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Advancesin deep learning and AlphaFold2 have enabled the large-scale prediction of
protein structures across species, opening avenues for studying protein function and
evolution'. Here we analyse 11,269 predicted and experimentally determined enzyme
structures that catalyse 361 metabolic reactions across 225 pathways to investigate

metabolic evolution over 400 million years in the Saccharomycotina subphylum?.
By linking sequence divergence in structurally conserved regions to a variety of
metabolic properties of the enzymes, we reveal that metabolism shapes structural
evolution across multiple scales, from species-wide metabolic specialization to
network organization and the molecular properties of the enzymes. Although
positively selected residues are distributed across various structural elements,
enzyme evolution is constrained by reaction mechanisms, interactions with metal
ionsandinhibitors, metabolic flux variability and biosynthetic cost. Our findings
uncover hierarchical patterns of structural evolution, in which structural context
dictates amino acid substitution rates, with surface residues evolving most rapidly
and small-molecule-binding sites evolving under selective constraints without cost
optimization. By integrating structural biology with evolutionary genomics, we
establish amodel in which enzyme evolutionisintrinsically governed by catalytic
function and shaped by metabolic niche, network architecture, cost and molecular

interactions.

Enzymes evolve as part of the metabolic network, a large, intercon-
nected system that possesses atopology dependent on evolution and
the chemical properties of its metabolites®>. Because of the central
role of metabolism, enzymes are important drug targets, biomark-
ers and a focus of bioengineering® . Despite its critical role across
disciplines, our understanding of the global biochemical constraints
that shape enzyme function—and therefore its evolution—remains
incomplete.

Comparing enzyme sequences across evolution has revealed vari-
ous constraints that act at the amino acid level, such as the chemi-
cal identity of side chains and epistatic interactions® ™. Moreover,
the sequence of enzymes is shaped by the costs of enzyme produc-
tion'. Indeed, metabolic cost optimization is observed at the spe-
cies and molecular levels. For example, under many conditions,
cells prefer cost-effective fermentation over oxidative metabo-
lism, despite the latter producing stoichiometrically higher ATP
amounts®. Furthermore, especially high-abundance enzymes

have evolved by incorporating less energetically costly amino
acids™™.

We hypothesized that the systematic accessibility of protein struc-
tures enabled by structural prediction' would allow us to integrate
structural biology with evolutionary genomics and expand our
understanding of the relationship between metabolism and protein
evolution. We leveraged the extensive characterization of the Sac-
charomycotina subphylum, which represents 400 million years of
evolution and includes Saccharomyces cerevisiae and Candida albi-
cans* ", and examined 11,269 AlphaFold2-predicted and experimen-
tally determined enzyme structures that belong to 424 orthologue
groups (orthogroups) associated with 361 metabolic reactionsin 224
metabolic pathways. Linking these structures with phenotypic data,
enzyme properties and metabolic network reconstructions, we identi-
fied structural changes that are associated with metabolic constraints.
Wereport how structural evolution depends on metabolic properties
across species, pathways and molecular levels.
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Fig.1|Divergenceinstructurally conserved regions corresponds to
metabolicpropertiesacting at the species, pathway and molecular levels.
a, Phylogenetic tree of the Saccharomycotina yeast subphylum highlighting
the 26 species (+1outgroup species) for which metabolic enzyme structures
were generated and systematically compared. Coloursindicate phylogenetic
order, numbering counterclockwise starting at C. albicans. Branch lengths and
topology are fromthe speciestimetree as calculated inref.2, except for the branch
for the outgroup species S. pombe, whichisnot drawn to scale. b, Illustration

of our analysis pipeline. ¢, Example alignment for 5-formyltetrahydrofolate

Mapping evolution in enzyme structures

We sselected 26 out of 332 highly phylogenetically diverse yeast species
of the Saccharomycotina subphylum'* (Supplementary Note 1) and
included the model fission yeast Schizosaccharomyces pombe as an
outgroup to root protein trees (Fig. 1a and Supplementary Table 1.1).
Then, for enzymes present in the YeastPathways database, we ini-
tially assigned orthologues on the basis of sequence-based clusters®.
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cyclo-ligase structuresinfive species (S. cerevisiae, C. albicans, Kluyveromyces
lactis, Kluyveromyces pastorisand S. pombe). The black line denotes the reference
structurein S. cerevisiae (Faulp). Insets show the orthologue from C. albicans
with mapped residues (M, orange) and unmapped residues (N, cyan), as well as
residues conserved (C, purple) between S. cerevisiae and C. albicans (purple).

d, Mean mapping ratio (M/(M + N)) to mean conservation ratio (C/M) for the 529
reference structures that passed our filters. Dotted line denotes the identity
line, the dashed line denotes the axis median and the solid line indicates the
bestlinear fit. WGH, whole-genome hybridization.

From these sequences, we obtained 1,301 structures from Alpha-
FoldDB* and a further n=9,968 structures that we predicted using
AlphaFold v.2.0.1 at the start of our project (Supplementary Note 2).
Our final dataset consisted of 11,269 enzyme structures organized in
424 orthogroups.

Prediction quality was assessed using the predicted local distance dif-
ference test (pLDDT) score**, whichrevealed that our dataset included
well-structured proteins (mean pLDDT =90.4, mean coefficient of
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variation (c.v.) = 0.15). Compared with the overall structures, the
terminal regions were predicted with alower quality (first 10% of the
sequence: mean pLDDT =79.1, mean c.v. = 0.29; central 80%: mean
pLDDT =92.2, mean c.v. = 0.13; last 10%: mean pLDDT = 87.3, mean
c.v.=0.18) (Extended Data Fig. 1a). Then, we validated and refined
orthogroup assignments using hierarchical clustering on the basis of
abidirectional template modelling score? (Extended Data Fig. 1b,c).
On the basis of a linkage cut-off of 0.2, 29 sequence-based ortho-
groups were splitinto distinct structural orthogroups (Supplemen-
tary Table1.5), whichimproved the average template modelling score
(from 0.71t0 0.77).

To benefit from the extensive characterization of S. cerevisiae, we
calculated pairwise alignments for each orthogroup to S. cerevisiae
enzymestructures using the matchmaker algorithm of UCSF Chimera®.
Tolink these structures to metabolic constraints (Fig. 1b), we calculated
averaged mappingratios (MRs) and conservationratios (CRs). The MR
quantifies the percentage of amino acids that are 1:1 mappable to a
S. cerevisiaeenzyme structure, whereas the CR quantifies the percent-
age of mapped residues identical to those of the reference structure.
The CRwas tightly correlated with a CRbased on the amino acid types
(Extended Data Fig. 1d), thus capturing physicochemical properties.
In agreement with this, a strong inverse relationship to the change of
the octanol-water partition coefficient is observed (Extended Data
Fig.1e; P<1x107*, Spearman’s p =—0.49).

We illustrate the MR and CR for the orthogroup of
5-formyltetrahydrofolate cyclo-ligase (27 structures, CR = 0.40,
MR = 0.87; Fig. 1c and Extended Data Fig. 1f; Faulp in S. cerevisiae).
The corestructures of the enzymes map well and the secondary struc-
tural elements (helical or extended) revealed a mean MR of 95.4%,
whereas the regions without secondary structures (random coils),
which have a higher conformational flexibility, have a mean MR of
77.3%. The median MR for all orthogroups was 87.4% (interquartile
range (IQR) = 78.3-93.9%) (Fig. 1d), with missing mapping mainly in
low-pLDDT scoring regions (Extended DataFig. 1g), thatis, the carboxy
and amino termini (Extended Data Fig. 1a) and random coil regions
(60% of the unmapped and 36% of the mapped regions). Although the
MR generally correlated with the CR (Spearman’s p = 0.55, adjusted
P(P,4;) <1x10™) (Fig.1d), both the MR and the CRreflect different prop-
erties of structural divergence. As the larger structural rearrangements
reflected by the MR were less frequent in our orthogroups, we focused
on the CR, for which we observed a high degree of diversity (median
CR=62.9%,1QR =53.6%, 71.2%, total range = 24.5%, 89.2%) that could
belinked to metabolic evolution. Here we refer to sequence divergence
in structurally mapped regions as divergence (low CR) and sequence
similarity in structurally mapped regions as conservation (high CR).

Biochemical constraints

Theimpact of metabolic specialization

We asked whether metabolic specializations at the species level are
reflectedinthe proteinstructures and linked divergence to the growth
properties of yeast in 21 different carbon sources”*? (Extended
Data Fig. 2a). Enzymes of species able to ferment glucose, raffinose,
galactose and sucrose exhibited the smallest P values for differences
in average CR between subgroups, alongside enzymes from species
that grew aerobically on D-xylose (P,; <1x107%, two-sided Wilcoxon
signed-rank test). Enzymes from anaerobically fermenting species
had a higher conservation relative to the structure from S. cerevisiae,
which also ferments (Fig. 2a and Extended Data Fig. 2b). Although this
finding corresponds to their closer phylogenetic relationship, some
of the largest differences in CR were detected in the orthogroups of
enzymesinvolvedincentral carbon metabolismand the electron trans-
port chain (ETC), for example, Kgd2p (tricarboxylic acid (TCA) cycle)
and Cox7p (respiratory chain). These more divergent orthogroups
alsoincluded Met10p (methionine and sulfur cycle), Athlp (trehalose
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metabolism) and Erglp (ergosterol biosynthesis). We also observed
cases in which the CR in non-fermenting species was higher thanin
the fermenting species. Again, the enzymes were directly related to
oxidative metabolism, including Ndilp, Ald5p, Idp1p and llv6p. Moreo-
ver, gene ontology (GO)-slim terms ‘membrane’, ‘lipid metabolism’,
‘endoplasmic reticulum’ and ‘endomembrane system’ were enriched
in the first quartile of orthogroups with the largest differences in CR
between subgroups for glucose fermentation (P,; <1x 107, Fisher’s
exact test) (Extended Data Fig. 2¢).

To study an example of metabolic specialization, we focused on
the xylose use pathway. Of the 26 species examined, 12 can grow on
D-xylose, 8 cannot and 6 have a conditional phenotype (Extended
Data Fig. 2a). Several enzymes required for xylose use, such as tran-
sketolase, enzymesin the thiamine biosynthetic pathway and the ETC,
were among those with the highest change in CR (Fig. 2b). Notably, the
CR measured in relation to the two S. cerevisiae acetyl-CoA synthase
paralogues, the aerobic (Acslp) or the anaerobic (Acs2p), behaved
differently depending on the capacity to use xylose (Fig. 2b, Extended
DataFig. 2d,e and Supplementary Note 3.1), indicating specialization
for Acslp. Thus, species that specialize metabolically show different
patterns of divergence in enzymes that are related to the relevant
metabolic traits.

Theimpact of pathway membership

Next, we projected diversity in the orthogroups onto a genome-scale
reconstruction ofthemetabolic network (Fig. 2c). Then, we performed a
pathway enrichment analysis on the 25% most divergent and conserved
enzymes (Extended DataFig.3a,b). The most conserved enzyme struc-
tures belonged to pathways for purine biosynthesis, specificamino acid
biosynthesis as well as central metabolism (P, < 0.05, Fisher’s exact
test; Extended Data Fig. 3a,b). The same pathways also showed early
enrichmentinthe receiver operating characteristic curve and high area
under the curve (AUC) values (Fig. 2d and Extended Data Fig. 3c). Con-
sistently, these orthogroups were enriched in the GO-slim terms ‘gener-
ation of precursor metabolites and energy’ and ‘nucleobase-containing
small molecule metabolic process’. The most divergent enzymes tended
tobemorebroadly distributed across the metabolic network, with the
exception that enzymes belonging to ‘lipid metabolic process’ were
enriched. Forinstance, Oarlp (CR = 0.384), Teslp (CR = 0.391) and Ecilp
(CR =0.441) for fatty acid oxidation and Tsc10p (CR = 0.411) for sphin-
golipid synthesis were within the top-5%-quantile of divergence. We
speculate thatlipidomes of cells have a greater flexibility toadapt tothe
metabolicenvironment. Furthermore, the UDP-N-acetylglucosamine
transferases Algl3p and Algl4p, related to N-linked glycosylation, were
also among the most divergent orthogroups.

The impact of molecular function

Next, we annotated the biochemical activities by extracting enzyme
classification (EC) identifiers from UniProtDB. Of 468 matching EC
entries, 238 (51%) were supported by adirect PubMed Evidence code.
Our enzyme structures with functional annotation covered 44% (361
out of 817) of all EC classifiers, distributed across 224 metabolic
pathways (S. cerevisiae annotation; Supplementary Table 1.4) and
encompassed all major enzyme classes, including 119 oxidoreduc-
tases, 191 transferases, 55 hydrolases, 49 lyases, 21 isomerases and
29 ligases. The dataset also contains two translocases, but, because
of their low number, we refrained from making general conclusions
for this EC class.

We noted that in each orthogroup, most enzymes seem to catalyse
the same or highly similar reactions, and observed no changes in EC
functionatlevels1,2 or 3. Achangeinthe EC level 4 classification was
detected in only five orthogroups. For example, in 0G1390, contain-
ing Hsulp, Str2p and YMLO82p in S. cerevisiae, a slight change in the
catalysed reaction occurs”?, which might be facilitated by changes in
adomain close to the binding site (Supplementary Note 3.2).
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We detected a clear relationship between enzyme class and diver-
sity. Oxidoreductases are enriched for high CR, and hydrolases for
low CR (Fig. 2e and Extended Data Fig. 3b). The high conservation of
oxidoreductases was explained by their prominent role in glycolysis,
gluconeogenesis and the TCA cycle. After excluding these central meta-
bolic pathways, oxidoreductases were not more conserved than other
enzymes (Extended Data Fig. 3d). Conversely, the increased diversity
of hydrolases was not explained by their role in specific metabolic
pathways (Extended Data Fig. 3e).

Furthermore, we reportarole for non-catalytic protein-small mol-
eculeinteractions. First, metal-binding enzymes are more conserved
than non-metal-dependent enzymes (two-sided Wilcoxon-Mann-
Whitney U-test, P<1x107*, 7.6% decrease in median conservation,
Cliff’s A = 0.23; Fig. 2f). Furthermore, we observed that enzymes with a
higher number of intracellular inhibitors® are more conserved (Kendall
7=0.22, P,;;, <1x107*; Extended Data Fig. 3f). For instance, Gnd2p, a
central enzyme of the pentose phosphate pathway, is inhibited by at
least 45 cellular metabolites®, and its orthogroup was one of the least
divergent. We thus concluded that characteristics of enzymes, such as
pathway membership, dependency on metal ions and the number of
small molecule interactions, constrain divergence.

pathways covering the TCA cycle and glucose metabolism. The numberin the
legendindicates the AUC. The dashed line denotes theidentity line representing
random sampling. e, Distribution of the mean conservationratio of orthogroups
assigned to oxidoreductases (red) or hydrolases (blue). The average distribution
forallorthogroupsisshowninblack.f, Conservationratio of enzymes known
tobind metals (n=158) and those not known to bind metals (n=371), expressed
asaboxplot. Theline denotes the median and the boxes denote the first and
third quartile, the whiskersextend up to1.5timesthe IQR. Each dot represents
anorthogroup.**P<1x107*, two-sided Wilcoxon-Mann-Whitney U-test.

Abundance and flux diversity constraints

Protein abundance isimportant for sequence conservation®**, Given
that enzyme expression is contingent on the specific activity and flux
of the enzyme, we hypothesized that abundance could be a mecha-
nism through which metabolism influences structural evolution. We
obtained nine of the examined species from the UK National Collec-
tion of Yeast Cultures® (Fig. 3a) and used proteomics to estimate their
protein abundance (Fig. 3a, Extended Data Fig. 4a,b and Supplemen-
tary Methods). We found that low-abundance enzymes were more
diverse than high-abundance enzymes (Fig. 3b; Spearman’s p = 0.48,
P, <1 x107%). This relationship was dependent on the enzyme class;
abundance and diversity were highly interdependent for isomerases,
but not for hydrolases (Fig. 3c).

Next, we estimated metabolic flux through each pathway on the
basis of genome-scale metabolic models for each of the 26 species’.
We benchmarked the fluxes to *C flux measurements for central
metabolites, which are captured by both approaches, and obtained
good agreement (Pearson’s r = 0.8 for median (C flux); Extended Data
Fig.4c).Notably, we revealed only aweak correlation between flux and
CR (Fig.3d; Spearman’s p = 0.19, P,; <1x107*). Instead, a stronger signal
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a, Proteinabundance was determined using proteomics with data-independent
acquisition (Supplementary Methods). b, Mean conservation ratio and the
mean log,-transformed protein abundances for 9 of the 27 investigated species
measured during exponential growth in minimal medium (n =491). The
orthogroup containing the Thi5/11/12/13p family is highlighted inred, other
enzymes of the thiamine biosynthetic pathway are highlighted in purple. The
solid lineindicates the bestlinear fit, the dashed line denotes the axis median.
c,Spearman’s correlation between protein abundance and conservation ratio
for all tested enzymes as well as broken down according to enzyme class
(numbersare adjusted according to the presence of protein abundance data).
*P,g;. < 0.05.d, Correlationbetween different measures of predicted flux (median,
c.v.and number of species (n=329) with flux through agiven orthogroup)

and conservationratio for all tested enzymes, brokendownineach column
accordingtothe enzyme class. For the flux median and c.v., the Spearman’s

was detected for flux variability (Spearman’s p = —0.27, P, <1x107%).
Consistently, orthogroups with low CR exhibited a wide range of fluxes
(Fig.3eand Extended DataFig. 4d). There were exceptionsto this trend,
such asin the orthogroup containing the sphingosine kinase Ysr3p,
indicating highly variable flux and high diversity (low CR), despite
high abundance. Moreover, we also detected a dependence on the
enzyme class. Although divergence was strongly linked to the flux
carried by oxidoreductases, for which all tested measures (median
flux, variability of the flux and species in which flux was present for
the orthogroup) correlated with conservation, other enzyme classes,
especially hydrolases (Fig.3d; P,q; > 0.7 for all three measures), lacked
these relationships. We also estimated enzyme processivity (k) for
eachproteinsequenceinaspecies-specific manner®, and found aweak
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correlation was used, and the Kendall T correlation was used for the number of
species. The number inbracketsindicates the number of enzymes per class.
*P,q;. < 0.05. e, Violin plotof the c.v. of the fluxes for the orthogroupsin the first
and last quartile of conservationratio (blue) or protein abundance (orange).

f, The thiamine biosynthesis pathway is shown. Heat maps underneath enzymes
indicate the Z-scores of the mean conservation ratio, mean log,-transformed
proteinabundance and averaged cost. The Thi5/11/12/13p family and Thi4p
undergo suicide reactionsinwhich they lose a histidine and cysteine residue,
respectively. lllustrationsin awere created using BioRender. Heineike, B. (2025)
https://BioRender.com/r831qhq. HMP, 4-amino-2-methyl-5-pyrimidine;
HMP-P, 4-amino-2-methyl-5-pyrimidine phosphate; HMP-PP, 4-amino-2-
methyl-5-pyrimidine diphosphate; LC-MS, liquid chromatography-mass
spectrometry; NAD", nicotinamide adenine dinucleotide; TDP, thiamine
diphosphate; TMP, thiamine phosphate.

relationship between conservation and k.. However, we report that
the log-transformed variability (standard deviation) of k., is higher
in orthogroups that are diverse (Extended Data Fig. 4e; Spearman’s
p=-0.27,P,5 <1x107%). Thus, both flux and k., seem to be associated
with structural evolution primarily through their variability, rather
than their absolute values.

In parallel, we noticed that enzymes can escape the typical relation-
ship between abundance and conservation due to unique functional
constraints. Our attention was drawn to the thiamine (vitamin B1)
biosynthetic pathway, for which the orthogroup containing Thi5p,
Thillp, Thil2p and Thil3p was highly conserved, despite low abundance
(Fig.3b). Notably, thiamine is extremely energetically costly to synthe-
size, astwo of its reaction steps are catalysed by suicide enzymes that
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order. Error bars denote the median absolute deviation. Bar colouring indicates

lose an essential amino acid after catalysis® (Fig. 3f). This orthogroup
thus illustrated that evolutionary diversification is not necessarily
directly constrained by abundance, but more likely by cost.

Hierarchy of cost optimization

Wethus calculated the average cost per aminoacid for each proteinaver-
aged over the orthogroup using established cost metrics™'*1>*%¢ (Sup-
plementary Note 4). Previous studies indicated that high-abundance
proteinsevolve aless costly amino acid composition™*™, Consistently,
low-abundant, diverse enzymes had more costly amino acid composi-
tions than high-abundant enzymes (Fig. 4a). However, the overall pro-
tein chainlength, a proxy for the total protein cost, showed only a weak
correlation with the mean averaged cost per amino acid (Spearman’s
p=-0.13, P,;; <1x107), indicating that cost optimization might be
duetoselection acting onspecific structural elements. Notably, these
relationships were indicated by cost models that are both dependent
and independent of species-specific metabolic networks (Supple-
mentary Note 4).

To test the role of structural elements, we next identified small-
molecule-binding sites using two orthogonal strategies: (1) binding-site
information depositedin UniProt to account for directly coordinating
residues (UPb) and (2) residues near small molecules from experimen-
tally determined structures obtained from the RCSB Protein Data Bank
(PDB) to also account for the physicochemical environment (CSb).
Next, to distinguish between surface and core residues, we used the

theSpearman’s correlation between the mean CR and the relative amino acid
contentofthe entire protein. d-f, Spearman’s correlation between the relative
amino acid content for various structural features of proteins compared with
the mean overall CR (e), scatter plotillustrating the relationship between
mean overall CR and therelative (Rel.) alanine content of the entire mapped
region (d) and relative surface glycine content of the mapped region (f). Solid
lineindicatesthe best linear fitand the dashed line denotes the axis median
(dandf).*P,q; <1x107*(e). The colour bar shownineappliestoa-cande.

relative amino acid solvent-accessible surface areaand designated each
residue as either asurface-exposed or core residue®. We found that the
amino acid composition is optimized differently in these structural
elements. Ingeneral, the average cost of core residues was higher than
the cost of surface residues, whereas binding sites had amore variable
cost. Among surface residues, we also observed increased costs for
membrane-bound proteins and short proteins (<100 amino acids),
such as Qcr8p or Ktillp in S. cerevisiae, that might be part of larger
complexes (Extended Data Fig. 5a).

Moreover, we observed a hierarchy of structural evolution. Enzymes
with more conserved surfaces tended to be less costly. This effect,
although less strong, was also present for core residues, but was mark-
edly diminished for binding sites, suggesting that surface residues are
the primary sites for cost optimization (Fig. 4b). Moreover, the more
expensive aromatic amino acids, such as phenylalanine and tyrosine,
were more frequent in the variable and low-abundance enzymes. By
contrast, the conserved, high-abundant enzymes contained higher
amounts of the least expensive amino acids, glycine, glutamate and
alanine (Fig. 4c¢,d and Extended Data Fig. 5b,c).

Addressing the molecular level, we detected asignificant association
between CRand aminoacid contentin atleast one structural feature, for
11 of the 20 canonical amino acids (P,; <1x10™; Fig. 4e and Extended
DataFig.5d). Forinstance, surfaces and coil regions of highly conserved
enzymes had higher glycine content (Fig. 4f), whereas the core and
helical regions had higher alanine content. Presumably, these smalland
inexpensive amino acids canreplace many other amino acids, and their
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Fig.5|Structuralfeatures and enzyme function arelinked to conservation.
a,Mean conservationratios of the core and the surface. Dotted line denotes the
identity lineand the dashed line denotes the axis median. Bottom right, depiction
of'the core (black) and surface (orange) of the protein based on relative solvent-
accessible surfaceareafor Faulp. b, Distribution of the mean conservation
ratio for allmapped residues (blue), the core (black), the surface (orange) and
the binding-site residues (purple, CSb). ¢, Enrichment of orthogroups containing
the 25% most conserved enzymes for structural features and catalytic properties.
Dotsize indicates the number of metabolic enzymes associated with the relevant
listinourselection, colourindicates the adjusted Pvalue.d, Mean conservation
ratios of the extended and the helical parts. Lines asin a. e, Percentage of residues
inacolumnonthesurfaceof therelated structure for residues under purifying
selection (Pur.sel.) or neutral drift (N. drift) (site model). ***P<1x 10, two-sided

physicochemical properties are more suited to either the core or the
surface. Furthermore, the surfaces of the variable enzyme structures
had a higher cysteine content. This is presumably because cysteine
often performs dedicated functions related toits high reactivity, such
as catalyticactivity or stabilization through disulfide bridges®. Notably,
there were no significant associations between the presence of any
amino acid in binding sites and the CR of the enzymes.

Conservation of structural features

Hierarchy of structural evolution

Atthe substructurelevel, the core of the enzyme was more conserved
thanthe surface (Fig. 5a). Furthermore, the binding sites had the high-
est CR (Fig. Sb and Extended DataFig. 6a), and orthogroups containing
fewer variable enzymes were significantly enriched for possessing a
known binding site (AUC = 0.62 and 0.66; Fig. 5c). An exception was
the orthogroup of the fatty acid synthetase subunit Fas2p, in which
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Wilcoxonsigned-rank test. f, Depiction of the conserved regions in Cdc19p.
Eachnon-whiteregion denotes afully conserved cluster of amino acids. The
spheresindicate the ligand (phosphoenolpyruvate (PEP), associated clusters:
darkblue, lightblue, greenand cyan) and the activator (fructose-1,6-bisphosphate
(F-1,6-BP), associated cluster: orange) (crystal structure: PDB1A3W).
Homotetrameric subunits are highlighted (associated cluster: dark blue).
Topright, clustered network (nodes, residues; edges, Caatoms within10 A;
colours, cluster labels). Bottom right, summary of the clustered network (node
sizes, adjusted cluster sizes; edges, connectivity; edge widths, edge number).
g, Percentage of either all or only fully conserved residues identified as binding
sites (CSb, n=140). Theline denotes the median and the boxes denote the first
and third quartile, the whiskers extend up to 1.5 times the IQR. ***P<1x107*,
two-sided Wilcoxon signed-rank test.

the bindingsite (n = 21 (UPb), 95 (CSb) amino acids) was more variable
than the overall protein (Extended Data Fig. 6b,c).

At the level of the secondary structure, most helical portions (for
example, a-helices) varied more than did extended portions (for
example, B-sheets) (Fig. 5d). This result is robust to the tendency of
AlphaFold2 to wrongly predict random coil regions (2.28%) as helical
more than as extended® (Supplementary Note 2). To our surprise,
helical portions were also more variable than mapped random coils,
which are assumed to have a higher dynamic flexibility (Extended Data
Fig. 6d and Supplementary Note 5). One explanation for this might
be the presence of turns in the random coil regions, which show high
conservation (Extended Data Fig. 7a,b).

Another factor that caninfluence structural evolutionis larger archi-
tectures (protein folds). To assess this, we extracted fold information
for those proteinsin our dataset that were presentin The Encyclopedia
of Domains database*. Indeed, amino acids in these folds are slightly
more conserved (two-sided Wilcoxon signed-rank test, P<1x 107,


https://doi.org/10.2210/pdb1A3W/pdb

adjusted Cliff’s A = 0.64). Consistently, the two most dominant folds,
the Rossmann fold (CATH fold 3.40.50) and TIM barrel (CATH fold
3.20.20), also exhibit higher conservation (two-sided Wilcoxon
signed-rank test, P<1x 107, adjusted Cliff’s A = 0.36 (Rossmann fold)
and P<1x107, adjusted Cliff’s A= 0.86 (TIM barrel); Extended Data
Fig.6e). The orthogonal bundle (CATH architecture 1.10) was enriched
in the most conserved enzymes (Fisher’s exact test, P,4; <1x107).

Conserved clusters capture interactions

To identify important functional residues, we conducted evolu-
tionary selection analysis by estimating non-synonymous (dN) and
synonymous (dS) substitution rates at both the whole-protein and
site levels* (Extended Data Fig. 8 and Supplementary Note 6.1). We
observed a higher probability of neutral drift (dN/dS < 1) in surface
residues (Fig. 5e). Moreover, in specific cases with (1) low conservation
and high whole-protein dN/dS values (ETC proteins and Pox1p); or
(2) the presence of sites under positive selection across all species, for
example the GAPDH orthogroup containing Tdh1/2/3p, we observed
residues withevidence of positive selection in specific branches using a
branch-site model*>**.In Pox1p, positively selected residues are found in
thehomodimerinterface (Extended Data Fig.9a,b), whereasin GAPDH,
positively selected residues were primarily on surface-exposed resi-
dues, and did not affect the multimeric protein—protein interaction
(PPI) sites. Moreover, one positively selected residue in GAPDH is within
distance of the substrate-cofactor binding interface (Extended Data
Fig.9¢,d). Finally, in the ETC supercomplex, 96 out of 157 unique resi-
dues with signatures of positive selection were on internal PPl sites
(Extended Data Fig. 9e-g). Thus, despite surfaces being most diver-
gent, followed by coreresidues and low diversificationin the substrate
binding sites, positive selection can occur in all structural elements
(Supplementary Note 6.2).

In parallel, we noticed that fully conserved structural regions are
often organized in clusters. Generating a network of fully conserved
residues, resulted in a median number of 4.00 (IQR=2.00-6.00)
clusters with a median size of 18.55 amino acids (IQR = 14.00-23.64)
per cluster (Supplementary Table 5.1). For example, in the pyruvate
kinase orthogroup (Cdc19p of S. cerevisiae), these clusters correspond
to the allosteric activation site for fructose-1,6-bisphosphate, the
substrate-binding site for phosphoenolpyruvate and to asymmetric PPI
site (Fig. 5f). We thus speculated that these clusters could correspond
to metabolite-binding or other interaction sites. Indeed, they contain
twice as many substrate- and ligand-binding-site residues (Fig. 5g and
Extended DataFig. 6f). Moreover, 91% (CSb) and 97% (UPb) of the anno-
tated binding sites overlapped with at least one cluster. On the other
hand, 27% (CSb) or 50% (UPb) of these clusters did not overlap with
annotated binding sites. To test whether clusters can be identified as
containing known binding sites, we trained a histogram-based gradient
boosting classification tree on physicochemical properties. Evaluat-
ing ten fivefold cross-validations, we obtained an average balanced
accuracy of 0.63 and average AUC of 0.68 on test dataremoved before
training (Extended Data Fig. 6g), outperforming two random mod-
els (balanced accuracy = 0.57, AUC = 0.60 (random binding site) and
balanced accuracy = 0.53, AUC = 0.54 (randomized labels); Extended
Data Fig. 6h). Projecting the prediction confidence onto individual
amino acids confirms that residues in known binding sites are more
likely to be predicted as part of a binding site (P <1x 107, two-sided
Wilcoxon signed-rank test, adjusted Cliff’s A = 0.78). Moreover, we
tested the degree to which these clusters can correspond to other
types of interaction site and observed a slight over-representation of
known PPIsites as extracted from the RCSB PDB (Extended Data Fig. 6i;
Cliff’s A = 0.23 (compared with small-molecule-binding sites with 0.84
(CSb) and 0.92 (UPb)), which s consistent with a high conservation of
PPIsites (Extended Data Fig. 6j). In agreement, enzymes with more
physical PPIs (Extended Data Fig. 6k; Kendall 7= 0.32; P, <1x107*)
andenzymes involved in protein complexes** (ComplexomeDB; Fig. 5c)

were more highly conserved. Thus, although highly conserved clusters
are dominated by small-molecule-binding sites, they also reflect PPI
sites. Notably, some known small-molecule-binding sites were not in
highly conserved clusters. This situation might be explained by the small
size of some small-molecule-binding sites (such as metal interaction
sites), butalso pointsto the need for better annotation of existing sites.

Discussion

The metabolic network s evolutionarily ancient, andits origins are com-
monly explained by two prevailing hypotheses. One suggests that its
topological organization emerged as a consequence of enzyme evolu-
tion, whereas the other proposes that the metabolic network structure
originated from non-enzymatic reactions®. Although metabolic evolu-
tion has probably experienced elements of both, increasing amounts
of experimental evidence favour the second scenario. For example,
many enzyme-catalysed reactions resemble non-enzymatic reactions
as promoted by metalions found frequently in Archaean sediment**¥,
Moreover, despite considerable divergence in the enzyme sequences,
thebasic structure of the metabolic network remains conserved>*8, At
the same time, modern metabolic pathways are highly efficient and
respond to the environment, which suggests that they are optimized
during evolution®.

Studies into enzyme evolution support the model in which meta-
bolic pathways evolve alongside chemical topologies, followed by
their evolutionary optimization. Comparative genomics and detailed
structural and functional investigations have described enzyme evolu-
tion as a dynamic process shaped by genetic innovations, biological
constraints, cost and ecological interactions>*°=2, Functional cluster-
ing of enzymes and their domains into families has provided insights
into the extent of gene duplication and divergence across the tree of
life***5¢_Furthermore, studies on niche adaptation have demonstrated
how metabolic capabilities are lost and gained through both the expan-
sion of gene families and the functional diversification of promiscuous
enzymes>'®?, These findings suggest that enzyme evolution follows
selective pressures that balance catalytic efficiency with cellular meta-
bolic demands and resource allocation.

We speculated that the ability to generate protein structures sys-
tematically and across species barriers’ enables the integration of
high-resolution structural data into functional genomic approaches,
aiding the understanding of evolutionary processes. Suchanapproach
is certainly constrained by the accuracy of structural prediction®~. We
focused on 26 diverse species selected from the Saccharomycotina
subphylum to build on well-annotated genome sequences, enzyme
functional annotations, genome-scale metabolic network reconstruc-
tions and proteomic data. The 11,269 enzyme structures examined
cover most metabolic pathways, GO terms and enzyme classes present
in their metabolic networks. We asked whether metabolic properties
that differ between species, pathways and enzyme classes can help
to explain the range of sequence diversity in structurally conserved
regions observed in the different orthogroups. In this way, we identified
metabolic constraints that influence structural evolution at different
biological scales, fromthe level of the organism to those of pathways,
individual enzymes and enzyme substructures. We also identified path-
ways, enzyme classes and, insomeinstances, structural elements that
contribute to these relationships.

At the scale of the organism, we found that structural evolution is
influenced by niche specialization, such as nutritional preferences.
This included changes from oxidative to fermentative metabolism,
which are a dominant metabolic module in yeast, other microorgan-
isms and higher organisms. Changes from fermentationtorespiration
represent a major metabolic shift as fermentation is faster and less
costly in terms of resource allocation, but oxidative metabolism has
abetter stoichiometry for ATP production, and imposes constraints
on antioxidant metabolism®*%%,
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Atthe pathway scale, our datasuggest that enzyme structural evolu-
tion depends on pathway membership, the type of reaction catalysed
and interactions with other metabolites. Enzymes involved in central
carbonmetabolism, oxidoreductases and metal-binding enzymes were
the most constrained, whereas hydrolases and enzymes of more periph-
eral metabolic pathways, such as those functioning in lipid metabo-
lism or protein glycosylation, diversified. Interestingly, we report an
interdependency between enzyme conservation, metabolic flux and
processivity, but find that variability of flux and processivity was more
important than the total amount, indicating for these properties that
the dynamic nature of metabolism constrains enzyme evolution more
than do static properties.

At the structural level, our study confirmed that high-abundance
enzymes evolve towards a more cost-efficient amino acid compo-
sition™® with cost optimization depending on enzyme class and
structural element, and distinct amino acid substitutions prevailing
in different contexts. Most optimization occurs on surface regions,
withtheleastinbindingsites. Furthermore, structural features exhibit
specific trendsinamino acid substitutions. For example, alanineis more
prevalentin the core, whereas glycine residues are more common on
the surface of highly conserved enzymes.

It has been proposed that the diversification of enzyme structures
can lead to new metabolic capabilities*>*. Our dataset is consistent
with this possibility but highlights that most of the structure-driven
diversification results in shifts between chemically similar reactions.
Our dataset identifies no example of ahigher order change in enzyme
function, and at the molecular level, binding sites are highly conserved
and not optimized for costs. Therefore, we observe the formation of
clusters of high structural conservation in small-molecule-binding
sites. Our data suggest that these clusters can be used to annotate
previously undescribed binding sites, whereas some serve other func-
tions such as PPI.

Across all our analyses, we obtain a consistent picture that the
relationship between structure and evolutionary constraints is
dominated by catalytic function. Notably, hydrolases differ in sev-
eral properties (Extended Data Fig. 10a—e) and escape most of the
otherwise highly pronounced relationships. This is not due to overall
structural differentiation, as the MR was not significantly different to
other enzyme classes (Extended Data Fig. 10f), neither was it due to
changesin binding site conservation (Extended Data Fig.10g,h). We
speculate that a contributing factor to this situationis that hydrolases
do not require a cofactor®, that their reaction mechanism is thus
less constrained in evolution, and that they participate in a diverse
spectrum of metabolic processes. By contrast, the high conserva-
tion of oxidoreductases is predominantly explained by their role in
central metabolism.

Overall, thisdominance of the catalytic constraints across all layers
investigated is consistent with a model in which metabolic enzymes
evolve alongside the chemical topology of the metabolic network,
with structural components involved in catalysis changing the least.
Analternative hypothesis, that constraints on enzyme structure drive
changes in metabolism, would result in more flexible binding sites in
conserved structures. This notion does not rule out that structural
changes in enzymes could cause changes in substrate specificity and
amplification of promiscuous activities that could pave the way for the
evolution of metabolic pathways, for instance, through the selection
ofapromiscuousreaction. These findings illuminate the relationship
between enzyme function, metabolic environment and structural evo-
lution, providing innovative strategies for enzyme annotation and
metabolic network engineering.
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Extended DataFig.2|Nutrientutilization constraining structural evolution
inSaccharomycotina. a) Nutrient utilization for different carbon sources
according to Kurtzmanetal., 201178, 1denotes growth, 0 denotes lack of
growth, vdenotes variable growth, and n denotes missing data. b) Mean
conservation ratio per protein calculated for species that ferment glucose
versus species that do not ferment glucose in Kurtzman etal.”. Pathways
related to aerobic respiration or anaerobic fermentation are highlighted.
Thedotted line denotes the identity line, the solid line denotes the linear fitand
the dashed line denotes the axis median. c¢) Significant GO slim enrichments of

thefirst quartile of the orthogroups containing proteins that show the largest
differencesin mean conservationratio between species that fermentand species
that donot ferment glucose. Sizeindicates the number of genes associated
withthe GO slimterminourselection, and colourindicates adjusted p-value.
Inaddition the areaunder the receiver operating characteristic curve (AUC) is
shown. d) Average-linkage hierarchical clustering of the pairwise CRs for the
orthogroup containing Acslpand Acs2pin S. cerevisiae. e) CR of Acs1,2p
orthologues withrespect to Acslp/Acs2p. Thelabels are colored according to
the capability of D-Xylose utilization asshownin A.
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variation (measured species). The dotted line denotes theidentity line and the and the dashed line denotes the axis median.
dashed line denotes the axis median. c) Median simulated flux compared to
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complex as defined in ComplexomeDB (n =128) or not (n = 401) performing Wilcoxonsigned-rank test.
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Extended DataFig. 9| Positive selectionin Pox1p, Tdh1/2/3p and the ETC.
a) Multiple sequence alignment of selected regions of Pox1p orthologs. Asterix
indicatesresidues under positive selectionin the branch highlighted with the
black box ontheleft. Other highlighted residues interact with positively
selected residuesinthe structure. The dark squareindicates the branch
containings$S. cerevisiae and W. anomalous orthologs for which residues under
positive selection are highlighted in (b). b) Structure of the fatty-acyl coA
oxidase homodimerinterface obtained by using the crystal structure of the
Y.lipolytica AOx protein, ylACO1 (right), (PDB:5Y9D). This crystal structure was
alsoused as areference tosuperimposeS. cerevisiae Pox1p structure from
Alphafold2 (left). The positively selected amino acids Lys580 and GIn653 as
wellasthe coordinating amino acids Tyr385and Asné31are highlighted. The
red and the orange surfaces denote different protein chains of the homodimeric
complex. Theinset table denotes the residues present for various orthologs.
Greyshadinginthe table denotes residues and branches that were under
positive selection. c) Multiple sequence alignment of GAPDH enzymesin the
regionsurrounding the K101 residue positively selected inthe branchindicated
by the darksquare. d) Left: Tetrameric structure of GAPDH 3 from S. cerevisiae
(PDB:3PYM) with positively selected residues highlighted in white. Right:
Zoomintothebindingsite (predicted structure) with cofactor NAD and ligand
GAPextracted from PDB:5JYA. The positively selected Lys101as well as the

coordinating Glul02 and the catalyticallyimportant Cys150 are highlighted.
e) Multiple sequence alignment of Qcr2 highlighting residues detected as
under positive selection in designated branches. f) Connectivity network

of the cytochrome-c-oxidase/cytochrome bclcomplex (PDB: 6HU9). The
nodesizeindicates the length of the protein chain. Square nodes denote
mitochondrially-encoded genes. The nodes are coloured with respect to the
conservationratio, where grey denotes missing orthogroupsin our data
selection. The edges indicate physical interactions between the proteins and
edgewidthindicates the number of contacts between the surfaces of the two
protein chains. The edges are coloured according to the number of positively
selected amino acids fromeither protein chainon the surface between the two
protein chains. g) Crystal structure of the cytochrome-c-oxidase/cytochrome
bclcomplex. Thestructure consists of ahomodimer made up of two ubiquinol
cytochrome creductase (complexI1l) complexes surrounded by two cytochrome
coxidase (Complex1V) complexes. Protein chains are coloured with respect to
their conservationrate (left part) or chainID (right part). Red dots denote
positions where positive selection was detected inatleastone branch. In
addition, fourinterfaces are shownin detail, highlighting positively selected
residues between the two surfaces. Therespective positionsinthe complex are
denotedin coloured boxes. Multiple sequence alignmentillustrations created
withJalview.
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Extended DataFig.10|Hydrolases escape most relationships and differ
significantly inseveralinvestigated properties. a) Pearson correlation
ofthe mean MR and the mean CR for different enzyme classes. A*indicates
anadj. p-value <1e-2.b) Mean CR versus mean MR with orthogroups
containing hydrolases highlighted. The solid line denotes the best linear fit.

c-f) Distribution of ¢) flux coefficient of variation, d) CR, e) log2-transformed
proteinabundance and f) MR for different enzyme classes. A *indicates an adj.
p-value <1E-2,a***anadj. p-value <1E-4.g + h) CR of the binding site using g)
the CSb and h) the UPb definition for different enzyme classes.
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