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periodic zeta-function ζ(s; a) with multiplicative periodic sequence a, is obtained.

Keywords: Hurwitz zeta-function, Mergelyan theorem, periodic zeta-function, universality.

AMS Subject Classification: 11M41.

1 Introduction

Let s = σ + it be a complex variable, and a = {am : m ∈ N} be a periodic
sequence of complex numbers with minimal period q ∈ N. The periodic zeta-
function ζ(s; a) is defined, for σ > 1, by the Dirichlet series

ζ(s; a) =

∞∑
m=1

am
ms

.

Moreover, the function ζ(s; a) is meromorphically continued to the whole com-
plex plane. Really, let ζ(s, α) denote the Hurwitz zeta-function with parameter
α, 0 < α 6 1, which, for σ > 1, is given by the series

ζ(s, α) =

∞∑
m=0

1

(m+ α)s

and has the meromorphic continuation to the whole complex plane with unique
simple pole at the point s = 1 with residue 1. Since, in virtue of periodicity of
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the sequence a,

ζ(s; a) =
1

qs

q∑
m=1

amζ

(
s,
m

q

)
, σ > 1, (1.1)

we see that the function ζ(s; a) is meromorphic in the whole complex plane
with unique simple pole at the point s = 1 with residue

r =
1

q

q∑
m=1

am.

If r = 0, then the function ζ(s; a) is entire. If am = 1, for all m ∈ N, then
ζ(s; a) becomes the Riemann zeta-function ζ(s),

ζ(s) =

∞∑
m=1

1

ms
, σ > 1.

Therefore, the investigation of the function ζ(s; a) is a modern problem of
analytic number theory.

In [24], S.M. Voronin discovered the universality of the Riemann zeta-
function. The Voronin theorem, roughly speaking, asserts that a wide class of
analytic functions in a certain region can be approximated by shifts ζ(s+ iτ),
τ ∈ R. Later, it turned out that some other zeta and L-functions, including the
function ζ(s; a), are also universal in the Voronin sense. The first universality
results for ζ(s; a) were obtained in [1], [2], [21] and [22]. The universality of
ζ(s; a) with multiplicative sequence a was considered in [16], [23], [18] and [17].
We remind the paper [6], where a new type of universality for the function
ζ(s; a) was introduced. Joint universality theorems for periodic zeta-functions
were proved in [5], [10], [11], [12], [13], [14] and [15].

In [8], a weighted universality theorem for the Riemann zeta-function was
obtained. Generalizations of a theorem of such a type were given in [9] and [4].
The weighted universality for the function ζ(s; a) was began to study in [18].
We remind the main result of [18]. Let ŵ(t) be a positive function of bounded
variation on [T0,∞], T0 > 0, such that the variation V ba ŵ on [a, b] satisfies the
inequality V ba ŵ 6 cŵ(a), c > 0, for any [a, b] ⊂ [T0,∞). Define

U = U(T, ŵ) =

∫ T

T0

ŵ(t) d t

and suppose that limT→∞ U(T, ŵ) = +∞. Let K be the class of compact
subsets of the strip D =

{
s ∈ C : 1

2 < σ < 1
}

with connected complements,
and let H0(K), K ∈ K, be the class of continuous non-vanishing functions
on K which are analytic in the interior of K. Moreover, let IA denote the
indicator function of the set A. We remind that the sequence a = {am} is
called multiplicative if amn = aman for all coprimes m,n ∈ N. Now we state
an universality theorem from [18].

Math. Model. Anal., 22(6):750–762, 2017.
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Theorem 1. Suppose that the weight function ŵ(t) satisfies all above condi-
tions, the sequence a is multiplicative and

∞∑
l=1

|apl |
p
l
2

6 c < 1

for all primes p. Let K ∈ K and f(s) ∈ H0(K). Then, for every ε > 0,

lim inf
T→∞

1

U

∫ T

T0

ŵ(τ)I{
τ : sup
s∈K
|ζ(s+iτ ;a)−f(s)|<ε

}(τ) d τ > 0.

In [17], a discrete version of Theorem 1 was obtained. In discrete univer-
sality theorems, τ in shifts ζ(s+ iτ ; a) takes values from a certain discrete set.
In [17], an arithmetic progression {kh : k ∈ N}, h > 0, was used. Let w(u) be a
non-increasing positive function having a continuous derivative such that, for
h > 0, w(u)�h w(hu) and (w′(u))2 � w(u). Define

V = V (N,w) =

N∑
k=1

w(k)

and suppose that limN→∞ V (N,w) = +∞ as N →∞. Moreover, let

L(P, h, π) =
{

(log p : p ∈ P),
π

h

}
,

where P is the set of all prime numbers. Then the following weighted discrete
universality theorem is true.

Theorem 2. Suppose that the function w(u) satisfies all above hypotheses, the
sequence a is the same as in Theorem 1, and the set L(P, h, π) is linearly
independent over the field of rational numbers Q. Let K ∈ K and f(s) ∈
H0(K). Then, for every ε > 0,

lim inf
N→∞

1

V

N∑
k=1

w(k)I{
k: sup
s∈K
|ζ(s+ikh;a)−f(s)|<ε

}(k) > 0.

It is not difficult to see that the function w(u) = 1
u satisfies the hypotheses of

Theorem 2. Since eπ is transcendental number, the set L(P, h, π) with rational
h is linearly independent over Q.

The aim of this paper is to prove an analogue of Theorem 2 for the discrete
set {kαh : k ∈ N} with fixed 0 < α < 1.

Theorem 3. Suppose that the function w(u) has a continuous derivative w′(u)
for u > 1 such that ∫ N

1

u |w′(u)|du� V,

and a is the same as in Theorem 2. Let K ∈ K and f(s) ∈ H0(K). Then, for
every ε > 0 and h > 0,

lim inf
N→∞

1

V

N∑
k=1

w(k)I{
16l6N : sup

s∈K
|ζ(s+ilαh;a)−f(s)|<ε

}(k) > 0.
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Differently from Theorem 2, we do not require the linear independence over
Q of the set L(P, h, π).

2 The main lemma

Let H(D) denote the space of analytic functions on D endowed with the topol-
ogy of uniform convergence on compacta, and let B(X) stand for the Borel
σ-field of the space X. For the proof of Theorem 3, we will apply the weak
convergence of probability measures on (H(D),B(H(D)). We start with a limit
theorem for probability measures on (Ω,B(Ω)), where

Ω =
∏
p

γp,

and γp = {s ∈ C : |s| = 1} for all p ∈ P. By the Tikhonov theorem, the
torus Ω with the product topology and pointwise multiplication is a compact
topological Abelian group. Thus, on (Ω,B(Ω)), the probability Haar measure
mH can be defined, and this leads to the probability space (Ω,B(Ω),mH).
Denote by ω(p) the projection of ω ∈ Ω to the circle γp, p ∈ P. For A ∈ B(Ω),
define

QN,w(A) =
1

V

N∑
k=1

w(k)IÂ(k),

where, for brevity, Â =
{

1 6 l 6 N :
(
p−il

αh : p ∈ P
)
∈ A

}
.

For the investigation of QN,w, we will apply the notion of sequences uni-
formly distributed modulo 1. We remind that a sequence {xk : k ∈ N} ⊂ R is
called uniformly distributed modulo 1 if, for every interval I = [a, b) ⊂ [0, 1),

lim
n→∞

1

n

n∑
k=1

II({xk}) = b− a,

where {xk} denotes the fractional part of xk. For us, the Weyl criterion, see,
for example, [7], which states that a sequence {xk} is uniformly distributed
modulo 1 if and only if, for all m ∈ Z \ {0},

lim
n→∞

1

n

n∑
k=1

e2πixkm = 0,

will be useful.

Lemma 1. Suppose that the function w(t) has a continuous derivative such

that
∫ N
1
u|w′(u)|du� U for t > 1 and α, 0 < α < 1, is a fixed number. Then

QN,w converges weakly to the Haar measure mH as N →∞.

Proof. We consider the Fourier transform gN,w(k), k = (kp : kp ∈ Z, p ∈ P)
of QN,w, i.e.,

gN,w(k) =

∫
Ω

∏
p

ωkp(p) dQN,w,

Math. Model. Anal., 22(6):750–762, 2017.
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where only a finite number of integers kp are distinct from zero. By the defini-
tion of QN,w, we find that

gN,w(k) =
1

V

N∑
k=1

w(k)
∏
p

p−ik
αhkp

=
1

V

N∑
k=1

w(k) exp

{
−ikαh

∑
p

kp log p

}
, (2.1)

where only a finite number of integers kp are distinct from zero. Clearly, by
(2.1),

gN,w(0) = 1. (2.2)

Now suppose that k 6= 0. Since the set {log p : p ∈ P} is linearly independent
over Q, we have that ∑

p

kp log p 6= 0.

It is known, [7, Exercise 3.10], that the sequence {akα : k ∈ N} with 0 < α < 1
and a 6= 0 is uniformly distributed modulo 1. Therefore,

R(u)
def
=
∑
k6u

exp

{
−ikαh

∑
p

kp log p

}
= o(u)

as u→∞. Hence, using (2.1) and summing by parts, we find that

gN,w(k) =
R(N)w(N)

V
− 1

V

∫ N

1

R(u)w′(u) du

= o

(
Nw(N)

V

)
+ o

(
1

V

∫ N

1

u|w′(u)|du

)
= o(1)

as N →∞, since

Nw(N) = V +

∫ N

1

u|w′(u)|du� V.

This together with (2.2) gives

lim
T→∞

gT,w(k) =

{
1, if k = 0,
0, if k 6= 0.

(2.3)

Since the right-hand side of (2.3) is the Fourier transform of the Haar measure
mH , by a continuity theorem for probability measures on compact groups, we
obtain that QN,w converges weakly to mH as N →∞.
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3 A limit theorem

We remind that H(D) is the space of analytic functions on D = {s ∈ C : 1
2 <

σ < 1}, and, on the probability space (Ω,B(Ω),mH), define the H(D)-valued
random element ζ(s, ω; a) by the formula

ζ(s, ω; a) =

∞∑
m=1

amω(m)

ms
,

where
ω(m) =

∏
pl||m

ωl(p), m ∈ N,

and pl || m denotes that pl | m but pl+1 - m. Note that the latter series, for
almost all ω ∈ Ω, is uniformly convergent on compact subsets of the strip D.
Moreover, for almost all ω ∈ Ω, the equality

ζ(s, ω; a) =
∏
p

(
1 +

∞∑
l=1

aplω
l(p)

pls

)

holds. Denote by Pζ the distribution of the random element ζ(s, ω; a), i.e.,

Pζ(A) = mH(ω ∈ Ω : ζ(s, ω; a) ∈ A), A ∈ B(H(D)).

Let, for A ∈ B(H(D)),

PN,w(A) =
1

V

N∑
k=1

w(k)I{16l6N :ζ(s+ilαh;a)∈A}(k).

Theorem 4. Suppose that the function w(t) and the sequence a satisfy hypothe-
ses of Theorem 3. Then PN,w converges weakly to Pζ as N → ∞. Moreover,
the support of the measure Pζ is the set S = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0}.

We divide the proof of Theorem 4 into few lemmas. The first of them is a
weighted limit theorem for absolutely convergent Dirichlet series. Let θ > 1

2 be
a fixed number, and, for m,n ∈ N,

vn(m) = exp

{
−
(m
n

)θ}
.

Define two series

ζn(s; a) =

∞∑
m=1

amvn(m)

ms
and ζn(s, ω; a) =

∞∑
m=1

amω(m)vn(m)

ms
,

which are absolutely convergent [16] for σ > 1
2 . Consider the function un :

Ω → H(D) defined by the formula

un(ω) = ζn(s, ω; a).

Math. Model. Anal., 22(6):750–762, 2017.
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Since the series for ζn(s, ω; a) is absolutely convergent for σ > 1
2 , the function

un is continuous one. Let Rn = mHu
−1
n , where

Rn(A) = mHu
−1
n (A) = mH(u−1n A), A ∈ B(H(D)),

and let, for A ∈ B(H(D)),

PT,n,w(A) =
1

V

N∑
k=1

w(k)I{16l6N :ζn(s+ilαh;a)∈A}(k).

Lemma 2. Suppose that the function w(t) and the sequence a are the same as
in Theorem 3. Then PN,n,w converges weakly to Rn as N →∞.

Proof. The lemma is derived from Lemma 1 in the same way as Lemma 2
in [17].

The next lemma deals with the approximation of ζ(s; a) by ζn(s; a). Denote
by ρ the metric in H(D), see, for example, [18].

Lemma 3. Suppose that the function w(t) and the sequence a satisfy the hy-
potheses of Theorem 3. Then the equality

lim
n→∞

lim sup
N→∞

1

V

N∑
k=1

w(k)ρ(ζ(s+ ikαh; a), ζn(s+ ikαh; a)) = 0

is true.

Proof. For the same θ as above and n ∈ N, define

ln(s) =
s

θ
Γ
(s
θ

)
ns,

where Γ (s) is the Euler gamma-function. Then, for θ < σ < 1, the representa-
tion [16]

ζn(s; a) =
1

2πi

∫ θ−σ+i∞

θ−σ−i∞
ζ(s+ z; a)ln(z)

dz

z

= ζ(s; a) + Res
z=1−s

ζ(s+ z; a)
ln(z)

z
(3.1)

holds. Using equality (1.1) and the estimate∫ T

1

|ζ(σ + it, α)|2 d t� T,
1

2
< σ < 1,

we find that, for 1
2 < σ < 1, and τ ∈ R,∫ T

1

|ζ(σ + it+ iτ ; a)|2 d t� T (1 + |τ |) (3.2)
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and, by the Cauchy integral formula,∫ T

1

|ζ ′(σ + it+ iτ ; a)|2 d t� T (1 + |τ |). (3.3)

It is not difficult to see that, for 2 6 k 6 N ,

(k + 1)α − kα >
α

2N1−α .

Therefore, the Gallagher lemma, see [20, Lemma 1.4], together with estimates
(3.2) and (3.3) yields, for 1

2 < σ < 1 and τ ∈ R,

N∑
k=1

|ζ(σ + ikαh+ iτ ; a)|2 � N1−α
∫ Nαh

1

|ζ(σ + it+ iτ ; a)|2 d t

+

(∫ Nαh

1

|ζ(σ + it+ iτ ; a)|2 d t

∫ Nαh

1

|ζ ′(σ + it+ iτ ; a)|2 d t

)1/2

= N(1 + |τ |).

Hence, for the same σ and τ ,

N∑
k=1

w(k)|ζ(s+ ikαh+ iτ ; a)|2

� w(N)

N∑
k=1

|ζ(s+ ikαh+ iτ ; a)|2 +

∫ N

1

|ζ(σ + kαh+ iτ ; a)|2|w′(u)|du

� Nw(N)(1 + |τ |) + (1 + |τ |)
∫ N

1

u|w′(u)|du� V (1 + |τ |). (3.4)

Now let K be a compact subset of the strip D. Then equality (3.1), the Cauchy
integral formula and (3.4) show that

1

V

N∑
k=1

w(k) sup
s∈K
|ζ(s+ ikαh; a)− ζn(s+ ikαh; a)|

�
∫ ∞
−∞
|ln(σ1 + it)|(1 + |t|) d t+ o(1)

as N → ∞ with some σ1 < 0. This, the definitions of ln(s) and the metric ρ
prove the lemma.

Proof of Theorem 4. On a certain probability space (Ω̂,A, µ), define the random
variable θN by the formula

µ(θN = kαh) =
w(k)

V
, k = 1, . . . , N.

Let
XN,n,w = XN,n,w(s) = ζn(s+ iθN ; a),

Math. Model. Anal., 22(6):750–762, 2017.
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and let Xn be the H(D)-valued random element having the distribution Rn,

where Rn is the probability measure from Lemma 2. Thus, denoting by
D−→ the

convergence in distribution, we may to rewrite the assertion of Lemma 2 in the
form

XN,n,w
D−−−−→

N→∞
Xn. (3.5)

Now we will consider the family of probability measures {Rn : n ∈ N},
and we will prove that this family is tight, i.e., for every ε > 0, there exists a
compact set K = K(ε) ⊂ H(D) such that

Rn(K) > 1− ε

for all n ∈ N. The series for ζn(s; a) and ζ ′n(s; a) are absolutely convergent for
σ > 1

2 , thus

lim sup
T→∞

1

T

∫ T

1

|ζn(σ + it; a)|2 d t =

∞∑
m=1

|am|2v2n(m)

m2σ
6
∞∑
m=1

|am|2

m2σ
6 C <∞

and

lim sup
T→∞

1

T

∫ T

1

|ζ ′n(σ + it; a)|2 d t =

∞∑
m=1

|am|2v2n(m) log2m

m2σ

6
∞∑
m=1

|am|2 log2m

m2σ
6 C ′ <∞.

Hence, using the Gallagher lemma, we find as above that, for σ > 1
2 ,

N∑
k=1

|ζn(σ + ikαh; a)|2 � N1−α
∫ Nαh

1

|ζn(σ + it; a)|2 d t

+

(∫ Nαh

1

|ζn(σ + it; a)|2 d t

∫ Nαh

1

|ζ ′n(σ + it; a)|2 d t

)1/2

� N.

Therefore, by properties of the weight function w(u), we obtain that, for σ > 1
2 ,

sup
n∈N

lim sup
N→∞

1

V

N∑
k=1

w(k)|ζn(σ + it; a)| 6 C <∞. (3.6)

Now let {Kl : l ∈ N} ⊂ D be a sequence of compact subsets which defines the
metric ρ, see [18]. Then, using (3.6) and the Cauchy integral formula, we find
that

sup
n∈N

lim sup
N→∞

1

V

N∑
k=1

w(k) sup
s∈Kl

|ζn(σ + it; a)| 6 Cl <∞.
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We fix ε > 0 and define Ml = Ml(ε) = 2lClε
−1. Then, by the definition of

XN,n,w,

lim sup
T→∞

µ

(
sup
s∈Kl

|XN,n,w(s)| > Ml

)

= lim sup
N→∞

1

V

N∑
k=1

w(k)I{
k: sup
s∈Kl

|ζn(s+ikαh;a)|>Ml

}(k)

6 sup
n∈N

lim sup
N→∞

1

MlV

N∑
k=1

w(k) sup
s∈Kl

|ζn(s+ ikαh; a)| 6 ε

2l
.

From this and (3.5), we deduce that, for all n, l ∈ N,

µ

(
sup
s∈Kl

|Xn(s)| > Ml

)
6

ε

2l
. (3.7)

The set Hε =
{
g ∈ H(D) : sups∈Kl |g(s)| 6Ml, l ∈ N

}
is compact in the space

H(D), and, in view of (3.7),

µ(Xn(s) ∈ Hε) > 1− ε
∞∑
l=1

1

2l
> 1− ε.

Hence, by the definition of Xn, for all n ∈ N,

Rn(Hε) > 1− ε,

i.e., the family {Rn : n ∈ N} is tight. Therefore, by the Prokhorov theo-
rem [3], it is relatively compact. Thus, every subsequence of {Rn} have a
subsequence {Rnr} weakly convergent to a certain probability measure P on
(H(D),B(H(D))) as r →∞. In other words,

Xnr
D−−−→

r→∞
P. (3.8)

An application of Lemma 3 shows that, for ε > 0,

lim
n→∞

lim sup
N→∞

1

V

N∑
k=1

w(k)I{k:ρ(ζ(s+ikαh;a),ζn(s+ikαh,a))>ε}(k)

6 lim
n→∞

lim sup
N→∞

1

V ε

N∑
k=1

w(k)ρ(ζ(s+ ikαh; a), ζn(s+ ikαh, a)) = 0. (3.9)

Now, in view of relations (3.5), (3.8) and (3.9), we can apply Theorem 4.2 of [3]
which shows that

ζ(s+ iθN ; a)
D−−−−→

N→∞
P.

This means that PN,w converges weakly to P as N →∞. Moreover, this shows
that the measure P is independent of the subsequence {Rnr}. This remark
together with relative compactness of {Rn} implies the relation

Xn
D−−−−→

n→∞
P.

Math. Model. Anal., 22(6):750–762, 2017.
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Consequently, by the definition of Xn, we have that Rn converges weakly to P
as n→∞, i.e., PN,w as N →∞ converges weakly to the limit measure of Rn
as n→∞. However, it is known [16] that

1

T
meas {τ ∈ [0, T ] : ζ(s+ iτ ; a) ∈ A} , A ∈ B(H(D)),

with multiplicative a, as T → ∞, also converges weakly to the limit measure
P of Rn, P coincides with Pζ , and the support of Pζ is the set S. Therefore,
PN,w also converges weakly to Pζ as N →∞.

4 Proof of universality

A proof of Theorem 3 is standard based on Theorem 4 and the Mergelyan
theorem on the approximation of analytic functions by polynomials [19].

Proof of Theorem 4. By the Mergelyan theorem, there exists a polynomial p(s)
such that

sup
s∈K

∣∣∣f(s)− ep(s)
∣∣∣ < ε

2
. (4.1)

Define the set

Gε =

{
g ∈ H(D) : sup

s∈K

∣∣∣g(s)− ep(s)
∣∣∣ < ε

2

}
.

Then the set Gε is an open neighbourhood of the function ep(s) which, by
Theorem 4, is an element of the support of Pζ . Thus,

Pζ(Gε) > 0. (4.2)

Moreover, by Theorem 4 and the equivalent of weak convergence of probability
measures in terms of open sets, we have that

lim inf
N→∞

PN,w(Gε) > Pζ(Gε).

This, (4.2) and the definitions of PN,w and Gε show that

lim inf
N→∞

1

V

N∑
k=1

w(k)I{k:sups∈K |ζ(s+ikαh;a)−ep(s)|< ε
2}(k) > 0. (4.3)

However, in view of (4.1),{
k : sup

s∈K

∣∣∣ζ(s+ ikαh; a)− ep(s)
∣∣∣ < ε

2

}
⊂
{
k : sup

s∈K
|ζ(s+ ikαh; a)− f(s)| < ε

}
.

Therefore, the theorem follows from (4.3).
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