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We consider the addition to the Standard Model of a scalar SU (2) multiplet �n with di- 
mension n going from 1 to 6. The multiplet �n is assumed to have null vacuum expectation 

value and an arbitrary (free) hypercharge. We determine the shape of the phase space for 
the new terms that appear in the scalar potential; we observe in particular that, in the case 
of a 6-plet, the phase space is slightly concave along one of its boundaries. We determine 
the bounded-from-below and vacuum stability conditions on the scalar potential for each 
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1. Introduction 

The Higgs particle was discovered at the Large Hadron Collider in 2012 [ 1 , 2 ]. Since then, explo-
ration of the interactions of that particle has shown that they are quite close to the predictions
of the Standard Model (SM) [ 3 ]. This either confirms that the breaking of the gauge symmetry
of the SM and the generation of the fermion masses are effected solely by a single scalar dou-
blet of SU (2) , or else it suggests the presence of an “alignment” mechanism [ 4 , 5 ] that allows a
more complex scalar sector—such as in the two-Higgs-doublet model (2HDM) [ 6 ]—to mimic
the SM predictions—despite the absence of a symmetry enforcing such alignment. Moreover,
the almost-exact prediction of the SM 

mW 

= cw 

mZ 

(1) 

—where mW 

and mZ 

are the masses of the gauge bosons W ± and Z0 , respectively, and cw 

is the
cosine of the weak mixing angle—strongly suggests that only SU (2) doublets, and possibly also
singlets, have vacuum expectation values (VEVs) [ 7 ]. So, the scalar sector of any extension of 
the SM is currently already rather strongly constrained. On the other hand, there is no reason—
but for Occam’s razor—why the scalar sector of a spontaneously broken SU (2) × U (1) gauge
theory should consist of only one SU (2) doublet. One can entertain the speculation that larger
SU (2) multiplets exist—even if they have zero VEVs because of Eq. ( 1 ), and even if they are so
large that they do not couple to the known fermions. In particular, large extra SU (2) multiplets
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may be useful, even if they have no VEVs, to alter Eq. ( 1 ) through the radiative (“oblique”)
corrections that they produce, if that Eq. ( 1 ) is observed to be slightly off the mark [ 8 ]. 

In this paper we consider the possibility that the scalar sector of an SU (2) × U (1) gauge the-
ory consists of one hypercharge- 1 / 2 SU (2) doublet �, which has a VEV, and another SU (2)
multiplet �n , with weak isospin J and n = 2 J + 1 components, that has null VEV and a free
(arbitrary) hypercharge. The latter assumption means that the theory has a global U (1) sym-
metry �n → �n exp ( iϑ ) ; since �n has zero VEV, that symmetry remains unbroken, and no
Goldstone boson arises from it. 1 

A difficult problem that one faces when one considers any extension of the scalar sector of the
SM is to find the bounded-from-below (BFB) conditions 2 on the scalar potential (SP) V . This
is a mathematical problem that is very easy to state—what are the conditions on the coupling
constants of the quartic part V4 of the SP, 3 such that V4 can be negative for no configuration of 
the scalar fields 4 —but surprisingly difficult to solve even for modest extensions of the SM. The
problem has only been solved for the two-Higgs-doublet model [ 11 , 12 ], for some constrained
forms of the three-Higgs-doublet model [ 13–17 ], for a few models with SU (2) triplets [ 18–
20 ], and for a few other rather simple models [ 21–23 ]. Additionally, there are in the literature
BFB conditions for the SU (3) × U (1) electroweak model [ 24 ] and for models with colored
scalars [ 25 ]. 

There are papers on general methods for deriving BFB conditions [ 26–28 ]. Among other
methods, geometric and group-theoretic approaches may sometimes be utilized. These include 
analyzing the potential on the orbit space [ 29–34 ], applying stratification theory (the classifica-
tion of extrema by symmetry patterns) [ 14 , 35–37 ], and using boundary conditions and convexity
(copositivity) criteria [ 25–27 , 38 ]. The orbit space approach seeks to find a coordinate system
tailored to the symmetries of the potential, often transforming the problem of the minimiza-
tion of V4 into one of analyzing geometric shapes (cones, polyhedra, etc.) within that space.
Due to its versatility, many modern analyses of multiscalar potentials—including those using 

the P -matrix formalism [ 21 , 22 ]—either explicitly or implicitly utilize orbit-space reasoning. 
In this paper, we analyze the gauge orbit space (which we call the phase space ) to derive BFB

constraints for two SU (2) scalar multiplets � and �n . When the potential is linear in the phase
space variables, it is sufficient to consider the convex hull of the orbit space to determine the
BFB conditions [ 25 ]—concave stretches of boundary do not matter. We note, however, that
for two multiplets the potential has the form in Eq. ( 26 ) below, and then one needs, at least in
principle, 5 to take into account the concave stretches of the boundary in detail. 

One further aim of this paper is to fill a gap in our understanding of vacuum stability in mul-
tiscalar models, at least partially. (We term as “vacuum stability conditions” the conditions for
1 Two other recent papers that consider the addition to the SM of SU (2) scalar multiplets with dimen- 
sion up to n = 5 are Refs. [ 9 , 10 ]. Note, however, that in those papers, those multiplets are supposed to 

acquire VEVs, contrary to what we assume here. 
2 Some people call “vacuum stability conditions” what we call “BFB conditions.” We reserve the former 

term for the conditions stemming from another rationale (see below). 
3 We assume that the SP is renormalizable. 
4 If V4 is negative for some values of the scalar fields, then by multiplying all the fields by an ever larger 

positive real number κ one makes V4 → κ4 V4 , which is ever more negative, and this means that V is not 
BFB and therefore has no minimum, that is, the theory lacks vacuum state. 

5 We do not do that explicitly in the case n = 6 , because the concavity existing in that case is extremely 

slight. 
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the desired minimum of the potential to be its absolute global minimum, and not just a local
minimum. Note that, contrary to the BFB conditions, which only affect the quartic part V4 of 

 , the vacuum stability conditions affect the whole V including its quadratic part.) Building on
the results of Refs. [ 39 , 43 ], we derive analytical vacuum stability constraints for the scalar po-
tentials of SM extensions through scalar multiplets up to n = 6 . The detailed expressions and
explanations provided in the paper may be useful for readers attempting to apply the method-
ology to other models. 

The plan of this paper is as follows. After writing down in Section 2 the most general renor-
malizable SP for our model, we delimit in Section 3 the extent of the freedom of that SP—which
is smaller than its many scalar fields suggest, because the SP is renormalizable, that is, it con-
tains no higher powers of the fields than four. That allows us to derive, in Section 4 , necessary
and sufficient (n&s) conditions for V4 to be BFB when n ≤ 5 —and almost n&s conditions when
n = 6 . In Section 5 we consider the vacuum stability conditions and in Section 6 we summarize
our achievements. Appendix A collects useful results from a previous paper by two of us [ 39 ],
Appendix B considers Ansätze for the fields in the cases n = 5 and n = 6 , and Appendix C solves
a technical mathematical problem that often arises in the main body of the paper. 

2. The scalar potential 
We write the Higgs doublet of the SM as 

� =
( 

a 

b 

) 

, (2) 

where a and b are complex scalar fields. Then, 

˜ � =
( 

b∗

−a∗

) 

(3) 

is also an SU (2) doublet. Let Iz be the third component of isospin of the generic field z . One
has Ia = −Ib = 1 / 2 . The SP of the SM is 

VSM 

= μ2 
1 F1 + λ1 

2 

F 2 
1 , (4) 

where 

F1 = | a| 2 + | b| 2 ≡ A + B (5) 

is SU (2) -invariant. In general, we denote the squared modulus of the generic field z by the
corresponding capital letter Z, that is, Z ≡ | z| 2 . 

In the models that we consider in this paper there is just one scalar SU (2) multiplet beyond
�; we call that extra multiplet �n , where the integer n = 1 , . . . , 6 denotes the dimension of 
the irreducible representation of SU (2) embodied by �n . Of course n = 2 J + 1 , where J is the
weak isospin of �n . If n ≥ 3 and an electrically neutral component of �n has a VEV, then the
gauge-boson masses do not obey Eq. ( 1 ). Indeed [ 7 ], 

m2 
W 

= g2 
∑ 

ϕJY 

| vJY 

| 2 (J2 − Y 2 + J
)
, (6a) 

m2 
Z 

= g2 

cos 2 θw 

∑ 

ϕJY 

| vJY 

| 2 (2 Y 2 ), (6b) 

where the sum is performed over all neutral fields ϕJY 

with isospin J , hypercharge Y , and VEV
vJY 

. In Eq. (6a,b), g is the SU (2) gauge coupling constant. 
3/29
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In order to keep the relation ( 1 ) valid, we assume that all the neutral fields except b have null
VEV. Partly in order to guarantee this, we also assume that the models enjoy U (1) symmetries
�n → exp ( iϑ ) �n ; those symmetries prevent couplings either of the form �2 �n or of the form
�3 �n , that might induce a VEV for a component of �n . 6 With this additional symmetry, the
SPs become simpler and are given by a general form explained in Ref. [ 39 ] and given in detail
in Appendix A. The most important takeaway is that 

when n = 1 , V = VSM 

+ μ2 
2 F2 + λ2 

2 

F 2 
2 + λ3 F1 F2 ; (7a) 

when n = 2 , V = VSM 

+ μ2 
2 F2 + λ2 

2 

F 2 
2 + λ3 F1 F2 + λ4 F4 ; (7b) 

when either n = 3 or n = 4 , V = VSM 

+ μ2 
2 F2 + λ2 

2 

F 2 
2 + λ3 F1 F2 + λ4 F4 + λ5 F5 ; (7c) 

when either n = 5 or n = 6 , V = VSM 

+ μ2 
2 F2 + λ2 

2 

F 2 
2 + λ3 F1 F2 +

6 ∑ 

k=4 

λk Fk . (7d) 

In Eq. (7a–d), the Fk are SU (2) -invariant polynomials of the fields of � and of �n ; their
functional forms depend on the dimension of �n . 

3. Phase spaces 
The vacuum structure of a scalar potential may be analyzed geometrically by studying the
space spanned by the invariants of the theory, which we call the phase space 7 . In particular, the
conditions for boundedness from below and vacuum stability may be derived from the shape
of the phase space. However, for arbitrary field configurations, the invariants Fi may become
unbounded, leading to a loss of information about the boundary of the phase space. In order
to avoid this, we introduce the following set of dimensionless SU (2) -invariants 8 

r ≡ F1 

F2 
, γ5 ≡ F5 

F 2 
2 

, γ6 ≡ F6 

F 2 
2 

, δ ≡ F4 

F1 F2 
, (9) 

enabling us to rewrite the SP as 

V = μ2 
1 F1 + μ2 

2 F2 +
[
λ1 

2 

r2 + � ( δ) r + � ( γ5 , γ6 ) 
2 

]
F 2 

2 , (10) 

where 

� ( δ) ≡ λ3 + λ4 δ, (11a) 

� ( γ5 , γ6 ) ≡ λ2 + 2 λ5 γ5 + 2 λ6 γ6 . (11b) 

In the following subsections, we derive the shape of the space spanned by the SU (2) -
invariants γ5 , γ6 , and δ. We will refer to this space as the phase space, even though, in fact,
it is just a subspace of the true phase space that also includes the unbounded invariants F1 and
6 Such couplings would anyway be forbidden by the SU (2) gauge symmetry, together with renormaliz- 
ability, for n > 4 . 

7 Other authors call it the “orbit space” [ 29–34 ]. 
8 We employ the same notation as Ref. [ 39 ], except that our δ is rescaled by a factor of J/ 2 . Therefore, 

when comparing the results between the two papers one should take into account that 

δhere = J 
2 

δRef.[39] . (8) 
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F2 . Since δ = γ5 = γ6 = 0 for the case n = 1 , its corresponding phase space is zero-dimensional,
and we start at n = 2 . 

3.1. n = 2 

In the case n = 2 , that is, J = 1 / 2 , both γ5 and γ6 are zero, hence the phase space is spanned by
a single dimensionless parameter δ. From its definition in Eq. ( 9 ) we find 

δ = 1 

4 

− | ad − bc| 2 
2 ( A + B) ( C + D) 

(12a) 

= −1 

4 

+ | ac∗ + bd∗| 2 
2 ( A + B) ( C + D) 

. (12b) 

Since the second terms in the right-hand sides of Eqs. ( 12a ) and ( 12b ) are non-negative, 

| δ| ≤ 1 

4 

. (13) 

3.2. n = 3 

In the case n = 3 , that is, J = 1 , the phase space has two dimensionless parameters δ and γ5 .
One may show that [ 39 ] 

1 − 4 δ2 − 3 γ5 ≥ 0 , (14) 

which simultaneously bounds δ and γ5 ; the latter moreover is, by definition, non-negative [ 39 ].
Therefore, 

0 ≤ | δ| ≤
√ 

1 − 3 γ5 

2 

, (15a) 

0 ≤ γ5 ≤ 1 

3 

. (15b) 

The parameter γ5 is a function of the three fields c , d , and e through 

γ5 =
∣∣2 ce − d2 

∣∣2 
3 ( C + D + E ) 2 

. (16) 

The upper bound ( 15b ) on γ5 is saturated, for instance, if c = e = 0 , or else if d = 0 and c = e .
This case was first rigorously treated in Ref. [ 19 ], after an initial attempt in Ref. [ 18 ]. 

3.3. n = 4 

In the case n = 4 , that is, J = 3 / 2 , the phase space once again has two parameters δ and γ5 . One
may show that they are simultaneously bounded by the condition [ 39 ] 

9 − 16 δ2 − 20 γ5 ≥ 0 , (17) 

which substitutes Eq. ( 14 ) of case n = 3 . This means that now 

0 ≤ | δ| ≤
√ 

9 − 20 γ5 

4 

, (18a) 

0 ≤ γ5 ≤ 9 

20 

, (18b) 

instead of Eq. (15a,b). The parameter γ5 is a function of the four fields c, . . . , f through 

γ5 = 2 |√ 

3 ce − d2 |2 + 2 |√ 

3 df − e2 |2 + | 3 c f − de |2 
5(C + D + E + F )2 

. (19) 

The upper bound ( 18b ) on γ5 is saturated, for instance, when d = e = 0 and c = f . 
5/29
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Fig. 1. Boundaries of the phase space for the case n = 5 , plotted in the ( γ6 , γ5 ) plane. The blue straight 
line is given by Eq. ( B1b ), the red straight line is given by Eq. ( B3 ), and the black straight line is given by 

Eq. ( B6 ). The vertices are given by Eq. (22a–c). 
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3.4. n = 5 

In the case n = 5 , that is, J = 2 , the phase space has three dimensionless parameters δ, γ5 , and
γ6 . The condition [ 39 ] 

4 − 4 δ2 − 7 γ5 − 10 γ6 ≥ 0 (20) 

simultaneously bounds δ, γ5 , and γ6 . The upper bound on the magnitude of δ now reads 

| δ| ≤
√ 

4 − 7 γ5 − 10 γ6 

2 

. (21) 

The invariants γ5 and γ6 may be written in terms of F2 , F5 , and F6 , which in turn are given
in terms of the fiv e fields c, . . . g by Eqs. ( A16 a–f). Since F2 , F5 , and F6 are non-negative, γ5 

and γ6 are non-negative too. In order to gain a grasp on how large γ5 and γ6 may be, we have
considered in section B.1 of Appendix B three Ansätze for c, . . . , g. With these three Ansätze
we have constructed a triangle in the ( γ6 , γ5 ) plane, which we depict in Fig. 1 . The sides of 
that triangle are given by Eqs. ( B1b ), ( B3 ), and ( B6 ), and are plotted in blue, red, and black,
respectively. The vertices of the triangle are 

V0 = ( 0 , 0) , (22a) 

V1 =
(

0 ,
4 

7 

)
, (22b) 

V2 =
(

1 

5 

,
2 

7 

)
. (22c) 

Numerically generating random complex values for the five fields c, . . . , g and therefrom com-
puting γ5 and γ6 by means of Eqs. ( 9 ) and ( A16 ), one finds that all the ( γ6 , γ5 ) thus obtained
are inside the above-mentioned triangle. So, the range of ( γ6 , γ5 ) is the triangle with vertices V0 ,

1 , and V2 in Eq. (22a–c). 
6/29
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Fig. 2. Left: Boundaries of the phase space for the case n = 6 , plotted in the ( γ6 , γ5 ) plane. The points 
V0 , . . . , V4 are given by Eq. (25a–e). The blue straight line is given by Eq. ( B7b ); the green curve is given 

by Eq. ( B8b ); the red curve is given in parametric form by Eqs. (B14); the black straight line is given 

by Eq. ( B17b ); the magenta straight line is given by Eq. ( B19 ). Right: zoomed-in view of the region of 
points V2 and V3 . The dashed blue straight line is given by Eq. ( B16 ). 
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3.5. n = 6 

In the case n = 6 , that is, J = 5 / 2 , the phase space once again has parameters δ, γ5 , and γ6 . One
may show that these SU (2) -invariants are simultaneously bounded by the condition [ 39 ] 

25 − 16 δ2 − 36 γ5 − 56 γ6 ≥ 0 , (23) 

instead of by inequality ( 20 ). In turn, the upper bound on the magnitude of δ now reads 

| δ| ≤
√ 

25 − 36 γ5 − 56 γ6 

4 

(24) 

instead of inequality ( 21 ). 
The invariants γ5 and γ6 may be written in terms of the six fields c, . . . h through Eqs. ( 9 )

and ( A18 ); they are non-negative because F2 , F5 , and F6 are also non-negative. In order to find
out the range spanned by γ5 and γ6 , we have first considered five Ansätze for the fields, given in
detail in section B.2 of Appendix B. With these fiv e Ansätz e we have formed the boundary of 
a domain in the ( γ6 , γ5 ) plane. That domain is depicted in the left panel of Fig. 2 and has fiv e
vertices 9 : 

V0 = ( 0 , 0) ; (25a) 

V1 =
(

0 ,
4 

9 

)
; (25b) 

V2 = ( 
, ς ) ; (25c) 

V3 =
(

9 

70 

,
89 

180 

)
; (25d) 

V4 =
(

5 

14 

,
5 

36 

)
. (25e) 
9 Vertex V2 is not really a vertex; it is just the point where the curves ( B8b ) and (B14) meet. At that 
point, the two curves have the same slopes but different second derivatives. Indeed, the curve ( B8b ) is a 

convex boundary of the ( γ6 , γ5 ) domain, while the curve (B14) is a concave boundary. 

7/29



PTEP 2025, 093B01 A. Milagre et al.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2025/9/093B01/8225751 by C

ER
N

 Library user on 17 Septem
ber 2025
To better illustrate the slight concavity of the boundary connecting vertices V2 and V3 , the
right panel of Fig. 2 shows a zoomed-in view of this region. The blue dashed line represents
the approximation of Eq. (B14a,b) by the straight line in Eq. ( B16 ). 

Numerically generating random complex values for the six fields c, . . . , h and therefrom com-
puting γ5 and γ6 by means of Eqs. ( A18 ) and ( 9 ), one finds that all the points ( γ6 , γ5 ) thus
generated are inside the above-mentioned domain, and indeed fill it completely. So, the range
of ( γ6 , γ5 ) is the area bounded by the lines ( B7b ), ( B8b ), (B14), ( B17b ), and ( B19 ). This area is
very slightly concave at one of its borders, namely, at the line (B14). 10 

4. Boundedness from below 

The SP in Eq. ( 10 ) is BFB if its quartic part ( V4 ) is non-negative for every possible field config-
uration, that is for every point in phase space. Following the method outlined in Refs. [ 26 , 39 ],
we rewrite the quartic part of the SP as 

V4 

F 2 
2 

= 1 

2 

(r, 1)

( 

λ1 �(δ) 
�(δ) �(γ5 , γ6 ) 

) ( 

r 
1 

) 

, (26) 

where � ( δ) and � ( γ5 , γ6 ) have been defined in Eq. (11a,b). Since r is strictly positive, the SP
in Eq. ( 10 ) is BFB if and only if the 2 × 2 matrix in Eq. ( 26 ) is copositive [ 26 ]. Therefore, we
must ensure that the following conditions hold for every δ, γ5 , and γ6 : 

λ1 ≥ 0 , (27a) 

� ( γ5 , γ6 ) ≥ 0 , (27b) 

˜ � ( δ, γ5 , γ6 ) ≡ � ( δ) +
√ 

λ1 � ( γ5 , γ6 ) ≥ 0 . (27c) 

As stated in Ref. [ 19 ], it is necessary that � ( γ5 , γ6 ) and 

˜ � ( δ, γ5 , γ6 ) are non-negative every-
where on the boundary of the phase space for conditions (27) to hold. In addition, if the ab-
solute minima of those functions lie inside the phase space, then one must require them to be
non-negative. Regarding � ( γ5 , γ6 ) given in Eq. ( 11b ), we note that it is monotonic in both γ5 

and γ6 , so its minimum necessarily lies at the boundary of the phase space. On the other hand,˜ � ( δ, γ5 , γ6 ) is monotonic in δ, hence its minimum is attained at the boundary of the phase space
in the δ direction. We affect the minimization with respect to δ firstly and fix 

δ = − λ4 

| λ4 | � ( γ5 , γ6 ) , (28) 

where, by using Eqs. ( 13 ), ( 15a ), ( 18a ), ( 21 ), and ( 24 ), we have 

� ( γ5 , γ6 ) = 0 when n = 1 , (29a) 

� ( γ5 , γ6 ) = 1 

4 

when n = 2 , (29b) 

� ( γ5 , γ6 ) =
√ 

1 − 3 γ5 

2 

when n = 3 , (29c) 

� ( γ5 , γ6 ) =
√ 

9 − 20 γ5 when n = 4 , (29d) 

4 

10 The possibility that the phase space is concave at some of its boundaries was already made clear in 

Fig. 2 of Ref. [ 25 ]. That was in a model with a four-dimensional phase space; here we find the same 
feature in a simpler model with a two-dimensional phase space. 
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� ( γ5 , γ6 ) =
√ 

4 − 7 γ5 − 10 γ6 

2 

when n = 5 , (29e) 

� ( γ5 , γ6 ) =
√ 

25 − 36 γ5 − 56 γ6 

4 

when n = 6 . (29f) 

Then, the functions that we ought to minimize are � ( γ5 , γ6 ) of Eq. ( 11b ) and 

� ( γ5 , γ6 ) = λ3 − | λ4 | � ( γ5 , γ6 ) +
√ 

λ1 � ( γ5 , γ6 ) . (30) 

In the following sections, we deduce the necessary and sufficient conditions for the SP to be BFB
when n = 1 , . . . , 6 . We note that the conditions presented in Ref. [ 39 ] for the cases n = 1 , . . . , 4
are necessary and sufficient, but those for the cases n = 5 and n = 6 are just necessary . We chose
to write them for all n for the sake of completeness. 

4.1. The cases n = 1 , . . . , 4 

n = 1 : 
As previously noted, the phase space for the case n = 1 is zero-dimensional. Setting δ = γ5 =

γ6 = 0 in Eq. (27a–c), those BFB conditions become 

λ1 ≥ 0 , (31a) 

λ2 ≥ 0 , (31b) 

λ3 +
√ 

λ1 λ2 ≥ 0 . (31c) 

These conditions are in agreement with those derived for the complex singlet extension of the
SM, for instance in Ref. [ 40 ]. 
n = 2 : 

In the case n = 2 we have γ5 = γ6 = 0 . Consequently, 

� ( γ5 , γ6 ) = λ2 , � ( γ5 , γ6 ) = λ3 − | λ4 | 
4 

+
√ 

λ1 λ2 . (32) 

Enforcing the conditions (27a–c), the BFB conditions read 

λ1 ≥ 0 , (33a) 

λ2 ≥ 0 , (33b) 

λ3 − | λ4 | 
4 

+
√ 

λ1 λ2 ≥ 0 . (33c) 

If one chooses to use the usual notation for the case of the U (1) -symmetric 2HDM, given in
Eq. ( A7 ), then conditions (33a–c) read 

λ̄1 ≥ 0 , (34a) 

λ̄2 ≥ 0 , (34b) 

λ̄3 + λ̄4 

2 

−
∣∣λ̄4 
∣∣

2 

+
√ 

λ̄1 ̄λ2 ≥ 0 . (34c) 

Condition ( 34c ) is equivalent to 

λ̄3 +
√ 

λ̄1 ̄λ2 ≥ 0 , (35a) 
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λ̄3 + λ̄4 +
√ 

λ̄1 ̄λ2 ≥ 0 . (35b) 

Therefore, our conditions (33a–c) are equivalent to 

λ̄1 ≥ 0 , (36a) 

λ̄2 ≥ 0 , (36b) 

λ̄3 ≥ −
√ 

λ̄1 ̄λ2 , (36c) 

λ̄3 + λ̄4 ≥ −
√ 

λ̄1 ̄λ2 , (36d) 

which are the textbook BFB conditions for the U (1) -symmetric 2HDM [ 6 , 41 ]. 
n = 3 : In the case n = 3 only γ6 is 0, so we need to minimize the functions 

� ( γ5 ) = λ2 + 2 λ5 γ5 , (37a) 

� ( γ5 ) = λ3 − | λ4 | 
2 

√ 

1 − 3 γ5 +
√ 

λ1 

√ 

λ2 + 2 λ5 γ5 . (37b) 

As stated before, � ( γ5 ) is monotonic, so it is non-negative everywhere in phase space if it is
non-negative at its end-points. Explicitly, we require ⎧ ⎨ ⎩ 

�(0) ≥ 0 , 

�

(
1 

3 

)
≥ 0 , 

⇔ 

⎧ ⎨ ⎩ 

λ2 ≥ 0 , 

λ2 + 2 

3 

λ5 ≥ 0 . 
(38) 

Furthermore, � ( γ5 ) is of the form of the function analyzed in Appendix C, with 

k = 1 

2 

, p = 1 , s = 3 , w = 2 λ5 , v = λ2 , α = 0 , β = 1 

3 

. (39) 

For it to be non-negative everywhere inside the γ5 domain [ α, β] it is necessary to require 

λ3 − | λ4 | 
2 

+
√ 

λ1 λ2 ≥ 0 , (40a) 

λ3 +
√ 

λ1 

(
λ2 + 2 

3 

λ5 

)
≥ 0 . (40b) 

Furthermore, assuming condition ( 38 ) to hold, it is sufficient to exclude the situation where 

λ5 < −3 λ2 
4 

8 λ1 
, (41a) 

λ5 < −3 

4 

√ 

λ2 

λ1 
| λ4 | , (41b) 

λ3 < −
√ 

( 2 λ5 + 3 λ2 ) 
(
8 λ5 λ1 + 3 λ2 

4 

)
24 λ5 

. (41c) 

Despite their differing appearance, the n&s conditions presented in Eqs. ( 38 ), (40), and
(41) are Boolean-equivalent to those originally derived in Ref. [ 19 ] and later confirmed in
Refs. [ 39 , 42 ]. We have confirmed this equivalence both numerically and algebraically. 
n = 4 : In the case n = 4 , γ6 = 0 and the functions that we need to minimize take the form 

� ( γ5 ) = λ2 + 2 λ5 γ5 , (42a) 
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� ( γ5 ) = λ3 − | λ4 | 
4 

√ 

9 − 20 γ5 +
√ 

λ1 

√ 

λ2 + 2 λ5 γ5 . (42b) 

Again, � ( γ5 ) is monotonic in γ5 , implying that it is non-negative everywhere for γ5 ∈ [ 0 , 9 / 20]
if and only if it is non-negative both for γ5 = 0 and for γ5 = 9 / 20 , that is 

λ2 ≥ 0 , (43a) 

λ2 + 9 λ5 

10 

≥ 0 . (43b) 

Furthermore, � ( γ5 ) is of the form of the function analyzed in Appendix C, with 

k = 1 

4 

, p = 9 , s = 20 , w = 2 λ5 , v = λ2 , α = 0 , β = 9 

20 

. (44) 

Therefore, for it to be non-negative everywhere inside the γ5 domain [ 0 , 9 / 20] it is necessary to
require 

λ3 − 3 

4 

| λ4 | +
√ 

λ1 λ2 ≥ 0 , (45a) 

λ3 +
√ 

λ1 

(
λ2 + 9 λ5 

10 

)
≥ 0 . (45b) 

Furthermore, one must exclude the situation where 

λ5 < −5 λ2 
4 

8 λ1 
, (46a) 

λ5 < −5 

6 

√ 

λ2 

λ1 
| λ4 | , (46b) 

λ3 < −
√ 

( 9 λ5 + 10 λ2 ) 
(
8 λ1 λ5 + 5 λ2 

4 

)
80 λ5 

. (46c) 

4.2. The case n = 5 

For n = 5 the functions that we need to minimize depend on both γ5 and γ6 and read 

� ( γ5 , γ6 ) = λ2 + 2 λ5 γ5 + 2 λ6 γ6 , (47a) 

� ( γ5 , γ6 ) = λ3 −
√ 

4 − 7 γ5 − 10 γ6 

2 

| λ4 | +
√ 

λ1 

√ 

λ2 + 2 λ5 γ5 + 2 λ6 γ6 . (47b) 

In this case the phase space is two-dimensional. Its boundary consists of three straight-line
segments. From the monotonicity of � ( γ5 , γ6 ) , it follows that it is sufficient to ensure that it is
non-negative at the three vertices specified in Eq. (22). Thus, 

λ2 ≥ 0 , (48a) 

λ2 + 8 

7 

λ5 ≥ 0 , (48b) 

λ2 + 2 

35 

λ′ 
5 ≥ 0 , (48c) 

where we conveniently introduced 

λ′ 
5 ≡ 10 λ5 + 7 λ6 . (49) 
11/29



PTEP 2025, 093B01 A. Milagre et al.

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2025/9/093B01/8225751 by C

ER
N

 Library user on 17 Septem
ber 2025
Regarding � ( γ5 , γ6 ) in Eq. ( 47b ), we begin by observing that that function does not admit
any extremum in the interior of the phase space, since the system of equations 

∂ �

∂γ5 
= ∂ �

∂γ6 
= 0 (50) 

has no solution. Therefore, if there is a minimum, it must reside at one of the boundaries of 
the phase space defined by Eqs. ( B1b ), ( B3 ), and ( B6 ). 

At the boundary ( B1b ), we set γ6 = 0 and � ( γ5 , γ6 ) becomes 

� ( γ5 , 0) = λ3 −
√ 

4 − 7 γ5 

2 

| λ4 | +
√ 

λ1 

√ 

λ2 + 2 λ5 γ5 . (51) 

Equation ( 51 ) has the form of the function studied in Appendix C with 

k = 1 

2 

, p = 4 , s = 7 , w = 2 λ5 , v = λ2 , α = 0 , β = 4 

7 

. (52) 

Therefore, � ( γ5 , 0) is non-negative for all γ5 ∈ [ 0 , 4 / 7] if we assume 

λ3 − | λ4 | +
√ 

λ1 λ2 ≥ 0 , (53a) 

λ3 +
√ 

λ1 

(
λ2 + 8 

7 

λ5 

)
≥ 0 , (53b) 

and moreover if we exclude any situation where 

λ5 < −7 λ2 
4 

8 λ1 
(54a) 

λ5 < −7 

8 

√ 

λ2 

λ1 
| λ4 | , (54b) 

λ3 < −
√ 

( 8 λ5 + 7 λ2 ) 
(
8 λ5 λ1 + 7 λ2 

4 

)
56 λ5 

. (54c) 

At the boundary ( B3 ) we take γ5 = ( 10 / 7) γ6 to obtain 

�

(
10 

7 

γ6 , γ6 

)
= λ3 − | λ4 | 

√ 

1 − 5 γ6 +
√ 

λ1 

√ 

λ2 + 2 

7 

λ′ 
5 γ6 . (55) 

This function has the form of the function studied in Appendix C, with 

k = 1 , p = 1 , s = 5 , w = 2 

7 

λ′ 
5 , v = λ2 , α = 0 , β = 1 

5 

, (56) 

Therefore, it is non-negative ∀ γ6 ∈ [ 0 , 1 / 5] if we require 

λ3 − | λ4 | +
√ 

λ1 λ2 ≥ 0 , (57a) 

λ3 +
√ 

λ1 

(
λ2 + 2 

35 

λ′ 
5 

)
≥ 0 , (57b) 

and if we exclude the situation where 

λ′ 
5 < −35 λ2 

4 

2 λ1 
, (58a) 

λ′ 
5 < −35 

2 

√ 

λ2 

λ1 
| λ4 | , (58b) 

λ3 < −
√ (

2 λ′ 
5 + 35 λ2 

) (
2 λ′ 

5 λ1 + 35 λ2 
4 

)
70 λ′ 

5 

. (58c) 
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At the boundary ( B6 ) the function � ( γ5 , γ6 ) takes the form 

�

(
−10 

7 

γ6 + 4 

7 

, γ6 

)
= λ3 +

√ 

λ1 

√ 

λ2 + 8 

7 

λ5 +
(

−20 

7 

λ5 + 2 λ6 

)
γ6 . (59) 

This function is monotonic in γ6 and the n&s conditions for it to be non-negative ∀ γ6 ∈ [ 0 , 1 / 5]
are conditions ( 53b ) and ( 57b ). 

To summarize, the n&s BFB conditions for the case n = 5 are (48), (53), (57), and furthermore
one must impede both conditions (54) and conditions (58). 

4.3. The case n = 6 

When n = 6 , the functions that we need to minimize read 

� ( γ5 , γ6 ) = λ2 + 2 λ5 γ5 + 2 λ6 γ6 , (60a) 

� ( γ5 , γ6 ) = λ3 −
√ 

25 − 36 γ5 − 56 γ6 

4 

| λ4 | +
√ 

λ1 

√ 

λ2 + 2 λ5 γ5 + 2 λ6 γ6 . (60b) 

Neither of these functions admits extrema inside the phase space, so their minima must reside
at its boundary. That boundary has two curved segments, namely, Eqs. ( B8b ) and (B14). We
firstly require the two functions to be non-negative at the vertices of the phase space, given in
Eq. (25a–). The following necessary BFB conditions are then found: 

λ2 ≥ 0 , (61a) 

λ
(1) 
2 ≡ λ2 + 8 

9 

λ5 ≥ 0 , (61b) 

λ
(2) 
2 ≡ λ2 + 2 ς λ5 + 2 
λ6 ≥ 0 , (61c) 

λ
(3) 
2 ≡ λ2 + 89 

90 

λ5 + 9 

35 

λ6 ≥ 0 , (61d) 

λ
(4) 
2 ≡ λ2 + 5 

18 

λ5 + 5 

7 

λ6 ≥ 0 , (61e) 

and 

λ3 +
√ 

λ1 λ2 − 5 

4 

| λ4 | ≥ 0 , (62a) 

λ3 +
√ 

λ1 λ
(1) 
2 − 3 

4 

| λ4 | ≥ 0 , (62b) 

λ3 +
√ 

λ1 λ
(2) 
2 −

5
(

24
√ 

5 − 41
)

436 

| λ4 | ≥ 0 , (62c) 

λ3 +
√ 

λ1 λ
(3) 
2 ≥ 0 , (62d) 

λ3 +
√ 

λ1 λ
(4) 
2 ≥ 0 . (62e) 

If we ignore the slight concavity of segment (B14) and instead describe the boundary con-
necting vertices V2 and V3 by the linear Eq. ( B16 ), 11 then the boundary of phase space consists
of four straight segments and just one curved one. The function � ( γ5 , γ6 ) is monotonic along
11 This implies that we are exploring a phase space slightly larger than the true one, and as a result, the 
BFB conditions we impose are, strictly speaking, necessary instead of n&s conditions. Nevertheless, we 
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a straight segment, and therefore the four straight segments do not generate any further BFB
condition besides conditions (61a–e). At the curved segment ( B8b ) one has 

˜ � ( λ6 ) ≡ �

⎛ ⎝ 

2
(

1 + 7 γ6 +
√ 

1 − 7 γ6 

)
9 

, γ6 

⎞ ⎠ =
(

λ2 + 4 

9 

λ5 

)
+
(

28 

9 

λ5 + 2 λ6 

)
γ6 

+4 λ5 

9 

√ 

1 − 7 γ6 , (63) 

which must be non-negative ∀ γ6 ∈ [ 0 , 
] . One must avoid the situation where ̃  � ( λ6 ) has a min-
imum μ ∈ [ 0 , 
] with 

˜ � ( μ) < 0 . This means that one must impede the situation where 

7 λ5 + 9 λ6 < 0 , (64a) 

7(5
√ 

5 − 8) λ5 − 54 λ6 < 0 , (64b) 

λ
(1) 
2 + 2 ( 7 λ5 + 9 λ6 ) 

2 

63�
< 0 , (64c) 

where 

� ≡ 14 λ5 + 9 λ6 . (65) 

Since γ5 and γ6 are linearly dependent along a straight segment, �(γ5 , γ6 ) can be cast into the
form of the function analyzed in Appendix C for each one of the four straight segments of the
boundary. The parameters are 

V0 V1 : k = 1 

4 

, p = 25 , s = 36 , w = 2 λ5 , v = λ2 , α = 0 , β = 4 

9 

, (66a) 

V2 V3 : k = 1 

4 

, p = 225(2 999 − 912
√ 

5 ) 
39 961 

, s = 70 

9 

p, 

w = 7(71 677 − 38 000
√ 

5 ) 
119 883 

λ5 + 2 λ6 , v = λ2 + 25(6 485 + 4 104
√ 

5 ) 
359 649 

λ5 , 

α = 
, β = 9 

70 

, (66b) 

V3 V4 : k = 0 , w = −28 

9 

λ5 + 2 λ6 , v = λ2 + 25 

18 

λ5 , α = 9 

70 

, β = 5 

14 

, (66c) 

V0 V4 : k = 1 

4 

, p = 25 , s = 70 , w = 7 

9 

λ5 + 2 λ6 , v = λ2 , α = 0 , β = 5 

14 

. (66d) 

The straight segment connecting V3 to V4 has k = 0 , so conditions ( 62d ) and ( 62e ) are n&s to
guarantee that �(γ5 , γ6 ) ≥ 0 everywhere on that segment. For the other three cases, one should
exclude any values of λ1 , . . . , λ6 where all the conditions ( C10 ), ( C11 ), and ( C12 ) are satisfied—
for each set of parameters { k, p, s, v, w, α, β} in Eqs. ( 66a ), ( 66b ), and ( 66d ). Notice that p −
sβ = 0 for the segments V2 V3 and V0 V4 , and therefore for those segments condition ( C11b )
automatically holds. 
have verified that this approximation has a negligible practical impact. We generated approximately 3 . 6 ×
109 random sets of λi within the ranges λ1 , 2 ∈ [0 , 4 π ] and λ3 , 4 , 5 , 6 ∈ [ −4 π, 4 π ] . Among these, around 109 

sets satisfied our necessary BFB conditions. Notably, we did not encounter a single case where using 

the true concave boundary, instead of its straight approximation, would have changed our conclusions 
regarding any of these 109 points. 
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On the convex segment connecting V1 and V2 we introduce 

x ≡
√ 

1 − 7 γ6 , (67) 

with x ∈
[ √ 

1 − 7 
 , 1
] 
. Then, the functions that we ought to minimize on this segment are 12 

�

( 

2(1 + 7 γ6 +
√ 

1 − 7 γ6 ) 
9 

, γ6 

) 

= g(x ) ≡
(

λ2 + 4 λ5 

9 

+ 2�

63 

)
+ 4 λ5 

9 

x − 2�

63 

x2 , (68a) 

�

( 

2(1 + 7 γ6 +
√ 

1 − 7 γ6 ) 
9 

, γ6 

) 

= f (x ) ≡ λ3 − 4 x − 1 

4 

| λ4 | +
√ 

λ1 g(x ) . (68b) 

Their first and second derivatives read 

g′ (x ) = 4 λ5 

9 

− 4�

63 

x, (69a) 

g′′ (x ) = −4�

63 

, (69b) 

f ′ (x ) = −| λ4 | + g′ (x ) 
2 

√ 

λ1 

g(x ) 
, (69c) 

f ′′ (x ) = 2 g(x ) g′′ (x ) − [ g′ (x )] 2 

4 

√ 

λ1 

g( x )3 
. (69d) 

We have already seen that for g(x ) to be non-negative for all x in the interval 
[ √ 

1 − 7 
 , 1
] 

one

just needs to enforce conditions ( 61b ) and ( 61c ) while avoiding conditions (64). For the function
f (x ) to be non-negative everywhere in the same interval one must enforce conditions ( 62b )
and ( 62c ) while avoiding the situation where 

f ′ (
√ 

1 − 7 
 ) < 0 , f ′ (1) > 0 , and ∃ μ : f ′ (μ) = 0 , f (μ) < 0 . (70) 

The third condition ( 70 ) yields the solution 

μ = 7 λ5 

�
− 9 | λ4 | 

�

√ 

7 K 

2 S 

, (71) 

which only exists if K/S > 0 , where 

K ≡ 2 ( 7 λ5 + 3 λ6 ) 
2 + 7 λ2 �, (72a) 

S ≡ 63 λ2 
4 + 2 λ1 �. (72b) 

When the first and second conditions ( 70 ) are satisfied, μ is guaranteed to be a minimum and
to lie inside the domain 

[ √ 

1 − 7 
 , 1
] 
. Under these assumptions, the positivity of f ′′ (μ) further

specifies that 

K < 0 , (73a) 

S < 0 . (73b) 

The remaining three conditions ( 70 ) yield, respectively 
12 Minimizing g ( x) and f ( x) with respect to x is equivalent to minimizing the functions in the left-hand 

side of Eq. (68a,b) with respect to γ6 because the transformation γ6 → x in Eq. ( 67 ) is injective in the 

domain γ6 ∈ [ 0 , 
] ⇔ x ∈
[ √ 

1 − 7 
 , 1
] 
. 
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−| λ4 | + 2(7 λ5 − �
√ 

1 − 7 
 ) 
63 

√ 

λ1 

λ
(2) 
2 

< 0 , (74a) 

− | λ4 | + 2 ( 7 λ5 − �) 
63 

√ 

λ1 

λ
(1) 
2 

> 0 , (74b) 

λ3 − 4 μ − 1 

4 

| λ4 | +
√ 

λ1 g(μ) < 0 . (74c) 

Therefore, besides enforcing conditions ( 62b ) and ( 62c ), one must avoid any situation where
all the following conditions hold: 

� < −2 ( 7 λ5 + 3 λ6 ) 
2 

7 λ2 
, (75a) 

� < −63 λ2 
4 

2 λ1 
, (75b) 

| λ4 | > 

2 

63 

√ 

λ1 

λ
(2) 
2 

(7 λ5 − �
√ 

1 − 7 
 ) , (75c) 

| λ4 | < − 2 

63 

√ 

λ1 

λ
(1) 
2 

( 7 λ5 + 9 λ6 ) , (75d) 

λ3 < 

4 μ − 1 

4 

| λ4 | −
√ 

λ1 g(μ) . (75e) 

In condition ( 75c ), note that 
√ 

1 − 7 
 = 6(5
√ 

5 − 4) / 109 . 
To summarize, the necessary BFB conditions for the case n = 6 are (61) and (62). Besides

that, it is sufficient to exclude any situation where Eq. (64a–c) or Eq. (75a–e) hold, or where
conditions ( C10 ), ( C11 ), and ( C12 ) are satisfied for each set of parameters { k, p, s, v, w, α, β} in
Eqs. ( 66a ), ( 66b ), and ( 66d ). 

5. Vacuum stability 

Following Ref. [ 43 ], we classify the possible extrema of the scalar potential (SP) of our model
in the following exhaustive way: 

� The type-0 extremum has 

〈 �〉 = 0 , 〈 �n 〉 = 0 . (76) 

� A type-I extremum has 

〈 �〉 � = 0 , 〈 �n 〉 = 0 . (77) 

� A type-II extremum has 

〈 �〉 = 0 , 〈 �n 〉 � = 0 . (78) 

� A type-III extremum has 

〈 �〉 � = 0 , 〈 �n 〉 � = 0 . (79) 

In Ref. [ 43 ] two of us have proved that, if the SP of a renormalizable SU (2) -symmetric model
with a scalar doublet � contains neither linear terms, nor trilinear terms, nor quadratic terms
with two different multiplets, and if moreover � only interacts with any other scalar SU (2)
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multiplet �n through quartic invariants constructed out of 

� ⊗ ˜ � ⊗ �n ⊗ ˜ �n (80) 

—where ˜ �n stands for the SU (2) multiplet with the same dimension of �n and formed by
the complex conjugates of the scalar fields of �n —then a type-I local minimum of the SP has
a lower value of the SP than any type-0 or type-III extremum. As a consequence, either the
global minimum of the SP is that type-I local minimum, or it is a type-II minimum (if there is
any). Since the models studied in this work fulfil the assumptions of that theorem, in order to
ensure the stability of the type-I vacuum one just has to find the conditions which ensure that:

(1) The vacuum is a local minimum of the SP. This is equivalent to all the physical scalars
having positive masses-squared. 

(2) No type-II extremum has an expectation value of the SP lower than the one of the vac-
uum. 

We concentrate here on the second task. 

5.1. Type-I vacuum 

The expectation value of the SP at the type-I vacuum is independent of the dimension of �n ;
it is given by 

V I = μ2 
1 〈 F1 〉 + λ1 

2 

〈 F1 〉 2 , (81) 

where 〈 F1 〉 is the expectation value of the SU (2) invariant defined in Eq. ( 5 ). The stationarity
condition for V I is 

μ2 
1 = −λ1 〈 F1 〉 . (82) 

Boundedness from below of the SP requires λ1 to be positive. Hence, Eq. ( 82 ) tells us that μ2 
1 

must be negative for the type-I vacuum to exist. Equations ( 81 ) and ( 82 ) imply that 

V I = −
(
μ2 

1 

)2 
2 λ1 

. (83) 

5.2. Type-II extremum 

At a type-II extremum, only �n acquires a VEV. According to Eq. ( 10 ) with F1 = 0 , the expec-
tation value of the SP is 

V II = μ2 
2 〈 F2 〉 + 〈 � ( γ5 , γ6 ) 〉 

2 

〈 F2 〉 2 , (84) 

where 〈 F2 〉 and 

〈 � ( γ5 , γ6 ) 〉 are the expectation values of the SU (2) invariants F2 and � ( γ5 , γ6 )
at that type-II extremum, respectively. Further note that 

〈 � ( γ5 , γ6 ) 〉 =

⎧ ⎪ ⎨ ⎪ ⎩ 

λ2 ⇐ either n = 1 or n = 2 , 

λ2 + 2 λ5 〈 γ5 〉 ⇐ either n = 3 or n = 4 , 

λ2 + 2 λ5 〈 γ5 〉 + 2 λ6 〈 γ6 〉 ⇐ either n = 5 or n = 6 . 

(85) 

Effecting the minimization of V II in Eq. ( 84 ) relative to 

〈 F2 〉 , one finds that at a type-II ex-
tremum 

μ2 
2 = − 〈 � ( γ5 , γ6 ) 〉 〈 F2 〉 . (86) 

The SP being bounded from below necessitates that � ( γ5 , γ6 ) is non-negative, as we have ex-
tensively discussed in the previous section. Therefore, a type-II extremum only exists if μ2 

2 < 0 .
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From Eqs. ( 84 ) and ( 86 ), 

V II = −
(
μ2 

2 

)2 
2 〈 � ( γ5 , γ6 ) 〉 . (87) 

To ensure that the type-I vacuum lies below the type-II extremum with the lowest V II , we require
the parameters of the SP to be such that all possible 〈 � ( γ5 , γ6 ) 〉 satisfy 

〈 � ( γ5 , γ6 ) 〉 > λ1 

(
μ2 

2 

μ2 
1 

)2 

. (88) 

5.3. Conditions for vacuum stability 

When �n is either a singlet ( n = 1 ) or a doublet ( n = 2 ), 〈 � ( γ5 , γ6 ) 〉 = λ2 and condition ( 88 )
simply implies that 

λ2 >

(
μ2 

2 

μ2 
1 

)2 

λ1 . (89) 

This condition for the type-I extremum to be the global minimum of the SP is consistent with
the results derived for the complex singlet extension of the SM in Ref. [ 40 ], and with the anal-
ogous condition found in Refs. [ 6 , 41 , 44 ] for the U (1) -symmetric 2HDM. 

For larger n , 〈 � ( γ5 , γ6 ) 〉 may take several values and we must investigate the space spanned by
γ5 and γ6 . The task of finding the values of 〈 � ( γ5 , γ6 ) 〉 that lead to the smallest possible value
of V II can be simplified by noting that 〈 � ( γ5 , γ6 ) 〉 is linear in 

〈 γ5 〉 and 

〈 γ6 〉 . Therefore, any type-
II extremum must lie at the boundary of the phase space [ 34 ]. Furthermore, the minimum of 
the potential is attained at the points of phase space that extend the farthest in some direction.
Hence, when the boundary consists of straight-line segments meeting at vertices, it suffices to
evaluate 〈 � ( γ5 , γ6 ) 〉 at those vertices to find the possible type-II extrema. Consequently, 

〈 � ( γ5 , γ6 ) 〉 =

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

either λ2 or λ2 + 2 λ5 

3 

⇐ n = 3 , 

either λ2 or λ2 + 9 λ5 

10 

⇐ n = 4 , 

either λ2 , or λ2 + 8 λ5 

7 

, or λ2 + 4 λ5 

7 

+ 2 λ6 

5 

⇐ n = 5 . 

(90) 

Therefore, condition ( 89 ) must hold for all n ≤ 5 and besides one must require that 

n = 3 ⇒ λ2 + 2 λ5 

3 

>

(
μ2 

2 

μ2 
1 

)2 

λ1 , (91a) 

n = 4 ⇒ λ2 + 9 λ5 

10 

>

(
μ2 

2 

μ2 
1 

)2 

λ1 , (91b) 

n = 5 ⇒ λ2 + min 

(
8 λ5 

7 

,
4 λ5 

7 

+ 2 λ6 

5 

)
>

(
μ2 

2 

μ2 
1 

)2 

λ1 . (91c) 

An important consistency check may be performed in the case n = 3 , where, using the no-
tation of Eq. ( A11 ), the conditions given in Eqs. ( 89 ) and ( 91a ) exactly coincide with those
presented in Eq. (5.9) of Ref. [ 45 ]. 

For n = 6 , determining the possible type-II extrema is more challenging because the bound-
ary of the phase space contains both straight-line segments and a convex segment. 13 Note that
13 For the moment, we are approximating the slightly concave parametric curve between the vertices V2 

and V3 by a straight line, just as we did in the previous section. 
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〈 � ( γ5 , γ6 ) 〉 is still linear in both 

〈 γ5 〉 and 

〈 γ6 〉 , so we introduce the direction of steepest descent
� n = − ( 〈 γ6 〉 , 〈 γ5 〉 ) . If � n points to one of the straight boundaries, then the farthest protruding
points in the direction of � n coincide with the vertices of the phase space given in Eq. (25). The
possible type-II extrema then have 

〈 � ( γ5 , γ6 ) 〉 = either λ2 , or λ2 + 8 λ5 

9 

, or λ2 + 2 ς λ5 + 2 
λ6 , or λ2 + 89 λ5 

90 

+ 9 λ6 

35 

, 

or λ2 + 5 λ5 

18 

+ 5 λ6 

7 

. (92) 

However, if � n points to the boundary connecting the vertices V1 and V2 , then the farthest pro- 
truding point in the direction of � n will lie somewhere on the convex boundary ( B8b ). In other
words, we need to find the minimum of the function 

˜ � ( γ6 ) defined in Eq. ( 63 ) in the range
γ6 ∈ [ 0 , 
] . That was done already when studying the boundedness-from-below conditions in
Section 4.3 ; more specifically, if 

7(5
√ 

5 − 8) λ5 < 54 λ6 < −42 λ5 , (93) 

then, from Eq. ( 64c ), one more possible value of 〈 � ( γ5 , γ6 ) 〉 is 

λ2 + 2 ( 7 λ5 + 3 λ6 ) 
2 

7 ( 14 λ5 + 9 λ6 ) 
. (94) 

If we want to be more rigorous, then we must not neglect the curvature of the parametric
curve (B14). We must then consider, for each set of values of λ2 , λ5 , and λ6 the function of t

〈 � ( γ5 , γ6 ) 〉 ( t) = λ2 + 40 t 

63
(
75 t4 − 100 t3 + 90 t2 + 12 t + 3

)× (95a) [
144 t2 (−165 t4 + 212 t3 − 102 t2 + 36 t + 3

)
λ6 (95b) 

+7
(
1125 t7 − 195 t6 + 821 t5 − 1371 t4 + 823 t3 (95c) 

+399 t2 + 175 t + 15
)
λ5 

]
, (95d) 

and we must look for minima of this function in the interval 
3 

5 

≤ t ≤ 3 + 2
√ 

5 

11 

. (96) 

Any minima must be treated as extra possibilities for 〈 � ( γ5 , γ6 ) 〉 . 

6. Conclusions and discussion 

In this paper, we have considered the extension of the electroweak SM through a single
scalar multiplet �n of SU (2) . We have assumed that multiplet to enjoy a U (1) symmetry
�n → �n exp ( iϑ ) and to have no VEV, so as not to perturb, at tree level, the successful SM
prediciton ( 1 ) (although it does perturb it at loop level). We have analyzed the scalar potential

 of this model with only two scalar multiplets—�n and the SM doublet �—in order to find
out the ranges of its various SU (2) -invariants, and thus, the conditions for it to be BFB (and
thus be able to produce a vacuum state), and the conditions for our preferred vacuum state
(where only � has a VEV) to be the global minimum of V . 

With just one scalar SU (2) multiplet �n with n components, there are m quartic SU (2) -
invariants in V , where m = 1 for either n = 1 or n = 2 , m = 2 for either n = 3 or n = 4 , m = 3
for either n = 5 or n = 6 , and so on. The increasing number of invariants renders their ranges
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increasingly complicated to calculate. As demonstrated in Section 3 , for n ≤ 4 , we were able to
identify the phase space boundaries through direct algebraic manipulation of the invariants. 
To tackle the same problem for the cases n = 5 and n = 6 , we first assigned random values
to the scalar fields of �n to map out the phase space, and only afterwards did we attempt
to find suitable combinations of nonzero fields to characterize the boundaries analytically. It
is important to clarify that, although numerical sampling both provided the initial insight and
confirmed the final analytical result, our determination of the phase space boundaries is entirely
analytical. 

We have found that, starting with n = 6 , 14 the phase space has some curved boundaries, at
least one of which is concave . As shown in Eq. (B14), this concave boundary can only be ex-
pressed in parametric form as a ratio of high-degree polynomials. For practical purposes, we
therefore approximate it throughout our analysis by using the straight-line segment given in
Eq. ( B16 ). 

By using the analytic equations for all the boundaries of the phase space for the cases n ≤ 6 ,
we were able to deduce analytic n&s BFB conditions on V , and also analytic n&s conditions
for our desired vacuum state—where �, but not �n , has nonzero VEV—to be the absolute
minimum of the potential. We assessed the accuracy of all our analytical results by performing
numerical scans over the phase space. Note, however, that due to the straight-line approxima-
tion adopted for the concave boundary in the case n = 6 , the phase space that we have worked
with was slightly larger than the exact one. As a result, the conditions found by us in this case
are, strictly speaking, necessary instead of n&s conditions. To evaluate the validity of this sim-
plification, we scanned 109 sets of couplings λi and did not find a single instance where apply-
ing the exact concave boundary—rather than its linear approximation—would have altered our 
conclusions. This demonstrates the negligible practical impact of the approximation. 

One may discuss the situation where the theory has, instead of the U (1) symmetry �n →
�n exp ( iϑ ) , the smaller (discrete) Z 2 symmetry �n → −�n . In the case where n is odd, that
is, where J is integer, that makes no difference relative to the case with U (1) symmetry. But,
in the case where n is even and if additionally �n has a specific hypercharge, there is an addi-
tional SU (2) × U (1) -invariant term in the quartic part of the scalar potential. Indeed, if n is
even, then the product �n ⊗ �n includes an SU (2) triplet ( �n ⊗ �n ) 3 . (The boldface subindex
indicates the dimension of the SU (2) representation.) Then, besides the F4 term, which is the
SU (2) -invariant in 

(
� ⊗ ˜ �

)
3 ⊗

(
�n ⊗ ˜ �n 

)
3 , there are further terms in the potential, namely

either [(
� ⊗ ˜ �

)
3 ⊗ ( �n ⊗ �n ) 3 

]
1 

(97) 

if �n has null hypercharge, or [(˜ � ⊗ ˜ �
)

3 ⊗ ( �n ⊗ �n ) 3 
]

1 
(98) 

if the hypercharge of �n is the same as the one of �. (Besides the terms ( 97 ) and ( 98 ) there are
their Hermitian conjugates.) (In the case where n = 2 , that is, in the 2HDM, the term ( 98 ) is,

in the standard notation, the term 

(
φ
† 
1 φ2 

)2 
with coefficient λ5 .) So, the case with Z 2 symmetry

is, when n is even and �n has hypercharge either 0 or 1 / 2 , more complicated than the case with
14 We have also briefly explored the case n = 7 , but we do not report on it in this paper (and we are not 
planning to do it elsewhere). 
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 (1) symmetry, because there is then an additional dimensionless parameter—with denomi-
nator F1 F2 just as δ in the last Eq. ( 9 )—and therefore the phase space has an extra dimension. 
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Appendix A: The definitions of F2 , F4 , F5 , and F6 

In this appendix, we recover relevant definitions and results of Ref. [ 39 ]. 

A.1 n = 1 

If n = 1 , that is, if J = 0 , then �1 contains a single complex scalar fields c , with Ic = 0 : 

�1 = (c ) , ˜ �1 = (c∗) . (A1) 

Besides the SU (2) -invariant F1 defined in Eq. ( 5 ), one may write 

F2 = | c| 2 ≡ C. (A2) 

The scalar potential is given by Eq. ( 7a ). 

A.2 n = 2 

If n = 2 , that is, if J = 1 / 2 , then 

�2 =
( 

c 
d 

) 

, ˜ �2 =
( 

d∗

−c∗

) 

, (A3) 

where c and d are complex scalar fields with Ic = −Id = 1 / 2 . We can build two SU (2) -invariants
apart from F1 . Namely 

F2 = C + D, (A4a) 

F4 = ( A − B) ( C − D) 
4 

+ ab∗c∗d + a∗bcd∗

2 

. (A4b) 

The SP is given by Eq. ( 7b ). This model is identical to the U (1) -symmetric 2HDM. The
notation that most authors use for the quartic part of the scalar potential of the latter is [ 6 ] 

V4 = λ̄1 

2 

(
�† �

)2 + λ̄2 

2 

(
�

† 
2 �2 
)2 + λ̄3 

(
�† �

)(
�

† 
2 �2 
)+ λ̄4 

(
�† �2 

)(
�

† 
2 �
)
. (A5) 

This is the same as our notation 

V4 = λ1 

2 

F 2 
1 + λ2 

2 

F 2 
2 + λ3 F1 F2 + λ4 F4 , (A6) 

with 

λ̄1 = λ1 , λ̄2 = λ2 , λ̄3 + λ̄4 

2 

= λ3 , 2λ̄4 = λ4 . (A7) 
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A.3 n = 3 

If n = 3 , that is if J = 1 , then 

�3 =

⎛ ⎜ ⎝ 

c 
d 

e 

⎞ ⎟ ⎠ 

, ˜ �3 =

⎛ ⎜ ⎝ 

e∗

−d∗

c∗

⎞ ⎟ ⎠ 

, (A8) 

where c , d , and e are complex scalar fields with Ic = −Ie = 1 and Id = 0 . There are now three
SU (2) -invariants that we can build, namely 

F2 = C + D + E , (A9a) 

F4 = ( A − B) ( C − E ) 
2 

+ ab∗ ( c∗d + d∗e) + a∗b ( cd∗ + de∗) √ 

2 

, (A9b) 

F5 =
∣∣2 ce − d2 

∣∣2 
3 

. (A9c) 

The SP is given by Eq. ( 7c ). 
The triplet �3 is more usually written in the form 

� =
( 

−d/
√ 

2 c 
−e d/

√ 

2 

) 

, (A10) 

wherewith the potential is written as 

V = μ2 
1 �

† � + μ2 
2 tr 
(
�† �

)+ λ1 

2 

(
�† �

)2 + λ2 

2 

[
tr 
(
�† �

)]2 
(A11a) 

+λ3 tr 
(
�† ��† �

)+ λ4 
(
�† �

)
tr 
(
�† �

)+ λ5 �
† ��† �. (A11b) 

The SP of Eq. ( A11 ) is equivalent to the one of Eq. ( 7c ) with 

λ2 + 2λ3 = λ2 , λ4 + 1 

2 

λ5 = λ3 , λ5 = λ4 , −2 

3 

λ3 = λ5 . (A12) 

A.4 n = 4 

If n = 4 , that is, if J = 3 / 2 , then 

�4 =

⎛ ⎜ ⎜ ⎜ ⎝ 

c 
d 

e 
f 

⎞ ⎟ ⎟ ⎟ ⎠ 

, ˜ �4 =

⎛ ⎜ ⎜ ⎜ ⎝ 

f ∗

−e∗

d∗

−c∗

⎞ ⎟ ⎟ ⎟ ⎠ 

, (A13) 

where c , d , e , and f are complex scalar fields with Ic = −If = 3 / 2 and Id = −Ie = 1 / 2 . The SP
is still the one in Eq. ( 7c ), but now with 

F2 = C + D + E + F , (A14a) 

F4 = ( A − B) ( 3 C + D − E − 3 F ) 
4 

(A14b) 

+
ab∗
(√ 

3 c∗d + 2 d∗e + √ 

3 e∗ f
)

+ H . c . 

2 

, (A14c) 

F5 = 2 |√ 

3 ce − d2 |2 + 2 |√ 

3 df − e2 |2 + | 3 c f − de |2 
5 

. (A14d) 
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A.5 n = 5 

If n = 5 , that is, if J = 2 , then 

�5 =

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

c 
d 

e 
f 
g 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, ˜ �5 =

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

g∗

− f ∗

e∗

−d∗

c∗

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (A15) 

where c , d , e , f , and g are complex scalar fields with Ic = −Ig = 2 , Id = −If = 1 , and Ie = 0 .
The set of SU (2) -invariants now reads 

F2 = C + D + E + F + G, (A16a) 

F4 = ( A − B) ( 2 C + D − F − 2 G) 
2 

(A16b) 

+
{ 

ab∗
[ 

c∗d + f ∗g +
√ 

3 

2 

( d∗e + e∗ f ) 

] 

l l + H . c . 

} 

, (A16c) 

F5 = | 2√ 

2 ce − √ 

3 d2 |2 + | 2√ 

2 eg − √ 

3 f 2 |2 
7 

(A16d) 

+
2
(∣∣∣√ 

6 c f − de
∣∣∣2 + ∣∣∣√ 

6 dg − e f
∣∣∣2 + ∣∣2 cg + df − e2 

∣∣2 )
7 

, (A16e) 

F6 =
∣∣2 cg − 2 df + e2 

∣∣2 
5 

, (A16f) 

and the full SP takes the form in Eq. ( 7d ). 

A.6 n = 6 

If n = 6 , that is, if J = 5 / 2 , then 

�6 =

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

c 
d 

e 
f 
g 

h 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, ˜ �6 =

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

h∗

−g∗

f ∗

−e∗

d∗

−c∗

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (A17) 

where c , d , e , f , g, and h are complex scalar fields with Ic = −Ih = 5 / 2 , Id = −Ig = 3 / 2 , and
Ie = −If = 1 / 2 . The SP is the one of Eq. ( 7d ), with 

F2 = C + D + E + F + G + H, (A18a) 

F4 = ( A − B) ( 5 C + 3 D + E − F − 3 G − 5 H ) 
4 

(A18b) 

+Re 
{ 

ab∗
[ √ 

5 ( c∗d + g∗h) + 2
√ 

2 ( d∗e + f ∗g) + 3 e∗ f
] } 

, (A18c) 

F5 =
2
(∣∣√ 

5 ce − √ 

2 d2 
∣∣2 + ∣∣√ 

5 f h − √ 

2 g2 
∣∣2 )

9 

+
∣∣√ 

5 c f − de
∣∣2 + ∣∣√ 

5 eh − f g
∣∣2 

3 

(A18d) 
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+2
(∣∣√ 

10 cg + df − √ 

2 e2 
∣∣2 + ∣∣√ 

10 dh + eg − √ 

2 f 2 
∣∣2 )

15 

(A18e) 

+
∣∣5 ch + 7 dg − 4 e f

∣∣2 
45 

, (A18f) 

F6 =

∣∣∣2√ 

5 cg − 4
√ 

2 df + 3 e2 
∣∣∣2 + ∣∣∣2√ 

5 dh − 4
√ 

2 eg + 3 f 2 
∣∣∣2 + 2 | 5 ch − 3 dg + e f | 2 

35 

. (A18g) 

Appendix B: Ansätze for the fields 
In this appendix, we consider Ansätze for the fields in the cases with n = 5 and n = 6 . 

B.1 n = 5 

With reference to Eqs. ( A15 ) and ( A16 ), we construct the following three Ansätze : 

(1) d = e = g = 0 : If only c and f are nonzero, then 

γ5 = 3 F ( 4 C + F ) 

7 ( C + F ) 2 
, (B1a) 

γ6 = 0 . (B1b) 

By letting F vary from 0 to 2 C one obtains γ5 ∈ [ 0 , 4 / 7] . 
(2) d = e = f = 0 : If only c and g are nonzero, then 

γ5 = 8 CG 

7 ( C + G) 2 
, (B2a) 

γ6 = 4 CG 

5 ( C + G) 2 
. (B2b) 

It is obvious that in this case 

γ5 = 10 

7 

γ6 , (B3) 

with γ5 ∈ [ 0 , 2 / 7] and γ6 ∈ [ 0 , 1 / 5] . 
(3) d = f = 0 and g = −c : In this case 

F2 = 2 C + E , (B4a) 

F5 = 16 CE 

7 

+ 2
∣∣2 c2 + e2 

∣∣2 
7 

, (B4b) 

F6 =
∣∣2 c2 − e2 

∣∣2 
5 

. (B4c) 

Assuming furthermore that c2 = ke2 , with a real non-negative k, one obtains 

γ5 = 2 

7 

[
1 + 8 k 

( 2 k + 1) 2 

]
, (B5a) 

γ6 = 1 

5 

(
2 k − 1 

2 k + 1 

)2 

. (B5b) 

This gives 

γ5 = −10 

γ6 + 4 

, (B6) 

7 7 
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with γ6 ∈ [ 0 , 1 / 5] . 

B.2 n = 6 

With reference to Eqs. ( A17 ) and ( A18 ), we construct the following five Ansätze : 

(1) e = f = g = h = 0 : In this case 

γ5 = 4 

9 

(
D 

C + D 

)2 

, (B7a) 

γ6 = 0 . (B7b) 

The extreme situations d = 0 and c = 0 show that 0 ≤ γ5 ≤ 4 / 9 . 
(2) d = e = f = h = 0 : In this case 

γ6 = 4 CG 

7 ( C + G) 2 
, (B8a) 

γ5 =
2
(
1 + 7 γ6 +

√ 

1 − 7 γ6 
)

9 

. (B8b) 

Equation ( B8a ) suggests that 0 ≤ γ6 ≤ 1 / 7 , but in reality the curve ( B8b ) forms the
boundary of the allowed region only for 0 ≤ γ6 ≤ 
, where 


 = 5
(
1361 + 288

√ 

5 

)
7 × 1092 

≈ 0 . 121 (B9) 

is slightly less than 1 / 7 ≈ 0 . 143 . The value of γ5 corresponding through Eq. ( B8b ) to
γ6 = 
 is 

ς =
20
(

1607 + 471
√ 

5 

)
9 × 1092 

≈ 0 . 498 . (B10) 

(3) d = f = h = 0 : In this case 

F2 = C + E + G, (B11a) 

F5 = 10 CE + 4 G2 

9 

+ 4
∣∣√ 

5 cg − e2 
∣∣2 + 2 E G 

15 

, (B11b) 

F6 =
∣∣2√ 

5 cg + 3 e2 
∣∣2 + 32 E G 

35 

. (B11c) 

Assuming furthermore that e = �c and g = −√ 

5 tc , with real � and t, one obtains 

γ5 = 50 �2 + 500 t4 + 300 t2 + 12 �4 + 120 �2 t + 30 �2 t2 

45
(
1 + �2 + 5 t2 

)2 , (B12a) 

γ6 = 100 t2 + 9 �4 − 60 �2 t + 160 �2 t2 

35
(
1 + �2 + 5 t2 

)2 . (B12b) 

We are interested in the envelope of this family of parametric curves. The relevant solu-
tion to the envelope equation reads 

∂γ6 

∂t 
∂γ5 

∂�2 
− ∂γ6 

∂�2 

∂γ5 

∂t 
= 0 ⇔ �2 = 10 t

(−11 t2 + 6 t + 1
)

15 t2 + 2 t + 3 

. (B13) 

Plugging back this value of �2 into Eq. (B12a,b), we obtain the parametric curve 
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γ5 =
20 t
(
1125 t7 − 195 t6 + 821 t5 − 1371 t4 + 823 t3 + 399 t2 + 175 t + 15

)
9
(
75 t4 − 100 t3 + 90 t2 + 12 t + 3

)2 , (B14a) 

γ6 =
320 t3 

(−165 t4 + 212 t3 − 102 t2 + 36 t + 3
)

7
(
75 t4 − 100 t3 + 90 t2 + 12 t + 3

)2 . (B14b) 

The parametric curve (B14) intersects the curves ( B8b ) and ( B17b ), respectively, when 

γ6 = 
 ⇔ t = 3 + 2
√ 

5 

11 

, (B15a) 

γ6 = 9 

70 

⇔ t = 3 

5 

. (B15b) 

In the interval t ∈ [3 / 5 , (3 + 2
√ 

5 ) / 11] , the parametric curve (B14) may be approximated,
to a high degree of accuracy, by the straight line 15 

γ5 =
21
(
71 677 − 38 000

√ 

5 

)
γ6 + 25

(
6 485 + 4 104

√ 

5 

)
719 298 

. (B16) 

(4) e = f = 0 , c = h , and d = −g: In this case 

γ6 = 25 C2 + 9 D2 + 50 CD 

70 ( C + D) 2 
, (B17a) 

γ5 = −14 

9 

γ6 + 25 

36 

. (B17b) 

The straight line ( B17b ) extends, according to Eq. ( B17a ), from γ6 = 9 / 70 to γ6 = 5 / 14 .
Note that when γ5 and γ6 are related through Eq. ( B17b ), δ is zero by virtue of Eq. ( 23 ).

(5) d = e = f = g = 0 : In this case 

γ5 = 5 CH 

9 ( C + H ) 2 
, (B18a) 

γ6 = 10 CH 

7 ( C + H ) 2 
. (B18b) 

It is clear that 

γ5 = 7 

18 

γ6 , (B19) 

with 5 / 14 ≥ γ6 ≥ 0 and 5 / 36 ≥ γ5 ≥ 0 . 

Appendix C: Minimization of a function 

Consider the R → R function 

f (θ ) = λ3 − k | λ4 | 
√ 

p − sθ +
√ 

λ1 
√ 

v + wθ, (C1) 

with real parameters λ1 , λ3 , λ4 , k, p, s , v , and w satisfying 

λ1 ≥ 0 , k ≥ 0 , p > 0 , s > 0 . (C2) 

We are interested in the necessary and sufficient conditions that guarantee f (θ ) to be non-
negative everywhere inside the range θ ∈ [ α, β] , with α ∈ [ 0 , β] and β ∈ [ 0 , p/s] . It is necessary 

that f (θ ) be non-negative at the end-points of the domain, so the following two conditions
must hold: 

λ3 − k | λ4 | 
√ 

p − sα +
√ 

λ1 
√ 

v + wα ≥ 0 , (C3a) 
15 This is the straight line connecting the points ( 
, ς ) and ( 9 / 70 , 89 / 180) in the ( γ6 , γ5 ) plane. 
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λ3 − k | λ4 | 
√ 

p − sβ +
√ 

λ1 

√ 

v + wβ ≥ 0 . (C3b) 

If k = 0 , then f (θ ) is monotonic, so conditions ( C3 ) are both necessary and sufficient. If 
k > 0 , then f (θ ) has at most one extremum: 

d f 
d θ

∣∣∣∣
θ= μ

= ks | λ4 | 
2
√ 

p − sμ
+ w

√ 

λ1 

2
√ 

v + wμ
= 0 ⇒ μ = pw2 λ1 − k2 s2 vλ2 

4 

sw
(
wλ1 + k2 sλ2 

4 

) . (C4) 

If that extremum is a minimum, then we must avoid the situation where μ ∈ [ α, β] and f (μ) is
negative. Therefore, besides enforcing conditions ( C3 ), it suffices to avoid any situation where
there is a μ such that 

d f 
d θ

∣∣∣∣
θ= μ

= 0 , (C5a) 

d f 
d θ

∣∣∣∣
θ= α

< 0 , (C5b) 

d f 
d θ

∣∣∣∣
θ= β

> 0 , (C5c) 

f (μ) < 0 . (C5d) 

We aim to express conditions ( C5 ) in terms of λ1 , λ3 , λ4 , k, p, s , v , and w . To analyze condi-
tion ( C5a ), we observe that, since ks > 0 , d f / d θ can only vanish if 

w < 0 . (C6) 

In this case, the solution μ given in Eq. ( C4 ) satisfies 

p − sμ = k2 sλ2 
4 ( pw + sv) 

w
(
wλ1 + k2 sλ2 

4 

) , (C7a) 

v + wμ = wλ1 ( pw + sv) 

s
(
wλ1 + k2 sλ2 

4 

) . (C7b) 

Since k > 0 , s > 0 , and w < 0 , both p − sμ > 0 and v + wμ > 0 require 
pw + sv 

wλ1 + k2 sλ2 
4 

< 0 . (C8) 

One then obtains 

√ 

p − sμ = −k
√ 

s | λ4 | 
w 

√ 

w ( pw + sv) 
wλ1 + k2 sλ2 

4 

, (C9a) 

√ 

v + wμ =
√ 

λ1 

s 

√ 

w ( pw + sv) 
wλ1 + k2 sλ2 

4 

, (C9b) 

d2 f 
d θ2 

∣∣∣∣
θ= μ

= − w2 √ 

s 

4 k2 λ1 λ
2 
4 

⎡ ⎣ 

√ 

wλ1 + k2 sλ2 
4 

w ( pw + sv) 

⎤ ⎦ 

3 (
wλ1 + k2 sλ2 

4 

)
. (C9c) 

Therefore, in order that μ be a minimum of f (θ ) one must have 

wλ1 + k2 sλ2 
4 < 0 , (C10a) 

pw + sv > 0 , (C10b) 

which is stronger than condition ( C8 ). Notice that condition ( C10a ) actually implies condi-
tion ( C6 ), so the latter is not needed any more. 
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Conditions ( C5b ) and ( C5c ) require μ to lie within the domain [ α, β] . Those conditions trans-
late into 

ks | λ4 | √ 

p − sα
+ w

√ 

λ1 √ 

v + wα
< 0 , (C11a) 

ks | λ4 | √ 

p − sβ
+ w

√ 

λ1 √ 

v + wβ
> 0 . (C11b) 

It is readily seen that condition ( C11a ) is equivalent to μ > α, and that condition ( C11b ) is
equivalent to μ < β, when μ is given by Eq. ( C4 ). 

Finally, f (μ) is negative when 

λ3 +
√ 

( pw + sv) 
(
wλ1 + k2 sλ2 

4 

)
sw 

< 0 . (C12) 

To summarize, the necessary and sufficient conditions for f (θ ) to be non-negative in the whole
interval [ α, β] are conditions ( C3 ) if k = 0 . If k > 0 , then one must furthermore exclude the
situation where all fiv e inequalities ( C10 ), ( C11 ), and ( C12 ) simultaneously hold. 
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