) defined in this section.

From these, one can clearly see that, by increasing the system size, new low-

wavenumber spatal modes appear producing the apparent power-law shape

spectrum, while the small-scale patterns corresponding to higher wavenumbers

remain virtually unchanged. This supports the following consideration in [7]

where an assumption was made that the PSD S(k) (90) of surfaces produced by

(69) has a power-law shape for small wave numbers (below some value ks):

S(k) = C k−γ for k < ks . (95)

By substituting (95) into (93), one gets three qualitatively distinct scaling

behaviours w2(L) for L > 2π k−1
s , depending on the value of spectral exponent

γ in (95):


w2(L) = C1 − C2 L

−(1−γ) for γ < 1

w2(L) = C lnL+B for γ = 1

w2(L) = D1 +D2 L
γ−1 for γ > 1

(96)
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Figure 12: Surface spectra S(k) defined as (84) and calculated from (90) for
parameter values α = 0 and α = 1, each calculated for several system sizes
ranging from N = 100 to N = 500. Dashed lines show power-law fits at small
wave numbers k.
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For asymptotically large systems L→∞, (96) would become
w2(L) ∼ const for γ < 1

w2(L) ∼ lnL for γ = 1

w2(L) ∼ Lγ−1 for γ > 1 ,

(97)

corresponding to asymptotically constant roughness for γ < 1, logarithmically

increasing square of the surface roughness for γ = 1, and power-law scaling for

γ > 1.

It has been shown in [7] that the assumption (95) of a power-law surface

PSD with (0 < γ ≤ 1) at small wave numbers is indeed valid for surfaces pro-

duced by (69) with parameter values 0 ≤ α ≤ 1, since the relations (96) fit the

numerically calculated surface roughness exceptionally well.

Investigations of a broader parameter range, −0.12 ≤ α ≤ 5, presented

in [47], show that the same assumption (95) also holds for other parameter

values. Fig. 13 and Fig. 14 show the calculated square of the surface roughness

w2 dependence on the system size L = N∆x. In order to fit the results with

different α values in the same plot, the numerical results and their fits for each

α have been divided by the corresponding w2 values at N = 250. At α = 0 the

resulting spectral exponent γ = 1 gives the logarithmic dependence w2(N) (see

(96)) which is a straight line in the log-linear scale. This scaling is the same as

found by Manneville and Chaté for the two-dimensional KS equation [44] and

corresponds to the EW type of behaviour [45] which is the pre-asymptotic to the

KPZ scaling [46].

As the parameter increases from α = 0 to α = 5, the γ values are found

to decrease from γ = 1 to γ ≈ 0.55 (see Fig. 13). This corresponds to slower-

than-linear growth of w2 with lnN . Hence, for large systems w2 approaches a

finite value. Perhaps unexpectedly, for α < 0, the exponent γ has also been

observed to become smaller than 1. Therefore, we conclude that, in the range

of system sizes considered, the scaling properties of the generalized KS equation

(69) differs from those of the EW (and KPZ) equation. when α 6= 0.

This seemingly different scaling for α 6= 0 must be the effect of the finite

system size L, since it can be shown using renormalization group (RG) argu-

ments (see, e.g., [51]) that the influence of the nonlinear term ∇2(∇h)2 has to

become irrelevant at asymptotically large scales (when k → 0), and the scaling
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for L → ∞ has to be equivalent to the KS α = 0 case. However, the present

results suggest that this asymptotic regime is far from being reached for the sys-

tems in the range of sizes investigated here. The obvious influence of parameter

α value on the scaling properties is most likely caused by the underlying change

in the small-scale surface patterns (see Fig. 10) that interfere with the slow

height variations of universal character. This would suggest that, in some prac-

tical cases, different scaling properties might be observed from those predicted

by the RG arguments, even for relatively large systems.

Simulation with 0.12

Fit for 0.92

Simulation with 0

Fit for 1

Simulation with 1.0

Fit for 0.76

Simulation with 5.0

Fit for 0.55
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Figure 13: (log-linear scale) Time averaged square of the normalized surface
roughnessw2 plotted as a function of the system sizeN (in lattice units). Symbols:
numerical results for surfaces evolving according to (69) with different α values.
Lines: fits of the numerical results by (96).
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Figure 14: (log-linear scale) Time averaged square of the normalized surface
roughnessw2 plotted as a function of the system sizeN (in lattice units). Symbols:
numerical results for surfaces evolving according to (69) with parameter values
α = 0.25, 0.5, 1, 2. Lines: fits of the numerical results by (96).
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5 Small-scale patterns
This section continues the investigation of surface patterns produced by

gKS (69),

∂th = −∇2h−∇4h− α∇2(∇h)2 + (∇h)2 . (98)

However, now we focus more on the characterization of the small-scale cellular

patterns instead of the long range height variations.

A method for an indirect estimation of a characteristic length scale in dis-

ordered surface patterns is presented as a way to estimate the typical size of

the surface’s structural elements from the global quantities like surface area and

surface roughness. In some computational surface growth models that produce

cellular patterns, this estimation can be done much faster than any direct cal-

culation from the height height autocorrelation functions or FFT. As a demon-

stration, this method is then applied to surfaces produced by the generalized

Kuramoto-Sivashinsky equation that has been widely used as a model for amor-

phous solid surface growth.

5.1 Calculation of characteristic length in disor-
dered cellular patterns

As already demonstrated in the previous section (see Fig. 10), the charac-

teristic length Rc in the surface pattern (corresponding to the average diameter

of the individual hump) can be defined by the position of the first peak in the

height correlation function C(r):

Rc = min{r > 0|C ′(r) = 0 & C ′′(r) < 0} . (99)

However, an alternative way of calculating Rc from the surface spectrum

S(k) has proven to give more accurate results. Using this method, the charac-

teristic length is expressed from the wavenumber kc at which the spectrum has

its [most pronounced] peak:

Rc =
2π

kc
. (100)

Fig. 15 shows examples of such spectra for different parameter values. We
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Figure 15: (log-log scale) Surface spectra S(k) at higher wavenumbers calculated
from (90) for various parameter values at system size N = 500 (L ≈ 355) and
t = 100000 (in the saturated regime). The corresponding surface profiles (top row
and right column) are from of system sizeN = 300 (L ≈ 213). The vertical dashed
line denotes the wavenumber k0 = 1√

2
that is the strongest linearly amplified

mode.

can see that the surface spectrum for α = 0 has some slight peak where the

corresponding autocorrelation function, Fig. 10, has none deeming former to be

a better estimator for characteristic lengths. Also, the apparent lack of peak for

α = −0.12 suggests that no characteristic length can be defined in a sensible

way in this case. The trend of increasing characteristic length Rc (shift of the

peak in S(k) towards lower wavenumbers) when the parameter α is increased

is also clearly visible for α ≥ 0.5.

In order to observe the influence of parameter α on the small scale struc-

ture, the calculations with various parameter values 0 ≤ α ≤ 5 on relatively

small systems (size N = 200 in lattice units) have been performed, so that the

long range height variations have little influence on the morphology. For each

parameter value, multiple realizations with different initial conditions have been

performed and the calculated spectra S(k) of the resulting saturated surfaces

have been averaged. Some example spectra are shown in Fig. 19. Then, the
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characteristic lengths Rc have been calculated for every parameter value. The

same for the surface roughness w and the normalized excess surface area a− 1,

the latter defined in (109) and (114), page 67. The results are shown in Fig. 16.
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Figure 16: (log-log scale) Quantities characterizing the surfaces at different pa-
rameter α values for relatively small system sizes (N = 200): characteristic length
Rc, surface roughness (width) w, normalized excess area a− 1.

It is not easy to make sense of these quantities separately, bet the following

subsection shows that they are related in an unexpectedly simple way.

5.2 Indirect estimation of characteristic length

This section has already covered the ways to determine the characteris-

tic length Rc corresponding to the average cell size in disordered cellular sur-

face patterns directly using height-height autocorrelation functions and surface

spectra. Nevertheless, the apparent similarity of the shapes of individual humps

suggests that relations between the global properties of the surface may offer

indirect, but much faster ways of determining the characteristic lengths of the

pattern elements (cells/humps) - once some suitable assumptions on their geo-

metrical shape are made.

Ansatz for the surface area of a single element

Despite the lack of any long range order, the cellular surface patterns pro-

duced by gKS seem to consist of similar looking individual humps of similar

size. This suggests that the statistical properties of the whole cellular pattern

might be equivalent to a pattern constructed of identical geometrical elements

with averaged properties such as height and diameter. Therefore the following
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expression for the surface area of a single surface element (hump) is assumed:

A1 ∼ r2

(
1 +B

(h
r

)ν) 1
ν

, (101)

where h is its height above the flat substrate, and r is its radius (if the

element is a surface of revolution) or the half length of its base on the substrate.

The parameters B > 0 and ν > 0 depend on the shape of the surface element.

The relation (101) fits the expressions for the surface areas of some widely

encountered geometric figures, as demonstrated in the examples below.

Some examples

The surface area (without the base) cone of radius r and height h

Acone = πr
√
r2 + h2 = πr2

(
1 +

(h
r

)2
) 1

2

(102)

which corresponds to (101) with B = 1 and ν = 2.

The surface area of a pyramid (again, not counting the area of its base)

with the square base of side length l and height h

Apyramid = 2l

√( l
2

)2

+ h2 = l2
(

1 +
(2h

l

)2
) 1

2

= 4r2

(
1 +

(h
r

)2
) 1

2

(103)

with l = 2r which also corresponds to (101) with B = 1 and ν = 2.

As an extreme case (in the sense that it has walls perpendicular to the

substrate), the surface area of a cylinder (not counting one of its bases, since it

lies on a substrate) is

Acylinder = πr(2h+ r) = πr2

(
1 + 2

(h
r

))
(104)

which fits (101) as well with B = 2 and ν = 1.

A more realistic example (in a sense that it would better represent a round

hump) is a surface area of a half of an ellipsoid of revolution with radius r and

the third axis (height) h whose approximate surface area can be expressed as

Aellipsoid ≈ 2π

(
r2ν + 2(rh)ν

3

) 1
ν

=
2

31/ν
πr2

(
1 + 2

(h
r

)ν) 1
ν

(105)
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with ν ≈ 8
5
. This expression also fits (101) withB = 2 and ν = 1.6. The latter ex-

pression is obtained from the highly referred to in published articles (although

itself never published in an article form) and commonly used by internet re-

sources (including Google Calculator, web-formulas.com, Wikipedia and many

others) formula proposed by a Danish Geologist Knud Thomsen in an email

which can be found online [70]. This formula, known as the Kund Thomsen’s

formula, expresses the surface area of an ellipsoid

(x
a

)2

+
(y
b

)2

+
(z
c

)2

= 1

with its principal semiaxes a, b and c as

A ≈ 4π

(
(ab)p + (ac)p + (bc)p

3

)1/p

(106)

where p = 1.6075. This formula yields the error at most 1.061%. This formula

is preceded by the mathematically rigorous work by Klamkin [71] where he

obtains that the surface area is always within the bounds of (106) with p = 1

and p = 2,

4π

(
ab+ ac+ bc

3

)
≤ A ≤ 4π

(
(ab)2 + (ac)2 + (bc)2

3

)1/2

,

which suggests that (106) with some 1 ≤ p ≤ 2 would likely be a good approxi-

mation for the surface area of an ellipsoid.

Surface area of a grid of identical elements

Now, let us consider a flat substrate which is a square of side length L. We

construct a surface by packing the substrate with geometrical elements – putting

the elements directly next to each other, but with no overlap), see Fig 17. The

surface area A1 of each individual element scales as (101). When the lateral

length of the substrate L is much greater than the radius r (or diameter l ∼ 2r)

of the base of the element, the number N of the elements that can fit on the

substrate approximately scales as

N ∼ L2

r2
, (107)
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Figure 17: Schematic representation of the scaling argument, see main text. Top
left: a single surface element with base radius r and height h and surface area A1

which scales as (101). Bottom right: the surface of area A constructed by placing
N such elements on the flat square of side length L.

66



and then the area of the whole surface can be given as

A ≈ NA1 ∼ L2

(
1 +B

(h
r

)ν) 1
ν

. (108)

In order for the argument to stay independent of the lateral system size L

the ‘normalized’ surface area a, that is, the average surface area per unit area of

the substrate, is introduced:

a :=
A

L2
=

1

L2

∫ L

0

∫ L

0

d2r
√

1 + (∇h(r))2 =
〈√

1 + (∇h)2
〉
r
. (109)

Substituting (108) into (108) gives

a ∼
(

1 +B
(h
r

)ν) 1
ν

(110)

which gives the scaling relation for r

r ∼ h

(aν − 1)1/ν
(111)

For relatively smooth surfaces where (a − 1) � 1 (note that a > 1 by

definition (109)), the expansion to the lowest order in (a − 1) provides the

approximation

aν − 1 ≈ ν(a− 1) (112)

which, when substituted in (111), results in a simple scaling relation

(a− 1) ∼
(h
r

)ν
. (113)

Here, the quantity (a− 1) can be interpreted as ‘normalized excess surface

area’. That is, given the area A of the surface above the flat square-shaped (with

side length L) substrate of area Asubstr = L2, the excess area due to the surface

curvature can be defined as the difference ∆A = A− Asubstr ≥ 0 between these

two areas. The average excess area per unit area of the substrate would then

result in:
∆A

Asubstr

=
∆A

L2
=
A− L2

L2
= a− 1 . (114)
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Connection with disordered cellular patterns

In order to apply the scaling relation to disordered cellular patterns, one

needs to replace the constant parameters for height h and lateral size r of the

elements in (113) by the corresponding statistical quantities. Since the surface

roughness w is, by definition, a measure of height variation in the pattern, it is

used instead of the height h. Similarly, r is replaced by the characteristic length

Rc. The expression corresponding to (113) then becomes

(a− 1) ∼
( w
Rc

)ν
. (115)

Saturated surfaces obtained from the simulations of gKS consist of humps

of similar sizes for each parameter value at least in the range 0 ≤ α ≤ 5, with

different parameter values resulting in different average hump sizes Rc (see

Fig. 18) and, simultaneously, in different values for roughness w and normalized

area a. If the shapes of individual humps turned out to be geometrically similar,

the scaling relation (115) would approximately hold for moderate system sizes

at which the long range height variations do not contribute significantly to the

total surface roughness w.

Figure 18: Small-scale cellular surface patterns in saturated surfaces produced by
gKS equation for different values of parameter α and system size L ≈ 142 (or
N = 200 in lattice units). The corresponding surface spectra are shown in Fig. 19.

In order to test the validity of (115), simulations on gKS with 12 differ-

ent parameter α values from the range 0 ≤ α ≤ 5 have been performed doing

5 realizations for each parameter value. System size L has been chosen rela-

tively small, so that the influence of long range height variations would remain

small, but large enough to contain a substantial number of small-scale humps.

The resulting surfaces at time t = 105 (when the saturation has certainly been

reached). The roughnesses w, the normalized areas a and the spatial spectra

S(k) have been evaluated for all these surfaces and then averaged over all real-
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izations for every parameter α value used. Examples of the resulting spectra for

several parameter values are shown in Fig. 19. The positions of the peaks in the

spectra have then been determined by fitting parabolas around the peaks (dot-

ted lines in Fig. 19). The characteristic length of the pattern Rc for each case

has then been evaluated from the wave number kc at which the corresponding

spectrum has a peak:

Rc =
2π

kc
. (116)
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Figure 19: (log-log scale) Surface spectra and parabolic fits (dotted lines) around
the peaks for the determination of the characteristic length Rc for several pa-
rameter α values. The dashed line corresponds to the power-law fit S(k) ∼ k−1

at small wave numbers when α = 0 (see Fig. 12 in Sect. 4). Examples of the
corresponding surface profiles are shown in Fig. 18.

These results, when plotted in a double logarithmic (log-log) plot as (a−1)
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vs w/Rc (black dots in Fig. 20) form a straight line suggesting that the power-

law expressed in (115) holds. In fact, the expression

a− 1 = B
( w
Rc

)ν
(117)

plotted as the red line in Fig. 20 seems to fit the directly calculated results

extremely well with B ≈ 5.04 and ν ≈ 1.61.
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Figure 20: (log-log scale) Relation (a − 1) vs w/Rc. Black circles: directly cal-
culated values from numerical simulations. Red line: fit using scaling relation
(113).
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Some conclusions

The fact that the scaling relation (115) holds for the disordered surface

patterns obtained from the gKS in a range of parameter values indicates that the

individual humps, although differing in size, nevertheless retain geometrically

similar shape on average when the parameter is varied.

Another and, perhaps, an even more surprising observation is that the

exponent ν ≈ 1.61 obtained by fitting (115) to the directly calculated results lies

within 0.16% from the value ν ≈ 1.6075 suggesting that the average properties

of gKS surfaces scale in alomost the same way as if they were constructed from

many identical humps shaped like halves of ellipsoids of revolution.

The validity of (117) allows one to estimate Rc as

Rc ≈ B1/ν w

(a− 1)1/ν
(118)

from the values w and a, which – at least in numerical simulations – can be

evaluated much faster than the height autocorrelation functions C(r) or spatial

spectra S(k) needed for the direct calculation of Rc.

The arguments presented in this subsection may perhaps be applied for

other models producing disordered cellular patterns.
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6 Analysis of roughness dynamics in the
Kuramoto-Sivashinsky case

Model equation (1) produces disordered spatial patterns that evolve in

time. As shown in Sect. 4, with an increase of the system size L new long

range height variations appear in the resulting surface profiles in addition to

the small scale patterns. The apparent scale-free character of these slow height

variations is very different from the cellular patterns on small scales which have

a characteristic length (the average size of a ’cell’ or ’hump’). Also, the spatial

properties of both, the small scale patterns and the large scale height variations,

depend strongly on the value of parameter α in (1). This section investigates

the corresponding dynamics of these surfaces.

In order to understand the complex spatio-temporal behaviour of (1), we

investigate the dynamics of surfaces it produces by analysing the numerically

obtained time series of the surface roughness w(t) which contains the collective

behaviour of all modes. The time series of w(t) are investigated in the time inter-

val t ∈ [2 · 104, 105) with sampling time τsample = 1 (i.e., sampled every 200 time

steps ∆t = 0.005), that is, 8 · 104 values in total for every realization. The results

are averaged over 5 to 10 realizations (differing in the initial surface profile)

for every parameter α value. For the range of parameter values explored here,

the surface evolution can be considered stationary and ergodic, since the statis-

tical properties of w(t) (average, standard deviation, skewness, autocorrelation

function) seem to vary little from realization to realization. Moreover, their val-

ues calculated in large enough subintervals of the total time interval differ only

slightly from each other.

In this section, the analysis of w(t) is presented in more detail for parame-

ter value α = 0, that is, the Kuramoto-Sivashinsky case (2). The same analysis

performed on other parameter values is discussed in Sect. 7.

6.1 Occurrence of slow modes

Fig. 21 shows a representative sample of a surface roughness w(t) time

series for α = 0 and system sizes varying from N = 125 to N = 1000. Even
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Figure 21: Time series of the surface roughness w(t), t ∈ [4.5 · 104, 6 · 104) for
α = 0 and different system sizes N (in lattice units).

though the roughness dynamics is dominated by white noise for small systems

(N = 125), additional slow modes appear as the system size is increased. For

relatively large systems (N = 1000), the time series in question is similar to a

signal produced by a random walk.

This transition can be visualized even more clearly by using the recurrence

plot technique [72–75] (see Fig. 22). There, a time series s(t) is depicted by

plotting a matrix Rti,tj . In the plot, the axes represent the discrete time ti and

tj. A black dot (Rti,tj = 1) is put at a point (ti, tj) if the values of the time series

s(t) at these times coincide (recur) to a given accuracy ε. The pixel remains

white otherwise (value Rti,tj = 0), that is:

Rti,tj = Θ(ε− |s(ti)− s(tj)|) , (119)

where Θ(x) is the Heaviside step function. Each of the recurrence plots in Fig. 22

is made for a single realization of w(t) in the time interval t ∈ [8 · 104, 105), i.e.,

one fourth of the total length of the time series is investigated.

The slow fluctuations of w(t) that appear when the system size is increased

can be attributed to the low wave number spatial modes that occur in larger sys-

tems. By investigating the scaling properties of these fluctuations, connections
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between spatial and temporal properties of the corresponding large scale height

variations can be made.

Figure 22: Recurrence plots of the one-dimensional time series of the surface
roughness w(t) for t ∈ [8 · 104, 105), α = 0, and different system sizes N (in lattice
units). Here ε = 0.002σ, where σ is the standard deviation from the average of
the corresponding time series for each N .

6.2 Autocorrelation functions

The character of the slow fluctuations that appear in the time series (TS)

of the surface roughness w(t) resulting from (1) for large systems (see Figs. 21

and 22) is captured by their autocorrelation functions,

A(τ) =
〈
(w(t)− w̄)(w(t+ τ)− w̄)

〉
t
, (120)
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where w̄ = 〈w(t)〉t is the average value of w(t) in the stationary regime. Fig. 23

shows the autocorrelation functions obtained from TS of w(t) with α = 0 for four

different system sizes increasing by the factor of 2: N = 125, 250, 500, 1000 . In

the top panel of Fig. 23, the normalized (i.e., divided by the variance σ2
w =

〈(w(t) − w̄)2〉t ≡ A(0)) autocorrelation functions are displayed in the log-linear

scale. In this plot, one can immediately recognize the way in which the charac-

teristic time scales in w(t) grow with N . For instance, by defining some charac-

teristic correlation time τcorr as, for example, the lag τ at which the autocorre-

lation function decays to the 10% (dashed horizontal line) of its initial value at

τ = 0, i.e.,

τcorr = min{τ > 0 |A(τ)/σ2
w ≤ 0.1} , (121)

one can see that it increases by about the same factor (corresponding to almost

constant shifts along a logarithmic scale of τ axis) as the system size N increases

by a factor of 2. This indicates that the characteristic time τcorr grows as a power

law of N :

τcorr ∝ N ξ . (122)

Further insight into the dynamics can be gained by looking at the same

autocorrelation functions in a semi-logarithmic plot, as displayed on the bottom

panel of Fig. 23. Plotted this way, the autocorrelation functions A(τ) appear

almost as straight lines (with an additional kink at very small τ) indicating that

the their shape should be approximately exponential:

A(τ) ≈ σ2
w e−λ|τ | . (123)

6.3 Power spectra and characteristic frequencies

In order to obtain more quantitative results, it is essential to look at the

shape of the corresponding power spectra of w(t). As stated by the Wiener-

Khinchin theorem [76], the power spectral density (PSD) W (f) of a signal can

be obtained by Fourier transforming its autocorrelation function (120):

W (f) =

∫ ∞
−∞

dτ A(τ) e−i2πfτ . (124)

75



0 500 1000 1500

0.10

1.00

0.50

0.20

0.30

0.15

0.70

1 10 100 1000 10 4
0.0

0.2

0.4

0.6

0.8

1.0

Figure 23: Normalized autocorrelation functions A(τ) of the surface roughness
w(t), t ∈ [2 ·104, 105) for α = 0 and different system sizes (in lattice units) N . Top
panel: log-linear scale. Bottom panel: semi-logarithmic scale. Horizontal dashed
and dotted lines in both panels represent the A(τ)/σ2

w = 0.1.

By substituting the exponentially decaying autocorrelation functionA(τ) ∝ e−λ|τ |

(as in (123)) into (124), the PSD W (f) of a Lorentzian shape is obtained:

W (f) ∝ f0

f 2
0 + f 2

, (125)

where f0 = λ/2π is the characteristic frequency that signifies the cross-over

between different behaviours of W (f), namely:

W (f) ∼

 const , f � f0

f−2 , f � f0 .
(126)

Thus, f0 represents the lowest frequency (or the lowest decay rate λ ∝ f0) that

affects the dynamics of w(t). The above considerations suggest that f0 must
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correspond to the lowest wave number, kmin ∝ L−1, of a spatial mode occurring

in the system of size L.

Plotted in semi-logarithmic scale (bottom panel of Fig. 23), the autocor-

relation functions A(τ) appear as almost straight lines corresponding to the ap-

proximate exponential decay (123) whose PSD is a Lorentzian (125). Never-

theless, there are deviations from this trend at very short lag times τ . These

deviations correspond to additional fluctuations with a very short correlation

time – a white noise whose PSD is a constant. Therefore, the resulting PSD of

w(t) can be fitted by a Lorentzian plus a constant:

Wfit(f) =
A

f 2
0 + f 2

+B (127)

where A, B and f0 are fit parameters.

The PSDs obtained from the autocorrelation functions of the surface rough-

ness at α = 0 for different system sizes N = L/∆x are shown in the top panel of

Fig. 24 together with their fits by (127). A closer analysis shows that a function

with a generalized Lorentzian plus a constant B,

Wfit(f) =
A

(f 2
0 + f 2)β/2

+B , (128)

with β = 1.8 fits the calculated PSDs even better, see the bottom panel of Fig. 24.

Note that β is not the growth critical exponent, as opposed to the usual kinetic

roughening nomenclature [51].

The cross-over frequency f0 obtained as a fit parameter represents the low-

est frequency (corresponding to the longest time scale) in the kinetics of w(t).

In Fig. 24, it is clearly visible that f0 decreases as the system size N is increased.

Since the lowest wave number kmin of the spatial modes occurring in the system

is inversely proportional to the system size, kmin ∝ N−1, the f0(N) dependence

connects the spatial and the temporal scales. Indeed, by defining the some crit-

ical wave number k0 as

k0 =
2π

L
≡ 2π

∆x

1

N
∝ kmin , (129)

one can obtain a dispersion relation f0(k0) — a connection between the lowest

wave number in the system and its corresponding frequency. The resulting f0
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dependence on k0∆x/(2π) = N−1 for α = 0 is shown in Fig. 25 in the double-

logarithmic scale. Plotted this way, the results appear to lie on a straight line,

meaning that the relation is approximately a power-law f0 ∝ k ξ
0 with the expo-

nent ξ ≈ 1.89, as the fit shows (c.f. Fig. 25).
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Figure 24: The power spectral densities W (f) of the surface roughness w(t) for
t ∈ [2 · 104, 105), α = 0, and different system sizes N . Solid lines: calculation
results of (124) with (120). Dotted lines: fits of the calculated results by (128)
with β = 2 (top panel) and β = 1.8 (bottom panel).
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Figure 25: (log-log scale) Relation between the lowest frequency f0 and the low-
est wave number k0 occurring in the system for α = 0. The black filled circles
are f0 values obtained as fit parameters for numerical results by (128). The solid
red line is the power-law fit f0 ∝ kξ0 with ξ ≈ 1.89. The inset on the bottom right
shows f0 for the PSD W (f) defined by the expression shown on the top left.
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7 Dynamics of roughness in the general-
ized case

The fluctuations of w(t) change character as parameter α is varied. This

can already be seen from their time series (Fig. 26). This section presents some

of the results on spatio-temporal properties of surfaces evolving according to (1)

with parameter values α 6= 0 in order to point out the similarities and differences

from the α = 0 case presented in Sec. 6.
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Figure 26: Time series of the surface roughness w(t) for t ∈ [4.5 · 104, 6 · 104),
system size N = 500 (in lattice units), and different values of parameter α.

7.1 Spatio-temporal properties
The same type of analysis, as presented in Sec. 6 for parameter α = 0, has

also been performed for other parameter values.

As in the α = 0 case, for α 6= 0, the occurrence of slow modes can also

be observed as the system size increases. However, since the character of low

wave number spatial variations depends on α, as shown in Sec. 4, their temporal

properties also differ.

The PSDs of w(t) for −0.12 ≤ α ≤ 5 can be fitted very well (see Fig. 30) by

a generalized Lorentzian with an added constant (128) at different system sizes

N (except for some cases discussed in the following subsection). The exponent
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β in the fit (128) increases monotonically from β ≈ 1.7 for α = −0.12 to β ≈ 3

for α = 5. From these fits at different system sizes N , the relations between

the lowest frequencies f0 in the dynamics and lowest wave numbers of spatial

variations k0 ∝ N−1 are obtained (Fig. 27), as is done in Sec. 6 for α = 0.

Fig. 27 reveals how the spatio-temporal behaviour of evolving surfaces

depend on parameter α.

0.0010 0.01000.00500.0020 0.0030 0.01500.0070

0.001

0.005

0.010

0.050

0.100

5 10 4

Figure 27: (log-log scale) The lowest frequency f0 dependence on the lowest wave
number k0 in the dynamics of the surface roughness w(t) for several parameter α
values. Symbols: calculated values. Lines: power-law fits (with exponent ξ) of
the results for small k0.

The relations f0(k0) shown in Fig. 27 indicate that for small k0, the power-

law behaviour f0 ∼ kξ0 observed in Fig. 25 for α = 0, also persists for α 6= 0 with

exponent ξ decreasing with increasing α: from ξ ≈ 2.2 for α = −0.12 to ξ ≈ 0.9

for α = 2. This power-law trend can be attributed to the dynamics of scale-free

height variations, and the change of the exponent ξ with α can most likely be

related to the corresponding change of the surface scaling properties (Sect. 4).

However, for α 6= 0, this power-law behaviour flattens out at larger values

of k0 corresponding to small scales. This cut-off of the power-law trend is most
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likely due to the coarser small-scale patterns produced by larger values of α (see

Fig. 10) whose slower dynamics begins to overshadow, at smaller scales, the

dynamics of scale-free height variations corresponding to the power-law trend.

For α = 5 (not shown in Fig. 27), the possible power-law behaviour is

more difficult to determine, since the curve f0(k0) appears flat almost through

the whole range of k0, except for only two points with smallest k0 — way less

than enough to make conclusions.

One can interpret f0 at some k0/2π = l−1
0 as the approximate rate of pro-

cesses at the length scale l0, or n0 ≡ l0/∆x in lattice units. Then the results dis-

played in Fig. 27 imply that at smaller scales — say, n0 < 200 (k0∆x/2π > 0.005

in Fig. 27) — the rate is monotonically decreasing with α. On the other hand,

for larger scales, this does not hold any more. For example, for α = 0, 0.5, 1

the relation of between f0 and α reverses (becomes monotonically increasing)

already at n0 > 300. For large enough scales, f0 should become monotonically

increasing with α for all values, at least in −0.12 ≤ α ≤ 2, if the power-law

trends f0(k0) ∝ kξ0 shown as straight lines in Fig. 27 continue for even larger

systems, N > 1000.
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Figure 28: The PSDs W (f) of w(t) from t ∈ [2 · 104, 105) for α = 1 and different
system sizes. Solid lines: the calculated PSDs. Dotted lines: single-generalized-
Lorentzian (128) fits with exponent β = 3. Long-dashed orange line: fit of the
PSD at N = 1000 by two generalized Lorentzians (130) with the same exponent
β = 3.
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7.2 Fits by two generalized Lorentzians

The fits of the PSDs W (f) by a generalized Lorentzian plus a constant

(128) seem to be suitable for most cases investigated for −0.12 ≤ α ≤ 5 with

system sizes 100 ≤ N ≤ 1000. However, for α = 0.5 and α = 1, and system sizes

N ≥ 700, some larger deviations from the fits can be observed. For example,

Fig. 28 displays the apparent occurrence of a second hump in the PSD for α = 1

at N = 1000 which renders the fit (128) less suitable, although at smaller N it

works very well (dotted lines in Fig. 28). In these cases, however, the sum of

two generalized Lorentzians and a constant with the same exponent β,

Wfit(f) =
A1

(f 2
0 1 + f 2)β/2

+
A2

(f 2
0 2 + f 2)β/2

+B , (130)

fits the PSD almost perfectly (orange long-dashed line in Fig. 28 and red dashed

line in Fig. 29).
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Figure 29: (Log-log scale) The PSD of the surface roughness w(t) for α = 1 and
N = 1000 (solid dark green line) with fits by a single generalized Lorentzian
(128) (dotted blue line) and by a two-generalized-Lorentzian fit (130) (dashed
red line), c.f. Fig. 28. The vertical straight lines indicate the characteristic fre-
quencies f0, f0 1 and f0 2 of the fits. The inset shows the fit (130) decomposed
into two Lorentzians and a constant.

As can be seen in Fig. 29, the characteristic frequencies f0 1 and f0 2 of the

two-generalized-Lorentzian fit (130) have the frequency f0 of the original single-

generalized-Lorentzian fit (128) between them, i.e., f0 1 < f0 < f0 2. Moreover,

the frequency f0 seems to follow the power-law trend (blue diamonds and dash-
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dotted line in Fig. 27), even if the fit is not that good as for smaller N values.

Fig. 30 displays the PSDs with their fits (128) and (130) for the whole

parameter α range investigated at system size N = 1000.
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Figure 30: Power-spectral densities (solid lines) of the surface roughness w(t) for
a system size N = 1000 and different values of α with their fits (dotted lines): a
two-generalized-Lorentzian fit (130) for α = 0.5 and α = 1, and a single general-
ized Lorentzian fit (128) for all other values. The inset shows some of the same
PSDs normalized.

7.3 Some conclusions

The results presented in this section give some new insights into the com-

plex spatio-temporal behaviour of surfaces produced by the two-dimensional

generalized Kuramoto-Sivashinsky equation (1) and might be interesting to a

broader circle of researchers working in the field of continuum systems with
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complex nonlinear dynamics.

The scaling properties (96) of the saturated surface roughness indicate that

additional large scale height variations of scale free character appear when the

system size N is increased. The dynamics of these slow height variations can

be investigated by analysing the time series of the fluctuating surface rough-

ness w(t) where the occurrence of slow modes with increasing system size can

also be observed (see Fig. 21 and Fig. 22). This analysis shows that the result-

ing power-spectral densities (PSDs) can be expressed as the sum of a general-

ized Lorentzian and a constant, (128), or, in some cases, as two generalized

Lorentzians (130), as shown in Figs. 24, 28 and 30.

The characteristic frequency f0 obtained as a fit parameter corresponds to

the smallest rate (largest time scale) that plays a role in the surface evolution.

It can be attributed to the spatial mode of lowest wave number k0 (which is

inversely proportional to the system size) that can appear in the system. The

dependence of this characteristic frequency on the system size gives the ’disper-

sion relation’ f0(k0) that connects spatial and temporal scales of surface dynam-

ics. These relations have the power-law f0 ∼ kξ0 character (see Fig. 27) for large

systems (small k0), suggesting that the underlying temporal behaviour is scale

free. The exponent ξ is found to decrease with increasing value of parameter α.

These results indicate that the dependence of the characteristic time scale of the

dynamics on the parameter α changes with the spatial scale: on smaller spatial

scales the characteristic time decreases very strongly with increasing α, whereas

on large enough spatial scales the evolution is slower for smaller α.

It is hard to make rigorous conclusions regarding the connection between

the exponent ξ and the dynamical exponent z found in scaling relations for

interfaces (see, e.g., [35,51,77]). However, it is interesting to note that the value

ξ ≈ 1.89 obtained for the KS equation lies between the dynamical exponent

values z = 1.41 of the the KPZ equation and z = 2 for Edwards-Wilkinson

equation for two dimensions (see [51]).

The findings presented in this paper also raise some interesting questions

for further research. For example, it is apparent from Fig. 26 and from the values

of the PSD exponent β that the character of surface roughness dynamics depends

quite strongly on parameter α. The question arises how temporal properties

on various scales change with α and what are the statistical properties of the
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apparent bursts observed for larger values of α.

The Lorentzian shape, W (f) ∼ (f 2
0 +f 2)−1, of the PSD and relation f0 ∼ kξ0

with ξ ≈ 2 for α ≈ 0 also suggests a possible analogy between the large-scale

fluctuations of surface roughness and a diffusive process with the probability

density Fourier transformed in space and time [78],

P̂ (k0, f) ∝ k2
0

(k2
0D)2 + f 2

,

where D is the diffusion constant independent of the system size. This corre-

spondence becomes apparent when f0 = Dk2
0 is substituted in (125). Thus,

perhaps the slow kinetics of the surface roughness might even be reproduced

by a random walk of a particle in some external potential which is implied by

the fact that the process w(t) is bounded and, consequently, k0 does not go to

zero for systems of finite size. For larger α values where the corresponding PSD

exponent β ≈ 3 and ξ < 2 this process would then correspond to anomalous

diffusion. Moreover, the fact that, for some parameter values, one more gener-

alized Lorentzian has to be added to the in order to fit the calculated PSD for

large systems (see Figs. 28 and 29) suggests the emergence of one more time

scale, or perhaps, the whole interval of time scales.

These changes in dynamics due to the increase of α can perhaps be at-

tributed to the fact that Eq. (1) with larger α produces coarser and slower-

evolving small-scale patterns (cells or bumps) whose corresponding dynamic

time scales begin to significantly overlap with the time scales of the slow height

variations. Any conclusive answers about both, the exact character and the oc-

currence mechanism, of these effects require more analytical work and data

obtained from simulations on even larger systems.

In future work, it would be interesting to investigate the transition between

the stationary long-time dynamics for small values of parameter α and non-

stationary coarsening regime in the large α limit. Another interesting research

direction concerns the distributions of surface height, global and local roughness

[79–82] and how they change with α and scale with the system size. It would

also be useful to know how all of these properties are influenced by noise.
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8 Non-stationary local coarsening

The discussion in this work so far has been focused on the moderate pa-

rameter range −0.12 ≤ α ≤ 5 of the gKS (98),

∂th = −∇2h−∇4h− α∇2(∇h)2 + (∇h)2 . (131)

where, after a short (compared to the total observation time) transient period a

stationary regime is reached (see Sect. 6).

Large parameter values (say, α > 20), however, lead to the global coarsen-

ing of the surface patterns which is non-stationary in the sense that the temporal

behavior does not converge to fluctuations about some average and, moreover,

appears quite different for different realizations. As shown in Sect. 3, in the

limit α→∞ the gKS equation becomes equivalent to the cKS equation that pro-

duces coarsening pattern without saturation up until a single bump grows to the

size spanning the whole finite system [52]. For finite parameter α values this

coarsening comes to a halt at the point when the of humps in the coarse surface

patterns reaches characteristic sizes that are only a few times smaller than the

system size.

The behavior of gKS (131) in the intermediate parameter range, which

can roughly be given as 6 < α < 20, shows another type of behavior that has

not been previously reported. The dynamics observed in numerical simulations

exhibits the following scenario illustrated in Fig. 31 for α = 10. At first, the

system seems to behave in the same way as is does for the moderate parameter

range −0.12 ≤ α ≤ 5 considered in earlier sections: after the initial linear

instability that is manifested by the exponential growth of the surface roughness

(see Sect. 2) followed by a short period of nonlinear coarsening and then by the

saturation — where the system seems to behave in the stationary way (Sect. 3).

In this part of the story, different realizations exhibit the same kinetics of surface

roughness and other statistical parameters.

However, at later times which can be very different for different realiza-

tions, the system dynamics exhibits suddenly switches to very different kinetics:

the roughness w starts to increase again and can grow up to several times larger

than the ‘saturation’ value reached in the first part of the scenario. It is also
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Figure 31: The kinetics of global surface roughness w for five different realizations
with α = 10 and system size N = 500 in lattice units (L ≈ 355) up to t = 150000

and the corresponding surface profiles at the end of each realization. The initial
part of the kinetics (up to t = 20000) is shown magnified.
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interesting to note that, at the same time, the surface area remains virtually un-

changed and has the same value for all realizations, see Fig. 32. This indicates

coarsening of the pattern, that is, the growth of the characteristic length of the

surface structure, as, for example, the scaling relation (115) in Sect. 5 indicates.

0 20 000 60 000 100 000 140 000
0.0100

0.0105

0.0110

0.0115

0.0120

0.0125

0.0130

Normalized ´excess´surface area

Figure 32: The kinetics of normalized excess surface area a(t)−1 defined in (114),
Sect. 5, for the same five realizations shown in Fig. 31.

Looking at the surface profiles in Fig. 31 resulting from kinetics described

above one notices peculiar local structures protruding from surfaces that other-

wise have patterns similar to those observed for smaller parameter values dis-

cussed in earlier sections. The peculiar structures can perhaps be better appreci-

ated when plotted in 3D. Fig. 33 shows an example of surface profiles from three

different realizations with parameter α = 7.5 and discretization step ∆x = 1 at

time t = 200000. The realizations are selected to demonstrate three different

outcomes: no occurrence of local coarsening, late occurrence of two small lo-

cal coarsening centers and occurrence of a single coarsening center early in the

simulation resulting in one large structure.

8.1 Features of local coarsening behavior
The occurrence of the local coarsening has been systematically investigated

by performing long simulations up to t = 200000 or, in some cases, t = 300000
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Figure 33: Three different outcomes from realizations with N = 200, ∆x = 1 at
t = 200000 for α = 7.5.

for various combinations of parameter values α = 6, 6.5, 7, 7.5, 8, 9, 10, 25, 50,

spatial discretization step values ∆x = 0.71086127010534, 1, time step values

∆t = 0.0025, 0.005, 0.008, and noise levels (in stochastic case) D = 0.0000005,

0.0000010, 0.0000020, 0.0000100 12, 5 realizations with different random initial

surface profiles for each case. The main characteristics of the occurrence of the

local coarsening can be summarized as follows:

• The local coarsening has been observed in the simulations of deterministic

gKS with parameter values 6.5 ≤ α ≤ 50 occurring before the time t =

200000. For parameter values α ≥ 8, the local coarsening has occurred in

all realizations performed, and for 6.5 ≤ α < 8 it has appeared only in

some realizations. For parameter values α ≤ 6 the local coarsening has

not occurred in any of the realizations up to t = 300000.

• The probability of the occurrence of the local coarsening structures during

the given simulation time appears to increase with increasing parameter

value and decrease with increasing level of noise. The small number of re-

alizations, of course, does not permit estimation of these probabilities with

any reasonable accuracy, but these trends are quite visible, nevertheless.

• The locally initiated coarsening structures grow in diameter and height

while their surroundings remain statistically similar, thus, forming large

12The stochastic case is obtained by adding the noise term η with noise power D, as defined
in Sect. 2, Subsect. 2.3, p.33.
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mounds in the surface profile. This also causes the global surface rough-

ness to grow up to several times larger than the values measured before

the appearance of local coarsening, see Fig. 35. The surface area, however,

remains virtually unchanged at the same time.

8.2 Discussion
The behavior presented in this section has not, to the author’s knowledge,

been reported before in surface growth simulations or experiments. The reason

for this might be the lack of research of the models with long enough simulation

times, as those used in this work (see, for example, [66] where the simulation

times of the 2D gKS are about 200 times shorter). The current experiments in

amorphous surface growth also correspond only to the initial stages of surface

growth, often hardly reaching the saturation regime as, for example, in [48,49].

The reason for the lack of experimentally observed structures of this type might

also be the ever present thermal and deposition noise, since the noise has been

found to reduce the probability of- or completely prevent the occurrence of local

coarsening in the gKS model considered here, as well.

There are some obvious difficulties that hinder the systematic investigation

of the local coarsening behavior. They can be summarized

• Extremely long simulation times are required to even reach the instances

where the local coarsening occurs.

• Vastly different behavior results for different realizations with the same

parameters, see Fig. 34. Therefore, many realizations are required in order

to observe different possible scenarios in the simulation.

• The coarsening process is highly non-stationary, therefore it is almost im-

possible to make meaningful statements about its dynamics by investigat-

ing the kinetics of its global quantities using traditional statistical mea-

sures. The process, however, still has many active degrees of freedom

which prevents the use of methods developed for dynamical systems.

• The statistical description of surface profiles is also unavailable, because

the locally coarse structures eventually grow to the size spanning of the
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Figure 34: The kinetics of global surface roughness w for different realizations
with α = 8 (top panel) and α = 9 (bottom panel), system size N = 500 in lattice
units (L ≈ 355) up to t = 100000 and the corresponding surface profiles at the
end of each realization.

93



whole system and making the statistical description using the height dis-

tributions and correlations virtually useless.

For the reasons listed above, this section mainly consists of illustrative ex-

amples and qualitative description of the local coarsening.

One must not forget that all these peculiar effects might be the glitch of

the numerical scheme used in computer simulations. There are, nevertheless,

several arguments supporting the belief that the effects demonstrated in this

section follow from the model itself and are not merely some artifacts of the

numerical scheme: 13

• The near-exact pentagonal symmetry at the center of the most locally

growing coarse structures does not match the symmetry of the square lat-

tice used for numerical integration, as one would expect for a glitch due

to the spatial discretization. Also, no visible changes in the patterns occur

when the spatial discretization step ∆x is varied.

• The variation of the time step ∆t in the finite difference scheme also does

not seem to influence the observed behavior.

• The observed local coarsening does not produce any ‘explosion’ effects —

all this growth seems to happen smoothly over very long simulation times

which makes it hard to come up with any accumulation mechanism of

numerical errors.

13Or, if they are, indeed, just artifacts, they are interesting, nevertheless, and seem not to be
reported.
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Figure 35: The kinetics of global surface roughness w for a single realization with
α = 10 and system size N = 300 in lattice units (also L = 300) up to t = 200000

and the corresponding surface profiles at different times are also shown in order
to demonstrate the occurrence of the local coarsening. Here, a different spatial
discretization step ∆x = 1 has been used (instead of ∆x ≈ 0.71086 used in all
previous simulations).
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9 Conclusions

This short section summarizes the main results presented in this disserta-

tion by providing several conclusions that could be drawn from the overwhelm-

ing variety of results obtained during the research conducted by the author.

The list of conclusions goes as follows:

1. The model for amorphous solid film growth based on the generalized

two-dimensional Kuramoto-Sivashinsky equation (gKS) produces surfaces

whose morphologies consist of disordered cellular patterns with character-

istic length on small scales and slow height variations of self-affine char-

acter on large scales. The latter long range variations become more pro-

nounced only at large system sizes.

2. The dynamics of surface evolution and the statistical properties of the re-

sulting surface morphologies are determined by a single independent pa-

rameter of the rescaled growth equation. In the limit of zero parameter

value this equation becomes the well known Kuramoto-Sivashinsky (KS)

equation that produces stationary chaotic behavior and supposedly be-

longs to the KPZ universality class. At small nonnegative parameter values

gKS also exhibits stationary spatio-temporal chaos typical for KS. Increas-

ing the parameter value produces surfaces saturating at coarser patterns

with less pronounced long range height variations.

3. The observed scaling behavior of the saturated surface roughness strongly

suggests the power-law shape of the surface spectrum at small wave num-

bers and, thus, indicates self-affine character of the long range height vari-

ations. The scaling behavior obtained from numerical simulations of gKS

shows strong dependence on the equation parameter up to the largest sys-

tem sizes used: while in the KS limit the numerically obtained scaling

behavior corresponds to the EW universality class which is pre-asymptotic

(in terms of system size) of the expected KPZ behavior, larger parameter

values in gKS produce qualitatively different apparent scaling. This ob-

served scaling must therefore be the result of of the finite system size, be-
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cause scaling arguments suggest that this parameter should not influence

the large scale behavior.

4. Even larger parameter values result in surface evolution where no satu-

ration in the KS sense takes place and, in the limit of infinite parameter

values, different rescaling of gKS produces an equation known as the con-

served Kuramoto-Sivashinsky (cKS) equation whose evolution consists in

non-stationary coarsening of the cellular pattern which is limited only by

the finite system size.

5. As mentioned above, for a range parameter values, the disordered cellular

surface pattern is found to saturate at some particular average cell size

(characteristic length) that depends on the parameter value. A scaling re-

lation has been found that connects this characteristic length to the surface

roughness and the surface surface area showing that the cellular patterns

are statistically similar at different parameter values also allowing for a

quick and quite accurate estimation of the characteristic length without

direct calculation using 2D FFT or height autocorrelation functions.

6. Increasing the system size, new long range modes appear. By analyzing

the autocorrelations and spectra of the global surface roughness, it is pos-

sible to connect the observed the time scales of the global dynamics to the

system size, i.e. to relate spatial and temporal properties of the system.

The relation appears to have a power-law shape for large systems in a

range of parameter values investigated. The value of the exponent of this

power law that must be related to its dynamic exponent has been found to

vary quite strongly depending on the parameter value indicating that the

regime of universal dynamics expected for asymptotically large systems

has not been reached at the system sizes considered in this work.

7. For larger parameter values, the break-down of stationary saturated sur-

face dynamics has been observed. This sudden change of behavior has

been observed in a wide range of parameter values and can be attributed to

the occurrence of locally growing coarse structures. The individual locally

coarse structures appear to have to same pentagonal symmetry for differ-

ent combinations of simulation parameters. The local coarsening starts at

vastly varying times and follows different scenarios for different realiza-
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tions during the simulation, depending on the detailed initial conditions

for each realization. Adding the stochastic noise term to the gKS seems

to reduce the probability of occurrence of local coarsening and prevent

it altogether for higher nose levels. The stability of these effects against

the varying spatial and temporal discretization steps, also the fact that

the occurring structures do not follow the symmetry of the lattice seem

to support the notion that they are not just some artifact of numerical in-

tegration. Even if the local coarsening were an artifact of the numerical

simulation, it is, nevertheless, quite interesting and previously unreported.
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reasons: to Rytis Kazakevičius for generating cheerful atmosphere and frequent

comic reliefs at the workplace, to Tomas Andrijauskas for stimulating general

discussions about mathematics, computing and music at our occasional visits

to some pub after work, to Viktor Novičenko for many useful and interesting

discussions concerning the current work and science in general and for being

a ping-pong partner of comparable skills, to Aleksejus Kononovičius for sharing
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