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RYTIS KAZAKEVIČIUS
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1 Introduction

Transport properties in complex systems are usually characterized by anoma-

lous scaling, that is by a non-linear time dependency in the growth of the vari-

ance, σ2(t) ∼ tµ , where t is the elapsed time. This condition is known as an

anomalous diffusion. In contrast to the anomalous diffusion, in a typical diffu-

sion process the variance of the particle position (or mean squared displacement

σ2
x) is a linear function of time. Physically, the variance σ2(t) can be considered

as the amount of space that the particle has “explored” in the system at given

time t. Anomalous diffusion is classified by its power law exponent µ. If µ > 1,

the phenomenon is called super-diffusion. If µ < 1, the particle undergoes sub-

diffusion.

Super-diffusion has been experimentally observed in a study of tracer par-

ticles in a two-dimensional rotating flow [1]. Theoretical models suggest that

supper-diffusion can be caused by Lévy flights [2]. Analysis of the relaxation

cascade of a photoexcited electron in graphene showed that the statistics of

the entire cascade is described by Lévy flights with constant drift leading to

anomalous diffusion [3]. Lévy flight is a generalization of the Brownian mo-

tion. The Brownian motion mimics the influence of the “bath” of surrounding

molecules in terms of time-dependent stochastic force which is commonly as-

sumed to be a white Gaussian noise. The Lévy α-stable distributions, charac-

terized by the index of stability 0 < α 6 2, constitute the most general class of

stable processes. The Gaussian distribution is their special case, corresponding

to α = 2. Lévy flights resulting in a super-diffusion can be modeled by fractional

Fokker-Planck equations [4] or Langevin equations with an additive Lévy sta-

ble noise. Langevin equations have been used to study the role of thermal and

non-Gaussian noise on the dynamics of driven short overdamped [5] and long-

overlap Josephson junctions [6]. The resonant activation and noise enhanced

stability has been observed in a metastable system in the presence of Levy noise.

Lévy motions can lead to anomalous diffusion in many physical systems: as an

example we mention deterministic chaotic dynamics of Na adparticles on a Cu

surface [7], anomalous diffusion of a gold nanocrystal, adsorbed on the basal

plane of graphite [8].

Langevin equations with multiplicative Lévy stable noise have been used
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for modeling inhomogeneous media [9] and for the description of the com-

petition between two competing species in super-diffusive dynamical regimes.

The multiplicative noise, in the presence of two different dynamical regimes

(coexistence and exclusion) produces the appearance of anticorrelated oscil-

lations and stochastic resonance phenomenon [10, 11]. The relation between

Langevin equation with multiplicative Lévy stable noise and fractional Fokker-

Planck equation has been introduced in [12]. The Langevin equation should

be interpreted in Itô sense [13]. Unfortunately the relation between these two

equations are not known in Stratonovich interpretation, therefore application

of Lévy stable noise driven stochastic differential equations (SDEs) can be prob-

lematic. For equation driven by Gaussian noise we can always write the corre-

sponding Fokker-Planck equation and vice versa. However, such statement is not

always true for Langevin equation with Lévy stable noise. For example, particle

diffusion on randomly folding heteropolymer can be described by space frac-

tional Fokker-Planck equation [14], but for such equation counterpart Langevin

equation has not been found [15] and may not exist [16].

There are some exceptional cases when stochastic differential equations

with Lévy stable noise have generated a signal with statistical properties that

mimics experiment data very well, like in a study of Lévy stable noise induced

millennial climate changes from an ice-core record [17]. However, the choice of

appropriate model for noisy system can be very difficult. In many experimental

studies it is usually possible only to show that the systems exhibit Lévy law-tails:

for example, distribution function of turbulent magnetized plasma emitters [18]

and step-size distribution of photons in hot vapors of atoms [19] have Lévy tails.

Financial data time series analysis show that other stochastic process can be

indistinguishable from Lévy stable motion [20].

Another important subclass of anomalous diffusion processes constitute

subdiffusion processes, characterized by the sublinear dependence with the power-

law exponent in the range 0 < µ < 1. Subdiffusion processes have been re-

ported in condensed matter systems [2], ecology [21], and biology [22]. Sub-

diffusion has been proposed as a measure of macromolecular crowding in the

cytoplasm [23]. Sub-diffusion can be described with an additional assumption

that diffusing particle become trapped for some times and the waiting time dis-

tribution is of a power law type. In this situation no finite mean jump time ∆t
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exists [2]. For example, assuming anomalously long waiting times p(t) ∼ 1/t1+m

, 0 < m < 1, one arrives at an anomalous, non-Markovian diffusion which is

described by the fractional (in time) Fokker-Planck-Kolmogorov equation [24].

However, if it is unreasonable to assume existence of the trapping mechanism,

alternative approach can be made by using models with multiplicative Lévy sta-

ble noise [25].

Anomalous diffusion does not uniquely indicate the processes occurring in

the system, because there are different stochastic processes sharing the behavior

of the MSD (σ2(t) ∼ t). The physical mechanisms leading to the deviations from

the linear time dependence of the MSD can depend on the system or on the tem-

poral and spatial ranges under consideration. For example, diffusion described

by CTRW has been observed for sub-micron tracers in biological cells [26–28],

structured coloidal systems [29] and for charge carrier motion in amorphous

semiconductors [30, 31]. Fractional Brownian motion and fractional Langevin

equations has been used to model the dynamics in membranes [32,33], motion

of polymers in cells [34], tracer motion in complex liquids [35,36]. Diffusion of

even smaller tracers in biological cells has been described by a spatially varying

diffusion coefficient [37].

Recently, in Refs. [38–40] it was suggested that the anomalous diffusion

can be a result of heterogeneous diffusion process (HDP), where the diffusion

coefficient depends on the position. Spatially dependent diffusion can occur in

heterogeneous systems. For example, heterogeneous medium with steep gradi-

ents of the diffusivity can be created in thermophoresis experiments using a lo-

cal variation of the temperature [41,42]. Mesoscopic description of transport in

heterogeneous porous media in terms of space dependent diffusion coefficients

is used in hydrology [43, 44]. In turbulent media the Richardson diffusion has

been described by heterogeneous diffusion processes [45]. Power-law depen-

dence of the diffusion coefficient on the position has been proposed to model

diffusion of a particle on random fractals [46, 47]. In bacterial and eukaryotic

cells the local cytoplasmic diffusivity has been demonstrated to be heteroge-

neous [37,48]. Motion of a Brownian particle in an environment with a position

dependent temperature has been investigated in Ref. [A2]. In random walk de-

scription the spatially varying diffusion coefficient can be included via position

dependence of the waiting time for a jump event [49], the position dependence
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occurs because in the heterogeneous medium the properties of a trap can reflect

the medium structure. This is the case for diffusion on fractals and multifrac-

tals [12]. Inhomogeneous versions of continuous time random walk models for

water permeation in porous ground layers were proposed in Ref. [50]. Hetero-

geneous diffusion process might be applicable to describe anomalous diffusion

in such systems.

Theoretical models suggests that variety of systems affected by a colored

noise instead of a white noise exhibit new interesting properties. For example:

The correlations in colored noise are found to be able to enhance or suppress the

growth rate of amplification above or below a critical detuning in the collective

scattering of light from a laser with a colored noise in ultracold and collision-

less atomic gas [51]. Investigation of the colored-noise effect on nonequilibrium

phase transitions shows reentrant transitions from ordered into the disordered

phase as the correlation time and the coupling strength increase [52]. The color

and coupling induced disorders are pure colored-noise effects because of the

absence of the white-noise limit. Some of the population growth models sub-

jected to a white environmental noise changes the population-size dependence

of the mean time to extinction from an exponential to a power-law with a large

exponent [53]. The introduction of the colored Gaussian noise changes this ex-

ponent, reducing it at a fixed noise magnitude. For a long correlation time of

the environmental noise the the mean time to extinction becomes independent

of the population size for a strong enough noise [54].

Investigation of the effects caused by the presence of a colored noise in

physical systems has some practical implications. Study of colored-noise-induced

synchronization in chaotic systems indicates that the critical amplitude required

for synchronization is generally smaller for the white noise as compared with

the colored noise [55]. A practical implication is that, in situations where syn-

chronization is undesirable, a simple control strategy is to place filters in the

system so as to make the noise source as colored as possible. In the systems

exhibiting the phenomenon of stochastic resonance an exponentially correlated

noise (“red” noise) leads to a reduction of signal amplification and the peak of

stochastic resonance moves to a larger noise intensity when the correlation time

increases [56]. “Pink noise” or 1/f noise, as opposed to white noise also leads

to a reduction of signal amplification, but resonance peak arises for lower noise
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intensity, if special conditions are satisfied [57]. This is important for under-

standing weak signal transmission trough noisy environments.

Signals having the PSD at low frequencies f of the form S(f) ∼ 1/fβ with

β close to 1 are commonly referred to as “pink noise” or “1/f noise”. Such

signals are often found in physics and in many other fields [58–64]. Since the

discovery of 1/f noise numerous models and theories have been proposed, for

a recent review see [65]. Mostly 1/f noise is considered as a Gaussian process

[66, 67], but sometimes the 1/f fluctuations are non-Gaussian [68, 69]. The

Brownian motion as a source of 1/f noise was first proposed in the seminal

paper by Marinari et al. [70], where it was suggested that 1/f noise can result

from a random walk in a random environment. Starting from the model of 1/f

noise as a Brownian motion of inter-pulse durations [71–73], nonlinear SDEs

generating signals with 1/f spectrum have been derived in [74, 75]. A special

case of this nonlinear SDE has been obtained using Kirman’s agent model [76].

Such nonlinear SDEs have been used to describe signals in socio-economical

systems [77,78].

The general expression for the proposed class of Itô SDEs is

dx = σ2

(
η − 1

2
λ

)
x2η−1dt+ σxηdWt . (1.1)

Here x is the signal, η 6= 1 is the exponent of the power-law multiplicative noise,

λ defines the exponent of the power-law steady-state PDF of the signal, Wt is

a standard Wiener process (the Brownian motion) and σ is a scaling constant

determining the intensity of the noise. The Fokker-Planck equation correspond-

ing to SDE (1.1) gives the power-law probability density function (PDF) of the

signal intensity P0(x) ∼ x−λ with the exponent λ. The non-linear SDE (1.1) has

the simplest form of the multiplicative noise term, σxηdWt. In papers [76, 79]

the nonlinear SDE of type (1.1) has been obtained starting from a simple agent-

based model describing the herding behavior.

Itô SDEs are typically used in economics [80] and biology [81]. On the

other hand, Stratonovich SDEs are more suitable for real systems with corre-

lated, non-white noise, for example, for noise-driven electrical circuits [82].

The Stratonovich SDE corresponding to Itô SDE (1.1) is [83]

dx =
1

2
σ2(η − λ)x2η−1dt+ σxη ◦ dWt . (1.2)
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Note, that the choice of Stratonovich or Itô convention depends not only on the

correlation time of the noise but also on the delay in the feedback [84].

For λ > 1 the distribution P0(x) diverges as x → 0, therefore the diffusion

of the stochastic variable x should be restricted at least from the side of small

values, or equation (1.1) should be modified. The simplest choice of the restric-

tion is the reflective boundary conditions at x = xmin and x = xmax. Another

choice would be modification of equation (1.1) to get rapidly decreasing steady

state PDF when the stochastic variable x acquires values outside of the interval

[xmin, xmax]. For example, the steady state PDF

P0(x) ∼ 1

xλ
exp

(
−x

m
min

xm
− xm

xmmax

)
(1.3)

with m > 0 has a power-law form when xmin � x � xmax and exponential cut-

offs when x is outside of the interval [xmin, xmax]. Such exponentially restricted

diffusion is generated by the SDE

dx = σ2

[
η − 1

2
λ+

m

2

(
xmmin

xm
− xm

xmmax

)]
x2η−1dt+ σxηdWt (1.4)

obtained from equation (1.1) by introducing the additional terms in the drift.

The PSD of the signals generated by the SDE (1.1) can be estimated using

the (approximate) scaling properties of the signals, as it is done in [85]. Since

the Wiener process has the scaling property dWat = a1/2dWt, changing the vari-

able x in equation (1.1) to the scaled variable xs = ax or introducing the scaled

time ts = a2(η−1)t one gets the same resulting equation. Thus change of the scale

of the variable x and change of time scale are equivalent, leading to the fol-

lowing scaling property of the transition probability (the conditional probability

that at time t the signal has value x′ with the condition that at time t = 0 the

signal had the value x):

aP (ax′, t|ax, 0) = P (x′, aνt|x, 0) , (1.5)

with the exponent ν being ν = 2(η − 1). As has been shown in [85], the power-

law steady state PDF P0(x) ∼ x−λ and the scaling property of the transition
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probability (1.5) lead to the power-law behavior of the PSD

S(f) ∼ 1

fβ
, β = 1 +

λ− 3

2(η − 1)
(1.6)

in a wide range of frequencies.

The presence of the restrictions of diffusion at x = xmin and x = xmax

makes the scaling (1.5) not exact and this limits the power-law part of the PSD

to a finite range of frequencies fmin � f � fmax. The frequency range where

the PSD has 1/fβ behavior is estimated in [85] as

σ2x
2(η−1)
min � 2πf � σ2x2(η−1)

max , η > 1 , (1.7)

σ2x−2(1−η)
max � 2πf � σ2x

−2(1−η)
min , η < 1 .

This equation shows that the frequency range grows with increasing of the ex-

ponent η, the frequency range becomes zero when η = 1. By increasing the

ratio xmax/xmin one can get arbitrarily wide range of the frequencies where the

PSD has 1/fβ behavior. Note, that pure 1/fβ PSD is physically impossible be-

cause the total power would be infinite. Therefore, we consider signals with

PSD having 1/fβ behavior only in some wide intermediate region of frequen-

cies, fmin � f � fmax, whereas for small frequencies f � fmin the PSD is

bounded.
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Figure 1: (a) The steady-state PDF of the signal generated by equation (1.1) with
reflective boundaries at xmin and xmax. The dashed line shows the power-law
with the exponent −3. (b) The PSD of such a signal. The gray line shows the
slope f−1. Used parameters are η = 2, λ = 3, xmin = 1, xmax = 1000, and σ = 1.

For λ = 3 we get that β = 1 and SDE (1.1) gives signal exhibiting 1/f noise.

Comparison of the numerically obtained steady state PDF and the PSD with an-

alytical expressions for SDE (1.1) with η = 2 and λ = 3 is presented in figure 1.
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We see a good agreement of the numerical results with analytical expressions.

Methods of numerical solution are presented in the following section. A nu-

merical solution of the equations confirms the presence of the frequency region

for which the power spectral density has 1/fβ dependence. The 1/f interval in

the PSD in figure 1 is approximately between fmin ≈ 100 and fmax ≈ 103 and is

much narrower than the width of the region 1� f � 106 predicted by equation

(1.7). The width of this region can be increased by increasing the ratio between

the minimum and the maximum values of the stochastic variable x. In addition,

the region in the power spectral density with the power-law behavior depends

on the exponent η: if η = 1 then this width is zero; the width increases with

increasing the difference |η − 1| [86].

1.1 Numerical solution of SDEs

Euler-Maruyama and Milstein methods for SDEs

Let us write a general form of nonlinear SDE as:

dx = f(x)dt+ g(x)dWt, (1.8)

here f(x) is a drift function and g(x) is a diffusion function. The simplest method

used to numerically solve SDE is based on a simple method used to numerically

solve ODEs, Euler method [87]. Application of Euler method to SDEs is referred

to as Euler-Maruyama approximation [88,89]. The iterative difference equation,

when using this method, might take the following form:

xi+1 = xi + f(xi)∆t+ g(xi)∆Wt. (1.9)

The iterative difference equation above has similar form, compared to the

iterative difference equation obtained for ODE, with the only difference being

W Wiener process. The Wiener process (one-dimensional Brownian motion)

describes path (time evolution of coordinate) of the one-dimensional particle

hit by some random force. Central limit theorem suggest that superposition of

many independent random factors follows the Gaussian distribution, therefore it

is expected that the changes of particles coordinate will also follow the Gaussian
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distribution. The standard deviation of the distribution will depend on the size

of time step, ∆t, and increase as a square root of time step width. Thus we

can write the difference equation, which is identical in distribution to (1.9), as

follows [88,89]:

xi+1 = xi + f(xi)∆t+ g(xi)
√

∆tζi, (1.10)

where ζi is a Gaussian random variable with zero mean and unit variance.

This difference equation is frequently referred to as Euler-Maruyama method,

or Euler-Maruyama approximation for SDEs, [88,89].

Another commonly used method is Milshtein method [88, 89]. Using this

method iterative difference equation takes the following form,

xi+1 = xi + f(xi)∆t+ g(xi)
√

∆tζi +
1

2
g(xi)

(
dg(x)

dx

∣∣∣∣
x=xi

)(
ζ2
i − 1

)
∆t. (1.11)

Using this method the error scales with ∆t instead of
√

∆t as in Euler-Maruyama

method due the fourth term on the right hand side. Yet solving (1.1) using these

two or higher-order methods would still require use of extremely small ∆twhich

would increase computation times beyond the feasible.

Variable time step method

Note that in SDE (1.1) both drift, f(x), and diffusion, g(x), functions are

power-law. Thus while solving (1.1) numerically using Euler-Maruyama or Mil-

shtein methods it appears that time series of x at some point “explode”. Al-

though decreasing ∆t appears to provide stability to numerical computations.

But one cannot decrease ∆t indefinitely as computation times grow unreason-

ably large.

Based on these observation it is rather natural to propose to scale ∆t based

on the value of x. Namely, if x is small, then its changes are small (the value

changes slower), thus larger ∆t values are able to provide sufficient precision.

If x is large, then its changes become larger (the value changes faster), thus ∆t

should grow smaller. Thus in general case, building on the Euler method,

xi+1 = xi + f(xi)h(xi) + g(xi)
√
h(xi)ζi, (1.12)

ti+1 = ti + h(xi). (1.13)
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From the previous experience of solving (1.1) [90–92], it appears that h(x)

should be chosen so that in the x → ∞ limit it linearizes drift and diffusion

terms:

f(x)h(x) ∝ xa, a ≤ 1 and g(x)
√
h(x) ∝ xb, b ≤ 1. (1.14)

In case of (1.1) [90–92]:

h(x) = κ2x2−2η, (1.15)

where κ is a precision parameter which should be positive and at smaller than 1.

Consequently difference equations solving (1.1) would take the following form:

xi+1 = xi + κ2

(
η − λ

2

)
xi + κxiζi, (1.16)

ti+1 = ti + κ2x2−2η. (1.17)

Note that for η > 1 in the limit of small x, x→ 0, h(x) diverges to infinity.

Thus, and as usually we need time series sampled at certain period T , it is

natural to restrict h(x) using min function: Another possible alternative is to

use original h(x) and interpolate to obtain the discretized time series. But this

alternative is too tedious to implement, thus we stick with the simpler algorithm.

1.2 Main goal of the thesis
The objective of this dissertation is to study origins of 1/f noise and behav-

ior of complex nonlinear systems exhibiting anomalous diffusion and affected by

colored and non-Gaussian external noises.

1.3 Main tasks of the thesis
1. To study how 1/f fluctuations can arise from random walk in inhomoge-

neous media.

2. To analyze the affect of colored noise on the motion of a Brownian particle

in an inhomogeneous environment.

3. To generalize nonlinear SDEs driven by Gaussian noise and generating

signals with 1/f PSD by replacing the Gaussian noise with a more general

Lévy stable noise.
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4. To propose time-fractional Fokker-Planck describing the subdiffusion of

particles in an inhomogeneous medium resulting due inhomogeneous dis-

tribution of traps in the media.

5. To examine the influence of external potentials on anomalous diffusion

6. To study anomalous diffusion in inhomogeneous media of Brownian par-

ticle experiencing Lévy flights.

1.4 Scientific novelty
1. We derived Nonlinear SDEs generating signals with 1/f spectrum in a

wide range of frequencies together with power-law steady-state PDF from

Langevin equations describing Brownian particle motion in heterogeneous

media.

2. We showed that set of two nonlinearly coupled SDEs generates signals

with power-law PSD in a wide range of frequencies together with the al-

most arbitrary steady-state PDF.

3. We studied the effect of colored noise on the motion of a Brownian particle

in an inhomogeneous environment. Existence of colored noise leads to

additional restriction of the diffusion seen as exponential cut-off of the

distribution of particle positions and narrower range of frequencies where

1/f noise occurs.

4. We generalized nonlinear SDEs driven by Gaussian noise and generating

signals with 1/f PSD by replacing the Gaussian noise with a more general

Lévy stable noise.

5. We proposed time-fractional Fokker-Planck equation describing the subdif-

fusion of particles in an inhomogeneous medium resulting from inhomoge-

neous distribution of traps in the media. We analytically solved proposed

Fokker-Planck equation and obtained analytic expression for PSD.

6. We studied the influence of external potentials on anomalous diffusion and

obtained analytic expressions for the transition probability as well as for

the first and the second moments. By using these expression we calculate

the dependence of the mean MSD on time.
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1.5 Statements of the thesis

1. Nonlinear SDEs generating signals with power-law PSD in a wide range of

frequencies together with power-law steady-state PDF can be derived from

Langevin equations describing Brownian particle motion in heterogeneous

media.

2. Signals exhibiting power-law PSD in a wide range of frequencies together

with the almost arbitrary steady-state PDF can be generated by using non-

linearly coupled stochastic differential equations.

3. Introduction of colored noise instead of white noise in to Langevin equa-

tions describing diffusion in heterogeneous media leads to: additional re-

striction of the diffusion seen as exponential cut-off of the distribution of

particle positions and narrower range of frequencies where the spectrum

has power law behavior.

4. A class of nonlinear SDEs with Lévy noise can give the power-law behav-

ior of the PSD in any desirably wide range of frequencies and power-law

steady PDF.

5. Time-subordinated nonlinear Langevin equations can generate signal ex-

hibiting power-law PSD, S(f) ∼ f−β with the power-law exponent β larger

than 1 (or equal) contrary to linear time-subordinated Langevin equations.

6. Introduction of external force proportional to noise induced drift on to

HDP changes diffusion coefficient but does not change value of anomalous

diffusion exponent.

1.6 List of publications

The research covered in this dissertation was published in 8 papers. List,

in chronological order, follows. Papers [A1-A7] were published in ISI indexed

journals. [A8] paper was published in ISI indexed conference proceedings.
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ir 1/f triukšmas, in LMA penktoji jaunųjų mokslininkų konferencija, Fizinių
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Personal contribution of the author

The author of the dissertation has performed all of the numerical simula-

tions as well as most of the analytical derivations presented in this dissertation.

1.8 Outline of the dissertation

The list of abbreviations used in this dissertation is given in the chapter

previous to the introductory chapter.
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In Chapter 2, we consider the motion of a Brownian particle in an inho-

mogeneous environment such that the motion can be described by the equation

yielding 1/f spectrum in a broad range of frequencies together with power-

law steady-state PDF. However in most systems steady-state PDF of is Gaussian.

Thus we propose a system of two coupled nonlinear stochastic differential equa-

tions. The equations are derived from the scaling properties necessary for the

achievement of 1/fβ noise. The proposed coupled stochastic differential equa-

tions allows us to obtain 1/fβ spectrum in a wide range of frequencies together

with the almost arbitrary steady-state density of the signal. The original results

were published in [A2, A6].

In Chapter 3, we have investigated the effect of colored noise on the mo-

tion of a Brownian particle in an inhomogeneous environment. Colored noise

mimic the correlation of collisions between the Brownian particle and the sur-

rounding molecules. The original results were published in [A2].

In Chapter 4, we generalize nonlinear SDEs driven by Gaussian noise and

generating signals with 1/f power spectral density by replacing the Gaussian

noise with a more general Lévy stable noise. The equations with the Gaussian

noise arise as a special case when the index of stability α = 2. We investigate

numerically the frequency range where the spectrum has 1/f form and demon-

strate that this frequency range depends on power-law exponent in steady state

distribution as well as on the index of stability α. The original results were

published in [A1, A4].

In Chapter 5, we study the PSD of signals generated by time-subordinated

Langevin equations. In the homogeneous systems the power spectral density

(PSD) of the signals generated by time-subordinated Langevin equations has

power-law dependency S(f) ∼ fα−1 on the frequency as f → 0. We consider

nonhomogeneous systems and show that in such systems the power spectral

density can have power-law behavior with the exponent equal to or larger than 1

in a wide range of intermediate frequencies. The original results were published

in [A3, A5].

In chapter 6, we consider HDP with the power-law dependence of the dif-

fusion coefficient on the position and investigate the influence of external forces

on the resulting anomalous diffusion. We obtain analytic expressions for the

transition probability as well as for the first and the second moments. By using
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these expression we calculate the dependence of the mean square displacement

on time. Also we generalize proposed SDE driven by Gaussian noise by replacing

the Gaussian noise with a more general Lévy stable noise. The original results

were published in [A7].

In Refer to chapters, we gather up the main results presented in this dis-

sertation.
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2 Origins of nonlinear SDE generating 1/f
noise

Many models have been proposed to explain the origin of 1/f noise; for a

short overview of the models see introduction of [93]. In many condensed mat-

ter systems the 1/f spectrum is considered as a superposition Lorentzians with

a wide range distribution of relaxation times [73,94–97]. In this approach 1/fβ

noise with the desirable slope β requires a certain distribution of parameters

of the system [59, 73, 98–101]. However, it has been shown that only several

well separated decay rates are sufficient to yield an approximately 1/f power

spectrum [102]. The 1/f noise in the fluctuations of a mass was first seen in

a sandpile model with threshold dissipation proposed in [103] and was ana-

lytically obtained in a one-dimensional directed model of sandpiles [104]. Yet

another model of 1/f noise represents the signals as sequences of the renewal

pulses or events with the power-law distribution of the inter-event time [105].

Recently, thermal finite-size fluctuations as mechanism for 1/f noise has been

proposed [106]. Therefore internal mechanism leading to the emergence of the

widely occurring 1/f noise still remains an open issue.

In some systems the 1/f fluctuations are non-Gaussian [68, 69]. Power-

law distribution of signal intensity as well as power-law behavior of the PSD in

a wide range of frequencies can be obtained using point processes where the

time between the adjacent pulses experience relatively slow the Brownian-like

motion [74,75,93]. Such nonlinear SDEs have been applied to describe signals

in socio-economical systems [77, 78]. However the derivation of the equations

has been quite abstract and physical interpretation of assumptions made in the

derivation is not very clear. We present a physical models where such equation

can be relevant. We expect that this derivation leads to a better understanding

which systems can be described using equation (1.1).

In most cases 1/f noise is a Gaussian process [66, 67]. The drawback of

the nonlinear SDEs (1.1) generating signals with 1/fβ PSD is the necessity of

power-law steady-state probability density function (PDF) of the signal. It is

impossible to obtain Gaussian PDF together with 1/f spectrum from such non-

linear SDEs. We dedicate Chapter 2.2 to remedy this drawback of nonlinear
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SDEs as source of 1/f noise by considering not only one SDE, but a system of

two coupled SDEs. We demonstrate that the proposed coupled stochastic differ-

ential equations allows us to obtain 1/f spectrum in a wide range of frequencies

together with almost arbitrary steady-state PDF of the signal.

2.1 Nonlinear SDE resulting from motion in inho-
mogeneous medium

Figure 2: The schematic representation of an inhomogeneous medium. The non-
equilibrium system is described as a large number N of regions at local equilib-
rium, each region having different inverse temperature βi.

We will consider the Brownian motion of a small macroscopic particle in an

inhomogeneous medium. We assume that this medium has reached local ther-

modynamical equilibrium but not the global one and the temperature can be

considered as a function of coordinate. Schematically such a medium is shown

in figure 2. Brownian motion of small macroscopic particles in a liquid or a gas

results from unbalanced bombardments due to surrounding molecules. Usually

the Brownian motion is described by a Langevin equation that includes the in-

fluence of the “bath” of surrounding molecules as a time-dependent stochastic

force that is commonly assumed to be a white Gaussian noise. This assumption

is valid when the correlation time of fluctuations is short, much shorter than the

time scale of the macroscopic motion. The effect of large correlation time of

fluctuations will be considered in Chapter 3. In the case of strong collisions be-

tween the particle and the surrounding environment the noise is non-Gaussian

and we have so called Lévy flights [20]. Nonlinear SDEs Lévy noise and gener-

ating signals with 1/f spectrum we proposed in Chapter 4.
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Langevin equations for one-dimensional motion of a Brownian particle are

[107]

d

dt
v(t) = −γv(t) +

1

m
F (x) +

√
2γ

m

1

β(x)
ξ(t) , (2.1)

d

dt
x(t) = v(t) (2.2)

Here x is the coordinate and v is the velocity of the Brownian particle, m is

the mass of the particle, γ is the relaxation rate and ξ(t) is the δ-correlated

white noise. In general, equations similar to (2.1), (2.2) can be used to describe

a variety of systems: noisy electronic circuits, laser light intensity fluctuations

[107] and others. We assume that there is temperature gradient in the medium,

therefore the inverse temperature β(x) depends on coordinate x. In the case

when β(x) ≡ β = const, equations (2.1) and (2.2) describe Brownian motion

in the medium with constant temperature T = k−1
B /β, where kB is Boltzmann

constant.

Performing adiabatic elimination of the velocity as in [108], we obtain the

equation

d

dt
x(t) =

1

γm
F (x) +

1

2γm

β′(x)

β(x)2
+

√
2

γm

1

β(x)
◦ ξ(t) . (2.3)

Here β′(x) ≡ dβ(x)/dx. This SDE should be interpreted according to the Stratonovich

convention. Note, that the second term in the right hand side of equation (2.3)

arises due to position dependence of the stochastic force in equation (2.1) [108].

The Itô SDE corresponding to (2.3) is

dx =
1

γm
F (x)dt+

√
2

γm

1

β(x)
dWt . (2.4)

For calculating stationary distribution of position x in high friction limit we will

use a Fokker-Planck equation instead of SDE (2.3). The Fokker-Planck equation

corresponding to (2.4) can be written as

∂

∂t
P (x, t) = − 1

γm

∂

∂x
F (x)P (x, t) +

1

γm

∂2

∂x2

P (x, t)

β(x)
. (2.5)

By setting the time derivative to zero we obtain an analytical expression for
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steady state distribution P0(x):

P0(x) = Cβ(x) exp

(∫ x

F (x′)β(x′)dx′
)
. (2.6)

Let us consider the situation when the dependence of the inverse temper-

ature on the coordinate is described by a power law,

β(x) = bx−θ . (2.7)

Here θ is a power law exponent and b is a constant. This is quite reasonable

assumption; for example, if θ = 1 equation (2.7) represents a case where we

have steady state heat transfer due to temperature difference T2 − T1 between

the beginning and the end of the system. We assume that there are reflective

boundaries at xmin and xmax and the motion is limited to values of x between

xmin and xmax. When θ = 1 then the temperatures should obey the relation

T2/T1 = xmax/xmin and the coefficient b is b = (xmax − xmin)/kB(T2 − T1). This

case is presented in figure 2.

The external force affecting the particle F (x) we express via the gradient

of the potential V (x):

F (x) = − d

dx
V (x) . (2.8)

We choose the subharmonic potential proportional to the temperature:

V (x) =

(
λ

θ
− 1

)
1

β(x)
. (2.9)

For convenience we write the coefficient of proportionality as λ/θ − 1. As we

will see in equation (2.12), the parameter λ gives the power law exponent in

the steady state distribution of x. Taking into account equation (2.7) we see that

the potential has the power law form with the same exponent θ. The expression

for the external force then is

F (x) =
θ − λ
b

xθ−1 . (2.10)

Using inverse temperature (2.7) and force (2.10) the equation (2.3) for the
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particle coordinate becomes

d

dt
x(t) =

1

γmb

(
θ

2
− λ
)
xθ−1 + x

θ
2

√
2

γmb
◦ ξ(t) . (2.11)

By introducing new parameters σ =
√

2/bmγ, θ = 2η into equation (2.11) we

obtain the Stratonovich SDE (1.2). By using equations (2.6), (2.7) and (2.10)

we obtain distribution of particles in high friction limit

P0(x) =
λ− 1

x1−λ
min − x1−λ

max

x−λ . (2.12)

Calculating distribution of particles we assumed that there are reflective bound-

aries at xmin and xmax and the motion is limited to values of x between xmin and

xmax. Equation (2.11) has the same form as Stratonovich SDE (1.2).
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Figure 3: The steady-state PDF of the signal generated by the Langevin equations
(2.15), (2.16) with reflective boundaries at x̃min and x̃max and the parameters:
(a) θ = 1, λ = 3, x̃min = 1, x̃max = 1000, (b) θ = 0, λ = 3, x̃min = 1, x̃max = 100.
The dashed line shows the power-law with the exponent −3. (c) The PSD of the
signal corresponding to the parameters in (b) case. The gray line shows the slope
f−1.

To check the validity of the adiabatic elimination of the velocity, we solve

the Langevin equations (2.1), (2.2) numerically. For numerical solution it is

convenient to introduce dimensionless time t̃, position x̃ and velocity ṽ. When

the inverse temperature β(x) and the force F (x) are given by equations (2.7)

and (2.10), we can use t̃ = γt and

x̃ = (γ2mb)
1

2−θx , (2.13)

ṽ = γ−1(γ2mb)
1

2−θ v . (2.14)
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The equations (2.1), (2.2) in the dimensionless variables have the form

d

dt̃
ṽ = −ṽ + (θ − λ)x̃θ−1 +

√
2x̃θξ(t̃) , (2.15)

d

dt̃
x̃ = ṽ . (2.16)

The reflective boundaries at xmin and xmax become

x̃min = (γ2mb)
1

2−θxmin , (2.17)

x̃max = (γ2mb)
1

2−θxmax . (2.18)

The requirement of large friction γ, necessary for the adiabatic elimination of

the velocity, leads to the requirement x̃min, x̃max � 1 when θ < 2.

As an example we solve the Langevin equations (2.15), (2.16) with re-

flective boundaries at x̃min, x̃max and the parameters λ = 3, θ = 1 or θ = 0.

The value of the parameter θ = 0 means that the temperature is constant. The

steady state PDF of the particle position P0(x̃) and the power spectral density

S(f̃) are presented in figure 3. In figure 3a we see a good agreement with the

distribution of particles in high friction limit (2.12). This confirms the validity

of the adiabatic elimination of the velocity. Figure 3c confirms the presence of

the frequency region with 1/f behavior of the power spectral density, the 1/f

interval in the PSD is approximately between f̃min ≈ 10−4 and f̃max ≈ 10−2. The

width of this interval can be increased by increasing the ratio x̃max/x̃min. The

width of 1/fβ region in the PSD also increases with increasing of |θ/2− 1|.

Not only coordinate fluctuations yield power law PSD. The Langevin equa-

tion with postion dependent temperature (2.7) and external force (2.10) can

also lead to the power law PSD of the absolute velocity fluctuations [A2].

2.2 Coupled SDEs generating Gaussian 1/f noise

In this section we obtain a pair of coupled nonlinear SDEs by considering

the scaling properties required to get 1/fβ PSD. The method we use is similar to

that in [85], however now we consider two stochastic variables and two equa-

tions. We assume that the first equation describes the fluctuations of the signal

xt, with the fluctuating rate of change yt described by the second equation.
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dxt = a(xt)y
2η
t dt+ b(xt)y

ηdWt , (2.19)

dyt = u(xt)y
2η+1
t dt+ σyη+1

t dW ′
t . (2.20)

We can obtain a pair of coupled nonlinear SDEs generating signals exhibit-

ing 1/f noise by using the following considerations. The Wiener-Khintchine the-

orem relates the PSD S(f) to the autocorrelation function C(t). If the PSD has a

power-law behavior S(f) ∼ f−β in a wide range of frequencies fmin � f � fmax,

then, when the influence of the limiting frequencies fmin and fmax is neglected,

the PSD has a scaling property

S(af) ∼ a−βS(f) (2.21)

for the frequencies in this range. We only consider signals with PSD having 1/fβ

behavior only in some wide intermediate region of frequencies fmin � f �
fmax. To avoid the divergence of the total power occuring for pure 1/f behavior

at arbitrarily small frequencies we assume that the PSD is bounded for small

frequencies f � fmin outside of this region. Compatibility with experimental

data can be ensured by choosing sufficiently small limiting frequency fmin.

One of the ways to obtain the required scaling property (2.21) is for the

steady-state PDF to be a power-law function of the stochastic variable y,

P0(x, y) ∼ p(x)y−λ , (2.22)

and for the transition probability to have the scaling property [A6]

aP (x′, ay, t|x, ay, 0) = P (x′, y′, aνt|, x, y, 0) . (2.23)

Here ν = 2η is the scaling exponent and λ is the power-law exponent of the

steady-state PDF of the stochastic variable y. Equation (2.23) means that the

change of the magnitude of the stochastic variable y → ay is equivalent to the

change of time scale t→ aνt.

In order to avoid the divergence of the steady-state PDF (2.22), the diffu-

sion of stochastic variable y should be restricted at least from the side of small
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values. In general, equation (2.22) can hold only in some region ymin � y �
ymax. When the diffusion of stochastic variable y is restricted, equation (2.23)

also cannot be exact. However, if the influence of the limiting values ymin and

ymax can be neglected for the time t in some region tmin � t � tmax, we can

expect for the scaling (2.21) to be approximately valid in this time region.

Thus the function p(x) in (2.22) should be a solution of the differential

equation

a(x)p(x)− 1

2

d

dx
b2(x)p(x) = 0 . (2.24)

This equation means that the steady-state PDF of the stochastic variable x is

determined only by the coefficients a(x) and b(x) of the SDE (2.19). The y-

component of the probability current Jy should vanish at the boundaries that

are not parallel to y axis, if coefficient u(x) is

u(x) = σ2(η + 1− λ/2) . (2.25)

Therefore, required form for system of coupled SDEs generating 1/fβ noise is

dxt = a(xt)y
2η
t dt+ b(xt)y

η
t dWt , (2.26)

dyt = σ2

(
η + 1− λ

2

)
y2η+1
t dt+ σyη+1

t dW ′
t . (2.27)

Note, that the second equation (2.27) has the form of non-linear SDEs proposed

in [74, 75]. Equations similar to (2.26), (2.27) have been considered in [109].

It has been shown in Ref.: [A6] that the power-law exponent in the PSD of the

signal generated by SDEs (2.26), (2.27) is related to the parameters η and λ as

β = 1 +
λ− 1

2η
. (2.28)

To get a stationary process and avoid the divergence of steady-state PDF,

equation (2.27) should be considered together with boundaries restricting the

diffusion of stochastic variable y or be modified. The simplest choice restricting

the range of diffusion of the stochastic variable y is the reflective boundaries

at y = ymin and y = ymax. Another possibility is the modification of equation

(2.27) to get rapidly decreasing steady-state PDF when the stochastic variable y

acquires values outside of the interval [ymin, ymax]. For example, the steady-state
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PDF

P0(x, y) ∼ p(x)y−λ exp

{
−
(
ymin

y

)m
−
(

y

ymax

)m}
(2.29)

with m > 0 has a power-law dependence on y when ymin � y � ymax and expo-

nential cut-offs when y is outside of the interval [ymin, ymax]. This exponentially

restricted steady-state PDF is a result of the SDE

dyt = σ2

(
η + 1− λ

2
+
m

2

(
ymmin

ymt
− ymt
ymmax

))
y2η+1
t dt+ σyη+1

t dW ′
t (2.30)

obtained from equation (2.27) by introducing additional terms in the drift.

Limiting frequencies

The restriction of the diffusion of the stochastic variable y to the interval

ymin � y � ymax makes the scaling (2.23) only approximate. As a result, the

power-law part of the PSD is limited to a finite range of frequencies fmin � f �
fmax. Let us estimate the limiting frequencies fmin and fmax. The limiting values

y = ymin and y = ymax should also participate in the scaling and equation (2.23)

for the transition probability corresponding to SDEs (2.26) and (2.27) becomes

aP (x′, ay, t|x, ay, 0; aymin, aymax) = P (x′, y′, a2ηt|, x, y, 0; ymin, ymax) . (2.31)

Here ymin, ymax enter as parameters of the transition probability. Similarly, the

steady-state PDF P0(x, y; ymin, ymax) has the scaling property

aP0(x, ay; aymin, aymax) = P0(x, y; ymin, ymax) . (2.32)

Autocorrelation function has scaling property [A6]

C(t, aymin, aymax) = C(a2ηt, ymin, ymax) . (2.33)

From this scaling of the autocorrelation function it follows that time t should

enter only in combinations with the limiting values ymint
1/2η and ymaxt

1/2η. We

can expect that the influence of the limiting values can be neglected and the

scaling (2.23) be approximately valid when ymint
1/2η � 1 and ymaxt

1/2η � 1.

In other words, we expect that the scaling (2.23) holds when time t is in the
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interval σ−2y−2η
max � t� σ−2y−2η

min when µ > 0 and in the interval σ−2y−2η
min � t�

σ−2y−2η
max when η < 0. The frequency range where the PSD has 1/fβ behavior can

be estimated as

σ2y2η
min � 2πf � σ2y2η

max , η > 0 (2.34)

σ2y2η
max � 2πf � σ2y2η

min , η < 0 (2.35)

We see that the width of the frequency range where the PSD has 1/fβ behavior

grows with increase of the ratio ymax/ymin. For η = 0 the width of the frequency

region (2.34) is zero and we do not have 1/fβ power spectral density.

2.3 Numerical approach

Since analytical solution of stochastic differential equations can be ob-

tained only in particular cases, there is a need of numerical solution. Using

Euler-Maruyama method with small time step ∆t for numerical solution of SDEs

(2.26) and (2.27), we get the discretized equations

xk+1 = xk + a(xk)y
2η
k ∆t+ b(xk)y

η
k

√
∆tεk , (2.36)

yk+1 = yk + σ2

(
η + 1− λ

2

)
y2η+1
k ∆t+ σyη+1

k

√
∆tξk . (2.37)

Here εk and ξk are independent random variables with the standard normal dis-

tribution. However, for numerical solution of nonlinear equations the solution

schemes involving a fixed time step ∆t can be inefficient. For example, in equa-

tions (2.26) and (2.27) with η > 0, large values of stochastic variable y lead to

large coefficients and thus require a very small time step. The numerical solu-

tion scheme can by improved by using a variable time step that becomes small

only when y becomes large. Such method of solution of a single nonlinear SDE

has been proposed in [74]. The variable time step is equivalent to the intro-

duction of the internal time τ that is different from the real, physical, time t

[A5].

In order to make the solution more efficient we introduce an internal, op-

erational, time τ by the equation

dτt = y2η
t dt . (2.38)
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We assume that the zero of the internal time τ coincides with the zero of the

physical time t, thus the initial condition for the internal time is τt=0 = 0. Since

yt > 0, from equation (2.38) it follows that τt is a strictly increasing function of

time t. Let us obtain the SDEs for the stochastic variables x and y in the internal

time τ . To do this we proceed similarly as in Ref.: [A5] and consider the joint

PDF Px,y,τ (x, y, τ ; t) of the stochastic variables x, y and τ . The PDF P (x, y; t) can

be calculated using the equation

Px,y(x, y, t) =

∫
Px,τ (x, y, τ ; t) dτ . (2.39)

Equations (2.26), (2.27), and (2.38) lead to the Fokker-Planck equation for the

PDF Px,y,τ (x, y, τ ; t)

∂

∂t
Px,y,τ = −y2η ∂

∂x
a(x)Px,y,τ − σ2

(
η + 1− λ

2

)
∂

∂y
y2η+1Px,y,τ − y2η ∂

∂τ
Px,y,τ

+
1

2
y2η ∂

2

∂x2
b(x)2Px,y,τ +

1

2
σ2 ∂

2

∂y2
y2η+2Px,y,τ .(2.40)

Since the zero of the internal time τ coincides with the zero of the physical time

t, the initial condition for equation (2.40) is Px,y,τ (x, y, τ ; 0) = P (x, y; 0)δ(τ).

Matching of the zeros of τ and t leads also to the boundary condition Px,y,τ (x, y, 0; t) =

0 for t > 0, because τ and t are strictly increasing.

Instead of x, y and τ we can consider x, y and t as stochastic variables. The

physical time t is related to the operational time τ via equation (2.38), therefore,

the joint PDF Px,y,t(x, y, t; τ) of the stochastic variables x, y and t is related to

the PDF Px,y,τ (x, y, τ ; t) according to the equation

Px,y,t(x, y, t; τ) = y2ηPx,y,τ (x, y, τ ; t) . (2.41)

Another way to get this relation is to notice that the third term on the right hand

side of equation (2.40) contains the derivative ∂
∂τ

and thus should be equal to

− ∂
∂τ
Px,y,t. Inserting (2.41) into equation (2.40) we get

∂

∂τ
Px,y,t = − ∂

∂x
a(x)Px,y,t − σ2

(
η + 1− λ

2

)
∂

∂y
yPx,y,t −

∂

∂t

1

y2η
Px,y,t

+
1

2

∂2

∂x2
b(x)2Px,y,t +

1

2
σ2 ∂

2

∂y2
y2Px,y,t . (2.42)
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The initial condition for equation (2.42) is Px,y,t(x, t; 0) = P (x, y; 0)δ(t). In ad-

dition, there is a boundary condition Px,y,t(x, y, 0; τ) = 0 for τ > 0. The Fokker-

Planck equation (2.42) can be obtained from the coupled SDEs

dxτ = a(xτ )dτ + b(xτ )dWτ , (2.43)

dyτ = σ2

(
η + 1− λ

2

)
yτdτ + σyτdW

′
τ , (2.44)

dtτ =
1

y2η
τ

dτ . (2.45)

Discretizing the internal time τ with the step ∆τ and using the Euler-Maruyama

approximation for SDEs (2.43) and (2.44), we get

xk+1 = xk + a(xk)∆τ + b(xk)
√

∆τεk , (2.46)

yk+1 = yk + σ2

(
η + 1− λ

2

)
yk∆τ + σyk

√
∆τξk , (2.47)

tk+1 = tk +
∆τ

y2η
k

. (2.48)

Equations (2.46)–(2.48) provide the numerical method for solving coupled SDEs (2.26)

and (2.27). One can interpret equations (2.46)–(2.48) as an Euler-Maruyama

scheme with a variable time step ∆tk = ∆τ/y2η
k that adapts to the coefficients in

the SDEs. As a consequence of the introduction of the internal time the incre-

ments of the real, physical, time t become random. To get the discretization of

time with fixed steps the signal generated in such a way should be interpolated.

As an example, let us solve the equations

dxt = −γy2η
t xtdt+ yηt dWt , (2.49)

dyt = σ2

(
η + 1− λ

2

)
y2η+1
t dt+ σyη+1

t dW ′
t . (2.50)

For the stochastic variable y we assume reflective boundaries at y = ymin and

y = ymax. In this case the coefficients a(x) and b(x) in equation (2.26) are

a(x) = −γx and b(x) = 1, leading to the Gaussian steady-state PDF of x,

p(x) =

√
γ

π
e−γx

2

. (2.51)

The quantity y2η in equation (2.49) represents a fluctuating relaxation rate.
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Figure 4: (a) Typical signal x generated by equations (2.49) and (2.50). Reflective
boundaries at ymin and ymax have been used for equation (2.50). (b) The PDF of
the signal intensity. The dashed (grey) line shows the Gaussian curve. (c) The
PDF of the stochastic variable y. The dashed (grey) line shows the power-law
with the exponent −1. (d) The PSD of the signal x. The dashed (grey) line shows
the slope f−1. Used parameters are η = 1, λ = 1, ymin = 1, ymax = 1000, γ = 1

and σ = 1.
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Comparison of the numerically obtained steady state PDF and the PSD

with analytical expressions for the system of SDEs (2.49) and (2.50) with η = 1

and λ = 1 is presented in figure 4. Typical signal xt generated by equations

(2.49) and (2.50) is shown in figure 4(a). As one can see, the signal exhibits a

structure consisting of the periods of slow and fast fluctuations. The fast fluctu-

ations correspond to the peaks or bursts of the stochastic variable y. Note, that

due to large difference between slowest and fastest fluctuation rates the signal

in the periods of fast fluctuations in figure 4(a) visually resembles white noise.

However, the actual signal changes according to SDE (2.49), the periods of fast

fluctuations are similar to the periods of slow fluctuations compressed in time.

Analysis of nonlinear SDEs similar to (2.50), performed in [93], reveals that the

sizes of the bursts are approximately proportional to the squared durations of

the bursts. The distributions of burst and inter-burst durations have power-law

parts, with the numerically estimated power-law exponent of the PDF of the

inter-burst durations approximately equal to −3/2. Intermittent behavior, simi-

lar to the behavior shown in figure 4(a), can be connected with 1/f noise. For

example, it is known that intermittent behavior in iterative maps at the edge

of chaos can lead to 1/f noise [110]. In figures 4(b) and 4(c) we see a good

agreement of the numerically calculated steady-state PDFs of the stochastic vari-

ables x and y with the analytical expressions. The PSD of the signal xt is shown

in figure 4(d). Numerical solution of the equations confirms the presence of

the frequency region for which the power spectral density has 1/fβ dependence

with β = 1.

2.4 Coupled Langevin equations as a model of par-
ticle jumps in potential barrier with fluctuating
height

Coupled Langevin equations have been used to describe many physical

phenomena. For example, hot-carrier transport in semiconductors has been

modeled by linearly coupled Langevin equations [111]; nonlinear coupled Langevin

equations have been used to study pressure time series [112]. One nonlin-

ear SDE with fluctuating parameter can be interpreted as a pair of coupled

SDEs [113]. Equations with time varying parameter being a Gaussian colored
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noise (Ornstein-Uhlenbeck process) have been used to model wind farm power

production output dependence on wind velocity [114] and atmospheric turbu-

lence in radio signal detection [115]. Here we study nonlinear SDEs where the

fluctuating parameter enters both diffusion and drift coefficients as a power-law

function.

To illustrate the situation that can be described by the proposed SDEs

(2.26) and (2.27), let us consider the case with η = −1
2
. Equations (2.26)

and (2.27) then become

dxt = a(xt)
1

yt
dt+ b(xt)

1
√
yt

dWt , (2.52)

dyt =
1

2
σ2(1− λ)dt+ σ

√
ytdW

′
t . (2.53)

The quantity y−1 in equation (2.52) has the meaning of the rate of change,

whereas y has the meaning of time interval. According to equation (2.28), the

PSD of the signal xt has power-law behavior for a wide range of frequencies

with the power-law exponent

β = 2− λ . (2.54)

We get 1/f noise when λ = 1. Assuming that the coefficients a(x) and b(x)

are sufficiently small, we can take ∆τ = 1 in the numerical solution scheme

(2.46)–(2.48), leading to the discrete equations

xk+1 = xk + a(xk) + b(xk)εk , (2.55)

yk+1 = yk

(
1 +

1

2
σ2(1− λ) + σξk

)
, (2.56)

tk+1 = tk + yk . (2.57)

In particular, when λ = 1 and the signal x has 1/f spectrum, equation (2.56) be-

comes yk+1 = yk(1 + σξk). We can interpret equations (2.55)–(2.57) as follows:

equations (2.56) and (2.57) describe a process consisting of discrete events oc-

curring at time moments tk. The inter-event duration is random and equal to

the stochastic variable yk. This inter-event duration slowly changes with time in

such a way, that the duration of the next time interval is equal to the duration of

the previous interval multiplied by some random factor close to 1. The signal xk
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changes only during the occurrence of the events at time moments tk and this

change is described by equation (2.55).

Equation (2.53) results in the steady-state PDF P0(yt) of the stochastic

variable yt having a power-law form with the exponent −λ. The PDF Pk(yk) of a

sequence of yk values generated according to equation (2.56) differs from P0(yt).

When yk changes slowly with the index k, the PDF Pk(yk) should satisfy the

equation P0(yk) ≈ yk
〈yk〉

Pk(yk), because going back from discrete equations to the

continuous time one should assume that each value yk last for the duration also

equal yk. Consequently, the PDF Pk(yk) is also a power-law with the exponent

−λ′, λ′ = λ+ 1. Thus, if λ is close to 1 then λ′ is close to 2.

There are many processes in the nature with the power-law inter-event

time distribution. For example, many human-related activities show power-law

decaying inter-event time distribution with exponents usually varying between 1

and 2 [116–119]. Power-law distribution of inter-event times has been observed

in neuron-firing sequences [120] and in the timings of earthquakes [121, 122].

In addition, power-law decaying inter-event time distribution is often accompa-

nied by the power-law decaying autocorrelation function [123].

Let us further assume that the events are due to jumps over the potential

barrier of the height v. In many physical systems the escape rate exponentially

depends on the barrier height, therefore we take y = ev. Changing the variables

in equations (2.52) and (2.53) we get the SDEs

dxt = a(xt)e
−vtdt+ b(xt)e

−vt/2dWt , (2.58)

dvt = −1

2
σ2λe−vtdt+ σe−vt/2dW ′

t . (2.59)

Similar to equations (2.55)–(2.57), numerical solution scheme with the variable

time step ∆tk = evk yields discrete equations

xk+1 = xk + a(xk) + b(xk)εk , (2.60)

vk+1 = vk −
1

2
σ2λ+ σξk , (2.61)

tk+1 = tk + evk . (2.62)

From equation (2.61) we see that the potential v performs a simple random walk

with a constant drift. When the potential has the value vk, the time interval that
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one needs to wait till the next event is evk . Both signal x and the potential v

change during the jump at time moment tk. One can also consider the case

where the time interval between events is random, with the average equal to

evk . We can expect that the randomness of the time interval should not change

the PSD of the signal xt at low frequencies.

2.5 Summary

The nonlinear SDE (1.1) generating signals with 1/f spectrum in a wide

range of frequencies has been used so far to describe socio-economical systems

[77, 78]. The derivation of the equations has been quite abstract and physical

interpretation of assumptions made in the derivation is not very clear. In this

chapter we propose a physical model where such equations can be relevant. This

model is described by Stratonovich (1.2) instead of Itô (1.1) SDE and provides

insights which physical systems can be described by such nonlinear SDEs.

We have shown that nonlinear SDEs generating power-law distributed pro-

cesses with 1/fβ spectrum can result from diffusive particle motion in inhomo-

geneous medium. The SDE (2.11) for particle coordinate are simplified versions

of Langevin equations (2.1), (2.2) for one-dimensional motion of a Brownian

particle. We neglected viscosity dependence on temperature and inertia of par-

ticle. In general, equations similar to these can be used to describe a variety

of systems: noisy electronic circuits, laser light intensity fluctuations [107] and

others. We assumed that the inverse temperature β(x) depends on coordinate

x and this dependence is of a power law form. Such a description is valid for a

medium that has reached local thermodynamical equilibrium but not the global

one, and the temperature can be considered as a function of coordinate. The

power law dependence of the inverse temperature β(x) on the stochastic vari-

able x can be caused by non-homogeneity of a bath. This non-homogeneity can

arise from a complex scale free structure of the bath as is in the case of porous

media [124] or from the bath not being in an equilibrium.

In high friction limit, if the particle is affected by a subharmonic poten-

tial proportional to the local temperature, the motion of the particle can be

described by the equation similar to equation (1.2). For example, we can con-

sider a Brownian particle affected by a linear potential V (x) and moving in
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the medium where steady state heat transfer is present due to the difference

of temperatures at the ends of the medium. From the properties of equation

(1.2), presented in Chapter 2, it follows that the spectrum of the fluctuations of

the particle position x(t) in such a system can have a frequency region where

the spectrum has a power-law behavior. The width of this frequency region

increases with the increase of the length of the medium in which the particle

moves. Equation (1.2) can also describe the fluctuations of the local average of

the absolute value of the velocity, if temperature fluctuations are slow and the

superstatistical approach can be used. We obtain 1/f noise in the fluctuations of

the absolute value of the velocity when the velocity distribution has a power-law

part P (v) ∼ v−3 and temperature distribution is flat, f(β) = const.

Additionally, we have proposed a pair of coupled nonlinear SDEs (2.26)

and (2.27) that generate the signal xt having the power-law PSD S(f) ∼ f−β

in arbitrarily wide range of frequencies. The exponent β is given by equation

(2.28). In contrast to a single nonlinear SDE generating f−β noise, the signal xt

generated by the proposed pair of SDEs can have almost arbitrary steady-state

PDF. The steady-state PDF of the signal xt is determined only by the coefficients

a(x) and b(x) of the first SDE (2.26). One can interpret the first equation (2.26)

as describing the fluctuations of the signal, with the fluctuating rate of change,

described by the second equation (2.27). Thus, the proposed SDEs exhibit a

separation between the magnitude of the fluctuations of the signal xt and the

rate of fluctuations. We expect that the proposed equations will be useful for

the description of 1/f noise in various physical and social systems. In addition,

the equations can be used to numerical generation of 1/f noise with the desired

steady-state PDF of the signal.
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3 Influence of noise color

One of the characteristics of the noise is the power spectral density (PSD).

The white noise has a frequency-independent PSD, whereas the PSD of a col-

ored noise depends on the frequency, the characteristic behavior of the PSD

is referred to as a “color” of the noise. There are various applications where

the noise in the physical system under investigation has a non-trivial spatio-

temporal structure and where it is not realistic to model it is as a white noise

process. For example, for a Brownian particle the driving noise is actually col-

ored, i.e. it has a characteristic non-zero correlation time τ on a short time-scale

of the order of tens of nanoseconds [125]. Noise color arises due entrainment

of fluid around diffusing particle. The particle accelerates the entrained fluid

and this acceleration depends on the past motion of the particle and introduce

an inertial memory effect [126].

The influence of the colored noise on the dynamics of a Brownian particle

immersed in a fluid where a temperature gradient is present can lead to inter-

esting phenomena. The particle can exhibit a directed motion in response to

the temperature gradient. Furthermore, study of stationary particle distribution

shows that particles can accumulate towards the colder (positive thermophore-

sis) or the hotter (negative thermophoresis) regions depending on their physical

parameters and, in particular, on the dependence of their mobility on the tem-

perature [127]. The velocity of this motion can vary both in magnitude and

sign, as observed in experiments [128]. However, in this case, no external force

is actually acting on the particles [129]. Theoretical models suggest [127] the

presence of a colored noise, as opposed to a white noise, is crucial for the emer-

gence of such thermophoretic effects. Analysis of the steady-state dynamics

of an overdamped classical particle in asymmetric multidimensional potential

driven by the noise with an arbitrary correlation function has shown that the

correlated noise breaks detailed balance, thereby exploiting the spatial asym-

metries in potential to produce local drifts and rotations [130]. These interest-

ing findings motivated us to investigate the motion of a Brownian particle in an

inhomogeneous environment and subjected to a colored noise, as opposed to a

white noise.
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3.1 Adiabatic approximation for system affected
by colored noise

A system subjected to the colored noise is described by the Langevin equa-

tion with a time-dependent stochastic force that includes the influence of the

“bath” of surrounding molecules:

dx

dt
= f(x) + g(x)ε(t) . (3.1)

It is a well known result that if we approximate white noise by a smooth, colored

process, then at the limit as the correlation time of the approximation tends to

zero, the smoothed stochastic integral converges to the Stratonovich stochastic

integral [131]. We assume that the stochastic force in equation (3.1) is a Gaus-

sian noise having correlation time comparable with time scale of the macro-

scopic motion and that ε(t) is Markovian process. In such a case the noise ε sat-

isfies Ornstein-Uhlenbeck process with exponential correlation function [132].

Thus we describe the system perturbed by a colored noise as two-dimensional

Markovian flow:

dx

dt
= f(x) + g(x)ε , (3.2)

dε

dt
= −1

τ
ε+

√
2D

τ
ξ(t) . (3.3)

Here ξ(t) is the white noise, 〈ξ(t)ξ(s)〉 = δ(t− s), the parameter τ is the correla-

tion time of the colored noise and D is the noise intensity. The autocorrelation

function of the colored noise is

〈ε(t)ε(s)〉 =
D

τ
exp

(
−|t− s|

τ

)
. (3.4)

It is possible to write two dimensional Fokker-Planck equation for equa-

tions (3.2), (3.3) and obtain two dimensional P (x, ε) density as its solution.

However, usually it is enough to know the distribution P (x) of the signal x,

which can be formally obtained by averaging P (x, ε) over the noise ε. It is prob-

lematic even get approximate analytical solutions for P (x, ε) [133]. More con-

venient way is to get P (x) from an approximate Fokker-Planck equation just for

one variable. Such equation can be obtained by using the unified colored noise
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approximation [134], which is a form of adiabatic approximation. To make this

approximation we eliminate the variable ε and get the equation

d2x

dt2
=
g′(x)

g(x)

(
dx

dt

)2

−
(

1

τ
− f ′(x) + f(x)

g′(x)

g(x)

)
dx

dt
+

1

τ
f(x) +

√
2D

τ
g(x)ξ(t) . (3.5)

We assume that the variable x changes slowly and drop small terms containing

d2x/dt2 and (dx/dt)2, obtaining the approximate equation

dx

dt
=

f(x)

1− τ
(
f ′(x)− f(x)g

′(x)
g(x)

) +

√
2Dg(x)

1− τ
(
f ′(x)− f(x)g

′(x)
g(x)

)ξ(t) . (3.6)

This equation should be interpreted in the Stratonovich sense. In more general

case, when we cannot neglect inertia and drop the second derivative d2x/dt2, the

question whether the equation obtained using adiabatic approximation should

be interpreted in Itô or Stratonovich sense still remains an open question, so

called Itô-Stratonovich problem [135]. However, at least for specific systems in

white noise limit, it can be determined which interpretation is correct. For exam-

ple, it has been shown for a simplified model of the preferential concentration of

inertial particles in a turbulent velocity field [136], that the equation obtained

using adiabatic elimination in white noise limit became the Stratonovich equa-

tion [137]. The Stratonovich interpretation should be used if the correlation

time of the noise is much larger than the relaxation rate of the system. In an

opposite case the equation should be interpreted in Itô sense. If relaxation rates

are of the similar magnitude as the correlation time, we get an equation with

noise induced drift that is different from Stratonovich drift.

The Fokker-Planck equation corresponding to the Stratonovich equation

dx/dt = fc(x) + gc(x)ξ(t) is [83]

∂

∂t
P (x, t) = − ∂

∂x
fc(x)P (x, t) +

1

2

∂

∂x
gc(x)

∂

∂x
gc(x)P (x, t) . (3.7)

The applicability of equations (3.6) and (3.7) has limitation due to neglect of

higher order derivatives in equation (3.5). These equations describe the dynam-

ics correctly [134] for times t obeying

t� τ

1− τ
(
f ′(x)− f(x)g

′(x)
g(x)

) (3.8)
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and in the space regions obeying

√
2Dτg(x)

1− τ
(
f ′(x)− f(x)g

′(x)
g(x)

) ∣∣∣∣f ′(x)

f(x)

∣∣∣∣� 1 . (3.9)

3.2 Influence of colored noise on the SDE gener-
ating signals with 1/f spectrum

If the nonlinear SDE generating signals with 1/f spectrum is a result of a

Brownian motion in an inhomogeneous medium then the finite correlation time

of the “bath” can become important. Instead of white noise we add colored

noise ε(t) to the Stratonovich equation (1.2) obtaining the equations

dx

dt
=

1

2
σ2(η − λ)x2η−1 + σxηε(t) , (3.10)

dε

dt
= −1

τ
ε+

1

τ
ξ(t) . (3.11)

After unified colored noise approximation (3.6) we get

dx

dt
=

1
2
σ2(η − λ)x2η−1

1− 1
2
τσ2(η − 1)(η − λ)x2(η−1)

+
σxη

1− 1
2
τσ2(η − 1)(η − λ)x2(η−1)

ξ(t) . (3.12)

If τ is large then equation (3.12) has a simpler form

dx

dt
= − x

τ(η − 1)
+

2x2−η

τσ(η − 1)(λ− η)
ξ(t) . (3.13)

Equation (3.12) should be interpreted in the Stratonovich sense. Converting to

Itô interpretation [83] we have

dx =
1

2

σ2x2η−1

γ(x)

[
η − λ+

2− η
γ(x)

+
2(η − 1)

γ(x)2

]
dt+

σxη

γ(x)
dWt , (3.14)

where

γ(x) ≡ 1− 1

2
τσ2(η − 1)(η − λ)x2(η−1) (3.15)

According to equation (3.9), approximation (3.12) is valid when

√
τσ|2η − 1|xη−1

1− 1
2
τσ2(η − 1)(η − λ)x2(η−1)

� 1 (3.16)
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Steady state PDF corresponding to equation (3.12) is

P0(x) ∼ x−λ
(

1− 1

2
τσ2(η − 1)(η − λ)x2(η−1)

)
exp

[
−1

4
τσ2(η − λ)2x2(η−1)

]
(3.17)

We see that the colored noise introduces an exponential cut-off in the steady

state PDF P0(x) and naturally limits the range of diffusion of the stochastic vari-

able x. The exponential cut-off is at large values of x when η > 1 and at small

values of x when η < 1.

Comparing equation (3.12) with (1.2) we see that the influence of the

finite correlation time τ of the noise can be neglected when

1

2
τσ2|η − 1||η − λ|x2(η−1) � 1 . (3.18)

Let us consider the case η > 1. Then according to equation (3.18), the influence

of the finite correlation time τ of the noise can be neglected when x� xτ , where

xτ ≡
[

2

τσ2(η − 1)|η − λ|

] 1
2(η−1)

(3.19)

If the diffusion is restricted to the region xmin < x < xmax then the spectrum has

a power-law part in the frequency range given by (1.7). If xτ > xmax we expect

no change in the power-law part of the spectrum. If xτ < xmax then, replacing

the maximum value of x by xτ we get that the replacement of the white noise

by the colored noise leaves the power-law part of the spectrum in the frequency

range

σ2x
2(η−1)
min � 2πf � 2

τ(η − 1)|η − λ|
. (3.20)

If η < 1 then the influence of the finite correlation time τ of the noise can

be neglected when x � xτ , where xτ is given by (3.19). When the diffusion is

restricted to the region xmin < x < xmax, we expect no change in the power-law

part of the spectrum when xτ < xmin. If xτ > xmin then replacing the minimum

value of x by xτ in equation (1.7) we can estimate that the power-law part of

the spectrum should be in the frequency range

σ2x−2(1−η)
max � 2πf � 2

τ(1− η)|η − λ|
. (3.21)

Thus the introduction of the colored noise into equation (1.2) can narrow the
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range of frequencies where the PSD behaves as 1/fβ by decreasing the upper

limiting frequency.

3.3 Numerical solution
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Figure 5: (a) Typical signal generated by equations (3.10), (3.11) with τ = 0.01.
(b) Typical signal generated by equation (1.2) corresponding to τ = 0 (white
noise). We used reflective boundaries at xmin = 1 and xmax = 1000. Other
parameters of equations are η = 2, λ = 3, and σ = 1.

To check the validity of the approximations we performed numerical so-

lution of equations (3.10), (3.11). For numerical solution we used the variable

time step method presented in Chapter 1.1

As an example, we solve equations (3.10), (3.11) with the parameters

η = 2, λ = 3, σ = 1 and reflective boundaries at xmin = 1, xmax = 1000. The

generated signal is shown in figure 5. We see that the finite correlation time τ of

the noise leads to a smoother signal compared to the equation with τ = 0. The

steady state PDF P0(x) and the power spectral density S(f) for two different

values of τ are presented in figure 6. From figure 6a we see that the unified

colored noise approximation correctly predicts the exponential cut-off in the

steady state PDF at large values of x, although the actual position of the cut-

off slightly differs from the cut-off predicted by equation (3.17). As figure 6b

shows, the presence of the finite correlation time τ makes the power-law part in

the spectrum narrower. The upper limiting frequency of the power-law region

grows with decreasing of τ , as is qualitatively predicted by equation (3.20). The

steady state PDF and the PSD of the generated signal corresponding to much

smaller value of the correlation time τ are shown in figure 6b,d. For this value

of τ the exponential cut-off due to finite correlation time is larger than the upper

48



10
-12

10
-8

10
-4

10
0

10
0

10
1

10
2

10
3

P(x)

x

(a)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
-1

10
0

10
1

10
2

10
3

S(f)

f

(b)

10
-12

10
-8

10
-4

10
0

10
0

10
1

10
2

10
3

P(x)

x

(c)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
-1

10
0

10
1

10
2

10
3

S(f)

f

(d)

Figure 6: (a,c) The steady-state PDF of the signal generated by equations (3.10)
and (3.11) with reflective boundaries at xmin and xmax. The dashed line shows
analytical approximation (3.17). (b,d) The PSD of such a signal. The gray line
shows the PSD of the signal generated by equation (1.2). The correlation time is
(a,b) τ = 10−3, (c,d) τ = 10−5. Other parameters are η = 2, λ = 3, xmin = 1,
xmax = 1000, and σ = 1.
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boundary xmax, thus we see almost no differences from the case of uncorrelated

noise, τ = 0.

3.4 Summary
The correlation of collisions between the Brownian particle and the sur-

rounding molecules can lead to the situation where the finite correlation time

becomes important, thus we have investigated the effect of colored noise in our

model. Using the unified colored noise approximation we get that the finite

correlation time leads to the additional restriction of the diffusion. Existence

of colored noise leads to an exponential cut-off of the PDF of particle positions

either from large values when η > 1, or from small values when η < 1. Such a

restriction of the diffusion is a result of the multiplicative colored noise in equa-

tion (3.10). Narrower power law part in the PDF of the particle positions results

in the narrower range of frequencies where the spectrum has 1/fβ behavior.

When η > 1 , the end of the power-law part of the spectrum at large frequencies

is inversely proportional to the correlation time τ of the noise. However, for

sufficiently small correlation time, when the restriction of the diffusion due to

colored noise is larger than the upper boundary xmax of the medium, the effects

of the colored noise are negligible (see figure 6) and the properties of the signal

do not differ significantly from the white noise case.
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4 Generalization of nonlinear SDE gener-
ating 1/f noise

The Lévy α-stable distributions, characterized by the index of stability

0 < α 6 2, constitute the most general class of stable processes. The Gaus-

sian distribution is their special case, corresponding to α = 2. If α < 2, the Lévy

stable distributions have power-law tails ∼ 1/x1+α. There are many systems

exhibiting Lévy α-stable distributions: distribution function of turbulent magne-

tized plasma emitters [18] and step-size distribution of photons in hot vapors of

atoms [19] have Lévy tails; theoretical models suggest that velocity distribution

of particles in fractal turbulence is Lévy stable distribution [138] or at least has

Lévy tails [139]. If system behavior depends only on large noise fluctuations,

such noise intensity distributions can be approximated by Lévy stable distribu-

tion, leading to Lévy flights. Lévy flights can be found in many physical systems:

as an example we can point out anomalous diffusion of Na adatoms on solid

Cu surface [7], anomalous diffusion of a gold nanocrystal, adsorbed on the

basal plane of graphite [8] and anomalous diffusion in optical lattices [140].

Lévy flights can be modeled by the fractional Fokker-Planck equations [4] or

Langevin equations with Lévy stable noise.

The purpose of this chapter is to generalize nonlinear SDEs driven by the

Gaussian noise and generating signals with 1/f PSD by replacing the Gaussian

noise with a more general Lévy stable noise. The previously proposed SDEs then

arise as a special case when α = 2. We can expect that this generalization may

be useful for describing 1/f fluctuations in the systems subjected to Lévy stable

noise.

4.1 SDEs driven by Lévy noise
Nonlinear stochastic differential equations (SDEs) with additive Lévy sta-

ble noise have been explored quite extensively for the past 15 years [141–143].

Such stochastic differential equations lead to the fractional Fokker-Planck equa-

tions with constant diffusion coefficient. Models with multiplicative Lévy sta-

ble noise have been used for modeling inhomogeneous media [9], ecological

population density with fluctuating volume of resources [144]. The relation be-
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tween the Langevin equation with multiplicative Lévy stable noise and fractional

Fokker-Planck equation has been introduced in Ref. [12], where Langevin equa-

tion is interpreted in Itô sense [13]. The relation between these two equations

is not known in Stratonovich interpretation. Fractional Fokker-Planck equation

models have been applied to model enzyme diffusion on polymer chain [145]

and some cases of anomalous diffusion [25]. However, application of SDEs

driven by Lévy stable noise can be problematic. We can always write Fokker-

Planck equation corresponding to Langevin equation driven by the Gaussian

noise and vice versa, but such statement is not always true for the Langevin

equation with Lévy stable noise. For example, particle (enzyme) dispersion

on rapidly folding random heteropolymer can be described by space fractional

Fokker-Planck equation [14], but for such equation counterpart Langevin equa-

tion has not been found [15] and might not even exit [16].

We consider the Langevin equation with Lévy stable noise of the form [4,

146,147]
dx

dt
= a(x) + b(x)ξ(t) . (4.1)

SDE (4.1) should be interpreted into Itô sense. Here a(x) describes the deter-

ministic drift term and b(x) describes the amplitude of the noise. The stochastic

force ξ(t) is uncorrelated white noise, 〈ξ(t)ξ(t′)〉 = δ(t − t′) and is character-

ized by Lévy α-stable distribution. For simplicity we only use symmetric stable

distributions, for this reason we take the characteristic function of ξ(t) as

〈exp(ikξ)〉 = exp(−σα|k|α) , (4.2)

where σ is the scale parameter and α is the index of stability. The Lévy α-

stable distributions arise form generalized central limit theorem and constitute

the most general class of stable processes. These distributions are characterized

by the index of stability 0 < α 6 2. The Gaussian distribution corresponds to

a special case when α = 2, whereas the Lévy stable distributions have power-

law tails ∼ 1/x1+α for α < 2. There are many systems exhibiting such power

law-tails: for example, distribution function of turbulent magnetized plasma

emitters [18] and step-size distribution of photons in hot vapors of atoms [19]

have Lévy tails; theoretical models impose that velocity distribution of particles

in fractal turbulence is Lévy stable distribution [138] or at least has Lévy tails

[139]. If properties of a system system subjected to noise depend mainly only on
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large noise fluctuations, such noise intensity distributions can by approximated

by Lévy stable distribution, leading to Lévy flights. Eq. (4.1) can also be written

in the form

dx = a(x)dt+ b(x)dLαt , (4.3)

where dLαt stands for the increments of Lévy α-stable motion Lαt [20,148]. It is

easier to calculate the steady state PDF of the signal x by using the space frac-

tional Fokker-Planck equation instead of stochastic differential equation (4.1).

The fractional Fokker-Planck equation corresponding to Eq. (4.1) is [12,149]

∂

∂t
P (x, t) = − ∂

∂x
a(x)P (x, t) + σα

∂α

∂|x|α
b(x)αP (x, t) . (4.4)

The operator ∂α/∂|x|α is the Riesz-Weyl fractional derivative. The Riesz-Weyl

fractional derivative acting on the function f(x) is defined by its Fourier trans-

form [150],

F
[
∂α

∂|x|α
f(x)

]
= −|k|αf̃(k) . (4.5)

The SDE (4.1) having multiplicative noise with the power-law dependence of

the noise amplitude b(x) on the signal size and generating signals with the power

law steady state PDF

P0(x) ∼ x−λ , (4.6)

has recently been proposed in Ref. [A1]. The proposed equation has the form

dx = σαγxα(η−1)+1dt+ xηdLαt , (4.7)

where the coefficient γ is given by the equation

γ =
sin
[
π
(
α
2
− αη + λ

)]
sin[π(α(η − 1)− λ)]

Γ(αη − λ+ 1)

Γ(α(η − 1)− λ+ 2)
. (4.8)

The special case of Eq. (4.7) for free particle (a(x) = 0) with Lévy stable noise

having α < 2 has been derived from coupled continuous time random walk

(CTRW) models [25], when jumping rate ν of CTRW process depends on signal

intensity as ν(x) = xαη, x > 0. It has been obtained in Ref. [A4] that the power

law exponent λ of the steady state PDF should take the values from the interval

α(η − 1) + 1 < λ < αη + 1 . (4.9)
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In fact, this condition assures that the values of the parameters in equation (4.8)

are outside of the poles.

If λ > 1 then the steady state PDF P0(x) diverges as x → 0. The re-

quirement of the stationarity of the process leads to the necessity to restrict the

diffusion in some finite interval of values. Thus the SDE (4.7) should be con-

sidered together with the appropriate restrictions of the diffusion. The simplest

choice of restriction is provided by the reflective boundaries at x = xmin and

x = xmax. Nevertheless, other forms of restrictions are possible by introducing

additional terms in the drift term of Eq. (4.7).

Eq. (4.7) is a generalization of the nonlinear SDE with Gaussian noise

proposed in [74,75]. As a particular case, when α = 2 then the expression (4.8)

for the coefficient γ simplifies to (2η − λ) and from Eq. (4.7) we get previously

proposed SDE with the Gaussian noise [74,75]

dx = σ2(2η − λ)x2η−1dt+ xηdL2
t . (4.10)

According to the definition (4.2), the scale parameter σ differs from the standard

deviation of the Gaussian noise. Another simple case is when α = 1. For α = 1

Eq. (4.7) becomes

dx = σ cot[π(λ− η)]xηdt+ xηdL1
t . (4.11)

Recently it was suggested that the non-homogeneity arising from the bath

not being in an equilibrium can be described by the dependence of the diffusion

coefficient on the particle coordinate x [A2]. For example, if η = 1/2, Eq. (4.10)

describes the diffusion of a Brownian particle in a medium where steady state

heat transfer is present due to the difference of temperatures at the ends of the

medium. The appropriate choice of γ (Eq. (4.8)) preserves original scaling prop-

erties of the signal as Lévy stable noise is introduced instead of Gaussian noise.

Therefore, Eq. (4.7) should apply to Brownian motion in non-homogeneous me-

dia in presence of anomalous scaling.
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4.2 Estimation of the power spectral density

The power law exponent of the PSD can be estimated by using the ap-

proximate scaling properties of the signals, as it is done in the Appendix A of

Ref. [151] and in Ref. [85]. The PSD can be obtained from the autocorrela-

tion function C(t) by using Wiener-Khintchine theorem. The autocorrelation

function can be calculated using the steady state PDF P0(x) and the transition

probability P (x′, t|x, 0) [83]:

C(t) =

∫
dx

∫
dx′ xx′P0(x)P (x′, t|x, 0) . (4.12)

The transition probability (the conditional probability that at time t the signal

has value x′ with the condition that at time t = 0 the signal had the value x)

can be obtained from the solution of the fractional Fokker-Planck equation (4.4)

with the initial condition P (x′, t = 0|x, 0) = δ(x′ − x).

The Lévy α-stable motion has the increments dLαt with the scaling property

dLαat = a1/αdLαt [148]. By introducing the scaled time ts = aα(η−1)t or changing

the variable x in Eq. (4.7) to the scaled variable xs = ax we get the same

resulting equation. Thus change of the time scale and change of the scale of

the variable x are equivalent, leading to the scaling property of the transition

probability

aP (ax′, t|ax, 0) = P (x′, aµt|x, 0) . (4.13)

The exponent µ is

µ = α(η − 1) . (4.14)

In Ref. [85] it has been shown that the steady state PDF P0(x) ∼ x−λ and the

scaling property of the transition probability (6.3) lead to the power law form

of the PSD S(f) ∼ f−β in a wide range of frequencies. The power law exponent

in the PSD of the signal generated by SDE (4.7) is

β = 1 +
λ− 3

α(η − 1)
. (4.15)

This equation is valid when the resulting β has values in the interval 0 < β < 2.

Eq. (4.15) is a generalization of the expression for the power law exponent in

the PSD with α = 2 obtained in Ref. [75]. From Eq. (4.15) it follows that we get
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1/f PSD when λ = 3.

Due to restrictions of diffusion at x = xmin and x = xmax the scaling (4.13)

is not exact. This limits the power law part of the PSD to a finite range of

frequencies fmin � f � fmax. Note, that pure 1/fβ PSD is physically impos-

sible because the total power would be infinite. Therefore we consider signals

with PSD having 1/fβ behaviour only in some wide intermediate region of fre-

quencies, fmin � f � fmax, whereas for small frequencies f � fmin the PSD

is bounded. We can estimate the limiting frequencies similarly as in Ref. [85].

Taking into consideration the reflective boundaries xmin and xmax the autocorre-

lation function has the scaling property [85]

C(t; axmin, axmax) = a2C(aµt, xmin, xmax) . (4.16)

From this equation it follows that time t in the autocorrelation function should

enter only in combinations with the limiting values, xmint
1/µ and xmaxt

1/µ. One

can expect that the influence of the limiting values is negligible when the first

combination is small and the second large. This limits the time t to the interval

σ−αx
α(1−η)
max � t � σ−αx

α(1−η)
min . Then the frequency range where the PSD has

1/fβ behaviour can be estimated as

σαx
α(η−1)
min � 2πf � σαxα(η−1)

max . (4.17)

Eq. (4.17) shows that the frequency range grows with increasing of the differ-

ence of the exponent η from 1. The frequency range becomes zero when η = 1.

One can get arbitrarily wide range of the frequencies where the PSD has 1/fβ

behaviour by increasing the ratio xmax/xmin . Unfortunately, the numerical cal-

culation shows that the estimation of the frequency range given by Eq. (4.17) is

too wide.

4.3 Method of numerical solution

It was rigorously proven by numerical simulations and algorithm conver-

gence analysis that Euler’s scheme can be used for stochastic differential equa-

tions with Lévy α stable process [148, 152] and even for more complicated

case when both time and space derivatives are fractional in the corresponding
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Fokker-Planck equation [153]. Therefore, we transform differential equations

to difference equation by using Euler’s approximation scheme. The difference

equation

xk+1 = xk + σαγx
α(η−1)+1
k hk + xηkh

1/α
k ξαk , (4.18)

corresponding to Eq. (4.7). We interpret the stochastic integral in Itô sense,

because the relation between the Langevin equation Eq. (4.1) and the Fokker-

Planck equation is known only in Itô interpretation. However an attempt to use

Stratonovich interpretation also has been made [13]. Here hk = tk+1 − tk is

the discrete time step and ξαk is a random variable having α-stable Lévy distri-

bution with the characteristic function (4.2). The Eq. (4.18) could be solved

numerically with the constant step hk = const. When η > 1 the coefficients in

the equation become large at large values of x, thus a very small time step is

needed. It is more efficient to use a variable time step, as has been done solving

SDE with Gaussian noise in Ref. [74]. We choose the time step in such a way

that the change of the variable xk in one step is proportional to the value of the

variable x. If we consider the variable step of integration such as

hk =
κα

σα
x
−α(η−1)
k , (4.19)

Eq. (4.18) simplifies to

xk+1 = xk + καγxk +
κ

σ
xkξ

α
k . (4.20)

Here κ� 1 must be a small parameter. We get very similar numerical results by

using the Milstein approximation.

We introduce the reflective boundaries at x = xmin and x = xmax using the

projection method [154, 155]. The projection method is realized as follows, if

the variable xk+1 acquires the value outside of the interval [xmin, xmax] then the

value of the nearest reflective boundary is assigned to xk+1.

When λ = 3, we get that β = 1 and SDEs (4.7), (4.10), (4.11) should give

a signal exhibiting 1/f fluctuations. As an example, we will solve numerically

the SDE (4.7) with the index of stability of Lévy stable noise α = 1.5 and the

exponent of the steady state PDF λ = 3. In addition, we include the reflective

boundaries at x = xmin and x = xmax. The numerical results are presented

in Fig. 7. We use a variable step integration sampled on constant time step
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Figure 7: (a) Signal generated by SDE with Lévy stable noise (4.11) with reflective
boundaries at x = xmin and x = xmax. (b) Steady state PDF P0(x) of the signal.
The gray line shows the slope x−3. (c) Power spectral density S(f) of the signal.
The gray line shows the slope 1/f . Parameters used are α = 1, λ = 3, η = 1.8,
xmin = 1, xmax = 104, σ = 1.

equal to 10−5. The generated signal is shown in Fig. 7a. In the signal we can

see large peaks or bursts corresponding to the large deviations of the variable

x. Comparison of the steady state PDF P0(x) with the analytical power law

estimation ∼ x−3 is shown in Fig. 7b. The steady state PDF deviates from the

power law prediction near reflecting boundaries. Such increase of the steady

state PDF near boundaries is typical for equations with Lévy stable noise having

α < 2 [143] and is similar to the behaviour of the analytical expression obtained

in Ref. [143] for the simplest stochastic differential equation Lévy stable noise

having constant noise amplitude and zero drift.

Comparison of the PSD S(f) with the analytical estimation S(f) ∼ 1/f is

shown in Fig. 7c. This comparison confirms the presence of the frequency region

for which the PSD has 1/f dependence. The width of this region increases

as increase the ratio between the minimum and the maximum values of the

stochastic variable x. Furthermore, the region in the PSD with the power law

behaviour depends on α and the exponent η: the width increases with increasing

the difference η − 1 and increasing α; when η = 1 then this width is zero. Such

behaviour is quantitatively predicted by Eq. (4.17). However, Eq. (4.17) predicts

too wide frequency range. The numerical estimation of the dependence of the

1/fβ PSD frequency range on the parameters of the SDEs4.8 In Ref. [A4].

4.4 Summary

We have proposed nonlinear SDEs with Lévy stable noise and generating

signals exhibiting 1/f noise in any desirably wide range of frequency. Proposed

SDEs (4.7) and (5.69) are a generalization of nonlinear SDEs driven by Gaussian
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noise and generating signals with 1/f PSD. The generalized equations can be ob-

tained by replacing the Gaussian noise with the Lévy stable noise and changing

the drift term to preserve statistical properties of the generated signal. We have

investigated two cases: in the first case the stochastic variable can acquire only

positive values (SDE (4.7)), in the second case the stochastic variable can also

be negative (SDEs (5.69)). In contrast to the SDEs with the Gaussian noise, the

constant in the drift term, given by Eqs. (4.8) is different in those two cases and

becomes the same only for α = 2.

The analytical estimation (4.17) of the frequency range where the spec-

trum has 1/fβ behaviour does not coincide with the numerical calculations. In

this chapter we numerically investigated how this frequency range depends on

the parameters of the SDE. We show that, in contrast to Eq. (4.17), the width

of this frequency range depends not only on the exponent of the multiplicative

noise η but also on the power law exponent of the steady state distribution λ.

Nonlinear SDEs with Lévy noise similar to Eq. (4.10) have been used to

investigate the wide-spectrum energy harvesting out of colored fluctuations in

monostable piezoelectric transducers [156]. The system has been modeled as

a linear oscillator disturbed by 1/fβ noise. It has been shown that for noisy

linear oscillator the efficiency of the noise energy conversion process depends

only on the correlation time and the bandwidth of the noise and not on the noise

amplitude [157]. We expect that knowledge of the size of 1/f noise frequency

range bandwidth can be useful for various applications for such noisy electronic

circuits.
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5 PSD of signals generated by time-subordinated
nonlinear Langevin equations

Continuous time random walks (CTRWs) with on-site waiting-time distri-

butions falling slowly as t−α−1 and lacking the first moment predicts a subdif-

fusive behavior and is a powerful tool to describe systems which display sub-

diffusion [2, 30]. Starting from the generalized master equation or from the

CTRW the fractional Fokker-Planck equation can be rigorously derived [158,

159]. Fractional Fokker-Planck equation provides a useful approach for the

description of transport dynamics in complex systems which are governed by

anomalous diffusion [2] and nonexponential relaxation patterns [160]. It has

been used to model dynamics of protein systems and for reactions occurring in

disordered media [2, 161–167]. Description equivalent to a fractional Fokker-

Planck equation consist of a Markovian dynamics governed by an ordinary Langevin

equation but proceeding in an auxiliary, operational time instead of the phys-

ical time [168]. This Markovian process is subordinated to the process defin-

ing the physical time; the subordinator introduces memory effects [4]. Other

approaches for the theoretical description of the subdiffusion use the general-

ized Langevin equation [169–171], fractional Brownian motion [172], or the

Langevin equation with multiplicative noise [9].

In the homogeneous systems the power spectral density (PSD) of the sig-

nals generated by time-subordinated Langevin equations has power-law depen-

dency S(f) ∼ fα−1 on the frequency as f → 0. [173]. Since 0 < α < 1, the

power-law exponent 1 − α is smaller than 1. The purpose of this chapter is to

consider the PSD in nonhomogeneous systems exhibiting anomalous diffusion.

We demonstrate, that in such systems the PSD can have power-law behavior

with the exponent equal to or larger than 1 in a wide range of intermediate

frequencies.
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5.1 Time-fractional Fokker-Planck equation for non-
homogeneous media

In this section derive the time-fractional Fokker-Planck equation describing

diffusion of a particle in nonhomogeneous media. Usually the description of

the anomalous diffusion is given by the CTRW theory assuming heavy-tailed

waiting-time distributions between successive jumps of the diffusing particle.

Here we use the method of the derivation that is similar to that outlined in

Refs. [153, 168]. We start with the Markovian process described by the Itô

stochastic differential equation (SDE)

dx(τ) = a(x(τ))dτ + b(x(τ))dW (τ) . (5.1)

Here W (τ) is the standard Brownian motion (Wiener process). The drift coef-

ficient a(x) and the diffusion coefficient b(x) explicitly depend on the particle

position x. This dependence on the position reflects the nonhomogeneity of a

medium. Following Ref. [168] we interpret the time τ in Eq. (5.1) as an inter-

nal, operational time. Equation (5.1) we consider together with an additional

equation that relates the operational time τ to the physical time t. The differ-

ence between physical time t and the operational time τ occurs due to trapping

of the diffusing particle. For the trapping processes that have distribution of the

trapping times with power law tails, the physical time t = T (τ) is given by the

the strictly increasing α-stable Lévy motion defined by the Laplace transform

〈e−kT (τ)〉 = e−τk
α

. (5.2)

Here the parameter α takes the values from the interval 0 < α < 1. Thus the

physical time t obeys the SDE

dt(τ) = dLα(τ) , (5.3)

where dLα(τ) stands for the increments of the strictly increasing α-stable Lévy

motion Lα(τ). For such physical time t the operational time τ is related to the

physical time t via the inverse α-stable subordinator [174,175]

S(t) = inf{τ : T (τ) > t} . (5.4)
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The processes x(τ) and S(t) are assumed to be independent. Equations (5.1)

and (5.3) define the subordinated process y(t) obtained by a random change of

time

y(t) = x(S(t)) . (5.5)

The process y(t) describes the diffusion of a particle in a medium with traps.

We will derive the equation for the probability density function (PDF) of

y. For the derivation we use the method of Laplace transform. The PDF Px(x, τ)

of the stochastic variable x as a function of the operational time τ obeys the

Fokker-Planck equation corresponding to the Itô SDE (5.1)

∂

∂τ
Px(x, τ) = LFP(x)Px(x, τ) , (5.6)

where LFP(x) is the time-independent Fokker-Planck operator [83]

LFP(x) = − ∂

∂x
a(x) +

1

2

∂2

∂x2
b2(x) . (5.7)

The Laplace transform of Eq. (5.6) is

kP̃x(x, k)− Px(x, 0) = LFP(x)P̃x(x, k) . (5.8)

Since the processes x(τ) and S(t) are independent, the PDF of the random pro-

cess x(S(t)) is given by

P (x, t) =

∫
Px(x, τ)PS(τ, t) dτ . (5.9)

Here PS(τ, t) is the PDF of the inverse α-stable subordinator S(t). From Eq. (5.9)

it follows that the Laplace transform P̃ (x, k) of the PDF P (x, t) is related to the

Laplace transform P̃S(τ, k) of the inverse subordinator S(t):

P̃ (x, k) =

∫
Px(x, τ)P̃S(τ, k) dτ . (5.10)

The Laplace transform P̃S(τ, k) of the inverse subordinator S(t) we obtain as

follows: from the definition of the inverse subordinator (5.4) we have Pr(S(t) <

τ) = Pr(T (τ) > t), therefore

PS(τ, t) = − ∂

∂τ

∫ t

0

PT (t′, τ) dt′ . (5.11)
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Here PT (t, τ) is the PDF of the strictly increasing α-stable Lévy motion T (τ). The

PDF PT (t, τ) fulfills the scaling relation

PT (t, τ) =
1

τ
1
α

PT

(
t

τ
1
α

, 1

)
, (5.12)

since the strictly increasing α-stable Lévy motion is 1/α self-similar [20]. Com-

bining Eqs. (5.11) and (5.12) we obtain

PS(τ, t) =
t

ατ
PT (t, τ) . (5.13)

Consequently, the Laplace transform of PS(τ, t) is equal to

P̃S(τ, k) = kα−1e−τk
α

. (5.14)

Here we used Eq. (5.2) for the Laplace transform of PT (t, τ).

Using Eqs. (5.10) and (5.14) we get

P̃ (x, k) = kα−1P̃x(x, k
α) . (5.15)

Acting with the operator LFP(x) on Eq. (5.15) we have

P̃ (x, k) = k−1Px(x, 0) + k−αLFP(x)P̃ (x, k) . (5.16)

The inverse Laplace transform of this equation yields

P (x, t) = Px(x, 0) +
1

Γ(α)

∫ t

0

dt′ (t− t′)α−1LFP(x)P (x, t′) . (5.17)

Introducing the fractional Riemann–Liouville operator [150]

0D
−α
t f(t) ≡ 1

Γ(α)

∫ t

0

f(t′)

(t− t′)1−αdt′ , 0 < α < 1 (5.18)

we can write Eq. (5.17) as

P (x, t) = Px(x, 0) + 0D
−α
t LFP(x)P (x, t) (5.19)

By differentiating this equation with respect to time we get the time-fractional
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Fokker-Planck equation

∂

∂t
P (x, t) = 0D

1−α
t

(
− ∂

∂x
[a(x)P ] +

1

2

∂2

∂x2
[b2(x)P ]

)
, (5.20)

where

0D
1−α
t f(t) ≡ 1

Γ(α)

∂

∂t

∫ t

0

f(t′)

(t− t′)1−αdt′ , 0 < α < 1 (5.21)

The operator 0D
1−α
t is expressed via the convolution with a slowly decaying

kernel, which is typical for memory effects in complex systems [176]. Equa-

tion (5.20) is the equation describing the subdiffusion of particles in an inho-

mogeneous medium. This equation generalizes the previously obtained time-

fractional Fokker-Planck equation with the position-independent diffusion coef-

ficient.

5.2 Position-dependent trapping time

The properties of a trap in a nonhomogeneous medium can reflect the

structure of the medium. In the description of the transport in such a medium

the waiting time should explicitly depend on the position [49]. Instead of

Eq. (5.3) we assume that the physical time t is related to the operational time τ

via the SDE

dt(τ) = g(x)dLα(τ) . (5.22)

Here the function g(x) is the intensity of random time and models the position

of structures responsible for either trapping or accelerating the particle. Large

values of g(x) corresponds to trapping of the particle, whereas small g(x) leads

to the acceleration of diffusion. Similar equation has been used in Ref. [49].

Equations (5.1) and (5.22) together define the subordinated process. How-

ever, now the processes x(τ) and t(τ) are not independent and the previously

presented derivation of the Fokker-Planck equation is not applicable. Neverthe-

less, we can show that also with position dependent trapping time the resulting

equation has the form of Eq. (5.20). To do this let us consider the joint PDF

Px,t(x, t; τ) of the stochastic variables x and t. The Fokker-Planck equation de-

scribing the evolution of the joint PDF Px,t(x, t; τ) with the operational time τ

has the form
∂

∂τ
Px,t(x, t; τ) = LFP(x)Px,t − 0D

α
t g(x)αPx,t . (5.23)

64



The fractional derivative in the last term of the Fokker-Planck equation (5.23)

appears as a consequence of the increments of Lévy α-stable motion in Eq. (5.22)

[12, 149]. The zero of the physical time t coincides with the zero of the oper-

ational time τ , therefore, the initial condition for Eq. (5.23) is Px,t(x, t; 0) =

Px(x, 0)δ(t). In addition, since t is strictly increasing, we have a boundary con-

dition Px,t(x, 0; τ) = 0 when τ > 0. The fractional Riemann–Liouville operator

0D
α
t in Eq. (5.23) we can write as 0D

α
t = ∂

∂t0
Dα−1
t .

Now let us consider x and τ as stochastic variables instead of x and t. Since

the stochastic variable t is related to the operational time τ via Eq. (5.22), the

joint PDF Px,τ (x, τ ; t) of the stochastic variables x and τ is related to the PDF

Px,t(x, t; τ) according to the equation

Px,τ (x, τ ; t) = 0D
α−1
t g(x)αPx,t(x, t; τ) . (5.24)

This equation can be obtained by noting that the last term in Eq. (5.23) contains

derivative ∂
∂t

and thus should be equal to − ∂
∂t
Px,τ . From Eq. (5.24) if follows

that

Px,t = 0D
1−α
t

1

g(x)α
Px,τ . (5.25)

Using Eqs. (5.23) and (5.25) we obtain

∂

∂t
Px,τ (x, τ ; t) = 0D

1−α
t LFP(x)

1

g(x)α
Px,τ −

∂

∂τ
0D

1−α
t

1

g(x)α
Px,τ (5.26)

The PDF Px,τ has the initial condition Px,τ (x, τ ; 0) = Px(x, 0)δ(τ) and the bound-

ary condition Px,τ (x, 0; t) = 0. The PDF of the subordinated random process x(t)

is P (x, t) =
∫
Px,τ (x, τ ; t) dτ . Integrating both sides of Eq. (5.26) we get

∂

∂t
P (x, t) = 0D

1−α
t L′FP(x)P , (5.27)

where the new Fokker-Planck operator is

L′FP(x) = − ∂

∂x
a′(x) +

1

2
b′(x)2 . (5.28)

Here the new drift and the diffusion coefficient are

a′(x) =
a(x)

g(x)α
, b′(x) =

b(x)

g(x)
α
2

. (5.29)
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Thus position-dependent trapping leads to position-dependent coefficients in

the time-fractional Fokker-Planck equation, even if the initial SDE (5.1) has con-

stant coefficients.

5.3 Power spectral density and time-fractional Fokker-
Planck equation

In this section we derive a general expression for the PSD of the fluctua-

tions of the diffusing particle in nonhomogeneous medium. The evolution of the

PDF of particle position x is described by the time-fractional Fokker-Planck equa-

tion (5.20). For calculation of the spectrum we use the eigenfunction expansion

of the Fokker-Planck operator LFP. Method of eigenfunctions for solving of

time-dependent fractional Fokker-Planck equation has been used in Ref. [177].

Spectrum of fluctuations when the diffusion coefficient is constant has been ob-

tained in Ref. [173]. Similar derivation of the spectrum for nonlinear SDE has

been performed in [86].

The eigenfunctions of the Fokker-Planck operator LFP(x) are the solutions

of the equation

LFP(x)Pρ(x) = −ρPρ(x) . (5.30)

are the corresponding eigenvalues. The eigenfunctions obey the orthonormality

relation [107] ∫
eΦ(x)Pρ(x)Pρ′(x)dx = δρ,ρ′ , (5.31)

where

Φ(x) = − lnP0(x) (5.32)

is the potential associated with the operator LFP(x). Here P0(x) is the steady-

state solution of Eq. (5.20).

We can write the time-dependent solution of the fractional Fokker-Planck

equation (5.20) corresponding to a single eigenfunction as

P (x, t) = Pρ(x)fρ(t) . (5.33)

66



Inserting into Eq. (5.20) we get that the function f(t) obeys the equation

d

dt
fρ(t) = −ρ0D

1−α
t fρ(t) (5.34)

with the initial condition f(0) = 1. The Laplace transform of this equation yields

kf̃ρ(k) = 1− ρk1−αf̃ρ(k) . (5.35)

The solution of Eq. (5.35) is

f̃ρ(k) =
1

k + ρk1−α . (5.36)

The inverse Laplace transform is given in terms of the monotonically decreasing

Mittag-Leffler function [177]

fρ(t) = Eα(−ρtα) . (5.37)

The Mittag-Leffler function has a series expansion

Eα(z) ≡ Eα,1(z) =
∞∑
n=0

zn

Γ(αn+ 1)
. (5.38)

The autocorrelation function can be calculated from the transition proba-

bility P (x, t|x0, 0) (the conditional probability that at time t the stochastic vari-

able has value x with the condition that at time t = 0 it had the value x0):

C(t) =

∫
dx

∫
dx0 x0xP0(x0)P (x, t|x0, 0)−

[∫
dx xP0(x)

]2

(5.39)

The transition probability is the solution of the Fokker-Planck equation (5.20)

with the initial condition P (x, 0|x0, 0) = δ(x − x0). Expansion of the transition

probability density in a series of the eigenfunctions has the form

P (x, t|x0, 0) =
∑
ρ

Pρ(x)eΦ(x0)Pρ(x0)Eα(−ρtα) , (5.40)

where we used Eqs. (5.33) and (5.37). Inserting Eq. (5.40) into Eq. (5.39) we
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get the expression for the autocorrelation function

C(t) =
∑
ρ>0

X2
ρEα(−ρtα) . (5.41)

Here

Xρ =

∫
xPρ(x) dx (5.42)

is the first moment of the stochastic variable x evaluated with the ρ-th eigen-

function Pρ(x). Such an expression for the autocorrelation function has been

obtained in Ref. [173].

According to Wiener-Khintchine relations, the power spectral density is

related to the autocorrelation function:

S(f) = 4

∫ ∞
0

C(t) cos(ωt) dt , (5.43)

where ω = 2πf . Using Eq. (5.41) we obtain

S(f) = 4
∑
ρ>0

X2
ρ

∫ ∞
0

Eα(−ρtα) cos(ωt) dt (5.44)

The integral can be calculated by noting that the Laplace transform of Eα(−ρtα)

is given by Eq. (5.36). We obtain the desired expression for the PSD

S(f) = 4
sin
(
π
2
α
)

ω1−α

∑
ρ

ρ

ρ2 + ω2α + 2ρωα cos
(
π
2
α
)X2

ρ . (5.45)

Eq. (5.45) becomes the usual expression for the PSD when α → 1. Similar

expression for the spectrum has been obtained in Ref. [173].

For small frequencies ω � ρ
1/α
1 we can neglect the frequency when it ap-

pears together with the eigenvalues ρ. Here ρ1 is the smallest eigenvalue larger

than zero. Thus for small frequencies Eq. (5.45) approximately is

S(f) ≈ 4
sin
(
π
2
α
)

ω1−α

∑
ρ

X2
ρ

ρ
. (5.46)

We obtain that for small frequencies the PSD has a power-law dependency on

the frequency S(f) ∼ f−(1−α). However, the power-law exponent is always

smaller than 1, since 0 < α < 1. It is not possible to get pure 1/f spectrum
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this way. In the next section we show that it is possible to get larger power-

law exponents in the PSD in a wide range of intermediate frequencies when the

diffusion coefficient is not constant and depends on x.

5.4 Time-fractional Fokker-Planck equation with power-
law coefficients

In this section we consider a particular case of the time-fractional Fokker-

Planck equation (5.20). We assume that the diffusion coefficient has a power-

law dependence on the particle position x and Eq. (5.20) takes the form

∂

∂t
P (x, t) = σ2

0D
1−α
t

{(
λ

2
− η
)

∂

∂x

[
x2η−1P (x, t)

]
+

1

2

∂2

∂x2

[
x2ηP (x, t)

]}
.

(5.47)

Here η is the power-law exponent of the multiplicative noise in Eq. (6.7) and

ν defines the behavior of the steady-state PDF P0(x). The power-law form of

the diffusion coefficient is natural for systems exhibiting self-similarity, for ex-

ample disordered materials, and has been used to describe diffusion on frac-

tals [46, 178], turbulent two-particle diffusion, transport of fast electrons in

a hot plasma [179]. Equation (5.47) is a generalization of the Fokker-Planck

equation resulting form nonlinear SDEs proposed in Ref. [74,75]. Such nonlin-

ear SDEs generate signals having 1/f spectrum in a wide range of frequencies

and have been used to describe signals in socio-economical systems and Brown-

ian motion in inhomogeneous media ( 2.1).

The steady-state PDF P0(x) obtained from Eq. (5.47) has a power-law form

P0(x) ∼ x−λ . (5.48)

For λ > 1 the PDF P0(x) diverges as x→ 0, thus the diffusion should be restricted

at least from the side of small values. This can be done by introducing an

additional potential that becomes large only when x acquires values outside

of the interval [xmin, xmax] into the drift term of Eq. (5.47). The simplest choice

is the reflective boundaries at x = xmin and x = xmax.

In Ref. [86] an approximate expression for the first moment Xρ has been

obtained for the Fokker-Planck operator appearing in Eq. (5.47) assuming re-

flective boundaries at xmin = 1 and xmax = ξ, ξ � 1. According to the results of
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Ref. [86]

Xλ ∼
cρ
|1− η|

1

νβ1
, (5.49)

where

cρ =

√
|1− η|
zmax

λ− 1

1− ξ1−λπν , ν =

√
2ρ

|η − 1|
, β1 = 1 +

λ− 3

2(η − 1)
. (5.50)

The parameters zmin and zmax depend on the boundaries xmin and xmax. When

νzmax � 1, replacing summation by integration in Eq. (5.45) we obtain the

expression for the PSD

S(f) ≈ 4
sin
(
π
2
α
)

ω1−α

∫
ρ

ρ2 + ω2α + 2ρωα cos
(
π
2
α
)X2

ρD(ρ) dρ (5.51)

The density of eigenvalues D(ρ) has been estimated as [86]

D(ρ) ∼ 1
√
ρ
. (5.52)

Using Eqs. (5.49) and (5.52) we get

S(f) ∼ 4
sin
(
π
2
α
)

ω1+α(β1−1)

∫ z−2
min
ωα

z−2
max
ωα

1

uβ1−1

1(
u2 + 1 + 2u cos

(
π
2
α
))du (5.53)

Here the upper range of integration is limited because Xλ becomes small when

νzmin � 1 [86]. When z−2
max � ωα � z−2

min and 0 < β1 < 2 then we can approxi-

mate the lower limit of integration by 0 and the upper limit by ∞. In this case

the PSD depends on the frequency as S(f) ∼ f−1−α(β1−1). When β1 > 2 then

the largest contribution is from the lower limit of the integration. Thus, when

z−2
max � ωα � z−2

min then the leading term in the expansion of the approximate

expression for the PSD in the power series of ω is

S(f) ∼


1

ω1+α(β1−1) , 0 < β1 < 2 ,

1
ω1+α , β1 > 2 .

(5.54)
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This expressions for PSD can also be written as

S(f) ∼


1
ωβ
, 1− α < β < 1 + α ,

1
ω1+α , β > 1 + α .

(5.55)

Here

β = 1 + α(β1 − 1) = 1 +
α(λ− 3)

2(η − 1)
(5.56)

is the power-law exponent of the PSD. Equation (5.56) generalizes the expres-

sion for the power-law exponent obtained for nonlinear SDEs (1.1). When λ = 3

then from Eq. (5.56) follows that we obtain 1/f spectrum.

5.5 Power spectral density from scaling proper-
ties

Power-law exponent (5.56) in the PSD can be obtained from the scaling

properties of Eq. (5.47), similarly as it has been done for the nonlinear SDEs

[85]. Changing the variable x to the scaled variable xs = ax in Eq. (5.47) yields

∂

∂t
P (xs, t) =

σ2

a2(η−1) 0D
1−α
t

{(
λ

2
− η
)

∂

∂xs

[
x2η−1
s P (xs, t)

]
+

1

2

∂2

∂x2
s

[
x2η
s P (xs, t)

]}
.

(5.57)

The Riemann–Liouville fractional derivative has the following scaling property:

0D
1−α
t f(ct) = c1−α

0D
1−α
ct f(ct). Thus, changing the time t to the scaled time

ts = aνt we get

aν
∂

∂ts
P (x, ts) = σ2

0a
ν(1−α)D1−α

ts

{(
λ

2
− η
)

∂

∂x

[
x2η−1P (x, ts)

]
+

1

2

∂2

∂x2

[
x2ηP (x, ts)

]}
.

(5.58)

The change of the variable x to the scaled variable ax or the change of the time

t to the scaled time aνt produce the same fractional Fokker-Planck equation if

ν =
2(η − 1)

α
. (5.59)

It follows, that the transition probability P (x, t|x0, 0) has the following scaling

property:

aP (ax, t|ax0, 0) = P (x, aνt|x0, 0) . (5.60)
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As has been shown in Ref. [85], the power-law steady state PDF P0(x) ∼ x−ν and

the scaling property of the transition probability (5.60) lead to the power-law

form PSD S(f) ∼ f−β in a wide range of frequencies. The power-law exponent

β is given by

β = 1 + (λ− 3)/ν . (5.61)

Using Eq. (5.59) we obtain the same expression for β as in Eq. (5.56).

The presence of restrictions at x = xmin and x = xmax makes the scaling

(5.60) not exact. This limits the power-law part of the PSD to a finite range of

frequencies fmin � f � fmax. Similarly as in Ref. [85], we estimate the limiting

frequencies as

σ
2
αx

2
α

(η−1)

min � 2πf � σ
2
αx

2
α

(η−1)
max , η > 1 , (5.62)

σ
2
αx
− 2
α

(1−η)
max � 2πf � σ

2
αx
− 2
α

(1−η)

min , η < 1 .

This equation shows that the frequency range grows with decrease of α. By

increasing the ratio xmax/xmin one can get an arbitrarily wide range of the fre-

quencies where the PSD has 1/fβ behavior.

5.6 Numerical approximation of sample paths

Since analytical solution of time-fractional Fokker-Planck equation can be

obtained only in separate cases, there is a need of numerical solution. Numer-

ical solution of time-fractional Fokker-Planck equation is complicated [180]. It

is easier to numerically solve Langevin equations (5.1), (5.3) instead. The de-

sired properties of the solution of the Fokker-Planck equation then can be cal-

culated by averaging over many sample paths obtained by solving the Langevin

equations. The numerical method of solution of the Langevin equations with

constant drift coefficient is outlined in [153,181]. We can use the same method

also when the drift coefficient is position-dependent.

Choosing the time step ∆τ of the operational time τ the inverse subordi-

nator S(t) is approximated as [182]

S∆τ (t) = [min{n ∈ N : T (n∆τ) > t} − 1]∆τ . (5.63)
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Such approximation satisfies [183]

sup
06t6T

[S∆τ (t)− S(t)] 6 ∆τ . (5.64)

The values T (n∆τ) are generated by summing up the independent and station-

ary increments of the Lévy process:

T (n∆τ) = T ([n− 1]∆τ) + ∆τ 1/αξn . (5.65)

Here ξn are independent totally skewed positive α-stable random variables with

the distribution specified by the Laplace transform 〈e−kξ〉 = e−k
α . Such variables

can be generated using the formula [184]

ξ =
sin
[
α
(
U + π

2

)]
cos(U)

1
α

(
cos
[
U − α

(
U + π

2

)]
W

) 1−α
α

. (5.66)

Here U is uniformly distributed on
(
−π

2
, π

2

)
and W has an exponential distri-

bution with mean 1. Note, that in Ref. [153] incorrect formula for generating

totally skewed positive α-stable random variables has been used. The defini-

tion of the Lévy α-stable distribution using the Laplace transform (5.2) differs

from the more common definition using the Fourier transform. This has been

corrected in Ref. [181].

The SDE (5.1) in the operational time τ can be numerically solved us-

ing the Euler-Maruyama scheme with the time step ∆τ . For each value of the

stochastic variable xk we assign the physical time tk generated by the process

T (τ) using Eq. (5.65). Thus the numerical method of solution of Langevin equa-

tions (5.1), (5.3) is given by the following equations:

xk+1 = xk + a(xk)∆τ + b(xk)
√

∆τεk , (5.67)

tk+1 = tk + ∆τ
1
α ξk . (5.68)

Here εk are i.i.d. random variables having standard normal distribution.

For numerical solution of nonlinear equations, such as those resulting in

Eq. (5.47), the fixed time step ∆τ can be inefficient. For example, in Eq. (5.47)

with η > 1 large values of stochastic variable x lead to large coefficients and

thus require a very small time step. A more efficient way of solution is to use
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a variable time step that adapts to the coefficients in the equation. Similar

method has been used in Refs. [74, 75] for solving nonlinear SDEs. Such a

variable time step is equivalent to changing of the operational time τ to the

position-dependent operational time τ ′. If we choose the intensity of random

time in Eq. (5.22) as g(x) = b(x)−
2
α then, according to Eq. (5.29) instead of

initial Langevin equations (5.1), (5.3) we get the new Langevin equations

dx(τ ′) =
a(x(τ ′))

b(x(τ ′))2
dτ ′ + dW (τ ′) , (5.69)

dt(τ ′) = b(x(τ ′))−
2
αdLα(τ ′) . (5.70)

Discretizing the operational time τ ′ with the time step ∆τ ′ and using the Euler-

Maruyama approximation for Eq. (5.69) instead of Eqs. (5.67), (5.68) we have

xk+1 = xk +
a(xk)

b(xk)2
∆τ ′ +

√
∆τ ′εk , (5.71)

tk+1 = tk +

(
∆τ ′

b(xk)2

) 1
α

ξk . (5.72)

Comparison with Eqs. (5.67), (5.68) shows that Eqs. (5.71), (5.72) can be ob-

tained by replacing the time step ∆τ in Eqs. (5.67), (5.68) by

∆τ → ∆τ ′

b(xk)2
. (5.73)

As an example, we solve the Langevin equations

dx =

(
η − λ

2

)
x2η−1dτ + xηdW (τ) , (5.74)

dt = dLα(τ) (5.75)

resulting in the time-fractional Fokker-Planck equation (5.47). For restriction of

the diffusion region we use the reflective boundaries at x = xmin and xmax. More

effective numerical solution scheme is obtained changing the operational time

τ to the time τ ′ defined by the equation

dt(τ ′) = x(τ ′)−
2
α

(η−1)dLα(τ ′) . (5.76)

This change is equivalent to the introduction of the variable time step ∆τk =

∆τ ′x
−2(η−1)
k . Discretizing the operational time τ ′ with the step ∆τ ′ from Eqs. (5.74)–
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(5.76) we get the following numerical approximation:

xk+1 = xk +

(
η − λ

2

)
xk∆τ

′ + xk
√

∆τ ′εk , (5.77)

tk+1 = tk +

(
∆τ ′

x
2(η−1)
k

) 1
α

ξk . (5.78)

 0

 100

 200

 300

 400

 0  5  10  15  20  25  30  35  40

τ’

t

(a)

10
0

10
1

10
2

 0  5  10  15  20  25  30  35  40

x

t

(b)

Figure 8: Sample path obtained from Langevin equations (5.74), (5.75) using nu-
merical solution scheme given by Eqs. (5.77), (5.78). (a) Dependence of the op-
erational time τ ′, defined by Eq. (5.76), on the physical time t. (b). Dependence
of the stochastic variable x on the physical time t. The parameters are α = 0.7,
η = 2, ν = 3. Reflective boundaries are placed at xmin = 1 and xmax = 1000.

Sample path obtained using Eqs. (5.77), (5.78) with the parameters η = 2

and ν = 3 is shown in Fig. 8. The change of the operational time τ ′ with the

physical time t is shown in Fig. 8(a) and the dependence of the stochastic vari-

able x on the physical time t is shown in Fig. 8(b). Due to nonlinear coefficients

in Eq. (5.74) the sample path in Fig. 8(b) exhibits peaks or bursts, correspond-

ing to the large deviations of the variable x. The intervals with x being constant

indicate the heavy-tailed trapping times. Comparing Fig. 8(a) with Fig. 8(b) we

see that the operational time τ ′ increases faster when x acquires larger values,

in accordance to Eq. (5.76).

5.7 Power spectral density

Since the equations exhibit a slow (power-law instead of a usual exponen-

tial) relaxation [177], calculation of the PSD using sample paths is very slow.

More efficient way is to find the eigenvalues and eigenfunctions of the Fokker-

Planck operator (5.7) and calculate the PSD using the rapidly converging series
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in Eq. (5.45). This is the approach for calculating the PSD used in Ref. [173] for

the case of constant diffusion coefficient.

As an example let us calculate the PSD of the diffusion described by the

time-fractional Fokker-Planck equation (5.47) with η 6= 1 and the reflective

boundaries at xmin = 1 and xmax = ξ. The equation (5.30) for the eigenfunctions

of the Fokker-Planck operator that enters Eq. (5.47) is

−
(
η − λ

2

)
∂

∂x
x2η−1Pρ(x) +

1

2

∂2

∂x2
x2ηPρ(x) = −ρPρ(x) . (5.79)

The reflective boundaries lead to the conditions Sρ(1) = 0 and Sρ(ξ) = 0, where

Sρ(x) =

(
η − λ

2

)
x2η−1Pρ(x)− 1

2

∂

∂x
x2ηPρ(x) (5.80)

is the probability current related to the eigenfunction Pρ(x). The steady state

solution of Eq. (5.47) is

P0(x) =
λ− 1

1− ξ1−λx
−λ . (5.81)

It is more convenient to transform Eq. (5.79) into the Schrödinger equation

[107]. To do this we first make the diffusion coefficient constant by changing

the variable x to

z =
x1−η

|η − 1|
. (5.82)

Eq. (5.79) then becomes

λ′

2

∂

∂z

1

z
P ′ρ(z) +

1

2

∂2

∂z2
P ′ρ(z) = −ρP ′ρ(z) (5.83)

with the reflective boundaries at zmin and zmax, where

zmin =


1

η−1
1

ξη−1 , η > 1 ,

1
1−η , η < 1 ,

zmax =


1

η−1
, η > 1 ,

1
1−ηξ

1−η , η < 1 .
(5.84)

Here

λ′ =
η − λ
η − 1

. (5.85)
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Eq. (5.83) can be transformed into the Schrödinger equation [107]

−1

2

d2

dz2
ψρ(z) + V (z)ψρ(z) = ρψρ(z) (5.86)

with the potential

V (z) =
1

8z2
λ′(2 + λ′) . (5.87)

Here ψρ(z) = P ′ρ(z)/
√
P ′0(z). The condition of zero probability current at the

reflective boundaries z = zmin and z = zmax become(
d

dz
+
λ′

2

1

z

)
ψρ(z)

∣∣∣∣
z=zmin,zmax

= 0 . (5.88)

The solution of Eq. (5.86) corresponding to the eigenvalue ρ = 0 is

ψ0(z) =

√
λ′ − 1

z1−λ′
min − z1−λ′

max

z−
λ′
2 . (5.89)

Eq. (5.86) can be solved using standard finite-difference or finite-element meth-

ods. Having the eigenfunction ψρ(z) the first moment of the stochastic variable

x can be calculated using the equation

Xλ =

∫ zmax

zmin

ψ0(z)|η − 1|
1

1−η z
1

1−ηψρ(z) dz . (5.90)
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Figure 9: Dependence of numerically obtained first moments of the variable x
on the eigenvalues λ for the lowest eigenvalues (dots). Eigenvalues and eigen-
functions are obtained numerically solving Eq. (5.86). The dashed line shows the
slope λ−0.25, predicted by Eq. (5.49). The parameters used are η = 5

2 , λ = 3,
xmin = 1 and xmax = 1000.
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Let us take the following values of the parameters in Eq. (5.47): η = 5
2
,

λ = 3. The dependence of the numerically calculated first moment Xρ on the

eigenvalue ρ for lowest eigenvalues is shown in Fig. 9. We see a good agreement

with the analytical prediction (5.49) of power-law dependence on ρ. For larger

eigenvalues ρ than those shown in Fig. 9 the power-law dependence does not

hold and Xρ decrease faster.
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Figure 10: Power spectral density for the diffusion process defined by Eq. (5.47)
with the parameter α = 0.8. The solid line shows the result of numerical calcu-
lation using Eq. (5.45). The dashed line in right hand side shows the slope 1/f ,
whereas the dotted line in left hand side shows the slope f−0.2. Other parameters
are the same as in Fig. 9.

The PSD calculated using Eq. (5.45) is presented in Fig. 10. Eigenval-

ues ρ and the first moments Xρ shown in Fig. (9) have been used. We see a

good agreement with the predicted power-law dependency of the PSD on the

frequency for frequencies f > fmin ≈ 1. The power-law exponent coincides

with Eq. (5.56). For smaller frequencies f < 1 the PSD exhibits the power-law

behavior (5.46) with the exponent 1− α.

5.8 Summary
In summary, we proposed Eq. (5.20) describing the subdiffusion of par-

ticles in an inhomogeneous medium that generalizes the previously obtained

time-fractional Fokker-Planck equation with the position-independent diffusion

coefficient. Fokker-Planck equation with the position-independent diffusion co-

efficient has been used to model various phenomena such as ion channel gat-

ing [185] and the translocation dynamics of a polymer chain threaded through
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a nanopore [186]. Properties of such equations has been studied extensively.

We analyzed a more general case when both drift and diffusion coefficients are

position-dependent. We hope that the present model can serve as a basis to

study trapping induced subdiffusion in complex inhomogeneous media.

We derived the analytical expression of power spectral density of signals

described by the one-dimensional time fractional Fokker–Planck equation in a

more general case when diffusion coefficient depends on the position. The gen-

eral expression for the PSD (5.45) we applied to a particular case (5.47) when

the drift and diffusion coefficients have power-law dependence on the position.

The resulting PSD has a power-law form S(f) ∼ f−β in a wide range of frequen-

cies, with the power-law exponent β given by Eq. (5.56). This approximate re-

sults is confirmed by the numerical simulation (see Fig. 10). Thus, according to

Eq. (5.56), time-fractional Fokker-Planck equation with power-law coefficients

yields the PSD with the power-law exponent equal to or larger than 1 in a wide

range of intermediate frequencies. In contrast, if the diffusion coefficient do not

depend on position, the PSD for small frequencies has a power-law dependency

on the frequency in the form of f−(1−α).

Since an analytical solution of time-fractional Fokker-Planck equation can

be obtained only in separate cases, there is a need of numerical solution. For

the numerical solution of the nonlinear equations, such as those resulting in

Eq. (5.47), we propose to use a variable time step that adapts to the coefficients

in the equation. Such a variable time step is equivalent to changing of the

operational time τ to the position-dependent operational time τ ′.
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6 Anomalous diffusion

In many systems we can observe processes exhibiting nonlinear depen-

dence of the mean-square displacement (MSD) on time [2]. A family of such

processes described by deviations from the linear time dependence of the MSD,

typical for a classical Brownian motion, is called anomalous diffusion. Anoma-

lous diffusion is characterized by the dependence of MSD on time in the form

of a power-law 〈∆x〉 ∼ tθ. If θ varies between 1 and 2 we have so called super-

diffusion. Super-diffusion has been experimentally observed in a study of tracer

particles in a two-dimensional rotating flow [1]. If θ < 1, we have another

subclass of anomalous diffusion processes called the sub-diffusion. Theoretical

models suggest that sub-diffusion can occur in polymer translocation through a

nanopore [186].

6.1 HDP

Recently [38] it has been suggested that both cases of anomalous diffusion

can be a result of a heterogeneous diffusion process (HDP), where the diffusion

coefficient depends on the position. For example, heterogeneous diffusion pro-

cesses has been used model subdiffusion in the study of thermal Markovian dif-

fusion of tracer particles in a 2D medium with spatially varying diffusivity [40],

mimicking recently measured, heterogeneous maps of the apparent diffusion

coefficient in biological cells [187].

Here we consider HDPs with the power-law dependence of the diffusion

coefficient on the particle position and analytically investigate the influence of

external potentials on the resulting anomalous diffusion. The influence of the

external forces on HDPs has not been methodically analyzed. We assume that

introduction of the external potentials leads to drift terms in the from of power-

law function of position. Such a drift terms appears in Langevin equation de-

scribing overdamped fluctuations of the position of a particle in nonhomoge-

neous medium [108]. As we demonstrate, the external force having a specific

value of the power-law exponent does not restrict the region of diffusion. Such

an external force does not change the scaling exponent θ, only the anomalous

diffusion coefficient depends on the force. Other values of the power-law expo-
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nent in the deterministic force can cause the exponential cut-off in the probabil-

ity density function (PDF) of the particle positions leading to the restriction of

the time interval when the anomalous diffusion occurs.

6.2 Influence of External Potentials on HDP

HDPs with the nonlinear dependence of the diffusion coefficient on the

position is described by the Langevin equation

dx = σ|x|η ◦ dWt . (6.1)

Here x is the signal, η is the exponent of the power-law of multiplicative noise,

parameter σ gives the intensity of the noise andWt is a standard Wiener process.

Eq. (6.1) is interpreted in Stratonovich sense. For mathematical convenience,

we will use the Itô convention:

dx =
1

2
σ2η|x|2(η−1)xdt+ σ|x|ηdWt . (6.2)

First member of right hand side of Eq. (6.2) represents noise-induced drift. It

has been shown that Eq. (6.1) leads to a nonlinear time dependence of the

MSD [38]

〈(x− 〈x〉)2〉 ∼ (σ2t)
1

1−η . (6.3)

The HDP (6.1) displays weak non-ergodicity, that is the scaling of time and

ensemble averages is different. Specifically, in Ref. [38] it has been shown that

the average over the trajectories

〈
δ2(∆)

〉
=

1

N

N∑
i=1

δ2
i (∆) (6.4)

of the the time-averaged MSD

δ2(∆) =
1

T −∆

∫ T−∆

0

[x(t+ ∆)− x(t)]2dt (6.5)

scales as 〈
δ2(∆)

〉
∼ ∆

T
η
η−1

. (6.6)

Thus time-averaged MSD depends on the time difference ∆ linearly, in contrast
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to the power-law behavior of MSD in Eq. (6.3).

Another interesting property of HDPs is the behavior of the distribution of

the time-averaged MSD δ2 of individual realizations. When η < 0, the distri-

bution of δ2 decays to zero at δ2 = 0 [40]. This behavior of the distribution in

HDPs is different than the behavior in CTRWs, where there is a finite fraction

of immobile particles resulting in the finite value of the distribution at δ2 = 0.

This difference allows to distinguish between different origins of anomalous dif-

fusion.

We will generalize the HDP by introducing an external force via the equa-

tion

dx = σ2

(
η − λ

2

)
x2η−1dt+ σxηdWt . (6.7)

We chose to introduce external force in such a way that HDP take the form of

Eq. (1.1). Parameter λ describes influence of external potential on HDP. λ also

defines the exponent of the steady-state PDF of the signal in interval [xmin, xmax],

P0(x) ∼ x−λ. Here xmin, xmax are reflective boundaries at positive small and large

x values, respectively.

Transformation of the variable x to a new variable y = x1−η (assuming that

η 6= 1) leads to the stochastic differential equation (SDE)

dy = −1

2
σ′2λ′

1

y
dt+ σ′dWt , (6.8)

where

λ′ =
η − λ
η − 1

, σ′ = |η − 1|σ . (6.9)

Equation (6.8) has the form of a Bessel process. The known analytic form of the

solution of the Fokker-Planck equation

∂

∂t
Py =

1

2
σ′2λ′

∂

∂y
y−1Py +

1

2
σ′2

∂2

∂y2
Py (6.10)

corresponding to SDE (6.8) is

P (y, t|y0, 0) =
y

1−λ′
2 y

1+λ′
2

0

σ′2t
exp

(
−y

2 + y2
0

2σ′2t

)
I−λ′+1

2

( yy0

σ′2t

)
. (6.11)

Here In(z) is the modified Bessel function of the first kind. This PDF satisfies the

initial condition P (y, t = 0|y0, 0) = δ(y− y0). The PDF (6.11) can be normalized
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if λ′ < 1.

Transforming back to x we obtain the time-dependent PDF

P (x, t|x0, 0) =
x

1−2η−λ
2 x

1−2η+λ
2

0

|η − 1|σ2t
exp

(
−x

2(1−η) + x
2(1−η)
0

2(η − 1)2σ2t

)

× Iλ+1−2η
2(η−1)

(
x(1−η)x

(1−η)
0

(η − 1)2σ2t

)
. (6.12)

This PDF satisfies the initial condition P (x, t = 0|x0, 0) = δ(x − x0). Using the

PDF (6.12) the time-dependent average of a power of x can be calculated:

〈xa〉x0 =

∫ ∞
0

xaP (x, t|x0, 0)dx

=
Γ
(
λ−1−a
2(η−1)

)
Γ
(

λ−1
2(η−1)

) (2(η − 1)2σ2t
) a

2(1−η)

× 1F1

(
a

2(η − 1)
;
λ− 1

2(η − 1)
;− x

2(1−η)
0

2(η − 1)2σ2t

)
(6.13)

Here 1F1(a; b; z) is the Kummer confluent hypergeometric function. For large

time the hypergeometric function is approximately equal to 1, thus

〈xa〉x0 ≈
Γ
(
λ−1−a
2(η−1)

)
Γ
(

λ−1
2(η−1)

) (2(η − 1)2σ2t
) a

2(1−η) . (6.14)

From Eq. (6.14) we can see that the average of the square of x depends on time

as 〈x2〉x0 ∼ t1/(1−η) for large time t, that is when

x
2(1−η)
0

2(η − 1)2σ2t
� 1 . (6.15)

The average of the x depends on time as t1/2(1−η). Therefore the MSD 〈(x −
〈x〉)2〉 = 〈x2〉 − 〈x〉2 has the same dependence on time

〈(x− 〈x〉)2〉 ∼ t1/(1−η) (6.16)

as the original HDP equation (6.1).
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Figure 11: Dependence of the mean (a,b,c) and variance (d,e,f) on time for var-
ious values of the parameters η and λ when the position of the diffusing particle
changes according to Eq. (6.7). Solid gray lines show numerical result, dashed
black lines are calculated using Eq. (6.13), black dotted lines show the power-law
dependence on time ∼ t1/[2(1−η)] for (a,b,c) and ∼ t1/(1−η) for (d,e,f). The solid
black line in (e,d) shows mean squared displacement (MSD) linear dependence
on time. In (d) we see subdiffusion and supper diffusion in (e). The parameters
are σ = 1 and η = −1

2 , λ = −1 for (a,d); η = 1
2 , λ = 0 for (b,c); η = 3

2 , λ = 5 for
(c,f). The initial position is x0 = 1.

6.3 Exponential restriction of diffusion

Here we introduce an external deterministic force that is no longer pro-

portional to the noise induced drift, but has a power-law dependence on x with

the power-law exponent different than 2η − 1. In particular, the external force

can linearly dependence on x,

dx =

(
µx+ σ2

(
η − λ

2

)
x2η−1

)
dt+ σxηdWt . (6.17)

Analytical expression of time-dependent PDF for SDE (6.17) can also be ob-

tained by performing the same steps as in previous section.
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P (x, t|x0, 0) =
2|η − 1|x2(η−1)

m

1− e−2µ(η−1)t
x

1−λ−2η
2 x

1+λ−2η
2

0 e
1+λ−2η

2
µt

× exp

(
− x

2(η−1)
m

1− e−2(η−1)µt

(
x2(1−η) + x

2(1−η)
0 e−2(η−1)µt

))

×I 1+λ−2η
2(η−1)

(
x

2(η−1)
m x(1−η)x

(1−η)
0

sinh ((η − 1)µt)

)
(6.18)

If µ has the same sign as η − 1 and t → ∞ then the time-dependent PDF

reaches the steady-state

P0(x) =
2|η − 1|xλ−1

m

Γ
(

λ−1
2(η−1)

) x−λ exp

(
−
(xm

x

)2(η−1)
)
, (6.19)

where xm is defined via the equation

µ = σ2(η − 1)x2(η−1)
m . (6.20)

The time-dependent average of a power of x reads

〈xa〉x0 =
Γ
(
λ−1−a
2(η−1)

)
Γ
(

λ−1
2(η−1)

) xam

(1− e−2(η−1)µt)
a

2(η−1)

× 1F1

(
a

2(η − 1)
;
λ− 1

2(η − 1)
;−x

2(η−1)
m x

2(1−η)
0

e2(η−1)µt − 1

)
(6.21)

This average is finite under the same conditions as Eq. (6.13). In particular,

the average of x is equal to

〈x〉x0 =
Γ
(

λ−2
2(η−1)

)
Γ
(

λ−1
2(η−1)

) xm

(1− e−2(η−1)µt)
1

2(η−1)
1F1

(
1

2(η − 1)
;
λ− 1

2(η − 1)
;−x

2(η−1)
m x

2(1−η)
0

e2(η−1)µt − 1

)
(6.22)

and is finite when λ > 2 and η > 1 or λ < 1 and η < 1. The average of the
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square of x is equal to

〈x2〉x0 =
Γ
(

λ−3
2(η−1)

)
Γ
(

λ−1
2(η−1)

) x2
m

(1− e−2(η−1)µt)
1

η−1
1F1

(
1

(η − 1)
;
λ− 1

2(η − 1)
;−x

2(η−1)
m x

2(1−η)
0

e2(η−1)µt − 1

)
(6.23)

and is finite when λ > 3 and η > 1 or λ < 1 and η < 1.

The steady-state PDF (6.19) leads to the steady-state averages of x and x2

〈x〉st =
Γ
(

λ−2
2(η−1)

)
Γ
(

λ−1
2(η−1)

)xm , (6.24)

〈x2〉st =
Γ
(

λ−3
2(η−1)

)
Γ
(

λ−1
2(η−1)

)x2
m . (6.25)

The growth of the second moment 〈x2〉x0 can be separated into three parts.

For small times

t� x
2(1−η)
0

2(η − 1)2σ2

the diffusion is approximately normal, 〈x2〉x0 depends linearly on time t. For the

intermediate times

x
2(1−η)
0

2(η − 1)2σ2
� t� 1

2(η − 1)µ
=

x
2(1−η)
m

2(η − 1)2σ2

〈x2〉x0 remains power-law function on time 〈x2〉x0 ∼ t1/(1−η) For large times we

cannot observe anomalous diffusion, because the cut-off position xm starts to

influence the diffusion and 〈x2〉x0 relax to the steady-state value (6.25).

6.4 Anomalous diffusion and 1/f noise

Anomalous diffusion occur only for specific parameters values if λ < 3 and

η < 1 (or λ < 1 and η < 1). As we can see in Fig. 12 (c) and (f), in other

cases anomalous diffusion does not occur due to the localization of particles.

However restrictions λ > 3 and η > 1 are compatible with condition 0 < β < 2

(see Eq. 1.6) required to generate signal with 1/f spectrum. Thus, HDP can

only generate either signals exhibiting 1/f noise or anomalous diffusion. In this

section we study more general case of HDP presented in Chapter 4 to find out
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Figure 12: Dependence of the mean (a,b,c) and variance (d,e,f) on time for var-
ious values of the parameters η and λ when the position of the diffusing particle
changes according to Eq. (6.17). Solid gray lines show numerical result, dashed
black lines are calculated using (6.23), dotted lines show the power-law depen-
dence on time ∼ t1/[2(1−η)] for (a,b,c) and ∼ t1/(1−η) for (d,e,f). The parameters
are σ = 1 and η = −1

2 , λ = −1, xm = 5 for (a,d); η = 1
2 , λ = 0, xm = 100 for

(b,c); η = 3
2 , λ = 5 xm = 0.01 for (c,f). The initial position is x0 = 1.

or anomalous diffusion can occur together with 1/f noise

We numerically investigate the dependence of the variance σ2(t) on time t.

Anomalous scaling can appear for similar SDEs that do not exhibit 1/f noise if

the steady state PDF has a power law tail [9]. Numerical solution of SDEs (4.7)

show that for small enough times the dependence of the variance on time can

be described by a power law tµ. According to the most common definition of

anomalous diffusion [2], anomalous diffusion is a diffusion process with non-

linear time dependency in the growth of the variance.

σ2(t) = 〈[x(t)− 〈x(t)〉]2〉 ∼ tµ . (6.26)

Unfortunately the second moment of the Lévy process is divergent 〈x2
Levy〉 =

∞ for all times and even the mean is divergent for some cases. It has been

proposed [2] to use fractional moments to analyze anomalous diffusion caused

by Lévy flights, Therefore a fractional moments 〈|x|δ〉was introduced to describe

diffusion. These fractional moments are finite for all times if condition 0 < δ <

α is satisfied. However, first and second moments are divergent only for an

unbounded Lévy flight. The SDE driven by Lévy process can generate signals

with finite moments if an external potential is introduced or some appropriate
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boundary conditions are assumed.

A general analytical expression for steady state PDF in the case of frac-

tional Fokker-Planck equation is not known. Therefore it is hard to find such

an additional drift term that limits the size of the jumps, but does not change

the power law dependence of the steady state PDF in some bounded region

x ∈ [xmin, xmax]. Thus instead of an external potential we choose to use reflec-

tive boundary conditions at xmin and xmax.
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Figure 13: Dependence of the variance σ2(t) of the signal generated by Eq. (4.7)
on time t. Gray and black strait lines show the power law dependence of the vari-
ance on time, σ2 ∼ tµ. (a) Super-diffusive behaviour when the stability index of
Lévy noise α = 1.5. Black curve corresponds to η = 2.1, gray curve to η = 1.9. The
numerically determined values of the index µ are µ = 1.4 and µ = 1.1, respec-
tively. (b) Sub-diffusive behaviour when the stability index of Lévy noise α = 1.2.
Black curve corresponds to η = 2.1, gray curve to η = 1.9. The numerically
determined values of the index µ are µ = 0.6 and µ = 0.4, respectively. Other
parameters of the equation are λ = 3, xmin = 1, xmax = 104, σ = 1.
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Figure 14: Dependence of the variance σ2(t) of the signal generated by Eq. (4.11)
on time t. The stability index of Lévy noise α = 1. Gray and black strait lines
show the power law dependence of the variance on time, σ2 ∼ tµ. (a) Black curve
corresponds to η = 2.8, gray curve to η = 2.9. The numerically determined values
of the index µ are µ = 1.35 and µ = 0.9, respectively. (b) Black curve corresponds
to η = 2.4, gray curve to η = 2.1. The numerically determined values of the index
µ are µ = 0.5. Other parameters of the equation are the same as in Fig. 13.
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We have calculated the variance taking the signal of 105 realizations gener-

ated by SDEs (4.7) and (4.11). For computing the variance we use an incremen-

tal algorithm [188]. The dependence of the variance σ2 on time t for various

choices of parameters is shown in Fig. 13 and Fig. 14. As we can see the the

power-law growth of variance is observable only for short times (approximately

for 10−2–10−1). Due to reflective boundary conditions the variance stops grow-

ing and relax to its steady value. This problem could be solved by increasing size

of simulated system. However, increased difference between reflective bound-

ary conditions at xmin and xmax lead to much longer simulation times. So far this

is beyond our numerical capabilities. We determine the exponent µ describing

the growth of the variance with time by fitting the initial part of time depen-

dence to a straight line in a double logarithmic plot. We see that the power

law exponent µ describing the growth of the variance with time depends on the

stability index of Lévy noise α and on the noise multiplicativity exponent η. The

exponent µ increases with increasing of the noise multiplicativity exponent η.

For large values of η supper-diffusion occurs (µ > 1), for smaller values of η

the sub-diffusion takes place. The value of η corresponding to the normal dif-

fusion and thus making the boundary between the two regimes depends on the

stability index α.

This dependence of the exponent µ on the on the noise multiplicativity

exponent η we show in more detail in Fig. 14. As can be seen in Fig. 14a, the

super-diffusion can be obtained for 2.8 ≤ η < 3. For 2.5 ≤ η < 2.8 we have the

sub-diffusion with the exponent µ proportional to η. For η < 2.5 the exponent

µ is almost independent from η and varies around µ = 0.5, as can be seen in

Fig. 14b.

6.5 Summary

We found that the power-law exponent in the dependence of the mean

square displacement on time does not depend on the external force; this force

changes only the anomalous diffusion coefficient (see Fig. 11 (d) and (e)).

Anomalous diffusion occur only for specific parameters values if λ < 3 and η < 1

(or λ < 1 and η < 1). As we can see in Fig. 11 (c) and (f), in other cases anoma-

lous diffusion does not occur due to the localization of particles. We obtained

analytic expressions for the transition probability and moments in two cases:
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when external force is proportional to noise induced drift and when additional

external force (besides the noise induced drift) has a linear dependence on the

position. Introduction of such a force leads to the restriction of the time interval

when the anomalous diffusion occurs. (see Fig. 12 (d) and (e)).

In Chapter 4 we have proposed nonlinear stochastic differential equations

driven by Lévy noise that generate signals exhibiting power law statistical prop-

erties: power law steady state PDF and power law spectrum in a wide range of

frequencies. In addition, such nonlinear SDEs can lead to Lévy flights with

anomalous diffusion, both sub-diffusion and supper-diffusion. However, we

were unable to find an analytical relation between the parameters of the SDE η

and α and the exponent of the anomalous diffusion µ, introduced by Eq. (6.26).

Therefore we have used numerical solution of the SDE to estimate this exponent.

The numerical results show that due to presence of the multiplicative noise in

SDEs both sub-diffusion and supper-diffusion might occur together with 1/fβ

noise if specific conditions are satisfied. However, power-law growth of vari-

ance is observable only for short times (approximately for 10−2–10−1). Due to

reflective boundary conditions the variance stops growing and relax to its steady

value. Therefore, more detailed numerical study is needed.
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7 Conclusions
1. We have shown that nonlinear SDEs (1.1) generating power-law distributed

processes with 1/fβ spectrum can result from diffusive particle motion in

inhomogeneous medium. The proposed SDE (2.11) results from Langevin

equations (2.1)- (2.2) for one-dimensional motion of a Brownian particle.

2. A pair of nonlinearly coupled nonlinear SDEs (2.26) and (2.27) can gen-

erate the signal xt having the power-law PSD S(f) ∼ f−β in arbitrarily

wide range of frequencies. The exponent β is given by equation (2.28).

One can interpret the first equation (2.26) as describing the fluctuations

of the signal, with the fluctuating rate of change, described by the second

equation (2.27)

3. Introduction of colored noise instead of white noise in HDP leads to the

additional restriction of the diffusion and exponential cut-off of the distri-

bution of particle positions. Narrower power law part in the distribution

of the particle positions results in the narrower range of frequencies where

the spectrum has power law behavior.

4. We obtained a class of nonlinear SDEs with Levy noise giving the power-

law behavior of the PSD in any desirably wide range of frequencies and

power-law steady state distribution of the signal intensity.

We generalized nonlinear SDEs (1.1) driven by the Gaussian noise and

generating signals with 1/fβ PSD by replacing the Gaussian noise with a

more general Lévy α stable noise. This modification lead to PSD exponent

dependence on noise stability index β

5. The time-fractional Fokker-Planck equation with power-law coefficients

yields the resulting PSD with a power-law form S(f) ∼ f−β in a wide

range of frequencies, with the power-law exponent β given by Eq. (5.56).

Thus, according to Eq. (5.56), the PSD with the power-law exponent equal

to or larger than 1 in a wide range of intermediate frequencies.

6. We studied a influence of external force on HDP. We found that the power-

law exponent in the dependence of the mean square displacement on

time does not depend on the external force, this force changes only the
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anomalous diffusion coefficient. In addition, the external force having the

power-law exponent different from 2η − 1 limits the time interval where

the anomalous diffusion occurs.
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