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Human-induced pluripotent stem cells with broad immune compatibility are
highly desirable for regenerative medicine applications. Human leukocyte
antigen (HLA) class | homozygous cell sources are ideal for immune
compatibility modeling. Here, we profile HLA-A, HLA-B, and HLA-C alleles in
3,496 Lithuanian donors genotyped at three-field resolution. The five most
frequent alleles constitute 74.6% of HLA-A, 43.2% of HLA-B, and 59.2% of HLA-
C, with HLA-A*02:01:01, HLA-B*07:02:01, and HLA-C*07:02:01 being the most
common. Lithuanian allele frequencies closely resemble those of European-
American and British populations. We identified 153 double homozygotes and 51
triple homozygotes for HLA-A, HLA-B, and HLA-C. Compatibility modeling
showed that triple homozygous profiles match 60.5% of Lithuanians, 13.4% of
the British population, and 7.4% of European-Americans. CRISPR-Cas9 guide RNA
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design yielded 54 candidates predicted to disrupt HLA-A or HLA-B while preserving
HLA-C, producing edited profiles matching over 97.9% of Lithuanians, 95.7% of
European-Americans, and 95.5% of the British population. Finally, we established
15 fibroblast lines from triple homozygotes as a bioresource for the derivation of
human-induced pluripotent stem cells and immune compatibility studies.

superdonor, HLA class |, immune compatibility, hypoimmunogenic, population genetics

Introduction

Transplantation of allogeneic organs, tissues, and cells is
constrained by immune matching between the graft and the host.
Immune matching is mediated by the human leukocyte antigen
(HLA) genes. These genes are clustered in a 3.7-Mbp locus on
chromosome 6, are highly polymorphic, and their inheritance is
reported as having intermediate linkage disequilibrium (1, 2). The
recent adoption of high-resolution haplotyping in clinics has
improved the accuracy of immune matching for the more than
42,000 HLA alleles cataloged in the IPD-IMGT/HLA Database (3).
Pursuing a high level of matching is intended to minimize adverse
events, such as graft-versus-host disease (GVHD) or immune
rejection, which are frequently managed with immunosuppressive
drugs. A broad assortment of immunosuppressive treatments is
available for the management of transplantation, encompassing
small molecule inhibitors, antimetabolites, corticosteroids, and
antibodies (4-6). However, immunosuppressive therapies are
associated with an increased risk of infection (7, 8). Therefore,
pursuing a high level of matching is intended to minimize adverse
events caused by immune rejection and immune suppression. The
importance of a high degree of HLA immune matching for
improving survival rates is well documented in the literature (9,
10) for exemplary primary cell types, and it is highly desirable for
induced pluripotent stem (iPS) cell-based applications.

HLA class I homozygous individuals offer increased immune
compatibility with a relatively larger portion of the population.
They are very scarcely represented, as expected from Mendelian
ratios. Cells from naturally occurring triple and double homozygous
individuals are very valuable for the study of immune compatibility
and applications of regenerative medicine.

Genome editing tools are currently used to engineer synthetic
immune compatibility, also called hypoimmunogenicity. This aids in
overcoming the challenges of identifying rare haplotypes in donor
pools. Several approaches have been developed to bypass immune
recognition by cytotoxic T cells while retaining self-recognition
mediated by NK cells. The most frequent loss-of-function
strategies include the knockout of specific HLA class I (11) and
class II genes, beta-2-microglobulin (B2M) (12, 13), CIITA (14),
TAPI or TAP2, and CD74 (15). Conversely, the most frequent gain-
of-function strategies involve the knock-in of CD47 and HLA-E (16).
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Pioneering studies have demonstrated that gene-editing depletion of
HLA-A and HLA-B genes preserves host NK cell recognition while
preventing CD8 T-cell mediated host-versus-graft rejection (17).
This approach yields cells currently known as HLA-C retained.
Triple and double homozygous samples are an ideal cell source for
modulating immunogenicity, as they start from a relatively higher
level of immune compatibility. Furthermore, they can be engineered
in their HLA genes using programmable nucleases through simpler
strategies compared to heterozygous samples.

In this study, we identify a cohort of naturally occurring triple
and double homozygous individuals in the Lithuanian population
and isolated primary samples for prospective regenerative medicine
applications. Additionally, we analyzed the frequency of HLA class I
genes, specifically characterizing the HLA-A, HLA-B, and HLA-C
haplotypes in a cohort of 3,496 individuals. The genetic makeup of
the Lithuanian population is placed within a European context,
influenced by pre-Neolithic Western and Scandinavian hunter—
gatherer groups, Early to Middle Bronze Age steppe pastoralists,
and Late Neolithic Bronze Age Europeans, while remaining largely
sheltered (18). These features make the Lithuanian population
closely resemble European-American (19) and British groups (20)
from an immune compatibility standpoint. We compared this
population to publicly available datasets of European ancestry and
modeled the impact of gene editing on HLA immune matching and
population coverage.

Materials and methods
Ethical approval

This study is part of the ethical approval 2023/6-1524-984,
Highly-immune compatible iPS cells as source for regenerative
medicine and cell therapy-oriented applications, from the Vilnius
Regional Biomedical Research Ethics Committee (Lithuania) to
Vilnius University, and 2023/4-1507-968, Analysis of the
distribution of Human Leukocyte Antigen (HLA; Encoding Genes -
HLA) alleles and haplotypes in the group of the Lithuanian unrelated
bone marrow donor registry, to Vilnius University Hospital Santaros
Klinikos. Written consent was obtained from the participants of
the study.
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Study subjects

For population-based analyses of HLA frequencies, the study
included 3,496 individuals from the Lithuanian unrelated bone
marrow donor registry, characterized at third-field resolution for
HLA-A, HLA-B, and HLA-C. For the isolation of dermal fibroblasts,
individuals were healthy adults who provided study-specific informed
consent and were selected based on their known HLA class I
genotypes. Individuals aged over 55 years, those with known
inherited genetic disorders, or those diagnosed with non-
environmentally caused diseases were excluded from dermal biopsy
collection to ensure that fibroblast samples were free from age-
associated mutations or pathogenic genetic variants.

Genotyping

HLA typing for registry donors’ peripheral blood was performed
at the EFI-accredited immunogenetics laboratory at Vilnius
University Hospital Santaros Klinikos (Vilnius, Lithuania) using
sequencing-based typing, and at the ASHI-accredited laboratory
HistoGenetics (Ossining, NY, USA) using next-generation
sequencing. Exons 2 and 3 for class I HLA were covered.

Fibroblast derivation and genotyping

Skin samples were collected using a 2-3-mm biopsy punch needle
and fragmented with a sterile scalpel and needle. Fibroblasts were
grown in AmnioPrime Complete Medium (cat. no. APR-B, Capricorn
Scientific, Germany), supplemented with amphotericin B (cat. no.
AMP-B, Capricorn Scientific, Germany), for 21 to 45 days until
fibroblasts migrated from tissue sections and reached 80%-90%
confluence. The medium was changed every 3 days to ensure
optimal cell growth. Fibroblasts were routinely passaged with 0.25%
Trypsin-EDTA at a density of 2 x 10> cells/cm”. Genomic DNA from
fibroblasts was purified using the DNeasy Blood and Tissue Kit (cat. no.
69504, Qiagen, Germany) and genotyped using the primers HLAA-P1:
TCCAGGTGGACAGGTAAGGA, HLAA-P2: GTCACTGCCT
GGGGTAGAAC, HLAB-P1: TGCATTCTGGGTTTCTCTACTGG,
HLAB-P2: CACGCGAAACATCCCAATCA, HLAC-P1:
AGGTAAGGCAAAGGGTGGGA, and HLAC-P2: AGGCCGCCT
GTACTTTTCTC. Samples were Sanger sequenced using the primers
HLAA-P3: ACCCTCGTCCTGCTACTCTCG, HLAB-P3:
ACCCTCCTCCTGCTGCTCTG, and HLAC-P3: CGTTGGGG
ATTCTCCACTCC at Microsynth, Germany.

Bioinformatics

Python and R scripts used for data analysis, along with
anonymized datasets, are available through the Supplementary
Data and or through the open-source GitHub developer platform
in the repository https://github.com/Arias-Lab/superdonors.
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Quantification of HLA allele frequency in
the population

The total allele count in the dataset was divided by the number
of alleles (n = 2) times the number of individuals in this study (n =
3,496), all of whom had at least third-field resolution.

Hardy—Weinberg equilibrium analyses

The observed genotypes present in the population were quantified
(n = 3,496). The allele frequencies were determined using the sampled
genotype count, and the expected genotype frequencies were
calculated. The observed and expected genotype counts were
compared with a %* test. The ” test is reliable for genotypes present
more than five times in the population. Genotypes with a count < 5
times were filtered from the Hardy-Weinberg equilibrium (HWE)
analyses. The degrees of freedom (df), calculated as (n(n + 1)/2) - n,
were estimated based on the number of possible genotypes and the
number of alleles identified in the sampled population for each HLA
class I gene: 44 for HLA-A, 83 for HLA-B, and 45 for HLA-C.

Regression analyses

Allele frequencies were extracted from the publicly available data
from European-American (19) and British (20) populations and
compared to the allele frequency from our study. Linear regression
analyses (y ~ mx + ¢) were performed using R for pairwise comparison
of allele frequencies of HLA-A, HLA-B, and HLA-C. Frequencies are
calculated as frequency = allele count(dataset)/n(dataset).

Principal component analysis

Monte Carlo population haplotypes were simulated based on
the published allele frequencies of European-American and British
cohort studies. Data were processed with one-hot encoding to
convert allele entries per individual into 1 or 0, using the caret
library in R (22). Centroids and Euclidean distances were calculated
from the principal components. Distances were represented as
edges and as heatmaps.

HLA sequence analysis and sgRNA activity
prediction

The sequences for all alleles at the protein, transcript, and gene
levels were downloaded as FASTA files from the IPD-IMGT-HLA
database version 3.58 (23) and analyzed in Python and R. Allele
sequences were extracted based on the HLA alleles present in the
population. Cas9 binding sites were extracted with Python and
analyzed in R using CrisprScore (24). Transmembrane prediction
was conducted with DeepTMHMM (25).
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Results

Analysis of HLA class | frequencies in the
Lithuanian population and identification of
double and triple homozygotes

The Lithuanian Bone Marrow Donor Registry, located at
Vilnius University Hospital Santaros Klinikos, includes 13,884
individuals, with 11,153 characterized at the second field (protein
level) for HLA-A, HLA-B, and HLA-C. Of these, 3,496 individuals
are characterized in the third field (Figure 1A). We found that 858

10.3389/fimmu.2025.1626787

individuals are at least homozygous for one HLA class I gene. A
total of 542 individuals are homozygous for the coding sequence of
HLA-A, 233 individuals are homozygous for HLA-B, and 338
individuals are homozygous for HLA-C (Figure 1B). The HLA
types identified and their prevalence in the population are
summarized in Figure 1 and Supplementary Table S1. The five
most frequent HLA-A alleles are A*02:01:01, A*03:01:01,
A*24:02:01, A*01:01:01, and A*11:01:01, which together account
for 74.6% of the population (Figure 1C). Notably, HLA-A*02:01:01
is the most frequent HLA class I allele, representing 31.6% of the
population. Similarly, the five most frequent HLA-B alleles are

A
VU Santaros Hospital bone marrow
and HLA registry
13,884 HLA class | or class |l
immune compatibility data
11,153 second field resolution
HLA-A, HLA-B, and HLA-C
3,496 third field resolution
HLA-A, HLA-B, and HLA-C
D
HLA-B
07:02:01
13:02:01 E
15:01:01
o 44:02:01 HLA-C
40:01:01
HLA-A 08:01:01
18:01:01
02 O 01 35:01:01
27:05:02
24 02 01 40:02:01 07
IO 1:01:01 35:03:01 I 12:03:01
I 1 1:01:01 57:01:01 I 03:04:01
Hl25:01:01 51:01:01 I03:03:01
l26:01:01 56:01:01 0 1:02:01
l32:01:01 44:03:01 05:01:01
l68:01:02 39:01:01 07:04:01
31:01:02 38:01:01 B15:02:01
l68:01:01 52:01:01 B12:02:01
B23:01:01 14:02:01 H08:02:01
§30:01:01 27:02:01 B17:01:01
< freq. >0.01 <«— freq. >0.01 <«— freq. >0.01
0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.0 0.1 0.2
allele frequency allele frequency allele frequency
FIGURE 1

(A) Dataset structure from this study. (B) Proportional Euler diagram showing the prevalence of HLA class | homozygous individuals in the Lithuanian
population, with the composition of double homozygous and triple homozygous individuals highlighted. The most common HLA alleles with a
frequency above 0.01 are shown for (C) HLA-A, (D) HLA-B, and (E) HLA-C.
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B*07:02:01, B*13:02:01, B*15:01:01, B*44:02:01, and B*40:01:01,
which account for 43.2% of the population (Figure 1D). HLA-
B*07:02:01 alone represents 15.1% of the Lithuanian population.
Furthermore, the five most frequent HLA-C alleles are C*07:02:01,
C*06:02:01, C*04:01:01, C*02:02:02, and C*07:01:01, with a
cumulative frequency of 59.2% in the population (Figure 1E). It is
important to highlight that the HLA-B gene exhibits the largest
diversity of alleles, followed by HLA-A and HLA-C (Supplementary
Table S1), as also observed in previous studies (19-21). Of the HLA
homozygotes, a total of 153 are double homozygous (Figure 1B;
Supplementary Table S2): 58 for HLA-A and HLA-B, 76 for HLA-A
and HLA-C, and 172 for HLA-B and HLA-C. Remarkably, 51
individuals are triple homozygous for HLA-A, HLA-B, and HLA-
C (Figure 1B; Table 1). Haplotype frequencies of the complete
dataset (3,496 individuals) are available in the Supplementary Data.

Comparisons of HLA class | allele
composition between populations

Comparisons of the Lithuanian Class I HLA frequencies with
those reported for the European-American and British populations
using linear regression models show strong correlations between the
three cohorts (Figures 2A-C). The linear regression analyses yielded
an average slope of 0.914 for HLA-A, 0.827 for HLA-B, and 0.860 for
HLA-C. This indicates the populations closely resemble each other
in the composition and prevalence of allele variants. Principal

TABLE 1 HLA class | triple homozygous haplotypes identified in this
study (n = 51).

HLA-A HLA-B HLA-C Count
A*03:01:01 B*07:02:01 C*07:02:01 15
A*02:01:01 B*13:02:01 C*06:02:01 10
A*01:01:01 B*08:01:01 C*07:01:01 6
A*02:01:01 B*07:02:01 C*07:02:01 4
A*02:01:01 B*40:01:01 C*03:04:01 3
A*02:01:01 B*57:01:01 C*06:02:01 2
A*03:01:01 B*56:01:01 C*01:02:01 2
A*25:01:01 B*18:01:01 C*12:03:01 2
A*02:01:01 B*15:01:01 C*03:04:01 1
A*02:01:01 B*27:05:02 C*02:02:02 1
A*25:01:01 B*35:01:01 C*04:01:01 1
A*26:01:01 B*38:01:01 C*12:03:01 1
A*31:01:02 B*51:01:01 C*05:01:01 1
A*68:01:01 B*40:01:01 C*03:04:01 1
A*68:01:02 B*44:02:01 C*07:04:01 1
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component analysis (PCA) was performed on the genotypes of
the Lithuanian population and on genotypes reconstructed from
published datasets using Monte Carlo analysis based on reported
allele frequencies. The results showed that the Lithuanian
population clustered in close proximity to the compared
populations (Figure 2D). The Euclidean distances between the
centroids of the populations were quantified and represented in
the PCA and as a heatmap (Figure 2E). The distance metrics
indicate that the centroid of the Lithuanian population is
proximal to the European-American and British populations,
with distances of 1.00 and 0.79 relative units, respectively. The
British and European-American populations closely resemble each
other, with a Euclidean distance of 0.27 relative units. Hardy-
Weinberg equilibrium analyses show that some genotypes,
including the 10 most frequent allele types, occur at higher
frequencies than expected (Supplementary Data; Supplementary
Figure S1).

Compatibility of HLA class | in the
Lithuanian and other European populations

We stochastically arranged the 3,496 donors and interrogated
whether the subset of HLA-A, HLA-B, and HLA-C triple homozygous
(51 samples) and double homozygous (153 samples) individuals were
compatible with the 3,496 patients (Figure 3). We found that our
cohort of triple homozygous individuals matches 60.46% of the
Lithuanian population (Figure 3A). Likewise, the double
homozygous cohort matches 33.32% of the Lithuanian population.
In comparison, a randomly selected subset of 153 or 51 samples from
the dataset could match only 11.84% (Figure 3B) and 4.1%
(Figure 3C) of the Lithuanian population, respectively. We then
evaluated the matching provided by our triple homozygous and
double homozygous cohorts to the European-American and British
populations. We assessed their immune compatibility with Monte
Carlo datasets reconstructed from allele frequencies reported for
European-American and British individuals. Remarkably, we found
that the 51 triple homozygous samples of our cohort match 13.4% of
the British population, while the double homozygous cohort matches
5.2% (Figure 3D). Additionally, we found that triple homozygous
samples match 7.4% of the European-American population, and
double homozygous samples match 3.3% (Figure 3E).

Cas9 activity prediction on HLA class |
alleles of the Lithuanian population

We extracted the Cas9-binding site sequences from the HLA
alleles present in the Lithuanian population. First, we focused on the
analysis of target regions encompassing the gene body, from the 5
UTR to the 3'UTR. We found 1,996 unique target sites in HLA-A
alleles, 2,342 unique target sites in HLA-B, and 2,300 unique target
sites in HLA-C. We calculated the activity prediction score based on
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FIGURE 2

Comparison of the HLA allele frequencies identified in the Lithuanian population with those reported in studies of the European-American and the
British population for (A) the HLA-A transcript, (B) the HLA-B transcript, and (C) the HLA-C transcript. Reference lines with slope n = 1 are
represented as dashed grey lines. The linear regressions of frequencies on the scatter plots are represented with a solid red line, with the R? of the
linear model and the slope indicated. (D) Principal component analysis of the HLA class | distribution in the Lithuanian population (this study) and
other populations, including European-American and British cohorts. The centroid of each population is marked with a circle. The Euclidean
distances between the centroids were calculated, and the edges are plotted with solid lines. (E) Euclidean distance heatmap between the studied
populations. Blue corresponds to greater Euclidean distances in the principal component space.

the rule set 1 of nuclease catalytic activity (26). We found that, as in
non-hyper polymorphic genes, the activity scores of all HLA alleles
are centered in the inactive Q4 quadrant. We show this distribution
for the five most frequent alleles of HLA-A, HLA-B, and HLA-C
(Figure 4A). The potential of HLA gene knockout to modulate
immune compatibility is well accepted in the literature. Although
pairs of guide RNAs can be used in conjunction to create exon-
spanning knockouts, we focused on guide RNAs in exon regions.
From the guide RNAs present in the gene body, we found 679 unique
target sites in the HLA-A exons of Lithuanian alleles, 698 in HLA-B,
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and 687 in HLA-C (Figure 4B). Since HLA-A, HLA-B, and HLA-C
are class I single-span transmembrane proteins (Figure 4C), only
guide RNAs targeting the ectodomain have the capacity to create
knockouts that eliminate plasma membrane expression of HLA
genes. We predicted the transmembrane spanning region (25) of
the allele sequences and focused on guide RNAs directed to the N-
terminus, upstream of the predicted transmembrane domain. We
found there are 615 unique target sites in Lithuanian alleles on HLA-
A ectodomains, 658 on HLA-B, and 613 on HLA-C (Figure 4B). Of
those useful for ectodomain targeting, a fraction have predicted
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activity scores greater than 0.5. These include 54 for HLA-A, 75 for
HLA-B, and 66 for HLA-C (Figure 4B).

Modeling the impact of HLA class |
engineering on the immune compatibility
of triple homozygous and double
homozygous donor samples

Naturally occurring triple and double homozygous samples are
particularly useful for gene engineering approaches as they allow bi-
allelic targeting with a single programmable nuclease in a one-step
intervention. Next, we modelled the impact of HLA-A and HLA-B
knockouts on the immune compatibility of the double and triple
homozygous samples when matching them to the Lithuanian
population and other European datasets (Figure 5). We included all
51 triple homozygous individuals from our cohort (Figure 5A). From
the 153 double homozygous individuals identified, we focused on
those that are HLA-A and HLA-B double homozygous, comprising
seven individuals (Figure 5B). The 51 triple homozygous samples,
when in an HLA-C-retained (HLA-A and HLA-B double knockout)
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configuration, match a maximum of 0.9799 of the Lithuanian
population (Figure 5A). These 51 samples achieve a match of
0.9577 in the European-American population (Figure 5C) and
0.9556 in the British population (Figure 5D).

Sampling of HLA-A, HLA-B, and HLA-C
triple homozygous individuals from the
Lithuanian population

Since the triple homozygote individuals identified in this study
are immune-compatible with a large fraction of the Lithuanian and
other European populations, we sampled these volunteers. The
collected dermal fibroblast samples were used to establish biobank
stocks and cultures. Primary fibroblast cultures were robustly
established for 15 triple homozygotes (Figure 6A; Supplementary
Table S3). PCR products of exons 2 and 3 (Figure 6B) display single
bands, and Sanger sequencing yields clear chromatograms, both of
which are characteristic of homozygous samples (Figures 6C-E).
Sanger sequencing of exons 2 and 3, which code for the ectodomains
of HLA-A, HLA-B, and HLA-C, revealed characteristic residues for
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each allele. Characteristic amino acids p.F33 and p.R121 were
confirmed for HLA-A*02:01:01 (Figure 6C), p.Y33 and p.W119 for
HLA-B*13:02:01 (Figure 6D), and p.D33 and p.L119 for HLA-
C*06:02:01 (Figure 6E). These findings were consistent for both
XY (donor SD9) and XX (donor SD6) individuals with the
homozygous haplotype HLA-A02:01:01-HLA-B13:02:01-HLA-
C06:02:01 (Figure 6F).

Discussion

Our study on allele and haplotype frequencies of the HLA-A,
HLA-B, and HLA-C genes in the Lithuanian population elucidates
immune compatibility structure in relation to other European
populations. Comparative analyses confirmed high similarity in
HLA class I genes between the Lithuanian population and
populations of European-American and British ancestry. The most
frequent alleles described in the British (20) and European-American
populations (19) are also the most frequent in the Lithuanian
population, with frequencies of 31.6% (A*02:01:01), 5.3%

10.3389/fimmu.2025.1626787

(B*08:01:01), 15.1% (B*07:02:01), and 8.7% (C*07:01:01). Linear
regression analysis using publicly available data corroborated these
observations. PCA and Euclidean distance calculations further
confirmed the proximity in immune compatibility among
Lithuanian, European-American, and British populations. HWE
analysis revealed deviations in a subset of alleles, suggesting partial
genetic isolation or selective pressure. These findings align with
previous studies indicating low levels of admixture and a significant
component of pre-Neolithic hunter-gatherer ancestry in the
Lithuanian group (18).

The majority of individuals in our registry (n = 11,153) were
characterized at second-field resolution for HLA-A, HLA-B, and
HLA-C, while a subset (n = 3,496) underwent third-field resolution
analysis. This divergence reflects technological advancements in
clinical registries, with long-read sequencing platforms now
enabling fourth-field resolution (27, 28). Although our analyses
do not encompass HLA class II, it is well established that its
expression occurs in specialized immune cell lineages, whereas
HLA class I primarily regulates nonimmune and immune cell
compatibility (29, 30). The exclusive focus on HLA class I
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Population compatibility model of HLA-A and HLA-B double knockout samples from our cohort with the Lithuanian population and with populations
of European-American and British ancestry. (A) Immune compatibility of the 51 triple homozygous individuals in an HLA-A and HLA-B double
knockout model, and (B) the seven double homozygous individuals in an HLA-A and HLA-B double knockout model when matched to the
Lithuanian population. The cohort from (A) matched with (C) the European-American dataset and (D) the British dataset.
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represents a potential limitation of this study, especially considering
the importance of HLA class II matching in immunotherapeutic
applications. Remarkably, we found a subset of 51 triple
homozygous individuals for HLA-A, HLA-B, and HLA-C, and a
subset of 153 double homozygous individuals. The proportion of
triple-homozygous individuals exceeded stochastic expectations
based on measured allele frequencies (2.99 + 1.76), suggesting
underlying population structures, as indicated by HWE analysis.
Due to the significant immune compatibility provided by HLA-A,
HLA-B, and HLA-C triple homozygous individuals (31, 32), the term
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naturally occurring superdonors has been proposed previously (33).
Our study identified 51 naturally occurring superdonors who exhibit
HLA class I immune matching with 60.46% of the Lithuanian
population, 13.4% of the British population, and 7.4% of the
European-American population. These populations exhibit similar
individual allele frequencies, yet their reduced HLA class I immune
matching is likely due to differences in haplotype composition. It is
important to highlight that using triple homozygous samples for cell
line development, particularly human iPS cells, results in derivatives
with wider immune compatibility than heterozygous counterparts for
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nonimmune cell identities. Genetic engineering with programmable
nucleases in such samples benefits from simpler strategies because of
the homozygosity status of the starting material. In turn, engineered
products are expected to attain broader immune compatibility than
natural counterparts.

Several international initiatives focus on iPS cell development
from haplo-selected individuals, including programs in Japan (34),
Australia (33), South Korea (35, 36), Spain (37), Germany (38),
Lithuania, and Saudi Arabia (39). We modeled the impact of HLA-
C-retained gene-editing intervention on the 51 naturally occurring
superdonors and found that their immune compatibility could be
enhanced to match 97.9% of the Lithuanian population, 95.7% of
the European-American population, and 95.5% of the British
population. Conversely, the immune compatibility provided by
the HLA-A and HLA-B double-homozygous individuals was
limited due to the retained diversity within the heterozygous
HLA-C allele.

Here, we propose the term synthetic superdonor for those cell
lines derived from naturally occurring superdonors that, through
gene editing, acquire broader immune compatibility. Analysis of
gene-editing availability for HLA-A, HLA-B, and HLA-C highlights
the importance of protein topology, knockout strategy design, and
nuclease target site activity in achieving synthetic superdonor
stocks.The HLA-A, HLA-B, and HLA-C proteins are of the type I
transmembrane class; hence, targeting the N-terminus ectodomain
slightly constrains the number of available Cas9-binding sites. Our
analyses demonstrate that the largest impact on knockout
availability is the nuclease activity score; therefore, gene-editing
tools that enhance nuclease activity are likely to have a positive
impact on synthetic superdonor creation in the future. Likewise, our
analyses indicate that naturally occurring superdonor and synthetic
superdonor cell sources would positively impact immune matching
for rare haplotypes. Both naturally occurring and synthetic
superdonors are a remarkable source for the creation of iPS cells
and derivative advanced therapeutic medicinal products (ATMPs).
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