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We consider the addition to the Standard Model of a scalar SU(2) multiplet A, with di-
mension z going from 1 to 6. The multiplet A, is assumed to have null vacuum expectation
value and an arbitrary (free) hypercharge. We determine the shape of the phase space for
the new terms that appear in the scalar potential; we observe in particular that, in the case
of a 6-plet, the phase space is slightly concave along one of its boundaries. We determine
the bounded-from-below and vacuum stability conditions on the scalar potential for each
value of n.

Subject Index B40, B46, B53, B57

1. Introduction

The Higgs particle was discovered at the Large Hadron Collider in 2012 [1,2]. Since then, explo-
ration of the interactions of that particle has shown that they are quite close to the predictions
of the Standard Model (SM) [3]. This either confirms that the breaking of the gauge symmetry
of the SM and the generation of the fermion masses are effected solely by a single scalar dou-
blet of SU(2), or else it suggests the presence of an “alignment” mechanism [4,5] that allows a
more complex scalar sector—such as in the two-Higgs-doublet model (2HDM) [6]—to mimic
the SM predictions—despite the absence of a symmetry enforcing such alignment. Moreover,
the almost-exact prediction of the SM

my = ¢,,mz (1)

—where my and my are the masses of the gauge bosons W* and Z°, respectively, and ¢, is the
cosine of the weak mixing angle—strongly suggests that only SU(2) doublets, and possibly also
singlets, have vacuum expectation values (VEVs) [7]. So, the scalar sector of any extension of
the SM is currently already rather strongly constrained. On the other hand, there is no reason—
but for Occam’s razor—why the scalar sector of a spontancously broken SU(2) x U(1) gauge
theory should consist of only one SU(2) doublet. One can entertain the speculation that larger
SU(2) multiplets exist—even if they have zero VEVs because of Eq. (1), and even if they are so
large that they do not couple to the known fermions. In particular, large extra SU(2) multiplets
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may be useful, even if they have no VEVs, to alter Eq. (1) through the radiative (“oblique”)
corrections that they produce, if that Eq. (1) is observed to be slightly off the mark [8].

In this paper we consider the possibility that the scalar sector of an SU(2) x U(1) gauge the-
ory consists of one hypercharge-1/2 SU(2) doublet ®, which has a VEV, and another SU(2)
multiplet A,, with weak isospin J and n = 2J + 1 components, that has null VEV and a free
(arbitrary) hypercharge. The latter assumption means that the theory has a global U(1) sym-
metry A, — A, exp (iv); since A, has zero VEV, that symmetry remains unbroken, and no
Goldstone boson arises from it.!

A difficult problem that one faces when one considers any extension of the scalar sector of the
SM is to find the bounded-from-below (BFB) conditions on the scalar potential (SP) V. This
is a mathematical problem that is very easy to state—what are the conditions on the coupling
constants of the quartic part V4 of the SP, such that V4 can be negative for no configuration of
the scalar fields*—but surprisingly difficult to solve even for modest extensions of the SM. The
problem has only been solved for the two-Higgs-doublet model [11,12], for some constrained
forms of the three-Higgs-doublet model [13-17], for a few models with SU(2) triplets [18—
20], and for a few other rather simple models [21-23]. Additionally, there are in the literature
BFB conditions for the SU(3) x U(1) electroweak model [24] and for models with colored
scalars [25].

There are papers on general methods for deriving BFB conditions [26-28]. Among other
methods, geometric and group-theoretic approaches may sometimes be utilized. These include
analyzing the potential on the orbit space [29-34], applying stratification theory (the classifica-
tion of extrema by symmetry patterns) [14,35-37], and using boundary conditions and convexity
(copositivity ) criteria [25-27,38]. The orbit space approach seeks to find a coordinate system
tailored to the symmetries of the potential, often transforming the problem of the minimiza-
tion of V} into one of analyzing geometric shapes (cones, polyhedra, etc.) within that space.
Due to its versatility, many modern analyses of multiscalar potentials—including those using
the P-matrix formalism [21,22]—either explicitly or implicitly utilize orbit-space reasoning.

In this paper, we analyze the gauge orbit space (which we call the phase space) to derive BFB
constraints for two SU (2) scalar multiplets ® and A,. When the potential is linear in the phase
space variables, it is sufficient to consider the convex hull of the orbit space to determine the
BFB conditions [25]—concave stretches of boundary do not matter. We note, however, that
for two multiplets the potential has the form in Eq. (26) below, and then one needs, at least in
principle,” to take into account the concave stretches of the boundary in detail.

One further aim of this paper is to fill a gap in our understanding of vacuum stability in mul-
tiscalar models, at least partially. (We term as “vacuum stability conditions” the conditions for

'Two other recent papers that consider the addition to the SM of SU(2) scalar multiplets with dimen-
sion up to n = 5 are Refs. [9,10]. Note, however, that in those papers, those multiplets are supposed to
acquire VEVs, contrary to what we assume here.

2Some people call “vacuum stability conditions” what we call “BFB conditions.” We reserve the former
term for the conditions stemming from another rationale (see below).

3We assume that the SP is renormalizable.

4If V4 is negative for some values of the scalar fields, then by multiplying all the fields by an ever larger
positive real number x one makes V; — «*V;, which is ever more negative, and this means that V' is not
BFB and therefore has no minimum, that is, the theory lacks vacuum state.

SWe do not do that explicitly in the case n = 6, because the concavity existing in that case is extremely
slight.
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the desired minimum of the potential to be its absolute global minimum, and not just a local
minimum. Note that, contrary to the BFB conditions, which only affect the quartic part V4 of
7, the vacuum stability conditions affect the whole V" including its quadratic part.) Building on
the results of Refs. [39,43], we derive analytical vacuum stability constraints for the scalar po-
tentials of SM extensions through scalar multiplets up to n = 6. The detailed expressions and
explanations provided in the paper may be useful for readers attempting to apply the method-
ology to other models.

The plan of this paper is as follows. After writing down in Section 2 the most general renor-
malizable SP for our model, we delimit in Section 3 the extent of the freedom of that SP—which
is smaller than its many scalar fields suggest, because the SP is renormalizable, that is, it con-
tains no higher powers of the fields than four. That allows us to derive, in Section 4, necessary
and sufficient (n&s) conditions for V4 to be BFB when n < 5—and almost n&s conditions when
n = 6. In Section 5 we consider the vacuum stability conditions and in Section 6 we summarize
our achievements. Appendix A collects useful results from a previous paper by two of us [39],
Appendix B considers Ansctze for the fields in the cases n = 5 and n = 6, and Appendix C solves
a technical mathematical problem that often arises in the main body of the paper.

2. The scalar potential
We write the Higgs doublet of the SM as

a
cb:(b), (2

where a and b are complex scalar fields. Then,

(%)
—a

is also an SU(2) doublet. Let Z. be the third component of isospin of the generic field z. One
has I, = —1, = 1/2. The SP of the SM is
Al

B @

Vom = uiF +
where
F=la*>+b>=A4+B (5)

is SU(2)-invariant. In general, we denote the squared modulus of the generic field z by the
corresponding capital letter Z, that is,Z = |z|>.

In the models that we consider in this paper there is just one scalar SU(2) multiplet beyond
®; we call that extra multiplet A,, where the integer n =1, ..., 6 denotes the dimension of
the irreducible representation of SU(2) embodied by A,,. Of course n = 2J + 1, where J is the
weak isospin of A,,. If n > 3 and an electrically neutral component of A, has a VEV, then the
gauge-boson masses do not obey Eq. (1). Indeed [7],

mzwngZWJle (2 =Y*+J), (6a)
Iy
g

m’ = ol WX/; vyl (272), (6b)

where the sum is performed over all neutral fields @y with isospin J, hypercharge Y, and VEV
vyy. In Eq. (6a,b), gis the SU(2) gauge coupling constant.
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In order to keep the relation (1) valid, we assume that all the neutral fields except b have null
VEV. Partly in order to guarantee this, we also assume that the models enjoy U (1) symmetries
A, — exp (i) A,; those symmetries prevent couplings either of the form ®2A,, or of the form
®3A,, that might induce a VEV for a component of A,.® With this additional symmetry, the
SPs become simpler and are given by a general form explained in Ref. [39] and given in detail
in Appendix A. The most important takeaway is that
A2

5 F + MR B; (7a)

whenn=1, V = Vom + u3F +
A
whenn =2, V = Vou + 13 + 72 B+ ME B+ b, (7b)

A
when eithern =3 orn=4, V = Vom + u3F + ?2 '+ MRB + MFy+AsFs; - (Tc)

6
A
when eithern =50rn=6, V = Vym + /L%Fz + ?2 Fzz + AP E+ Zkka. (7d)
k=4
In Eq. (7a—d), the F; are SU(2)-invariant polynomials of the fields of ® and of A,; their
functional forms depend on the dimension of A,,.

3. Phase spaces

The vacuum structure of a scalar potential may be analyzed geometrically by studying the
space spanned by the invariants of the theory, which we call the phase space’. In particular, the
conditions for boundedness from below and vacuum stability may be derived from the shape
of the phase space. However, for arbitrary field configurations, the invariants F; may become
unbounded, leading to a loss of information about the boundary of the phase space. In order
to avoid this, we introduce the following set of dimensionless SU (2)-invariants®

=g w=@ %= S=Em ©)
enabling us to rewrite the SP as
V=MfFl+M§Fz+[%r2+ﬂ(5)r+M}Ff, (10)
where
I1(8) = A3+ A4, (11a)
E (¥5, ¥6) = A2 + 2Asys5 + 26 V6. (11b)

In the following subsections, we derive the shape of the space spanned by the SU(2)-
invariants ys, y, and 8. We will refer to this space as the phase space, even though, in fact,
it is just a subspace of the true phase space that also includes the unbounded invariants /| and

Such couplings would anyway be forbidden by the SU(2) gauge symmetry, together with renormaliz-
ability, for n > 4.

"Other authors call it the “orbit space” [29-34].

$We employ the same notation as Ref. [39], except that our § is rescaled by a factor of J/2. Therefore,
when comparing the results between the two papers one should take into account that

J
Shere = 3 ORef[39]- (3
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F. Since § = ys = y6 = 0 for the case n = 1, its corresponding phase space is zero-dimensional,
and we start at n = 2.

3.1. n=2
In the case n = 2, that is, J/ = 1/2, both ys and y; are zero, hence the phase space is spanned by
a single dimensionless parameter §. From its definition in Eq. (9) we find

1 lad — bel?

§=-—— 12
4 2(A+B)(C+D) (122)
1 * %2

_ N lac* + bd*| (12b)

4 2(A+B)(C+D)
Since the second terms in the right-hand sides of Egs. (12a) and (12b) are non-negative,

1
5| < -. 13
||§4 (13)

32. n=3

In the case n = 3, that is, J/ = 1, the phase space has two dimensionless parameters § and ys.
One may show that [39]

1 —48% —3y5 > 0, (14)

which simultaneously bounds § and ys; the latter moreover is, by definition, non-negative [39].
Therefore,

5 , (15a)
1
0= =3 (15b)
The parameter ys is a function of the three fields ¢, d, and e through
_ ‘2ce—d2{2 (16)
P 3(Cc+D+E)Y

The upper bound (15b) on ys is saturated, for instance, if c = e¢ =0, orelseif d =0 and ¢ = e.
This case was first rigorously treated in Ref. [19], after an initial attempt in Ref. [18].

33. n=4

In the case n = 4, that is,J = 3/2, the phase space once again has two parameters § and ys. One
may show that they are simultaneously bounded by the condition [39]

9 —168%—20y5 > 0, (17)

which substitutes Eq. (14) of case n = 3. This means that now
Vv 9 — 20)/5
OSIMS——I—ﬂ
9
0 <y =<5, (18b)
instead of Eq. (15a,b). The parameter ys is a function of the four fields ¢, .. ., f through
213 ce — d*? + 21V3df — E2 + |3¢f — del?

= 5(C+D+E+F)
The upper bound (18b) on s is saturated, for instance, whend = e =0and ¢ = f.

(18a)

(19)
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Fig. 1. Boundaries of the phase space for the case n = 5, plotted in the (ys, y5) plane. The blue straight
line is given by Eq. (B1b), the red straight line is given by Eq. (B3), and the black straight line is given by
Eq. (B6). The vertices are given by Eq. (22a—c).

34, n=5
In the case n = 5, that is,J = 2, the phase space has three dimensionless parameters §, s, and
¥6. The condition [39]

4—45% —Tys = 10y5 = 0 (20)

simultaneously bounds &, ys, and y. The upper bound on the magnitude of § now reads

J4 —Tys — 10
18] < el 21)

2

The invariants ys and ys may be written in terms of F, Fs, and Fg, which in turn are given
in terms of the five fields ¢, ...g by Egs. (Al6a—f). Since F, Fs, and Fg are non-negative, ys
and y, are non-negative too. In order to gain a grasp on how large y5 and y, may be, we have
considered in section B.1 of Appendix B three Ansdtze for ¢, ..., g. With these three Ansdtze
we have constructed a triangle in the (ys, ys) plane, which we depict in Fig. 1. The sides of
that triangle are given by Eqgs. (B1b), (B3), and (B6), and are plotted in blue, red, and black,
respectively. The vertices of the triangle are

Vo=1(0, 0), (22a)
4
- (o, 5), (22b)
1 2
Vy = (5’ ?), (22¢)
Numerically generating random complex values for the five fields ¢, . . ., gand therefrom com-

puting ys and ys by means of Egs. (9) and (A16), one finds that all the (ys, y5) thus obtained
are inside the above-mentioned triangle. So, the range of (ys, ¥5)is the triangle with verticesVy,
V1, andV;in Eq. (22a—c).
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Fig. 2. Left: Boundaries of the phase space for the case n = 6, plotted in the (ys, ys) plane. The points
W, ..., Vg are given by Eq. (25a—e). The blue straight line is given by Eq. (B7b); the green curve is given
by Eq. (B8b); the red curve is given in parametric form by Egs. (B14); the black straight line is given
by Eq. (B17b); the magenta straight line is given by Eq. (B19). Right: zoomed-in view of the region of
points V5 and V3. The dashed blue straight line is given by Eq. (B16).

35. n=6

In the case n = 6, thatis, J = 5/2, the phase space once again has parameters 8, ys, and 5. One
may show that these SU (2)-invariants are simultaneously bounded by the condition [39]

25 — 168> — 36y5 — 56y > 0, (23)
instead of by inequality (20). In turn, the upper bound on the magnitude of § now reads

\/25 - 36)/5 - 56)/6
4

18] < 24)

instead of inequality (21).

The invariants ys and ys may be written in terms of the six fields c, .../ through Egs. (9)
and (A18); they are non-negative because F>, F5, and F; are also non-negative. In order to find
out the range spanned by y5 and yg, we have first considered five Ansdtze for the fields, given in
detail in section B.2 of Appendix B. With these five Ansdtze we have formed the boundary of
a domain in the (ys, y5) plane. That domain is depicted in the left panel of Fig. 2 and has five

vertices’:
Vo= (0, 0); (25a)
4
V= (o, —>; (25b)
9
V2= (o, 5); (25¢)
9 89
V3= (%’ @) ; (25d)
5 5
=—, — ). 2
Va (14’ 36) (25¢)

9Vertex V> is not really a vertex; it is just the point where the curves (B8b) and (B14) meet. At that
point, the two curves have the same slopes but different second derivatives. Indeed, the curve (B8b) is a
convex boundary of the (ys, ¥5) domain, while the curve (B14) is a concave boundary.
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To better illustrate the slight concavity of the boundary connecting vertices V; and V3, the
right panel of Fig. 2 shows a zoomed-in view of this region. The blue dashed line represents
the approximation of Eq. (B14a,b) by the straight line in Eq. (B16).

Numerically generating random complex values for the six fields ¢, . . ., & and therefrom com-
puting ys and ys by means of Egs. (A18) and (9), one finds that all the points (ys, vs) thus
generated are inside the above-mentioned domain, and indeed fill it completely. So, the range
of (ys, ys) is the area bounded by the lines (B7b), (B8b), (B14), (B17b), and (B19). This area is
very slightly concave at one of its borders, namely, at the line (B14).!°

4. Boundedness from below

The SP in Eq. (10) is BFB if its quartic part (V4) is non-negative for every possible field config-
uration, that is for every point in phase space. Following the method outlined in Refs. [26,39],
we rewrite the quartic part of the SP as

V1 Al I1(5) r
220 (H(6> E(ys,m)) <1> 20

where IT (§) and E (ys, y6) have been defined in Eq. (11a,b). Since r is strictly positive, the SP
in Eq. (10) is BFB if and only if the 2 x 2 matrix in Eq. (26) is copositive [26]. Therefore, we
must ensure that the following conditions hold for every 8, ys, and ys:

A >0, (27a)
E(y5, ¥6) = 0, (27b)
T (5. 5. v%6) = T1(8) + /21 E (5, %) > O. (27¢)

As stated in Ref. [19], it is necessary that E (ys, ys) and r (8, y5, Y6) are non-negative every-
where on the boundary of the phase space for conditions (27) to hold. In addition, if the ab-
solute minima of those functions lie inside the phase space, then one must require them to be
non-negative. Regarding E (ys, ys) given in Eq. (11b), we note that it is monotonic in both ys
and ys, so its minimum necessarily lies at the boundary of the phase space. On the other hand,
T (S, ys, ¥6) 1S monotonic in §, hence its minimum is attained at the boundary of the phase space
in the § direction. We affect the minimization with respect to § firstly and fix

A
8= =% (v, 76). (28)
|24l
where, by using Egs. (13), (15a), (18a), (21), and (24), we have
Y (ys,v6) =0 whenn=1, (29a)
1

X (¥s, Vo) = 2 when n = 2, (29b)

1-3
X (5. ¥6) = Tys when n = 3, (29¢)

V9 —20
S (s v) = Y S whenn =4, (29d)

10The possibility that the phase space is concave at some of its boundaries was already made clear in
Fig. 2 of Ref. [25]. That was in a model with a four-dimensional phase space; here we find the same
feature in a simpler model with a two-dimensional phase space.
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V4 —Tys — 10ys

2 (ys, ¥6) = > whenn =5, (29e)
25 — 36ys — 56
S (s, ¥6) = v 4”5 Yo Whenn=6. (29f)
Then, the functions that we ought to minimize are E (ys, y5) of Eq. (11b) and
I (s, ¥6) = A3 — |Aal Z (ys, v6) + VA1 E (5, Vo) (30)
In the following sections, we deduce the necessary and sufficient conditions for the SP to be BFB
whenn =1, ..., 6. We note that the conditions presented in Ref. [39] for the casesn =1, ...,4

are necessary and sufficient, but those for the cases n = 5 and n = 6 are just necessary. We chose
to write them for all n for the sake of completeness.

4.1. Thecasesn=1,...,4
n=1:

As previously noted, the phase space for the case n = 1 is zero-dimensional. Setting § = ys =
v6 = 0 in Eq. (27a—), those BFB conditions become

A1 =0, (3la)
A >0, (31b)
A3+ +/Aid > 0. (31¢)

These conditions are in agreement with those derived for the complex singlet extension of the
SM, for instance in Ref. [40].
n=2:

In the case n = 2 we have y5 = ys = 0. Consequently,

- | A4l
Es:v6) =22, T (ys,v6) = A3 — T4 + VA1Ag. (32)
Enforcing the conditions (27a—), the BFB conditions read
A >0, (33a)
Ay >0, (33b)
|A4]
N (33¢)

If one chooses to use the usual notation for the case of the U(1)-symmetric 2HDM, given in
Eq. (A7), then conditions (33a—) read

A1 >0, (34a)
A =0, (34D)
S VI Y —
/\3+?4—%+ Mha > 0. (34c)
Condition (34c) is equivalent to
A3+ /My =0, (35a)

Gz0z Jequiedes /| uo Jesn Ateiqi] NY3D Aq 1526228/109€60/6/520Z/0(01e/deid/woo dno-ojwepede//:sdyy woly pepeojumoq
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A3+ g+ 4/ Aiag > 0. (35b)

Therefore, our conditions (33a—c) are equivalent to

M >0, (36a)

7 > 0, (36b)

A3 > —\/ Ak, (36¢)
A3+ ha > —y/ A1k, (36d)

which are the textbook BFB conditions for the U (1)-symmetric 2HDM [6,41].
n = 3: In the case n = 3 only y4 is 0, so we need to minimize the functions

E(ys5) = A2 + 2Asys, (37a)

A
L s) = 23— o T3y /o Vi 4 2sps. (37b)

As stated before, E (y5) is monotonic, so it is non-negative everywhere in phase space if it is
non-negative at its end-points. Explicitly, we require

E(0) >0, A >0,
E(%)z& < A2+§k520. (38)
Furthermore, I' (y5) is of the form of the function analyzed in Appendix C, with
k=%, p=1 s=3, w=2s, v=2»xr, a=0, ,8:%. (39)
For it to be non-negative everywhere inside the ys domain [«, 8] it is necessary to require
b= By i =0 (40)

/ 2
A4 A ()\2 + 5)»5) > 0. (40b)

Furthermore, assuming condition (38) to hold, it is sufficient to exclude the situation where
313
8A1’

3 [k
A Z =], 41b
5< 4\ |24 ( )

(2hs + 312) (8sh; + 313)
)»3<— .
245

Despite their differing appearance, the n&s conditions presented in Egs. (38), (40), and
(41) are Boolean-equivalent to those originally derived in Ref. [19] and later confirmed in
Refs. [39,42]. We have confirmed this equivalence both numerically and algebraically.

n = 4: In the case n = 4, ys = 0 and the functions that we need to minimize take the form

As < — (41a)

(41c)

E (ys) = Ax + 2A5ys, (42a)
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A
D) = 0 — /530y 4 i1 /i § D (420)

Again, E (y5) is monotonicin ys, implying that it is non-negative everywhere for ys € [0, 9/20]
if and only if it is non-negative both for ys = 0 and for ys = 9/20, that is

A >0, (43a)
OAs
A+ —>0. 43b
2+ 0 = (43b)
Furthermore, I (ys) is of the form of the function analyzed in Appendix C, with
1 9
k=Z, p=9, s=20, w=2ks, v=2xy, «a=0, ﬂ:E. (44)

Therefore, for it to be non-negative everywhere inside the y5 domain [0, 9/20] it is necessary to
require

3
A3 — 1 A4l +/A1A2 = 0, (45a)

A
Mt <)»2 + 91—05) - 0. (4sb)

Furthermore, one must exclude the situation where

512
As < ——2 4
5 < T (46a)
5 [l
As < —= [ == |A4l, 46b
s< ¢ . [Aal (46b)
9is 4+ 1042) (8A1As + 512
< — (Oks 4+ 1042) (8A1As + 4). (46¢)
805

4.2. The casen=>5
For n = 5 the functions that we need to minimize depend on both y5 and ys and read

E (¥s5, ¥6) = A2 + 2Asys5 + 26V, (47a)
Va4 —Tys — 10y
I (¥s5, ¥6) = A3 — 25 Ihal + VA1 /A2 + 24sys + 206V (47b)

In this case the phase space is two-dimensional. Its boundary consists of three straight-line
segments. From the monotonicity of E (ys, ¥s), it follows that it is sufficient to ensure that it is
non-negative at the three vertices specified in Eq. (22). Thus,

A >0, (48a)
8
h2+ 2 hs 20, (48Db)
2 /
A+ 5 A5 >0, (48¢c)
where we conveniently introduced
15 = 10As + The. (49)
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Regarding T" (ys, v6) in Eq. (47b), we begin by observing that that function does not admit
any extremum in the interior of the phase space, since the system of equations
or = or = (50)
dys 9%
has no solution. Therefore, if there is a minimum, it must reside at one of the boundaries of
the phase space defined by Egs. (B1b), (B3), and (B6).

At the boundary (B1b), we set s = 0 and I" (ys, y) becomes

JE—T
[ (y5,0) =23 — T)/s al + VA1 VA + 20sys. (51)

Equation (51) has the form of the function studied in Appendix C with

1 4
k=§, p=4, s=7, w=2s5, v=2i, a=0, ﬁz?. (52)
Therefore, T (ys, 0) is non-negative for all ys € [0, 4/7] if we assume

A3 = |Aa| + VA1A2 = 0, (53a)

A3+ ‘/)»1 <)\.2 + g)»s) >0, (53b)

and moreover if we exclude any situation where
73
As < ——2 54a
s< g (54a)

T A
As < —— [ == |24l 54b
5 < 8\ Ay [Aal ( )

(8As + 7A2) (8shi + 713)
)\,3 < — .
56X
At the boundary (B3) we take y5 = (10/7) y6 to obtain

10 2
F(—Vé, )/6) = A3 — Al V1 = Sys+ Va1 )»2+7?U5V6- (55)

(54¢)

7
This function has the form of the function studied in Appendix C, with

2 1
k=1, p=1, s=35, W:§)\’5, v=2, a=0, ,3:§, (56)
Therefore, it is non-negative Yy € [0, 1/5] if we require
Az — Al + VAd2 = 0, (57a)
2
A3+ \/)\.] <)\.2 + g )»/5) >0, (57b)
and if we exclude the situation where
N 3515 (584)
< ——", a
> 21
35 [ &
A< —— | — A 58b
205+ 35M2) (A1 + 3513
Ay < — ( s+ 2)( sM 4). (58¢)
705
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At the boundary (B6) the function T" (ys, ) takes the form

7 7 7 7
This function is monotonic in y and the n&s conditions for it to be non-negative Vy; € [0, 1/5]
are conditions (53b) and (57b).
To summarize, the n&s BFB conditions for the case n = 5 are (48), (53), (57), and furthermore
one must impede both conditions (54) and conditions (58).

10 4 8 20
r <——V6+—, V6> =h3+ VA [+ ohs + <——)»5+2)»6) Y6- (59)

4.3. Thecasen =06
When n = 6, the functions that we need to minimize read

B (5, ¥6) = Ao + 2hsys + 2h6 Vs, (60a)

25 — 36y5 — 56
v L%l + Vi Vao + 2hsys + Zheye. (60b)

Neither of these functions admits extrema inside the phase space, so their minima must reside
at its boundary. That boundary has two curved segments, namely, Eqgs. (B8b) and (B14). We
firstly require the two functions to be non-negative at the vertices of the phase space, given in
Eq. (25a-). The following necessary BFB conditions are then found:

I (¥5,¥6) = A3 —

A >0, (61a)
M _ 8
1) =t ghs 20, (61b)
WP =k 42645 + 2046 > 0, (61c)
89 9
A =+ — A5+ —= A >0 61d
5 2+ 90 3 + 3576 =Y (61d)
AD St A+ a0 (61¢)
2 =Rt qehst e 20,
and
5
A3+ ALAy — Z [A4] > 0, (62&)
@ 3
A4 AAy T — 7 [A4] > 0, (62b)
e (24¢§ — 41)
Ay s - ——3e Ml 20, (62¢)
A+l >0, (62d)
A+l > 0. (62¢)

If we ignore the slight concavity of segment (B14) and instead describe the boundary con-
necting vertices V> and V3 by the linear Eq. (B16),'! then the boundary of phase space consists
of four straight segments and just one curved one. The function E (ys, ) is monotonic along

""This implies that we are exploring a phase space slightly larger than the true one, and as a result, the
BFB conditions we impose are, strictly speaking, necessary instead of n&s conditions. Nevertheless, we
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a straight segment, and therefore the four straight segments do not generate any further BFB
condition besides conditions (61a—e). At the curved segment (B8b) one has

2(1+ s+ yT=Tr) 4

- 28
E(lg) = E , =(r+=2 s+ 2A
(R6) 5 Y6 (2+9 5>+(9 5+ 6>V6

4)

which must be non-negative Vy;s € [0, 0]. One must avoid the situation where o (A¢) has a min-
imum p € [0, o] with E () < 0. This means that one must impede the situation where

Ths + 9%g < 0, (64a)
7(5+/5 — 8)hs — 54h < 0, (64D)
2 (Ths 4+ 9%g)*
W4 2 T 20 64
where
A = 1445 + 9. (65)

Since y5 and yg are linearly dependent along a straight segment, I'(ys, 1) can be cast into the
form of the function analyzed in Appendix C for each one of the four straight segments of the
boundary. The parameters are

- 1 4
VonszZ, p=25 s=36, w=2xk;, v=2»Xi, oa=0, ,8=§, (66a)

S 1 225(2999 — 912+/5) 70
Rhik=g r= 39961 C STl
7(71 677 — 38000 +/5 25(6485 +4104 /5
Y = ( [) A.5+2A.6, V= A+ ( + \/_) As,
119883 359 649
9
= o, =, 66b
a=0, B 7 (66b)
_ 28 25 9 5
s k= = A5+ 21 =M+ —A =_ ==
V3Vi: k=0, w 9 s+ 2Ae, Y 2+ 13 5 o 70’ B 12’ (66¢)
_ 1 7 5
VoVy: k= Z, p=25, s =70, W=§)\,5—|—2)\.6, v=2»XA, a=0, ﬂ:ﬁ (66d)

The straight segment connecting V3 to V4 has & = 0, so conditions (62d) and (62¢) are n&s to
guarantee that I'(ys, y5) > 0 everywhere on that segment. For the other three cases, one should
exclude any values of A1, ..., A¢ where all the conditions (C10), (C11), and (C12) are satisfied—
for each set of parameters {k, p, s, v, w, @, B} in Egs. (66a), (66b), and (66d). Notice that p —
sB = 0 for the segments V> V3 and Vj Vi, and therefore for those segments condition (C11b)
automatically holds.

have verified that this approximation has a negligible practical impact. We generated approximately 3.6 x
10° random sets of A; within the ranges A2 €]0,4m] and A3 456 € [—4m, 4]. Among these, around 10°
sets satisfied our necessary BFB conditions. Notably, we did not encounter a single case where using
the true concave boundary, instead of its straight approximation, would have changed our conclusions
regarding any of these 10° points.
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On the convex segment connecting ¥} and V; we introduce

= /-7y, (67)

with x € [,/1 — 7o, 1]. Then, the functions that we ought to minimize on this segment are!?

20+ Tys + /1 =7 4x 2A 4x 2A
a<( iy V6),y6>=g(x)z( 1) g s

A+ —
2t T 9 "7

r (2“ Pt 1T, yé) — @ =h - 2 g, 68
Their first and second derivatives read
4 4A
gx) = 75 — g (692)
g'(x)= —%, (69b)

f()——lx4|+g()/ , (69¢)
g(x)
1/ _ 2g(x) gj/(x) — [g/(x)]Z Al
ST )= 1 /g o (69d)

We have already seen that for g(x) to be non-negative for all x in the interval [,/ 1 — 7o, 1] one
just needs to enforce conditions (61b) and (61¢) while avoiding conditions (64). For the function
f(x) to be non-negative everywhere in the same interval one must enforce conditions (62b)
and (62c) while avoiding the situation where

f/T=T9)<0, f(1)>0, and 3Iu: [f()=0, f(u)<0. (70)
The third condition (70) yields the solution
_ 7x5 9 |,\4| 1)
which only exists if K/S > 0, where
K =2(Ths 4 36)> + ThaA, (72a)
S = 6347 4+ 211 A. (72b)

When the first and second conditions (70) are satisfied, i is guaranteed to be a minimum and
to lie inside the domain [,/ 1 —7o, 1]. Under these assumptions, the positivity of f”(u) further
specifies that

K <0, (73a)

S <0. (73b)

The remaining three conditions (70) yield, respectively

2Minimizing g (x) and f (x) with respect to x is equivalent to minimizing the functions in the left-hand
side of Eq. (68a,b) with respect to ys because the transformation ys — x in Eq. (67) is injective in the

domain ys € [0, 0] & x € [,/1 —To, 1].
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2(Ths — A1 =7 A
gl + 22 9 [1_y, (74a)
63 2D

2(Tas — A) [

4 —1
M= A4l + /A1 g(p) < O. (74c)

Therefore, besides enforcing conditions (62b) and (62c), one must avoid any situation where
all the following conditions hold:

2 (Ths + 3he)
< _—7

75
T (75a)
6313
_ 22 75b
T8 (75b)

2 A
bl > = /AT;)(7AS—A\/1 — 7o), (75¢)
2

2 A
Ml < =G5 50 Ths +9%0). (75d)
2

4 —1
s < “4 hal = Vo1 g(). (75¢)

In condition (75c¢), note that /1 — 70 = 6(5+/5 — 4)/109.

To summarize, the necessary BFB conditions for the case n = 6 are (61) and (62). Besides
that, it is sufficient to exclude any situation where Eq. (64a—) or Eq. (75a—¢) hold, or where
conditions (C10), (C11), and (C12) are satisfied for each set of parameters {k, p, s, v, w, o, B} in
Egs. (66a), (66b), and (66d).

5. Vacuum stability

Following Ref. [43], we classify the possible extrema of the scalar potential (SP) of our model
in the following exhaustive way:

» The type-0 extremum has

(@) =0, (A,)=0. (76)
e A type-I extremum has

(@) #0, (A, =0. (77)
e A type-II extremum has

(@) =0, (An) #0. (78)
* A type-III extremum has

(@) #0, (A, #0. (79)

In Ref. [43] two of us have proved that, if the SP of a renormalizable SU (2)-symmetric model
with a scalar doublet ® contains neither linear terms, nor trilinear terms, nor quadratic terms
with two different multiplets, and if moreover ® only interacts with any other scalar SU(2)
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multiplet A, through quartic invariants constructed out of
PRDPRA, R A, (80)

—where A, stands for the SU (2) multiplet with the same dimension of A, and formed by
the complex conjugates of the scalar fields of A,—then a type-I local minimum of the SP has
a lower value of the SP than any type-0 or type-III extremum. As a consequence, either the
global minimum of the SP is that type-I local minimum, or it is a type-II minimum (if there is
any). Since the models studied in this work fulfil the assumptions of that theorem, in order to
ensure the stability of the type-I vacuum one just has to find the conditions which ensure that:

(1) The vacuum is a local minimum of the SP. This is equivalent to all the physical scalars
having positive masses-squared.

(2) No type-1I extremum has an expectation value of the SP lower than the one of the vac-
uum.

We concentrate here on the second task.

5.1.  Type-I vacuum
The expectation value of the SP at the type-I vacuum is independent of the dimension of A,;
it is given by

— A

Vi=ui(F)+ 5 (R) 81)
where (F}) is the expectation value of the SU(2) invariant defined in Eq. (5). The stationarity
condition for V7 is

wi=—r(R). (82)

Boundedness from below of the SP requires A; to be positive. Hence, Eq. (82) tells us that ,u%
must be negative for the type-I vacuum to exist. Equations (81) and (82) imply that

N2
7 (17)
Vi=— . 83
(=50 (83)
5.2. Type-II extremum
At a type-II extremum, only A, acquires a VEV. According to Eq. (10) with F/{ = 0, the expec-

tation value of the SP is

Vi =u3(B)+ EWsy6) (y;, 76))

where (F) and (E (ys, ¥)) are the expectation values of the SU(2) invariants /5 and E (ys, vs)
at that type-II extremum, respectively. Further note that

(R)?, (84)

M <« eithern=1orn=2,
(E(ys5,¥6)) = 3 A2+ 2xs(ys) <« eithern=3orn=4, (85)
A4 205 (ys) + 206 (v6) <« eithern=5o0orn=>06.

Effecting the minimization of ¥y in Eq. (84) relative to (F), one finds that at a type-II ex-
tremum

wi=—(E s v0) (B). (86)
The SP being bounded from below necessitates that Z (s, y4) is non-negative, as we have ex-
tensively discussed in the previous section. Therefore, a type-II extremum only exists if ©3 < 0.
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From Egs. (84) and (86),
2
(13)
2(E (¥s, v6))
To ensure that the type-I vacuum lies below the type-1I extremum with the lowest 7y, we require
the parameters of the SP to be such that all possible (E (ys, y6)) satisfy
2

M2
(E (5, ¥6)) > M (M—§> : (88)

1

Vi=- (87)

5.3.  Conditions for vacuum stability
When A, is either a singlet (n = 1) or a doublet (n = 2), (E (ys, ¥5)) = A and condition (88)
simply implies that

2\ 2

A > (“_;) AL (89)
M

This condition for the type-I extremum to be the global minimum of the SP is consistent with
the results derived for the complex singlet extension of the SM in Ref. [40], and with the anal-
ogous condition found in Refs. [6,41,44] for the U (1)-symmetric 2HDM.

For larger n, (E (ys, y6)) may take several values and we must investigate the space spanned by
ys and ys. The task of finding the values of (E (s, v6)) that lead to the smallest possible value
of V11 can be simplified by noting that (Z (ys, y)) is linear in (ys) and (ys). Therefore, any type-
IT extremum must lie at the boundary of the phase space [34]. Furthermore, the minimum of
the potential is attained at the points of phase space that extend the farthest in some direction.
Hence, when the boundary consists of straight-line segments meeting at vertices, it suffices to
evaluate (E (ys, y6)) at those vertices to find the possible type-II extrema. Consequently,

. 2)
either A, or A, + TS < n=3,

. 9
(E (s, ¥6)) = 3 either A, or Ay + —105 & n=4, (90)
) 5 4rs  2h6
either A,, or A, + - or Ay + - + < < n=>5.
Therefore, condition (89) must hold for all # < 5 and besides one must require that
21 2\
n=3= o+ =2 s (E2) 4, 91a)
3 ,u%
91 2\
n=d =g+ — s (E2) ), (91b)
10 ,u,%
8hs 4rs 2% 2\’
n=5= A +min (w22, 225 26 (H2) 5 1c)
7 7 5 wi

An important consistency check may be performed in the case n = 3, where, using the no-
tation of Eq. (Al1), the conditions given in Egs. (89) and (91a) exactly coincide with those
presented in Eq. (5.9) of Ref. [45].

For n = 6, determining the possible type-II extrema is more challenging because the bound-
ary of the phase space contains both straight-line segments and a convex segment.'3 Note that

3For the moment, we are approximating the slightly concave parametric curve between the vertices V>
and V3 by a straight line, just as we did in the previous section.
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(E (ys, y6)) 1s still linear in both (ys) and (ys), so we introduce the direction of steepest descent
= —((ys), (ys)). If 7 points to one of the straight boundaries, then the farthest protruding
points in the direction of 77 coincide with the vertices of the phase space given in Eq. (25). The
possible type-1I extrema then have

. 8\ 89X 9
(E (ys, v6)) = either Ay, or Ay + TS’ or Ay +2¢As + 20Xk, OF Ay + 9—; + 3—56,
5ks  Ske
A —_— 4 —. 92
or Ay + 13 + 7 92)

However, if 7 points to the boundary connecting the vertices V; and V5, then the farthest pro-
truding point in the direction of 7 will lie somewhere on the convex boundary (B8b). In other
words, we need to find the minimum of the function ¥ (v6) defined in Eq. (63) in the range
v6 € [0, o]. That was done already when studying the boundedness-from-below conditions in
Section 4.3; more specifically, if

7(5+/5 — 8)As < 54hg < —421s, (93)
then, from Eq. (64c), one more possible value of (E (ys, y5)) is
2 (Ths + 3hr)
2t .
7 (1415 + %)
If we want to be more rigorous, then we must not neglect the curvature of the parametric

curve (B14). We must then consider, for each set of values of 1,, A5, and Ag the function of ¢
40t

(94)

= (vs, )= XAy + 95a
E s Y () =224 s 1005 + 900 + 121 13) (952)
[144t2 (—165¢* + 21247 — 102¢* + 36t + 3) A (95b)
+7 (1125¢7 — 195¢° + 821> — 1371¢* + 8237 (95¢)
+399¢% + 175t + 15) xs], (95d)
and we must look for minima of this function in the interval
3 34245
<< 96
s SI=— (96)

Any minima must be treated as extra possibilities for (E (ys, ¥s)).

6. Conclusions and discussion
In this paper, we have considered the extension of the electroweak SM through a single
scalar multiplet A, of SU(2). We have assumed that multiplet to enjoy a U(1) symmetry
A, — A, exp (i) and to have no VEYV, so as not to perturb, at tree level, the successful SM
prediciton (1) (although it does perturb it at loop level). We have analyzed the scalar potential
V' of this model with only two scalar multiplets—A,, and the SM doublet ®—in order to find
out the ranges of its various SU (2)-invariants, and thus, the conditions for it to be BFB (and
thus be able to produce a vacuum state), and the conditions for our preferred vacuum state
(where only @ has a VEV) to be the global minimum of V.

With just one scalar SU(2) multiplet A, with n components, there are m quartic SU(2)-
invariants in V', where m = 1 foreithern =1lorn=2,m =2 foreithern =3 orn=4,m=3
for either n = 5 or n = 6, and so on. The increasing number of invariants renders their ranges

19/29

Gz0z Jequiedes /| uo Jesn Ateiqi] NY3D Aq 1526228/109€60/6/520Z/0(01e/deid/woo dno-ojwepede//:sdyy woly pepeojumoq



PTEP 2025, 093B01 A. Milagre et al.

increasingly complicated to calculate. As demonstrated in Section 3, for n < 4, we were able to
identify the phase space boundaries through direct algebraic manipulation of the invariants.
To tackle the same problem for the cases n =5 and n = 6, we first assigned random values
to the scalar fields of A, to map out the phase space, and only afterwards did we attempt
to find suitable combinations of nonzero fields to characterize the boundaries analytically. It
is important to clarify that, although numerical sampling both provided the initial insight and
confirmed the final analytical result, our determination of the phase space boundaries is entirely
analytical.

We have found that, starting with n = 6,'* the phase space has some curved boundaries, at
least one of which is concave. As shown in Eq. (B14), this concave boundary can only be ex-
pressed in parametric form as a ratio of high-degree polynomials. For practical purposes, we
therefore approximate it throughout our analysis by using the straight-line segment given in
Eq. (B16).

By using the analytic equations for all the boundaries of the phase space for the cases n < 6,
we were able to deduce analytic n&s BFB conditions on V', and also analytic n&s conditions
for our desired vacuum state—where ®, but not A,, has nonzero VEV—to be the absolute
minimum of the potential. We assessed the accuracy of all our analytical results by performing
numerical scans over the phase space. Note, however, that due to the straight-line approxima-
tion adopted for the concave boundary in the case n = 6, the phase space that we have worked
with was slightly larger than the exact one. As a result, the conditions found by us in this case
are, strictly speaking, necessary instead of n&s conditions. To evaluate the validity of this sim-
plification, we scanned 10° sets of couplings A; and did not find a single instance where apply-
ing the exact concave boundary—rather than its linear approximation—would have altered our
conclusions. This demonstrates the negligible practical impact of the approximation.

One may discuss the situation where the theory has, instead of the U(1) symmetry A, —
A, exp (iv), the smaller (discrete) Z, symmetry A, — —A,. In the case where n is odd, that
is, where J is integer, that makes no difference relative to the case with U(1) symmetry. But,
in the case where 7 is even and if additionally A, has a specific hypercharge, there is an addi-
tional SU(2) x U(1)-invariant term in the quartic part of the scalar potential. Indeed, if n is
even, then the product A, ® A, includes an SU(2) triplet (A, ® A,)z. (The boldface subindex
indicates the dimension of the SU(2) representation.) Then, besides the F; term, which is the
SU(2)-invariant in (® ® 5)3 R (A ® zn)3, there are further terms in the potential, namely
either

[(®® D), ® (8, ® Auks], 97)
if A, has null hypercharge, or
(P ©®),® (4, ® A, (98)

if the hypercharge of A, is the same as the one of ®. (Besides the terms (97) and (98) there are

their Hermitian conjugates.) (In the case where n = 2, that is, in the 2HDM, the term (98) is,
2

in the standard notation, the term <¢I¢>2> with coefficient As.) So, the case with 7, symmetry

is, when n is even and A, has hypercharge either 0 or 1/2, more complicated than the case with

“We have also briefly explored the case n = 7, but we do not report on it in this paper (and we are not
planning to do it elsewhere).
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U (1) symmetry, because there is then an additional dimensionless parameter—with denomi-
nator F F just as § in the last Eq. (9)—and therefore the phase space has an extra dimension.
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Appendix A: The definitions of 5, Fy, Fs, and F;

In this appendix, we recover relevant definitions and results of Ref. [39].

Aln=1
If n =1, that is, if J = 0, then A contains a single complex scalar fields ¢, with 1. = 0:

A=), Ar=(c). (A1)
Besides the SU (2)-invariant F; defined in Eq. (5), one may write
B=|c=C. (A2)
The scalar potential is given by Eq. (7a).

A2n=2
If n =2, thatis, if J/ = 1/2, then

() 5o(2)

where c and d are complex scalar fields with I, = —1; = 1/2. We can build two SU (2)-invariants
apart from Fj. Namely

F=C+D, (Ada)

:(A—B)4(C—D)+abcd—;—abcd' (Adb)

The SP is given by Eq. (7b). This model is identical to the U(1)-symmetric 2HDM. The
notation that most authors use for the quartic part of the scalar potential of the latter is [6]

F

M, o2 A 2 s =
Vi=3(000) + E(A;Az) + (@ o) (AlA) + Ra(dfAs) (A @). (A5)
This is the same as our notation
A A
Vi= T F + 3 B + BB+ Ak, (A6)
with
B} - - M -
A=A, Ax=2Xi, A3+ 5 = A3, 2h4 = A4 (A7)
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A3n=73
If n =3, thatisif J = 1, then
c e*
A= |d|, As=|-da*]|. (A)
e c*
where ¢, d, and e are complex scalar fields with I, = —I, = 1 and I; = 0. There are now three

SU (2)-invariants that we can build, namely

FB=C+D+E, (A9a)
A—-B)(C—FE b* (c¢*d + d* “b(cd* + de*
o U=B)(C—E)  ab(d+do)+abled +de) Aob)
2 72
‘266 — dz‘z
S=ET 3 (A9¢c)
The SP is given by Eq. (7¢).
The triplet A3 is more usually written in the form
—d/V2 ¢
A= A10
< —e d/\/i) ’ ( )
wherewith the potential is written as
; A x
V= uiolo +uiir(ala) + 5 (@0) + T [ir (ala)] (Alla)
+23tr (ATAATA) + 24 (@T@) tr (ATA) + 25 TAATD, (Al1b)
The SP of Eq. (A11) is equivalent to the one of Eq. (7c) with
_ — - 1= - 2_
A +203=A, A+ E)xs = A3, As=MA4, —§K3 = As. (A12)
A4n=4
If n =4, that is, if J = 3/2, then
c I
r= |9 = . (A13)
e d
f —c

where ¢, d, e, and f are complex scalar fields with I, = —Iy = 3/2and I; = —I, = 1/2. The SP
is still the one in Eq. (7¢), but now with

F=C+D+E+F, (Al4a)
F4:(A—B)(3C-;D—E—3F) (Al4b)
ab* (V3ctd +2d%e + /3¢ f) +He.

n - , (Al4c)

e 2|«/§ce—d2|2+2|«/§5df—62|2+|3cf—de|2‘ (Al4d)
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ASn=>5
If n =15, thatis, if J = 2, then
c g
d —
As=|el|, As=]| e |, (A15)
f —d*
g c*

where ¢, d, e, f, and g are complex scalar fields with I. = —I, =2, I; = —Iy =1, and I, = 0.
The set of SU(2)-invariants now reads

B=C+D+E+F+0G, (A16a)
HZ(A—B)(ZC-gD—F—2G) Al6b)

+ [ab* |:c*d+f*g+ \/g(d*e%-e*f)} Il—l—H.c.}, (Al6c)
F— |2«/§ce—«/§d2|2-|7-|2x/§€g—~/§f2|2 (Al6d)

2 ((décf—de‘z + )x/gdg—ef‘z + |2Cg+df—€2|2>
+

7 , (Alé6e)
2eg — 2df + |
o 5f+e‘, (A16f)
and the full SP takes the form in Eq. (7d).
Ab6n==6
If n = 6, that is, if J/ = 5/2, then
c h*
d g
ro= |l Ze=| 7 ] (A17)
A —e
g d*
h —c*

where ¢, d, e, f, g, and h are complex scalar fields with I. = -1, =5/2, I; = —I, = 3/2, and
I, = —Iy = 1/2. The SP is the one of Eq. (7d), with

B=C+D+E+F+G+H, (Al8a)
F4=(A—B)(5C+3D4;E—F—3G—5H) Alsh)
+Re {ab* [ﬁ (c"d + g'h) + 2V/2 (d*e + f*g) + 3¢* f]} (A18¢)

o A ﬁd2\29+ V3 fh—v28)) . ]x/gcf—de{zq;|x/§eh—fg|2

(A18d)
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2(|[V10cg + df — \/§€2|2 + |V10dh + eg — \/zfz}z)
+ (A18e)
15
2
S5ch+T7dg — 4
—i—i ch+7dg — e/ | , (A18f)
45
2 2
25 cq — a2 df + 3e2\ + ‘2\/§dh — 42 eg+ 3f2‘ +215¢h — 3dg + ef?
= (Al8g)
35
Appendix B: Ansitze for the fields
In this appendix, we consider Ansdtze for the fields in the cases withn = 5 and n = 6.
Bln=>5
With reference to Egs. (A15) and (A16), we construct the following three Ansdtze:
(1) d =e=g=0:1f only cand f are nonzero, then
3FAC+F
ys= L ECHT) (Bla)
T(C+F)
ve = 0. (B1b)
By letting F vary from 0 to 2C one obtains ys € [0, 4/7].
(2) d =e= f =0:1If only ¢ and g are nonzero, then
8CG
ys = —— (B2a)
7(C+G)
4CG
yo— —2CG (B2b)
5(C+G)
It is obvious that in this case
10
Vs = - V6> (B3)
with y5 € [0, 2/7] and y5 € [0, 1/5].
(3) d =f =0and g= —c: In this case
B =2C+E, (B4a)
16CE 222 + &
= , B4b
5 7 + 7 (B4b)
|2€2 — 82‘2
F = — (B4c)
Assuming furthermore that ¢> = ke?, with a real non-negative k, one obtains
2 8k
=14+ —", B5a
Vs =1 [ e 1)2] (B5a)
1 [(2k—1)?
=== . B5b
e=3 <2k n 1) (B3b)
This gives
10 4
- -, B6
Vs = Vet 5 (B6)
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with y5 € [0, 1/5].

B2n=6
With reference to Eqgs. (A17) and (A18), we construct the following five Ansdtze:

(1

(@)

(€)

e = f =g=h=0:In this case

4( D \?
=—|=— B7
=3 (cap) (B7)
ys = 0. (B7b)

The extreme situations d = 0 and ¢ = 0 show that 0 < y5 < 4/9.
d =e= f =h=0:In this case

4CG

= B8a

"=t oy (BSa)
2(14+Tye + /1 = Ty6)

ys = ( 6 5 °. (B8b)

Equation (B8a) suggests that 0 < y5 < 1/7, but in reality the curve (B8b) forms the
boundary of the allowed region only for 0 < y5 < o, where

5(1361 +288+/5)
¢ 7 x 1092 0 ®9)
is slightly less than 1/7 & 0.143. The value of ys corresponding through Eq. (B8b) to

Y6 =0 1s

20 (1607 +471V5)
= ~ (0.498. B10
o 9 x 1092 (B10)
d = f = h = 0: In this case
F=C+E+G, (Blla)
10CE + 4G  4|/5cg—é|* +2EG
F— T [VSeg = , (B11b)
9 15
2W/5cg+ 3¢ + 2EG
F6:|\/_cg+ el + ' (B110)
35
Assuming furthermore that ¢ = ¢c and g = —+/5 te, with real € and ¢, one obtains
50€% 4 500¢* + 3002 + 12¢% + 12002t + 30¢%*
ys = . , (B12a)
45 (1 + €2 + 512)
10072 4 9¢* — 60£%¢ + 16003¢>
Ve = + + (B12b)

35(1+ €2+ 52)°
We are interested in the envelope of this family of parametric curves. The relevant solu-

tion to the envelope equation reads

dys dys  Oys Oys ,  10r(=112 + 61 +1)
ar a2 9L ar - 15242t +3

(B13)

Plugging back this value of £% into Eq. (B12a,b), we obtain the parametric curve
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20¢ (112517 — 19516 4+ 821#° — 1371¢* + 823¢% + 399¢> + 175t + 15)

9 (754 — 1003 + 9012 + 12¢ + 3)

3201 (—165¢ 4 21213 — 1027* + 361 + 3
Ve = ( 5 ), (B14b)
7(75¢% — 10023 + 9072 4 121 + 3)

The parametric curve (B14) intersects the curves (B8b) and (B17b), respectively, when

ys = , (Bl4a)

3+24/5
V6=Q©Z=—+11f, (B15a)
9 3
N B15b
Y6 =15 © s ( )

In theinterval 7 € [3/5, (3 + 2+/5)/11], the parametric curve (B14) may be approximated,
to a high degree of accuracy, by the straight line'’

21(71677—38000«/5))/64-25(64854-4104\/5) (B16)
= 719298 '
4) e=f=0,c=h,and d = —g: In this case

B 25C% +9D?* 4+ 50CD

- Bl7a
ve 70 (C + DY? (B172)
14 25
s Sl BI
pi= =g vet o (B17b)

The straight line (B17b) extends, according to Eq. (B17a), from ys = 9/70 to ys = 5/14.
Note that when y5 and ys are related through Eq. (B17b), § is zero by virtue of Eq. (23).
(5) d =e= f =g=0:1In this case

5CH
V5= ——, (B18a)
9(C+ H)
10CH
Vo= ——— . (B18b)
7(C+ H)
It is clear that
7
= — Y, B19
Vs = 1g Ve (B19)
with 5/14 > y¢ > 0 and 5/36 > y5 > 0.
Appendix C: Minimization of a function
Consider the R — R function
F(0) =23 — k|dal /p — 50 + /A v+ 00, (C1)
with real parameters A1, A3, A4, k, p, s, v, and w satisfying
AM>0, k>0, p>0, s>0. (C2)

We are interested in the necessary and sufficient conditions that guarantee f(6) to be non-
negative everywhere inside the range 6 € [«, 8], with o € [0, 8] and B8 € [0, p/s]. It is necessary
that f(0) be non-negative at the end-points of the domain, so the following two conditions
must hold:

Ag—klk4|«/p—soc+\/xx/v+wa20, (C3a)

3This is the straight line connecting the points (o, ¢) and (9/70, 89/180) in the (ys, y5) plane.
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A3 — kgl /P — B+ VA v+ wB = 0. (C3b)

If £ =0, then f(6) is monotonic, so conditions (C3) are both necessary and sufficient. If
k > 0, then f(0) has at most one extremum:

df ksl WyAL _pwzkl—kzszvki

= =0 = u= .
dol,_, 2yp—su  2/vFwn = (whi + k2sA3)
If that extremum is a minimum, then we must avoid the situation where u € [«, 8] and f(u) is

(C4)

negative. Therefore, besides enforcing conditions (C3), it suffices to avoid any situation where
there is a u such that

7 =0 (CSa)
% = 0, (C5b)
% » > 0, (C5¢)

S(n) <0. (C5d)

We aim to express conditions (C5) in terms of A1, A3, A4, k, p, s, v, and w. To analyze condi-
tion (C5a), we observe that, since ks > 0, d f/d6 can only vanish if

w < 0. (Co)
In this case, the solution u given in Eq. (C4) satisfies
k2523 (pw + sv)
- , CTa
Pk w (WM + kzs)»i) (€72)
A
b = vt sy (C7b)

s (way + Kk2sA3)
Since k > 0,5 > 0, and w < 0, both p — s > 0 and v + wu > 0 require
pw+ sy
—_— <
WAy + k253

k/s|hal [ w(pw 4+ sv)
o — , 9
Pk W why + k2523 (C9a)
NoEsmm AL [ w(pw 4 sv) (C9b)
VEwpn =, — [ ————,
H s\ why + k2522
3
d’f w2/s WAy + k253
—=| == A+ K2sAg) . C9
dez|,_, 4007 w(pw + sv) (w1 + ks34 (C5e)

Therefore, in order that p be a minimum of f(6) one must have

(C8)

One then obtains

whi 4+ K2sai < 0, (C10a)

pw —+sv > 0, (C10b)

which is stronger than condition (C8). Notice that condition (C10a) actually implies condi-
tion (C6), so the latter is not needed any more.
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Conditions (C5b) and (C5c¢) require p to lie within the domain [«, 8]. Those conditions trans-
late into

kes| A4l wa/A1
+
JP—sa v+ wa
ks| A
S| Aql n WA/l -0
Vo—sB  Jv+wB
It is readily seen that condition (Cl1a) is equivalent to u > «, and that condition (C11b) is
equivalent to u < B, when u is given by Eq. (C4).
Finally, f (1) is negative when

<0, (Clla)

(C11b)

(C12)

At \/(pw + sv) (Why + k%sA3) -0

SwW

To summarize, the necessary and sufficient conditions for f(6) to be non-negative in the whole
interval [«, B] are conditions (C3) if k = 0. If £k > 0, then one must furthermore exclude the
situation where all five inequalities (C10), (C11), and (C12) simultaneously hold.
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