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Abstract

Background: Proteins self-organize in dynamic cellular environments by assembling
into reversible biomolecular condensates through liquid-liquid phase separation
(LLPS). These condensates can comprise single or multiple proteins, with different roles
in the ensemble’s structural and functional integrity. Driver proteins form conden-
sates autonomously, while client proteins just localize within them. Although several
databases exist to catalog proteins undergoing LLPS, they often contain divergent data
that impedes interoperability between these resources. Additionally, there is a lack

of consensus on selecting proteins without explicit experimental association with con-
densates under physiological conditions (non-LLPS proteins or negative proteins).
These two aspects have prevented the generation of reliable predictive models and fair
benchmarks.

Results: In this work, we use an integrated biocuration protocol to analyze infor-
mation from all relevant LLPS databases and generate confident datasets of client

and driver proteins. We introduce standardized negative datasets, encompassing

both globular and disordered proteins. To validate our datasets, we investigate specific
physicochemical traits related to LLPS across different subsets of protein sequences
and benchmark them against 16 predictive algorithms. We observe significant differ-
ences not only between positive and negative instances but also among LLPS proteins
themselves. The datasets from this study are available as a website at https://llpsdatase
ts.ppmclab.com and as a data repository at https://doi.org/10.5281/zenodo.15118996.

Conclusions: Our datasets offer a reliable means for confidently assessing the specific
roles of proteins in LLPS and identifying key differences in physicochemical properties
underlying this process. Moreover, we describe limitations in classical and state-of-the-
art predictive algorithms by providing the most comprehensive benchmark to date.

Keywords: Liquid-liquid phase separation, Datasets, Integration, Driver, Client,
Negative, Proteins, Disorder, Machine learning, Benchmark
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Background

The discovery of intracellular membraneless organelles (MLOs) has marked a paradigm
shift in our understanding of spatiotemporal cellular organization [1]. These conden-
sates are dynamic supramolecular structures that can concentrate different biomole-
cules, including proteins and nucleic acids. They act as central hubs for interactions that
enable rapid and reversible compartmentalization, critical for diverse biological func-
tions [2-5].

Although it is increasingly evident that numerous proteins can undergo liquid-liquid
phase separation (LLPS), the heterogeneous composition of these condensates compli-
cates our understanding of the precise role played by each particular protein in a given
MLO. Therefore, the introduction of specific controlled vocabularies for categorizing
LLPS participants has been instrumental in the progression of the field [6, 7]. Driver
proteins can undergo LLPS on their own, without any partner—either protein, DNA,
or RNA. In contrast, client proteins are recruited into pre-existing condensates and
are not essential for their integrity. Other proteins act as regulators and can influence
the behavior of drivers and clients, but they are not physically part of condensates. It is
important to highlight that these roles are not mutually exclusive; a driver of a specific
condensate can also be a client in another molecular scenario. Similarly, proteins can
behave as clients in a given condensate but also phase-separate individually under dif-
ferent conditions. This duality stems from the high context-dependency of LLPS, which
can be modulated by environmental conditions [8], crowding agents [9], and additional
partners [10]. Indeed, for any multivalent protein, there likely exists a solute condi-
tion regime under which self-assembly into condensates will occur [11]. Therefore, an
unequivocal categorization of LLPS proteins into drivers and clients requires a cautious
examination of both attributes.

Given the biological relevance of LLPS in physiology, aging, and disease [12—14],
several databases have been deployed to annotate proteins observed in biomolecular



Pintado-Grima et al. Genome Biology =~ (2025) 26:198 Page 3 of 21

condensates. However, the conceptual strategies followed to build such databases vary
significantly. Consequently, the number of entries, their annotations, and the level of
experimental evidence seen on each repository are highly divergent [7]. For instance, the
PhaSePro database [6] collects only experimentally validated driver proteins or regions.
PhaSepDB [15] contains regions with the potential to drive LLPS (psself) but also others
that require protein or nucleic acid partners (psother). LLPSDB [16] annotates several
protein components and solute conditions across different LLPS experiments. CD-
CODE [17] is oriented toward biomolecular condensates and their constituents, mak-
ing a specific distinction between driver and member proteins for each MLO. Finally,
DrLLPS [18], while more protein-centric, also collects the associated condensates for
each protein and the role it plays, either as a scaffold, client, or regulator. Other related
databases contain condensate information but were not specifically developed to collect
LLPS proteins. For example, FuzDB [19] was conceptualized to inform on fuzzy inter-
actions between proteins and, consequently, it should not be strictly considered as an
LLPS database.

Despite the efforts of curators to annotate proteins involved in LLPS, it is clear that
different databases are built aiming for different objectives and collecting distinct types
of data, eventually diluting important information across sources. Considering this,
efforts to unify LLPS data sources are needed for a better understanding of proteins’
role in condensates, as well as to train and benchmark machine learning (ML) models.
MLOsMetaDB constitutes a first attempt at centralizing annotations from most LLPS
databases while enriching them with external information (disorder, globular domains,
function, orthologs) [20]. Still, little attempts have been made to maintain a compara-
ble level of experimental evidence while integrating proteins from different sources, a
fact that has hindered data interoperability and noiseless data annotation [21]. Besides,
the evident lack of biologically relevant proteins that do not phase separate under physi-
ological conditions (negative proteins) and an unambiguous distinction between clients
and drivers pose significant challenges for benchmarking predictive algorithms. This
situation motivated us to carefully inspect and process the data collected by LLPS data-
bases to generate reliable datasets of client, driver, but also potential negative proteins
that should not undergo phase separation (negative datasets), which are fundamental for
building more accurate predictive tools and standardized benchmarks.

LLPS predictive tools such as FuzDrop [22] and catGRANULE [23] are designed to
detect protein regions driving the formation of MLOs under standard conditions. In
many instances, intrinsically disordered regions (IDRs) [24, 25] or prion-like domains
(PrLDs) [26] overlap with these predicted LLPS-promoting regions. However, not all
IDRs or PrLDs necessarily engage in LLPS, leading to potential biases in predictions that
favor these features over actual domains with multivalent potential to establish the weak
interactions necessary for LLPS [27-29]. In an effort to alleviate this issue, beyond the
full-length protein, in the present study we also annotated disorder-related sequential
elements, including IDRs and PrLDs. We illustrate how the analysis of relevant features
commonly linked to LLPS can be applied to identify significant differences between
datasets and mitigate sequential overlaps.

Based on current knowledge of the LLPS phenomenon and the harmonization of
curation criteria, we have developed high-quality datasets of client and driver proteins



Pintado-Grima et al. Genome Biology =~ (2025) 26:198 Page 4 of 21

involved in LLPS. These datasets should allow a better understanding of the physico-
chemical properties that distinguish proteins participating in different condensates from
proteins that do not. Additionally, they should help in distinguishing the specific roles
played by participant proteins in LLPS reactions.

Results

Integrated dataset generation of client, driver, and potential negative proteins in LLPS

To integrate LLPS proteins into complete specific categorical datasets, we compiled data
from the most recognized LLPS resources. Since different databases provide varying lev-
els of evidence for the collected data, our first step implied the design of standardized
filters aligned with LLPS vocabulary definitions to generate a curated group of proteins
with consistent levels of confidence for all protein categories.

First, for databases that collect general LLPS proteins but do not specifically differenti-
ate between clients and driver/scaffold proteins, entries were retrieved by applying filters
that ensure that those proteins are actually drivers. This means that they indeed have
no partner dependency—nor protein or RNA/DNA—or require further modifications
such as PTM or mutations to phase separate. This distinction is crucial because even
databases specifically developed to collect driver proteins with associated experimental
evidence, such as PhaSePro, include partner-dependent proteins.

For databases that already consider both driver and client labels, the first stage
involved distinguishing them from one another (drivers from clients) and then classi-
fying only those proteins with at least in vitro experimental evidence, thus ensuring a
higher confidence level.

Considering the high context-dependency of LLPS, a critical aspect of this kind of
study involves integrating specific negative datasets of proteins not involved in LLPS.
These datasets should include disordered proteins (DisProt), which are mostly over-
looked in current negative datasets, in addition to globular proteins (PDB), which are
often taken as the naive and only negative set (Fig. 1).

The description of confident negative datasets of proteins not involved in LLPS is challeng-
ing because of the condition-dependent nature of the process and the lack of dedicated stud-
ies on this specific protein trait. However, having well-defined negative datasets is crucial for
effective training and benchmarking of unbiased predictive methods [30]. To address this
need, here we implemented two independent datasets: ND (DisProt) and NP (PDB). Filters
applied to the original DisProt and PDB databases involved selecting negative entries with
no current evidence of association with LLPS, not present in any of the original source LLPS
databases and without annotations of potential LLPS interactors, ensuring the robustness of
these negative datasets. To provide a more fine-grained description of the degree of disorder,
we provide the level of annotated order and disorder found in the proteins.

When specific category classifications were applied in each independent dataset we
generated, the number of final entries was significantly reduced compared to the source
databases due to the stringency of the applied filters (Fig. 2). In this sense, the datasets
are unique not because they contain any new protein absent in other LLPS databases but
because they are thoroughly created to guarantee data interoperability and data confidence.
These results suggest that predictive bioinformatics tools trained with generic raw data
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Fig. 1 Scheme of dataset generation. The nature of each dataset (driver, client, or negative) is described by
the shape of the box, whereas the original source dataset can be identified by its color. A description of the
filters applied to each dataset is briefly described inside each box

directly sourced from the original LLPS databases might produce nonspecific models of
LLPS due to the lack of rational data filtering.

Given the multilabel condition of some LLPS participants, unambiguously distinguishing
LLPS proteins as either drivers or clients is not trivial. To address this, here we attempt to
provide lists of specific and confident datasets of clients and drivers by cross-checking the
information from previous datasets (Fig. 3). Exclusive clients (CE) are proteins that appear
only in CD-CODE or DrLLPS as clients/members and not as drivers in the rest of the posi-
tive datasets. Exclusive drivers (DE) only appear with the scaffold/driver tag and never as
clients. Finally, a protein is both a client and a driver if it is tagged with both terms (C_D).
The confidence of each category is also assessed by counting the number of appearances
of clients and drivers in the original databases. Thus, intersecting clients (C+) are proteins
found in both client databases (CD-CODE and DrLLPS), whereas intersecting drivers (D +)
are those observed in at least 3 out of the 5 driver databases. All dataset records are depos-
ited into an interactive, user-oriented website (https://llpsdatasets.ppmclab.com), intended
to provide an accessible platform for users to browse and filter data intuitively.

Finally, additional annotations of disordered-related sequential elements (IDRs and
PrLDs) have been precalculated. Predicting such sequences from full-length proteins
could help detach existing biases in LLPS predictions and reveal how certain physico-
chemical features may vary between datasets. Detailed descriptions of these annotations
are provided in Additional file 1: Supplementary methods.

LLPS-positive proteins and DisProt negative dataset display a similarly low proportion

of ordered residues

The generation of the DisProt negative dataset (ND) was paramount as it adds a nec-
essary subset of negative proteins beyond the naive PDB dataset (NP). Proteins in
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ND are absent from the condensates-related specific thematic dataset of DisProt or
within our positive data.

LLPS proteins often contain a considerable degree of disorder [21] that facilitates
multivalent interactions [27] to the point where disorder predictors have turned
out to be acceptable LLPS predictors [31]. In other words, there exists an intrinsic
bias toward the prediction of IDRs rather than genuine multivalent sequences when
forecasting LLPS propensities [32, 33]. This becomes evident when comparing the
fraction of ordered residues in ND with that in LLPS-positive proteins, with both
datasets displaying a very similar distribution profile (Fig. 4). The same trend is seen
in the score distributions observed between disordered negative proteins and positive
entries obtained by classical and state of the art LLPS predictive methods (Additional
file 1: Fig. S1). Considering this unavoidable bias, annotating the fraction of order and
disorder for every protein becomes instrumental to uncovering possible stratifica-
tions of disorder that could help to identify protein regions contributing the most to
condensate formation.

We acknowledge that some proteins in ND might possess LLPS properties that
have not yet been evaluated, and thus, future studies might reveal their potential to
undergo LLPS under certain conditions. Still, different ML strategies are readily pre-
pared to handle potentially noisy data, for example, by applying weakly supervised
classifications that go beyond the one-instance, one-label standard [34]. In this sense,
models could learn from proteins that have partial annotations and consider this fea-
ture for the final prediction.
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Fig. 4 Distribution of the fraction of ordered residues in positive datasets (DE, CE, C_D) in comparison
with both negative DisProt (ND) and PDB (NP). A very similar distribution is observed between positive and
DisProt datasets, highlighting the importance of such a negative dataset for fine-grained LLPS prediction and
benchmarking. The analysis was performed on the fraction of ordered residues to maximize the number of
annotated proteins. Experimentally validated order annotation is applicable to all proteins with an available
PDB structure, whereas disorder annotation requires manual curation and is applicable only to proteins in
DisProt



Pintado-Grima et al. Genome Biology =~ (2025) 26:198 Page 8 of 21

Physicochemical analysis of LLPS properties indicates differences between drivers, clients,
and negative proteins

The generation of both positive and negative datasets, along with their segmen-
tation into their disordered elements (IDRs and PrLDs), should enable a compara-
tive analysis of how certain physicochemical properties may differ in these protein
subsets. To technically validate the utility of our datasets, we evaluate four different
physicochemical traits traditionally linked to LLPS sequences: charge distribution
(x), sticker/spacer distribution (Ksls), percentage of tyrosines and arginines (%Y +R)
and net charge per residue (NCPR). Additionally, we include three more features with
evidence in mediating interactions that can promote condensation: aggregation pro-
pensity [35, 36], cryptic amyloidogenicity [37, 38], and the presence of conditionally
disordered regions capable of undergoing disorder-to-order transition upon partner
binding [1, 4].

While NCPR is a key feature for LLPS [35, 39], the distribution of charged amino
acids along the sequences also influences this behavior [40, 41]. The k parameter
was first introduced to compute the patterning of positively and negatively charged
residues [42]. Beyond charges, the sticker and spacer model of LLPS assumes that
sticky residues are responsible for establishing the first weak interactions required
for condensation, whereas spacer amino acids are intercalated between stickers to
regulate droplet formation and properties [43—45]. In this framework, we have intro-
duced a variant of , the « stickers-spacers (), to evaluate the distribution of sticker
(YRF) and spacer (GSQN) residues (Additional file 1: Supplementary methods), thus
expanding on previous approaches that just consider stickiness [46].

The %Y + R metric reveals no significant differences between datasets when con-
sidering full-length sequences (FLS) or only IDRs (Fig. 5). This indicates that the per-
centage of sticky amino acids alone cannot distinguish LLPS proteins (C_D, CE, and
DE) from those not found in condensates (NP and ND).
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When considering FLS, NP differs from LLPS proteins across the six other proper-
ties analyzed, but it also differs significantly from ND. This finding evidences why state-
of-the-art LLPS prediction methods, trained solely against NP, approximate LLPS with
intrinsic disorder [27, 32]. This highlights the need for caution when using PDB entries
alone as the negative dataset in benchmarking exercises. Accordingly, the NP dataset
was not considered in the comparisons we outline below.

The Ky,
(CE) when considering FLS, highlighting the importance of stickers and spacer residues

metric discriminates exclusive drivers (DE) from ND and exclusive clients

distribution along the sequence. However, when analyzing exclusively IDRs, x; loses its

sls
discriminative property. This implies that the distinction between clients and ‘drivers is
not confined, or at least not only to the disordered segments, but is contingent on the
entire protein sequence.

NCPR allows discriminating ND from LLPS proteins, particularly for CE in FLS.
Again, this differentiation is lost when considering IDRs alone. Similarly, k (distribution
of charged residues) has discriminatory power in FLS for CE but, in contrast with NCPR,
it also does for IDRs between CE and DE, as well as between CE and C_D, underscoring
the relevance of charge distribution for IDRs condensation [41] and suggesting its poten-
tial use not only to discriminate exclusive clients from exclusive drivers but also from
ambiguous participants (C_D). These data also indicate that, despite NCPR and « being
obviously related, they convey different information, which can be potentially combined
for better discrimination between datasets.

Aggregation shows significant differences between NDs and LLPS-positive datasets
for FLS (Table 1). This aligns with the hypothesis that aggregation propensity is one of
the driving forces for the reversible assembly of proteins in stress granules [14, 35] and
plays a key role in the liquid-to-solid transition of condensates [47, 48]. Importantly,
aggregation propensity is significantly different between CE and DE, as well as between
CE and C_D, providing strong discrimination between the different roles played by LLPS
proteins.

While hydrophobic aggregation-prone regions in IDRs are traditionally considered
deleterious due to their likelihood to nucleate toxic aggregate formation [49, 50], cryptic
amyloidogenic regions of a polar nature are widespread in both IDRs and PrLDs [38,
51]. These regions endorse disordered proteins with a self-assembly potential to estab-
lish interactions while minimizing the risk of pathogenic aggregation. This makes it the
property with the highest levels of significance for discriminating IDRs in NDs from the
IDRs of LLPS proteins.

The profile of disorder-binding regions (DBRs) mirrors the significance levels of aggre-
gation propensity. This is expected, because these are likely the regions that contribute

Table 1 Significant comparisons observed for specific datasets in their full-length sequences.
Physicochemical properties that can significantly discriminate (p <0.01) are marked

%Y+R Kgs NCPR K Aggregation Cryptic Disorder
propensity amyloidogenicity binding
ND-CE X X X X X
ND-DE X X X X

CE-DE X X X
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the most to LLPS and, in many instances, DBRs overlap with aggregation-prone regions
[37, 52]. Again, differences between datasets are less pronounced or lost when consider-
ing IDRs alone.

Interestingly, when considering all the properties together, DE vs C_D is the only pair-
wise comparison without a significance level in any sequence subset. This implies that
C_D proteins are more similar to drivers, and the properties to discriminate them (if
any) go beyond the ones considered in this study.

A key observation of our analysis is that, despite PrLDs being often assumed to be a
trait of LLPS proteins [2, 43, 53, 54|, only aggregation propensity and disorder binding
showed some discriminative power. Notably, increased aggregation propensity within
PrLDs was previously linked to their recruitment into stress granules upon heat stress
[35]. In the same spirit, IDRs alone are less informative than entire protein sequences.
Cryptic amyloidogenicity and disorder binding seem less affected by not considering the
full sequence context since they can still distinguish NDs from all LLPS-positive datasets
in IDRs. Overall, disordered elements per se, when considered individually, bear poor
discriminative information. These findings support the notion that multivalency extends
beyond IDRs [45], as other sequential traits could be exploited in LLPS prediction to
mitigate the intrinsic IDR bias [32].

The selection of these LLPS-relevant properties served as a technical validation of our
datasets. Still, we acknowledge that other physicochemical properties could offer further
insights about the role of proteins in LLPS. For instance, studies have correlated molecu-
lar weight or polymer length with LLPS [55, 56], showing that higher molecular weights
tend to display a higher condensate saturation concentration in cells. Other research has
indicated that some proteins undergo LLPS driven by hydrophobic interactions [57],
while hydrophobicity seems to be positively correlated with increased predicted phase
separation propensity [58]. Additionally, specific solvent-exposed hydrophobic regions
may act as structural interaction motifs with multivalent potential for phase separation
[1], for example, by binding to helical leucine-rich motifs [59].

Despite the statistical significance observed for some properties and dataset pairs,
the building of independent feature models based on single physicochemical features
could be surpassed by combinatory models that consider all the properties (Additional
file 1: Fig. S2). The higher performance of these kinds of models could be explained by
the integration of several characteristics that together better balance the intrinsic factors
that drive these proteins to phase separate or not.

Benchmarking current LLPS predictive tools with independent protein datasets

The current landscape of LLPS predictors includes more than 20 different tools. How-
ever, specific and reliable LLPS prediction remains unsolved, with new models continu-
ously emerging in pursuit of higher performance. Evaluating the performance of these
predictors is paramount for identifying their limitations and building better models.
Despite this, a comprehensive benchmark built on external independent data has yet to
be conducted. This gap can be attributed to the significant heterogeneity in methodolo-
gies and the particular challenges in the usability of each tool (such as the lack of stan-
dalone apps or limitations in web server functionality).
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We benchmarked those protein-level tools available before February 2025 (see
methods), spanning from state-of-the-art to classical, using the independent datasets
generated in this study (Fig. 6). A holistic assessment of performance metrics is cru-
cial when benchmarking models to identify the most suitable predictors. Since not
all models provide probabilistic output, relying solely on a single metric such as AUC
could be misleading [60]. Accordingly, we have calculated additional metrics such as
MCQC, F1 score, FPR, and sensitivity for all those models that provided a clear deci-
sion threshold. Moreover, we computed AUC and PRAUC for all models that pro-
vided LLPS probabilistic outputs (Additional file 2: Table S1).

Recent ML methods such as PSPredictor [61], DeePhase [62], and PSPHunter [63] out-
perform other heuristic tools, suggesting that ML models capture essential contextual
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Fig. 6 Benchmark of current LLPS tools with independent protein datasets. Comprehensive evaluation of
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that provide LLPS probabilistic output (B). Details about the construction of the benchmark as well as
information about additional metrics can be found in methods and the Additional file 1: Supplementary
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information, leading to more accurate predictions (Fig. 6A). Notably, first-generation
tools, such as PLAAC [64] which were not specifically designed to predict phase separa-
tion, show a very low rate of false positives and achieve MCC close to dedicated LLPS
predictors. Single property methods, such as the %R+ Y alone, fail to distinguish LLPS
proteins effectively, consistent with the observed lack of discriminative power of this
property in the previous section.

Tools with the highest AUC recapitulate the results observed for MCC, with DeeP-
hase, PSPredictor, and PSPHunter emerging again as the best performers (Fig. 6B). Two
of the most recently published tools, PicNic [65] and catGRANULE 2.0 ROBOT [66],
report AUC values around 0.7 but with a high false positive rate. These commonali-
ties in performance metrics may be attributed to the similar negative datasets used to
train the respective algorithms. Thus, despite the efforts of recent tools in generating
novel datasets to train their models, the high false positive rates remain a challenge, due
to limitations in the prediction of negative proteins without current LLPS association
(Additional file 1: Fig. S3).

Beyond the intrinsic limitations of predictors, some authors do not disclose the data
used to train their models. Therefore, it is possible that some of the proteins we used
to test them were also used for training. This concept is known as information leak
and could artificially inflate their performance metrics. This is one of the major factors
behind building and releasing our datasets as a data repository and an accessible website.
We aim to provide an open resource that scientists can reference when training and test-
ing their algorithms, alleviating this problem in the future.

The present benchmark and datasets are a step forward for the standardization of fair
comparisons between tools, suggesting there is still room for improvement in the bioin-
formatics prediction of LLPS.

Discussion

The datasets generated in this work allow for a confident evaluation of the role of a given
protein in LLPS while integrating information from diverse LLPS sources. A total of
2876 different proteins (755 positives—either drivers, clients, or both—and 2121 nega-
tives) are classified in the datasets, aiming to provide a realistic context for the LLPS
phenomenon. This is significant given that fully annotated LLPS proteins constitute
only a small fraction of the entire protein universe. In fact, a recent model reports that
only 5% of the total IDRs in the human proteome are predicted to undergo homotypic
phase separation [58]. Proteins not included in the positive datasets either lack sufficient
evidence of undergoing LLPS, need additional partners (e.g., a protein co-driver or an
RNA), undergo post-translational modifications (e.g., phosphorylation), or simply par-
ticipate as regulators.

Despite the known context-dependency of the process, efforts were made to select
reliable structured and disordered negative proteins. Recent ML models like PSPire [32],
PSPHunter [63], PicNic [65], or catGRANULE 2.0 ROBOT [66] have generated nega-
tive datasets by selecting model proteomes, excluding positive data and other potential
LLPS participants by checking for interactors or specific protein domains (Table 2). The
resulting proteins are combined into a single dataset, without accounting for their rela-
tive levels of secondary structure. In contrast, here, we rationally split negative datasets
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Table 2 Negative datasets built by recent ML models. These models were built by selecting
potential non-LLPS proteins from the human proteome using external source databases and
excluding positive entries. PSPHunter considers the exclusion of single-domain proteins. PicNic and
catGRANULE 2.0 ROBOT exclude proteins with described interactions with LLPS proteins. PSPire
obtains human negative proteins from PhaSePred [67]. NA, not applicable

Resource N negatives N Current Focuson  External Exclusion Data
(train +test) identities availability human- non-LLPS  of positive stratification
to our (21-03-25) only databases proteins
negatives proteome
PSPire [32] 10,284 66 Supplemen-  Yes No Yes No
tary
PSPHunter 5754 59 GitHub Yes Pfam- Yes No
[63] Scan [68]
(domains)
PicNic [65] 1709 29 Supplemen-  Yes InWeb [69]  Yes No
tary (interac-
tions)
ROBOT [66] 4628 58 GitHub Yes BioGRID Yes No
[70] (inter-
actions)
Ours 2121 NA Website and  No PDB [71], Yes Yes
GitHub DisProt
[72] and
BioGRID
[70]

into structured (NP, derived from PDB) and disordered (ND, derived from DisProt)
proteins, providing annotated fractions of order and disorder for all proteins, further
defining their conformational attributes. Some of these tools build their negative data-
sets focusing only on specific organisms, which likely contributes to the low number of
identities with our negative datasets. This limited intersection might partially explain
the challenges in successfully predicting proteins across species. We are aware that tools
trained solely on e.g. human data might perform better on data derived from the human
proteome. However, as these tools are generally presented as generic LLPS predictors
and not restricted to human proteins, we considered it licit to benchmark them using
broader, cross-species datasets.

The level of annotation of the datasets should allow for specific protein stratifications
to perform further analyses. For instance, it is possible to work with exclusive clients or
exclusive drivers (category specificity; CE, DE) to uncover additional properties that may
influence the client-driver distinction [73] such as molecular weight, hydrophobicity, or
the presence of particular structured motifs that could enhance the development of inte-
grated feature models. Conversely, working with proteins from ambiguous datasets (e.g.
C_D) can prove useful in studying context-dependent LLPS and uncovering possible
associated variables [8, 74]. Although IDRs and PrLDs alone are generally insufficient to
discriminate LLPS proteins from negative data, specific properties such as cryptic amy-
loidogenicity or disorder binding provide hints on the features that set these sequences
apart from negative disordered proteins.

Importantly, these datasets offer an opportunity to reassess the performance of current
LLPS predictive methods and train more accurate models. Our benchmark showcased
significant performance differences among available tools, with dedicated ML-based
LLPS models outperforming non-specific and heuristic tools. This underscores the
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potential of our confident protein datasets to drive the development of future ML archi-
tectures capable of recognizing critical contextual features overlooked by existing meth-
ods. Moreover, our data allows the development of both single-label and multi-label ML
models. Single-label models could address problems such as distinguishing between
LLPS and non-LLPS proteins, or even specific client prediction [73]. Multi-label models
should allow estimating the probability of a protein acting as a driver, client, both client
and driver, or none, thus identifying the most probable role of each protein. This strategy
would provide a more precise and protein-centric perspective compared to other tools
that combine independent models for predicting self-assembled and partner-dependent
LLPS proteins [67]. Finally, the public availability of the datasets via our website facili-
tates a direct retrieval of proteins to train, test, and benchmark models using independ-
ent data.

Machine learning classifiers such as n-grams could be used as a first approach to iden-
tify multivalent patterns along the sequences, as they have already proven successful in
predicting amyloidogenic motifs in protein sequences [75]. Although the modest size of
our datasets might constrain the effective usage of deep models that require large train-
ing data [76], they could still be valuable for fine-tuning transformer-based models [77].

The incorporation of expanded and confident negative datasets, in addition to the
novel client and driver distinction, should establish the basis for setting up comprehen-
sive benchmarks of specific LLPS proteins built on independent data. Particularly, the
generation of a dedicated disordered negative dataset plus the annotation of proteins’
disorder fraction is expected to drive the development and refinement of specific models
minimizing sequential IDR biases [32], advancing towards the implementation of a new
generation of LLPS predictors [31].

Conclusions

In this work, we share holistic and rigorously scrutinized datasets to reevaluate the
prediction, distinction, and benchmarking of the client, driver, and negative proteins
in LLPS. We highlight a similarly low proportion of ordered residues between positive
and negative data and elucidate significant differences between full-length drivers, cli-
ents, and negative proteins in specific physicochemical properties connected to LLPS
behavior. Finally, we use our data to perform a critical assessment of the LLPS predic-
tion landscape, providing the most comprehensive benchmark to date, including all 16
protein-level available algorithms until February 2025.

Methods

Filtering clients and drivers

To obtain proteins that fulfill the definition of drivers (ability to phase-separate by them-
selves), we thoroughly filtered the databases to exclude entries with any known partner
dependency:

+ D1: 57 proteins from PhaSePro v1.1.0 with no partner, RNA or PTM dependency.
« D2: 116 psself proteins from PhaSepDB v2.1 without LLPS partners (either proteins,
RNA, or DNA) or regulations (PTMs, repeats, mutations or splicing).
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o D3: 184 unambiguous natural proteins with one protein component without mutations,
repetitions, or PTMs obtained from LLPSDB v2.0.

« D4: 207 driver proteins from all biomolecular condensates in CD-CODE with in vitro,
in cellulo, or in vivo evidence (confidence score > 3).

+ Db5: 130 scaffold proteins from DrLLPS with condensate information and tissue/cell

annotations.

To collect client proteins that are recruited into preformed biomolecular condensates, we
could only make use of CD-CODE and DrLLPS, since they specifically accommodate the
definition of member and client proteins, respectively.

+ C1: 155 member proteins from all biomolecular condensates with in vitro, in cellulo, or
in vivo evidence were obtained from CD-CODE v1.

» (C2: 288 client proteins from DrLLPS with condensate information, tissue/cell defined
and evidence descriptions. To avoid possible high-throughput annotations, we excluded
proteins reported in publications covering more than 10 entries.

We did not include regulator proteins in our datasets because they are not physically
associated with condensates and are only considered by DrLLPS, precluding a consensus
annotation of these types of proteins.

Obtaining unambiguous clients and unambiguous drivers
Category specificity

« CE: 367 exclusive clients are those collected in CD-CODE as member proteins (C1) or
DrLLPS as clients (C2) which are not present in any of the five driver datasets (D1, D2,
D3, D4, D5).

+ DE: 358 exclusive drivers are those collected in any of the driver datasets and not pre-
sent in C1 or C2.

+ C_D:59 clients and driver proteins appear either in C1 or C2 and also in D1, D2, D3, D4
or D5.

Category intersection

« C+:17 intersecting clients appear in C1 and C2.

« C—:409 non-intersecting clients appear either in C1 or C2.

« D+:77 intersecting drivers appear in at least 3 out of 5 driver datasets.

« D—:340 non-intersecting drivers appear less than 3 times in all driver datasets.

Generation of negative datasets

o NP: 1120 structured proteins from the PDB, with length > 50aa and <5000 residues
and similarity cutoff>30% [62, 78], not present in any of the original LLPS source
databases or annotated as first-degree interactors of positive LLPS proteins by

Page 15 of 21
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BioGRID v4.4 [70]. This was used as the classical "naive" dataset of structured pro-
teins, which is used in many other publications of the field for benchmarking and/or
training models. UniProt Accession numbers were obtained from BLASTp. Although
specific contacts in globular proteins—many relying on modular interaction domains
[1]—have been associated with phase separation, in general terms, they are not that
prone to establishing most of the weak multivalent interactions required for LLPS. In
light of this, globular domains seem to be the most obvious negative dataset and are
represented in this first negative group of proteins.

« ND: 1001 proteins with annotated disorder collected from DisProt (2023_06 release)
not present in the “Condensates-related proteins” thematic dataset, not associated
with the GO term “molecular condensate scaffold activity, not present in any of the
original LLPS source databases or annotated as first-degree interactors of positive
LLPS proteins by BioGRID v4.4. DisProt entries are manually curated from the litera-

ture by expert biocurators [72].

Protein disorder/order annotation

Proteins in datasets can have different levels of disorder content. Since IDRs can overlap
with LLPS regions, two metrics accounting for the fraction of disorder and order were
extracted from Mobi-DB [79] for all protein datasets. The “disordered fraction” collects
curated and derived annotations whereas the “ordered fraction” collects PDB-derived
annotations. These metrics allow for possible further stratifications according to the

fraction of disorder/order of well annotated proteins.

General protein annotation with UniProt

The UniProt database was used to collect relevant information, such as the protein cel-
lular location (GO-CC) and the amino acid sequence. The cytoplasmic or nuclear locali-
zation of certain proteins involved in LLPS has become pivotal in unveiling the reasons
behind their pathogenicity [80, 81]. Therefore, proteins with cytoplasmic (cyto® or
nuclear (nucl*) related GO terms were saved. Proteins without GO information, obsolete
entries, or isoforms (n=168) were discarded since they are, in most cases, associated
with low-annotated proteins/variants. After UniProt annotation, 2876 unique proteins
were integrated from all datasets into a single .tsv file and included in the final website
(Additional file 3: Table S2).

Disordered-related sequential elements: IDRs and PrLDs

IDRs with at least 10 amino acids were obtained by considering the ‘disorder consensus’
sequences annotated by MobiDB [79]. PrLDs were obtained with the PLAAC algorithm
[64] using a core length of 60 amino acids and relative weighting of background prob-
abilities of 100. All sequences from disordered elements are collected in a .json file for
each unique protein. Length distributions of IDRs and PrLDs for both positive and nega-
tive datasets can be checked in Additional file 1: Fig. S4.
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Physicochemical property analysis

Each feature was calculated for all independent sequences and disorder-related sequen-
tial elements (IDRs and PrLDs) (Additional file 4: Table S3). k and K| were calculated
with localCIDER [82] and an adapted version for stickers and spacers. Briefly, positive
and negative charged residues calculated for k were changed for sticker (YRF) and spacer
(GSQN) residues. NCPR was calculated with the Henderson-Hasselbalch equation at
pH 7.0. The %Y + R was calculated as the percentage of tyrosines and arginines. Aggre-
gation propensity was calculated with AGGRESCAN [83], using the Na4vSS derived
score. Cryptic amyloidogenicity was calculated using the Waltz algorithm at threshold
85 [52, 84], averaging the score obtained for each region with at least 7 residues. Dis-
order binding propensity was calculated with ANCHOR?2 [85, 86], averaging the per-
residue score obtained for each sequence. Heatmap’s statistical significance was assessed
by the Mann—Whitney-Wilcoxon two-sided test with Benjamini correction.

For the generation of feature algorithms, a model for each individual physicochemi-
cal property (x, s|s, %Y + R, NCPR, aggregation, cryptic amyloidogenicity and disorder
binding) and data pair was trained as well as a unique combined model including all
properties for full-length proteins. Support Vector Machines (SVMs) with a Gaussian
kernel were used as classifiers. A fivefold cross-validation to obtain a stable estimate of
the performance (AUROCsSs) was performed. Before the cross-validation, all entries with
missing values (~1% of the total data) were removed. The complete code necessary to
reproduce this analysis can be found in the data repository.

Benchmark analysis

Tools included in the benchmark consist of both classical and state-of-the-art LLPS
predictors published until February 2025, excluding non-available, non-reproducible
or region-level focused tools. Those include PLAAC [64], R+Y [87], CatGranule [23],
PScore [88], PSPer [89], FuzDrop [90], Droppler [91], PSAP [92], DeePhase [62], PSPre-
dictor [61], Seq2Phase [73], FLFB [93], PSPHunter [63], PSPire [32], Picnic [65], and
ROBOT [66] (Additional file 5: Table S4). Homology reduction was first applied with
the CD-HIT algorithm [94] setting a sequence identity threshold of 0.40 to effectively fil-
ter out redundant samples with similarities exceeding 40%. Independent predictors were
configured to run multiple protein sequences and extract the output according to the
decision thresholds established by each tool. Servers without standalone apps were run
by customized R scripts harnessing the RSelenium package. Standard performance met-
rics were computed to assess the predictive capabilities of each tool. Extended details
about the benchmark can be found in Additional file 1: Supplementary methods.
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