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ABSTRACT This paper develops a model for recognizing emotions in visual images. The integration of
contrastive-center loss optimization is proposed in this paper. This effectively improves the recognition of
emotions when training a convolutional neural network against the baseline. The proposed contrastive-center
loss function optimizes deep neural networks by enhancing feature discriminability. This loss function
includes two key components: intra-class compactness and inter-class separability. We have suggested
controlling the impact of the inter-class separability on the loss function. Moreover, we suggest combining
cross-entropy and contrastive-center loss to calculate the total loss. In addition, we have proposed to apply
the dimensionality reduction (visualization) for interactive evaluation of how the objects in the test set are
arranged and how this arrangement, as well as the classification as a whole, can be improved by choosing
the best combination of the strength of contrastive-center loss impact on the total loss. The efficiency of
the developed model improvements is examined on three datasets: WEBEmo, FI-8, and EmoSet-118K. Our
research allows us to improve the performance of visual emotion classification: for the WEBEmo dataset
by 1.6%, the FI-8 dataset by 2.2%, and for the EmoSet-118K dataset by 2.52% higher accuracies than the
baseline case.

INDEX TERMS Image analysis, convolutional neural network, CNN, contrastive-center loss, visual emotion
images, evaluation of emotions, EfficientNet.

I. INTRODUCTION

Vision comprises the primary stimuli through which humans
perceive external information. Images often convey emo-
tional content that can evoke viewers’ positive, negative,
or neutral responses.

Visual emotion analysis aims to interpret these emotional
cues in images. While traditional psychology identifies
six basic emotions (happiness, anger, sadness, surprise,
disgust, and fear), recent work by [1] and [2] extends this
classification to seven categories: joy, sadness, surprise,
disgust, anger, fear, and neutral. This field addresses three
key analysis concepts: emotion recognition through facial
expressions, general image emotion classification, and hybrid
approaches combining both. Visual emotion analysis has
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been notable in recent years and has potential applications
in various areas. Automated emotion recognition enables
personalized human-computer interaction in mental health
applications (for example, detecting depressive tendencies
from social media images [3]) and adaptive education
systems (for example, adjusting the pace of lessons based on
student engagement detected in video feeds [4]). In robotics,
emotion-aware systems improve social assistive devices
for elderly care [5]. For the visual emotion analysis,
psychologists primarily describe two types of emotion
representation models or taxonomies. The first is categorical
emotion states (CES), and the second is dimensional emotion
space (DES) [6]. Plutchik [7] formulated a theoretical
three-dimensional model of human emotions: a cone-shaped
representation where the angle in the circle denotes the degree
of similarity between emotions, and opposing emotions are
expressed with vertical lines. Thayer [8] suggests defining
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emotions according to arousal levels: energetic and tension.
Emotional valence can be defined as either positive or
negative - disgust is considered a negative emotion, whereas
tenderness is the opposite. From the provided figure, it can be
asserted that anger and tenderness have different emotional
valences and are distinguishable in images.

It should be noted that people’s subjectivity in identifying
emotions in images is based on different methods. Therefore,
differences between various methods, studies, or surveys
in identifying emotions in images yield inconsistent results
[71, [8]. In conclusion, there is no unified model for emotion
research because human subjectivity, ambiguity, regional
and cultural differences, and gender prevent this from being
achieved [9], [10]. Our research gives the possibility to
generalize people’s emotional experiences using artificial
intelligence.

One interesting application is emotion evaluation in
artworks. The preliminary experiments are done in [11].
Here, the emotions in artworks by eight-year-old children and
those of Vincent van Gogh were evaluated. The majority of
predictions indicate sadness in Vincent van Gogh’s paintings.
For artworks by a child, there are primarily positive types of
emotions.

Current visual emotion analysis identifies several research
challenges. One such challenge is the affective emotion gap,
which involves extracting features that can better distinguish
closely related emotions [12]. The development of visual
emotion analysis can be divided into several approaches:
extraction of low-level visual features, analysis of mid-level
visual features, and deep learning methods. These methods
are frequently combined with various multi-scale models to
address visual emotion prediction problems [13], [14], [15].
Luo et al. [13] propose a novel model for extracting emotion
images’ local and global features using visual transformers
and a local attention module. Xu et al. [14] describe a
multi-scale dependent attention network (MDAN), which
leverages different emotion hierarchies. Zhang et al. [15]
propose another network consisting of an affective region
detection module and a multiscale feature module.

However, in these developments, the models are typically
multi-stage and require complex feature extraction branches.
Moreover, there is a lack of studies that bridge the affective
emotion recognition gap; existing methods do not incorporate
efficient techniques to improve the discriminability of image
emotion classes.

To address these limitations, we propose a more robust
approach that enforces better visual emotion class sepa-
rability in the embedding space through contrastive-center
loss optimization, thereby eliminating the need for com-
plex multi-stage feature fusion and training. In this study,
we analyze the high-dimensional feature outputs obtained
from a convolutional neural network (CNN), a model that
uses convolutional operations to extract hierarchical spatial
features to derive robust feature representations for emotion
recognition.
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Our main contribution is an integration of contrastive-
center loss optimization in the training of a deep neural
network. We achieve several improvements for robust image
emotion recognition by introducing contrastive-center loss
optimization. Firstly, it brings images of the same emotion
class closer in the embedding space. Secondly, it pushes
different emotion classes further apart by leveraging class
centers in the feature embeddings.

We investigate the trained network’s emotion repre-
sentations in the high-dimensional feature output space.
We gain additional insights into the trained model by
employing dimensionality reduction methods. In particular,
we use the uniform manifold approximation and projection
UMAP [16] dimension reduction technique to visualize the
high-dimensional feature outputs. These visualizations allow
us to understand positional embeddings, such as emotion
groupings and overlapping emotion categories. Additionally,
we conduct a cluster analysis of the high-dimensional
feature outputs to establish the effectiveness of our proposed
contrastive-center loss optimization.

The remainder of this paper is organized as follows:
Section II reviews existing visual emotion recognition
architectures and studies. Section III details our proposed
contrastive-center loss integration. Section IV presents our
experimental setup for training and evaluating described
network. Section V presents comparative results between our
improved model and the baseline approaches.

Il. RELATED WORK

Zhao et al. [6] in their comprehensive survey review the
advances in Affective Image Content Analysis (AICA) over
the past twenty years. The review outlines the importance
of understanding the emotional impact of images, which can
convey rich semantics and evoke various emotions in viewers.
The review covers key emotion representation models,
available datasets, and state-of-the-art feature extraction
and learning methods. It also discusses the applications
of AICA in fields such as opinion mining, psychological
health, business intelligence, and entertainment. The paper
describes three main challenges in the affective image content
analysis: affective gap, perception subjectivity, and label
noise and absence. The affective gap refers to the difficulty in
bridging the low-level features of images with the high-level
emotional responses they evoke. For example, the authors
illustrate the affective gap’s significance by displaying two
pictures with an ordinary physical object (e.g., a rose on a
bright background or during the rain) — conveying different
sentiments for the corresponding images.

Xu et al. [17] demonstrated a visual emotion recognition
system that uses the CNN architecture. A CNN architecture-
based model was trained to recognize objects, and then
the problem was transferred to sentiment recognition.
Chen et al. [18] used images labeled as Adjective-Noun
Pairs ANPs. The authors managed to obtain statistical hints
for emotion classification by manipulating the strength
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of sentiment based on adjectives and nouns. However,
these papers only demonstrate how to solve the binary
emotion classification problems. You et al. [19] constructed
a large-scale visual emotion dataset named Flickr and
Instagram set (FI-8). This dataset was formulated according
to the psychology studies and contains eight labeled emotion
categories — amusement, awe, anger, contentment, disgust,
excitement, fear, and sadness. This dataset was collected
from freely available sources. Its images were manually
labeled using the Amazon Mechanical Turk system, and the
final Flickr and Instagram dataset has 23308 visual emotion
images.

Other researchers analyse multi-layered network models
to recognize and classify possible visual emotions [20].
These authors demonstrate the possibility of fusing visual
semantic and visual-stream models for predicting emotions.
Their proposed visual-semantic model produces possible
visual-emotional embedding merging alongside the visual-
stream model. Their Visual-semantic model is based on the
DeepSentiBank structure [21], which produces conceptual
emotion expression, e.g., a small beetle is expressed as
the disgust expression. These expressions are formed as
a graph embedding in a 2-dimensional space. They use
the ResNet50 [22] model architecture for the visual stream
emotion recognition model. The final fused model is the
multiplication of these two different model architectures, and
the visual emotion predictions are obtained in the result.
A similar approach and study was done by Zhang et al. [23],
where a multi-level representation model with side branches
named Gram matrices for shallow features is proposed.
The authors in [23] try integrating feature maps from
different layers by applying a Gram matrix for further
sentiment analysis — i.e., for negative and positive emotion
classification. Based on the Gram matrix integration idea by
Zhang et al. [23], authors of [24] have utilized Gram matrix
modules for recognizing sadness emotion.

Xu et al. [25] introduce the multiple views prompt
(MVP) model, which improves visual emotion recognition by
integrating image content, generated captions, and enriched
emotion labels through a structured prompting framework.
The described method indicates an effective multi-modality
feature fusion. Their proposed MVP method achieves
state-of-the-art results on various visual emotion datasets.
Luo et al. [26] describe a combined visual relationship feature
and scene feature network CVRSF-Net — a dual-branch
framework for image emotion recognition. Dual branches are
defined as follows: the vision transformer encodes the entire
image to a global feature map, and the visual-relationship
feature branch highlights image emotion regions. This
dual-branch network is fused using the graph attention
network. In another study, Rui [27] extracts CNN features
from each artwork image, embeds them in a low-dimensional
space via a variational autoencoder, and then applies an
unsupervised clustering algorithm (e.g., k-means) to classify
the images into three sentiment groups — positive, negative,
and neutral.
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Sun et al. [28] propose a Supervised Contrastive
Learning-based model for classifying image emotions. Their
model integrates low-level handcrafted features (extracted
using the LBP-U — Local Binary Patterns — algorithm [29])
and deep emotional features (learned through a ResNet-50
[22] encoder), combining them using a feature fusion strategy
to enhance emotional classification performance. The authors
also describe a novel two-stage training setup involving
pre-training the ResNet-50 encoder using a supervised
contrastive loss function to improve feature discrimination
by reducing intra-class variability and enhancing inter-class
separability. In the second stage, the pre-trained encoder
is frozen, and the classifier is trained using cross-entropy
loss optimization. Their findings indicate improvements over
baseline methods on the FI image emotion dataset, suggesting
the effectiveness of their approach. However, the study
lacks the analysis of different emotion datasets to validate
generalization. It does not extensively analyze the specific
impact of the supervised contrastive learning optimization
strategy on model performance.

The advancements of deep learning give a new option for
image analysis from different viewpoints, including emo-
tions. However, training deep neural networks needs many
computing resources. The networks also tend to have van-
ishing or exploding gradient problems (see e.g. [30]). Batch
normalization helps here, but the issues above remain with
the increase in the model’s depth. One solution was proposed
in Deep Residual Learning for Image Recognition by [22]
to use ResNet blocks, which connect the output of one layer
with the input of an earlier layer. These skip connections are
also commonly known as residual connections. Residual con-
nections’ applicability and usage have been proven widely
in various architectures: Xception, MobileNetV2, DenseNet,
EfficientNets [31], [32], [33], [34], [35]. Skip connections
are also widely used in U-Net [36] and DeepLabV3 [37]
for image segmentation tasks. Hybrid architecture-based
models are emerging and achieving state-of-the-art results.
For example, authors [38], [39] propose hybrid models
that integrate convolutional neural networks (CNNs) with
Vision Transformer (ViT) architectures. By combining CNNs
with ViTs, these hybrid models leverage the strengths of
both approaches — efficient local feature extraction from
CNNs and the global attention capability of transformers.
These architectures have demonstrated significant success
across various fields, including medical imaging [40], remote
sensing [41], [42], video surveillance [43], and anomaly
detection [44].

Ill. IDEAS AND INSIGHTS FOR EFFECTIVE ANALYSIS OF
VISUAL EMOTION IMAGES

In this section, we present our ideas and solutions for
their integral use in emotion recognition in images of a
general nature. Emotion analysis in this section mainly
refers to the several steps and designs, which will be
further described in the following subsections. We propose
a model, analyze it, and identify and interpret its efficiency.
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FIGURE 1. Structure of MBConv and Fused-MBConv blocks. Source: [35].

Challenges for integrating contrastive-center  loss

optimization are also described.

A. EfficientNetV2S CNN BACKBONE DESCRIPTION

This subsection describes key components of the Efficient-
NetV2S convolutional neural network [35]. We utilize the
network as a feature extractor and the main component of our
proposed model for image emotion recognition.

Figure 1 shows the structural blocks (modules) of the
EfficientNetV?2 architecture. The authors in [35] determined
the entire network structure using combinations from these
blocks. Here, H and W are the height and width of the input,
and C is the number of channels. The MBConv block is an
inverted residual block first introduced in the MobileNetV2
convolutional neural network architecture [32]. Initially,
a 1 x 1 convolution expands the number of layer channels,
followed by a special 3 x 3 depthwise convolution that
reduces the number of parameters. Finally, a 1 x 1 convolution
is applied to normalize the dimensions of the output and
input. The authors of EfficientNetV2 [35] also improved this
block with a so-called squeeze and excitation (SE) layer,
which was first introduced in [45]. The essential differ-
ence between MBConv and Fused-MBConv is that Fused-
MBConv replaces the first two layers with a conventional
3 x 3 convolution.

Table 1 illustrates the structure of EfficientNetV2S used
in our paper. Stride refers to the convolution operation’s
step size. Channels No indicates the number of output
channels from a particular block or operation. Layers No
specifies the count of specific block repetitions within a
certain stage. For example, the number of layers in the fourth
stage, 6, indicates the number of MBConv block repetitions.
MBConv[r] denotes the module MBConv with an expansion
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TABLE 1. Structure and parameters of EfficientNetV2S. MBConv and
Fused-MBConv blocks are described in Figure 1. Source: [35].

Stage Operation Stride | Ch Is No. | Layers No.
0 Conv3x3 2 24 1
1 Fused-MBConv1, k3x3 1 24 2
2 Fused-MBConv4, k3x3 2 48 4
3 Fused-MBConv4, k3x3 2 64 4
4 MBConv4, k3x3, SE0.25 2 128 6
5 MBConvo6, k3x3, SE0.25 1 160 9
6 MBConvo6, k3x3, SE0.25 2 256 15
7 Conv IxI & Pooling & FC - 1792 1

factor of n: the initial 1 x 1 convolution receives C channels
and expands the output to n x C channels. SE0.25 refers to
the squeeze and excitation block reduction ratio used to model
channel-specific relations. In Stage 7, we have placed a global
average pooling layer, resulting in a vector of 1792 fully
connected units.

B. THE PROPOSED NETWORK

Figure 2 shows the general scheme of our proposed model.
It differs from that used in [11] and [24] because here we
expand the number of features and use 136 feature vector
layers instead of 128. The reason for such an extension
is direct feature vector integration from both sides of the
network. The general network is conceptually similar and
based on the previously described architectures [23], [24].
For brevity, not all feature map outputs in Figure 2 have been
directly named. In this case, those are named blocks. 1.2.add,
blocks.2.3.add and blocks.4.8.add. The backbone layers for
feature extraction are not chosen arbitrarily or randomly.
However, they closely resemble the feature extraction con-
cept of popular backbones such as ResNet50-type networks.
Figure 2 shows that the last layer feature map outputs are
chosen from each stage. The output of the mentioned layers
is passed to the corresponding Gram matrix module — each to
its module. Each Gram matrix module output is concatenated,
forming a vector of 136 features.

Figure 3 shows the Gram matrix module structure.
In contrast with our paper [24], we reduced the final output
dimensionality of the module, seeking to reduce the number
of network parameters. Each module gets input, whose shape
is REXHXW - corresponding to the extracted layer’s feature
map, consisting of C feature sub-maps. Feature sub-maps
are defined by height and width spatial dimensions H x W.
It should be noted that the output of the Gram matrix is in
quadratic form and is expressed as C x C squared matrix.
The Gram matrix is flattened into one 1-dimensional vector
consisting of C x C units, which is further compressed
by a dense layer resulting in C/2 units, which are then
applied by an activation function and batch. Here, C /2 means
dividing the number of obtained original channels by a
factor of 2. SiLU activation function is called the sigmoid
linear unit [46], or more commonly known as a swish
activation function. Accordingly, the other side of the Gram
matrix module consists of a 1 x 1 convolution operation.
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FIGURE 3. Proposed in [24] Gram matrix module schema with detailed
flow.

From this convolution, we get C/2 feature sub-maps. The
corresponding SiLU activation function is applied — for
each feature sub-map among C/2 ones, a singular average
value is computed from all H x W values of the sub-map.
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As a result, we obtain a vector of C/2 length that contains
average values of all C/2 sub-maps. The final result of the
Gram matrix module is fused by feature-wise addition from
each side of the branch as shown in Figure 2. We also
considered the concatenation, multiplication, and average
fusion strategies, but those options increased the number of
trainable parameters and gave us no gains.

C. CONTRASTIVE-CENTER LOSS

Our model has a penultimate layer output in Figure 2.
The network’s second-to-last layer is the penultimate layer,
highlighted in greyscale in Figure 2. The output of this layer
is a vector of 136 elements — features. This feature vector is
applied to compute the contrastive-center loss. The feature
vector X; of sample k will comprise 136 features. We also
have C number of class centers ¢,, corresponding to the class
label y;. Each class center corresponds to a different emotion.

The class centers ¢; are learnable parameters initialized
randomly and updated via gradient descent alongside the
model parameters during training. Each class center ¢; is
a 136-dimensional vector, matching the dimensionality of
the feature vector x;. Contrastive-center loss inclusion for
the described model (see Figure 2) is achieved through an
auxiliary module.

The contrastive-center loss [47] is a loss function designed
to optimize deep neural networks by enhancing feature
discriminability. The contrastive-center loss is defined as
follows:

Leontr = Lintra + Linter- (1)

This loss function includes two key components: intra-
class compactness and inter-class separability. Intra-class
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compactness Linya aims to minimize the distances between
feature embeddings and their corresponding class centers.
In other words, this part seeks to bring feature vectors
corresponding to the proper class center closer. The second
term, which is inter-class loss Liper, enforces a margin (m)
between the centers of different classes to maximize their
separation.
The intra-class compactness component is as follows:

N
1 2
Linsa = ; X — €y, 117, 2)

where x; is a feature vector of the k-th sample (image),
¢y, is a center of class, to which the k-th sample belongs. The
total number of classes is C. Denote the centers of classes
by c1, ..., ¢c. Each center of the class is a learnable vector,
initialized randomly and updated via gradient descent during
training. The centers are model parameters (like weights in a
neural network) optimized alongside the rest of the network
during training.

This loss component minimizes the distance between
sample feature vectors and their corresponding class centers.
The distance is computed as the squared Euclidean norm,
[Ixx — cyk||2, which enforces tighter clustering of feature
vectors by corresponding class.

The inter-class separability loss component is defined as
follows:

c
Liner = ——— > > max(0,m — |lei —¢l)*,  (3)
C(C —1) &~ &
i=1 j#i
where C is the number of classes, ¢; and ¢; are the centers
of the i-th and j-th classes, respectively, m is the margin
that forces a minimum separation between class centers,
lle; — ¢jll is the Euclidean distance between the centers of
classes i and j. max(0, -) indicates no penalty is applied if
the distance between centers exceeds the specified margin.
This loss component aims to improve inter-class separability
by penalizing pairs of class centers closer than the specified
margin m, pushing them farther apart in the embedding space.
So in this case, the proper margin m value selection is a
crucial parameter, which can be considered a hyperparameter
requiring additional tuning.
We suggest extending the loss function:

Leontr = Lintra + A - Linger, (4)

where parameter A allows to control the strength of
separability among inter-class centers.

The hyperparameters A and m require dataset-specific
tuning, which we suggest be performed during training.
Contrastive-center loss optimization is an auxiliary term, and
in the next section, we describe its integration for our image
emotion recognition problem.

The selection of A (which controls inter-class separability
in Liner) was tested empirically using the FI-8 dataset.
We observed weak performance for A < 1 compared to
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A = 1, while A > 5 led to overfitting. Since the optimal A
depends on the specific dataset, we chose A = 1 as a simple,
stable value that avoids these extremes.

D. INTEGRATING CONTRASTIVE-CENTER LOSS FOR
IMAGE EMOTION RECOGNITION

We suggest integrating the contrastive-center loss into
the training process. It may also be used for testing
purposes, such as evaluating class centers and computing
their inter-distances. It has been noted in the previous
studies [6] that some image emotion categories tend to be
closely related (or overlapping). Integrating the contrastive
center-loss into our model can address the observed gap.
This subsection describes the strategy and proposition
behind contrastive-center loss integration for image emotion
recognition.

Another objective function for CNN training is called
categorical cross-entropy loss [48]. It is the typical objective
loss function upon various CNNs being trained. This
cross-entropy loss function is expressed as below:

N
1
Lene = = > log(py,), )

k=1

where Ley is the average loss for the entire subset (training
or validation). In our case, the number of classes C is the
number of emotion categories. N corresponds to the number
of training or validation samples, depending on the phase of
the learning process. py, is the predicted probability of the
true class for the k-th sample, yi is the label of the true class
for the k-th sample.

We can gather feature outputs simultaneously from the
main and penultimate layers. The main layer is fully
connected with C feature outputs corresponding to the class
probabilities. We can compute both losses (cross-entropy and
contrastive-center) and combine them into total 10Ss Lygal:

Liotal = Lentr + /3 - Leontrs (6)

where in Eq. 6, Lep, is the computed cross-entropy loss from
the main layer, and Lgone 1S the contrastive-center loss from
the penultimate layer. The weight coefficient 8 allows us
to control the strength of the contrastive-center loss impact.
The coefficient § = 0 is for the case of training without
contrastive-center loss integration (see Figure 2).

E. RELATION BETWEEN CLUSTERS OF FEATURE VECTORS

AND CLASSIFICATION

One of the primary goals of our study is to investigate the
trained model, whose structure is described in Figure 2.
By encouraging intra-class compactness and inter-class
separation, the contrastive-center loss is designed to enhance
cluster cohesion and separation. We evaluate whether this
proposed improvement aligns with empirical clustering qual-
ity and classification accuracy. To achieve this, we analyze
emotion representations in the high-dimensional feature
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FIGURE 4. Emotion examples in the CAER-S dataset.

space of the trained network and suggest the following
possibilities:

o Visualizing feature embeddings in 2D space using
dimensionality reduction methods, e.g., UMAP [16].

o Cluster analysis, e.g., using k-means, and evaluation
of clustering quality by using metrics such as adjusted
Rand index (ARI) [49], normalized mutual information
(NMI) [49], and ambiguous sample ratio (ASR) [50].

Visualization and cluster analysis are applied to the set of
feature vectors obtained from the penultimate layer when the
test dataset is shown to the trained network. In both cases,
the high-dimensional feature outputs of the same penultimate
layer serve as data for analysis. This enables the evaluation
of the performance of CNN on the test dataset, both visually
and from the point of view of similarities/dissimilarities of
classes (in our case — emotions). Different clustering quality
metrics allow us to evaluate the obtained clusters from various
standpoints.

The adjusted Rand index (ARI) quantifies the similarity
between the predicted clusters and the ground-truth labels
by adjusting for chance agreement. Similarly, the normalized
mutual information (NMI) measures the mutual dependence
between two clusterings, with normalization ensuring that the
values lie within a consistent range. Both metrics are robust
to imbalanced class distributions.

The ambiguous sample ratio ASR can be defined in the
following way. Let X = {x1,Xp, ..., Xy} beasetof N testing
samples, and let there be C clusters with known centers
c1, €, ..., cc. Assumed(-, -)is a chosen distance metric, and
8 > 01is a constant predefined distance threshold.

We define the ambiguity of a single sample x; as

c

Lif D 1[dx. ) <8]>1,
j=1

0 otherwise.

Ambiguity(xx)= @)
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Here, 1[-] is the indicator function, equal to 1 if the
condition inside is true, and O otherwise.
Finally, the ambiguous sample ratio (ASR) is defined as

N
1
ASR = N};Ambiguity(xk). (8)

A sample x; is considered ambiguous if it is close —
within distance threshold § — to more than one cluster
center. ASR is the ratio of all samples that meet the chosen
ambiguity criterion. The main problem is the selection
of the distance threshold . We suggest computing the
pairwise distances of the points from X and selecting the
threshold &, the largest distance among the 10 percent
smallest distances. This criterion is heuristic and lacks formal
justification, but it is an option for evaluation purposes.
This approach closely resembles methods in fuzzy clustering
or probabilistic models (e.g., Gaussian Mixture Models),
which quantify ambiguity using continuous membership
values [50], [51], [52].

In the experiments below, we utilized k-means clustering
and set the number of clusters the same as the number of
prediction classes from the corresponding dataset.

IV. EXPERIMENTAL SETUP

This subsection describes the datasets, the methodology,
the pre-processing steps, the training strategy, the objective
function optimization, and the metrics used to evaluate
results.

The primary dataset for our study is the subset of WEBEmo
for binary classification problems. The dataset is described
in [2] and how the subset has been gathered in [24]. Like
in [24], a 61074 filtered images dataset has been obtained,
where about 46% of images represent sadness emotion.
This dataset has been divided into 80% training, 10%
validation, and 10% testing subsets. The WEBEmo training
subset contains 26445 images expressing no sadness and
22413 images conveying sadness. Similarly, the WEBEmo
validation subset consists of 3284 images expressing no
sadness and 2823 images expressing sadness. Finally, the
testing subset split is divided into the same ratio as the
validation subset, consisting of the same number of images
in each class.

To assess the network generalization capabilities, the
Flickr and Instagram (FI-8) dataset [19] was used, too.
It comprises 23308 images labeled according to Mikels’
emotion hierarchy [53].

Further, we evaluated the network on EmoSet [54], a large-
scale visual emotion dataset designed for Visual Emotion
Analysis (VEA). EmoSet includes two subsets:

o EmoSet-3.3M: Contains 3.3 million images retrieved
and annotated using automated methods.

o EmoSet-118K: A human manually labeled subset of
118102 images, where each image is labeled according
to one of eight emotion categories based on Mikels’
model [53].
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TABLE 2. Emotion distribution in EmoSet-118K and FI-8 datasets.

Dataset | Amusement | Anger Awe | Contentment | Disgust | Excitement Fear | Sadness Total
EmoSet-118K 19445 | 10660 | 15037 16337 10666 19828 | 13453 12676 | 118102
FI-8 4924 1266 3151 5374 1658 2963 1032 2922 23308

Table 2 shows the emotion category distribution in
EmoSet-118K and FI-8.

This indicates a relatively even and balanced distribution
across positive (amusement, awe, contentment, excitement)
and negative (anger, disgust, fear, sadness) emotions, making
the dataset EmoSet-118K highly suitable for further evalu-
ation studies. The most common categories are amusement
and contentment, whilst the least popular would be anger and
disgust.

We also employed the CAER-S (Context-Aware Emotion
Recognition - Static) dataset [55], a subset of the larger CAER
dataset. CAER-S comprises training and testing sets without
a validation subset and includes emotion categories: anger,
disgust, fear, happy, neutral, sad, and surprise. Notably, the
training set contains exactly 7001 images per category, and
the testing set includes 2999 images per category, indicating
a perfectly balanced distribution. Figure 4 displays sample
images from this dataset. Authors of CAER-S [55] note that
the emotion images were gathered from 79 TV shows.

We trained four model cases, each corresponding to one
of the four visual emotion datasets. The dataset-dependent
hyperparameters are the learning rate, number of training
epochs, B, margin m, and §. We train with stochastic gradient
descent (SGD) with momentum 0.9 and an initial learning
rate of 0.02. We run for 20 epochs (50 on the CAER-S
dataset) with a batch size of 256. The learning rate is then
adjusted using a Cosine Annealing with Warm Restarts
schedule [56]: it decays from 0.02 down to 1 x 10~*
and restarts back every 5 epochs. The parameter B allows
us to influence the effectiveness of contrastive-center loss.
Margin m was initially set to 1.5, but later larger distances
were also considered. The parameter A was set to 1. During
training, we first apply a random resized crop to 224 x224
and a random horizontal flip. We then use the RandAugment
augmentation technique [57] with distortion strength set to 3,
and number of transformations set to 2.

The integration of the contrastive-center loss (refer to
subsection III-D) can lead to exploding gradients. Gradient
is a vector that indicates the direction and magnitude in
which the neural network’s parameters should be adjusted to
reduce the training error [48]. To mitigate this, we employed
gradient clipping (normalization). Specifically, given the
original gradient vector g, the clipped gradient gclipped iS
computed as:

h
8clipped = & - Min 1,—), )
cppe ( gl

where £ is the threshold for the maximum allowed gradient
norm. If ||g||> > A, the gradient is scaled to have an L2 norm
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equal to A, reducing the risk of numerical instability. In our
experiments, we set 1 = 5.

V. RESULTS

A. EXPERIMENTS: COMPARISON OF METRICS

The experimental study aims to investigate the emotion
representations by the trained network. Utilizing the high-
dimensional feature vectors, we aim to evaluate the effective-
ness of contrastive-center loss integration using previously
defined metrics. We chose several hyperparameter values
seeking to analyze a wider definition area.

TABLE 3. Performance metrics on dependence on 8; WEBEmo sadness
testing set.

B8 Accuracy ARI NMI ASR
0.0 0.8214 0.0987 0.1884 0.8797
0.1 0.8253 0.1309 0.2126 0.7888
0.3 0.8274 0.1222 0.2147 0.7318
0.4 0.8278 0.1221 0.2155 0.6703
0.5 0.8281 0.1255 0.2153 0.6082
0.8 0.8266 0.1384 0.2185 0.4095
1.0 0.8287 0.1371 0.2177 0.3505

Table 3 presents the performance of the model on the
WEBEmo sadness testing set. Here, the hyperparameter
controls the penalization strength of the contrastive-center
loss (refer to subsection III-D). Case B = 0 corresponds
to the baseline model. Each row reports the performance
of a trained model on a binary emotion classification task.
Accuracy denotes the ratio of correctly predicted samples.
The highest accuracy is achieved at 8 = 1.0, indicating a
0.7% improvement over the baseline. The main increase in
accuracy is achieved when the weight coefficient 8 increases
from 0 to 0.3. Additionally, ARI, NMI, and ASR indicate
that the clustering quality of the penultimate layer’s feature
representations is enhanced when the contrastive-center loss
is integrated.

TABLE 4. Performance metrics on dependence on g; FI-8 testing set.

B Accuracy ARI NMI ASR
0 0.6968 0.3907 0.4337 0.8262
0.1 0.7132 0.4735 0.4706 0.2659
0.3 0.7124 0.4498 0.4650 0.2492
0.4 0.7138 0.4486 0.4648 0.2172
0.5 0.7153 0.4565 0.4692 0.1858
0.8 0.7135 0.4574 0.4688 0.1341
1.0 0.7127 0.4233 0.4597 0.2433

In Table 4, the performance results are gathered from
evaluating the model on the FI-§ testing set. In our case,
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the network has been trained to recognize emotion from
8 classes. Accuracy indicates the ratio of correctly predicted
image emotion samples. Highest accuracy was obtained with
B = 0.5. From the established baseline, we achieved 1.8%
improvement of accuracy. The highest ARI, NMI scores were
achieved with 8 = 0.1, and lowest ASR score was achieved
with 8 = 0.8. However, accuracy improvement is marginal.
In our case, we can note that clustering quality improves
when integrating the contrastive-center loss optimization.
This suggests the idea that the model gains the capability to
recognize emotion classes better.

TABLE 5. Performance metrics on dependence on 3; EmoSet-118K testing
set.

B Accuracy ARI NMI ASR
0 0.7794 0.3416 0.4605 0.8156
0.1 0.7858 0.5400 0.5833 0.3766
0.3 0.7859 0.5565 0.5945 0.2560
0.4 0.7870 0.5608 0.5983 0.2257
0.5 0.7866 0.5630 0.6008 0.1995
0.8 0.7879 0.5618 0.6026 0.1517
1.0 0.7880 0.5656 0.6055 0.1298

Table 5 summarizes the performance on the EmoSet-118K
testing set for an 8-class emotion recognition problem. The
highest accuracy is achieved at § = 1.0 (an improvement of
approximately 0.9% over the baseline). The best clustering
quality, reflected by the highest ARI and NMI scores,
is observed at § = 1.0, although the differences are marginal.
The lowest ASR is observed at 8 = 1.0. Overall, these results
confirm that integrating the contrastive-center loss enhances
feature clustering. This indicates that the trained network
performs better in tasks with more emotion classes.

TABLE 6. Performance metrics on dependence on B; CAER-S testing set.

B Accuracy ARI NMI ASR
0.0 0.9104 0.7139 0.7438 0.7963
0.1 0.9106 0.8100 0.7880 0.0547
0.3 0.9118 0.8142 0.7919 0.0227
0.4 0.9114 0.7103 0.7425 0.0083
0.5 0.9106 0.7289 0.7671 0.0041
0.8 0.9112 0.7082 0.7533 0.0034
1.0 0.9120 0.7295 0.7670 0.0007

In Table 6, performance results are gathered from evaluat-
ing the CAER-S testing set. The results are obtained from the
trained model using the described CAER-S dataset [55]. The
network has been trained to recognize emotion from 7 classes.
The highest accuracy was obtained for § = 1.0. Compared to
the baseline, integrating contrastive-center loss optimization
did not result in a substantial improvement in accuracy. The
highest ARI and NMI scores were achieved with § = 0.3.
However, differences are marginal.

In Tables 7, 8, and 9 performance results are gathered
evaluating the parameter margin m influence. We can observe
that a larger margin improves classification accuracy, up to
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TABLE 7. Performance metrics depending on margin; WEBEmo sadness
testing set.

Margin Accuracy ARI NMI ASR
1 0.8312 0.1335 0.2216 0.5016
1.5 0.8281 0.1331 0.2203 0.3628
3 0.8330 0.1584 0.2242 0.0851
5 0.8374 0.1689 0.2293 0.0665

10 0.8366 0.1862 0.2323 0.0219

TABLE 8. Performance metrics depending on margin; EmoSet-118K
testing set.

Margin Accuracy ARI NMI ASR
1 0.7997 0.5886 0.6179 0.0966
1.5 0.7992 0.5871 0.6182 0.0918
3 0.8033 0.5877 0.6230 0.0508
5 0.8025 0.5872 0.6223 0.0191

10 0.8012 0.5133 0.5938 0.0455

TABLE 9. Performance metrics on dependence on margin; FI-8 testing set.

Margin Accuracy ARI NMI Ambiguous ratio
1 0.7112 0.4644 0.4682 0.1908
1.5 0.7138 0.4650 0.4693 0.1832
3 0.7171 0.4657 0.4701 0.1121
5 0.7150 0.4725 0.4685 0.0296
10 0.7138 0.4832 0.4795 0.0082

some point. Margin selection to m = 3 or m = 5 produces
the best overall performances with marginal differences.

B. EXPERIMENTS: VISUAL ANALYSIS

Human emotions often overlap because emotions are com-
plex, interconnected, and influenced by multiple factors at
once. Here are some key reasons why emotional overlap
occurs. Different emotions can trigger similar physical
reactions. Situations often evoke more than one emotion.
Emotions aren’t binary, they lie on a continuum. As emo-
tions shift gradually, their boundaries can blur. The way
we interpret events can cause different emotional blends.
Cultural norms or personal experiences shape how emotions
are processed and expressed, often blending one feeling with
another. In this section, we also see such overlaps of emotions
visually. However, we do not try to explain the reasons for the
overlaps.

Let us consider the visualization of the results of the
second-to-last layer. Here, we have the high-dimensional
feature vector for each test image. The total number of
such vectors equals the number of images in the set of test
images. Let us use, e.g., the UMAP method [16] for the
dimensionality reduction and visualization of the set of such
vectors. It is not the only possible visualization method for
this purpose. The initial dimensionality of the feature vector
is 136.

In the first experiment, the network is trained on the
WEBEmo dataset [24]. The results are given in Figure 5.
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FIGURE 5. Visualization of the trained model results; WEBEmo.

Two models were used: (a) baseline, which has a multiplier
B = 0 at the integrated contrastive-center loss in the
total loss Lioal, and (b) B = 0.5. In both cases, we have
visualized 6108 vectors, corresponding to the 6108 emotion
images in the testing subset. A single point in the figure is a
representation on a plane of a particular point from a test set,
and the coloring of the point is of ground-truth labels (true
class).

‘We can observe no clear, distinct boundary between the two
emotion groups. However, we observe a polarity (contrast) of
the distribution of points on the plane: emotion classes tend to
form apparent groups — see a distribution of colors in Figure 5.
An exciting discovery is that in case (b), the distribution
of points on a plane has some more regular form, and the
polarity (separation) becomes clearer. However, overlap is
still apparent in (b) - we might expect an alignment of 82.81%
classification accuracy.

In the second experiment, the network is trained on the
EmoSet-118K dataset [54]. The results are given in Figure 6.
Two models were used: (a) baseline, § = 0, and (b)
integrated contrastive-center loss optimization, § = 0.5.
In both cases, we visualized 17716 vectors, corresponding
to the 17716 emotion images in the testing subset. A single
point in the figure is a representation on a plane of a
particular point from a test set, and the coloring of the
point is of ground-truth labels. Total number of classes is 8:
anger, disgust, fear, sadness, amusement, awe, contentment,
and excitement. We observe clusters of emotions in (a).
In addition to the clusters, we see some positive and negative
emotions polarization in (b). Therefore, a subtle separation
exists between the negative and positive emotion groupings
in the plot. Class overlap is apparent in (a) and (b).

The network is trained on the FI-8 [19] in the third
experiment. The results are given in Figure 7. Two models
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(b) Contrastive-center loss integration
term 5 = 0.5

were used: (a) baseline, 8 = 0, and (b) integrated
contrastive-center loss optimization, § = 0.5. In both
cases, we visualized 3407 vectors, corresponding to the
3407 emotion images in the testing subset. A single point in
the figure is a representation on a plane of a particular point
from a test set, and the coloring of the point is of ground-
truth labels. The total number of classes is 8: anger, disgust,
fear, sadness, amusement, awe, contentment, and excitement.
We observe clusters of emotions in (a). In addition to
the clusters, we see some positive and negative emotions
polarization in (b). Therefore, there is a subtle separation
between the plot’s negative and positive emotion groupings.
Class overlap is apparent in (a) and (b). Nevertheless,
the contrastive-center loss integration effect appears to be
effective. We can also note that visualized points for fear and
anger emotions appear not to have tight groups and are highly
overlapped. There are about 160 samples each for these two
emotions. Compared to the other classes, there are 400-750
samples for each emotion group, meaning the trained network
still has difficulty identifying minority-class emotions.

The experiments in this section lead to the idea that
we can visually evaluate the quality of network training.
A more concentrated distribution of points inside their
clusters corresponding to the particular emotions means a
better classification. We see this when § = 0.5 in the total
loss Liotal -

C. EXPERIMENTS: DISTRIBUTION OF THE CLASS CENTERS
Let us consider a trained network. In Section III-C, we have
introduced the term of class center. The class centers c,,
are learnable parameters initialized randomly and updated
via gradient descent alongside the model parameters during
training.
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FIGURE 6. Visualization of the trained model results; EmoSet-118K.
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FIGURE 7. Visualization of the trained model results; dataset FI-8.

In particular, we are concerned primarily with the
inter-class separability loss component Lipe;. This compo-
nent has two parts. Firstly, centers that correspond to the
emotion class. Secondly, margin m that enforces minimum
distances between pair-wise centers. This means that during
the training, every class center is pushed further away from
every other class center by a given margin. Therefore, the
information on how well the trained network responds to the
specified margin values would be helpful in the additional
evaluation of training quality.

In Figures 8 and 9, the pair-wise center distance matrices
are displayed for two data sets, EmoSet-118K and FI-8, in the
case of different margins m = 3, m = 5, and m = 10.
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Both plots in Figure 8 show that the trained model
sufficiently maintains the selected distances with different
margins. Several emotion class centers are too close, and this
leads to the model gaps in discerning those emotions.

Figure 9 indicates that training the network using a larger
margin m = 5 as compared to m = 3 yields a slightly higher
mean distance. It is also evident that on both plots in Figure 9
the chosen margin is maintained relatively well.

Experiments indicate that the margin parameter m sig-
nificantly influences classification performance. Using the
baseline model, accuracies of 82.14% on the WEBEmo
dataset, 77.94 % on the EmoSet-118K dataset, and 69.68% on
the FI-8 dataset are achieved. Through empirical evaluation,
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FIGURE 8. Trained model pair-wise center distance matrix. The model was trained on the

EmoSet-118K dataset.
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FIGURE 9. Trained model pair-wise center distance matrix. The model was trained on the FI-8

dataset.

the optimal margin value was determined to be m = 5, which
generalized well across all three datasets (WEBEmo, FI-8,
and EmoSet-118K). With this margin, the final improved
model achieves 83.74% accuracy on WEBEmo, 71.88%
accuracy on FI-8, and 80.46% accuracy on EmoSet-118K.
Therefore, we see a good responsiveness of the training
process to the selected hyperparameter margin m.

TABLE 10. Comparison to baselines across three test-sets.

WEBEmo sadness Accuracy ARI NMI ASR
Baseline 0.8214 0.0987 0.1884 0.8797
Ours 0.8374 0.1689 0.2293 0.0665

EmoSet-118K Accuracy ARI NMI ASR
Baseline 0.7794 0.3320 0.4550 0.3567
Ours 0.8046 0.5988 0.6241 0

FI-8 Accuracy ARI NMI ASR
Baseline 0.6968 0.3907 0.4337 0.8262
Ours 0.7188 0.4592 0.4628 0.0646

Another hyperparameter for weighting inter-class sepa-
rability loss component Liner is A (refer Eq. 4). The best
accuracies were obtained with the following A values: for
FI-8 case A = 100, for EmoSet-118K case A = 100, and
WEBEmo case A = 5. We see a large diversity in optimal A
values for different data sets. However, the influence of A is
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insignificant when its values grow: it suffices to use A more
or less 5.

Finally, we can conclude from the experiments (see aggre-
gated results in Table 10) that integrating the contrastive-
center loss optimization is beneficial — the model manages
to differentiate between emotion centers.

VI. CONCLUSION

The paper addresses a significant and growing area in
affective computing — emotion recognition from visual
imagery using Convolutional Neural Networks (CNNs). This
area is particularly relevant in human-computer interaction,
marketing, psychology, and multimedia analysis. If properly
executed, using CNNs to evaluate visual emotion images
can significantly enhance automatic emotion recognition
capabilities, thereby contributing to the existing literature.

This paper develops the model for recognizing visual
image emotions, see Figure 2. The development is taking
place in the integration of contrastive-center loss optimiza-
tion. Such integration effectively improves the recognition
of emotions when training deep neural networks against the
baseline.

The contrastive-center loss is a function designed to
optimize deep neural networks by enhancing feature discrim-
inability. This loss function includes two key components:
intra-class compactness and inter-class separability. We have
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suggested utilizing the weight coefficient to control the
impact of the inter-class separability in the loss func-
tion. Moreover, we suggest combining cross-entropy and
contrastive-center losses into the total loss. The additional
weight coefficient is introduced to control the strength of the
contrastive-center loss’s impact on the total loss.

Visualization is to see how the objects (images) in
the test set are arranged in the 2D plane and how this
arrangement, as well as the classification as a whole, can be
improved by choosing the best combination of the strength of
contrastive-center loss impact on the total loss.

Inter-class separability is essential for the classification
of images, depending on their emotions. We showed the
possibility of controlling the inter-class separability using
the margin hyperparameter that forces a minimum separation
between class centers. We discover that the margin values set
to margin = 3 or margin = 5 are good initial choices.

The efficiency of the developed model is examined on
three datasets: WEBEmo, FI-8, and EmoSet-118K. Our
proposed methods showed us visual emotion classification
performance improvements: for the WEBEmo dataset by
1.6%, the FI-8 dataset by 2.2%, and for the EmoSet-118K
dataset by 2.52% higher accuracies.

New avenues could be explored for integrating contrastive-
center loss when training a deep neural network. More
effective contrastive-center loss definitions might exist,
without tuning (requirement of) related hyperparameters.
Furthermore, several gaps need to be addressed or consid-
ered: inherent emotion ambiguity and noisy emotion image
datasets. Emotions are interpreted subjectively. Therefore,
our proposed method relies heavily on the quality of
visual emotion datasets. Integration of contrastive-center loss
requires additional tuning of hyperparameters, which can
limit applicability. The next gap that might arise is from the
weak discriminative power of the backbone.

The proposed model for evaluating emotions in visual
emotion images will be a valuable tool for psychologists, art
critics, designers, architects, and human-computer interaction
developers. Such computer-based emotion recognition will
also be used by artificial intelligence. This opens up a wide
range of opportunities for applied research.
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