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Abstract: We investigate the propagation of an optical vector vortex beam in an atomic medium
featuring four-level tripod transitions, where ground-state coherence is mediated by a transverse
magnetic field. The vector beam consists of left- and right-circularly polarized components,
each carrying an optical vortex with opposite orbital angular momentum (OAM). We study the
linear response of the medium to the vector beam in order to determine the evolution of the
beam’s intensity and polarization profile. We find that the beam structure undergoes significant
transformations as it propagates: the transverse intensity evolves from a ring-shaped profile
to a petal-like structure, while the polarization transitions between left-circular, linear, and
right-circular polarizations. Furthermore, when only the right-circular polarization component
(a scalar vortex) enters the medium, it parametrically generates a left-circular polarization
component, transferring its OAM to the generated field. This process converts the initial vortex
beam into a superposition of left- and right-circular components, forming a scalar vortex beam
where both polarization components carry the same OAM.
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1. Introduction

Light beams carrying orbital angular momentum (OAM) [1] have become a key area of research
in modern optics due to their unique phase structure and potential applications in areas such as
optical communication and quantum information processing [2,3]. Unlike conventional Gaussian
beams, which have a uniform phase front, OAM beams possess a helical phase structure of the
form ¢’® where [ is the topological charge corresponding to the amount of OAM per photon.
The ability to encode information in this additional degree of freedom has led to significant
interest in their generation, propagation, and interaction in various optical and quantum systems.
These beams are notable for their ability to carry angular momentum, manipulate light in
distinctive ways, and enable high-dimensional encoding, making them useful in advanced optical
applications [4].

In atomic media, the propagation and evolution of optical fields are strongly influenced
by quantum coherence and interference effects. These effects, arising from the coherent
superposition of atomic states, give rise to a range of phenomena such as electromagnetically
induced transparency (EIT) [5,6], slow light [7-9], and enhanced nonlinear interactions [10-12].
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EIT, for instance, enables the transmission of light through an otherwise opaque medium by
using a control field to create a transparency window. Quantum coherence effects in EIT alter the
susceptibility of the medium, providing transparency or absorption windows for light [13,14].
The susceptibility of atom-light couplings can be affected by several factors, including the
properties of light and the medium itself. Additionally, magnetic fields can influence atomic
susceptibility by modifying the detuning and relaxation rates between energy levels [15,16]. A
well-known phenomenon that exploits quantum interference between transition channels under
magnetic fields is Hanle EIT, which uses magnetic field variation to split the Zeeman sublevels,
resulting in a Lorentz-type transmission spectrum [17].

Given the distinctive features of both EIT-enabled atomic systems and optical vortex beams,
their interaction has garnered considerable interest, leading to several intriguing phenomena.
These include entanglement of OAM in four-wave mixing [18-20], OAM states of photon
pairs [21], the transfer of OAM of slow light [22-24], and azimuthally dependent optical
transparency governed by the phase of optical vortices [25]. However, the aforementioned studies
predominantly focused on uniformly polarized (scalar) light fields, extracting information solely
from the beam’s overall transmission spectrum. In contrast, optical information can also be
encoded in the polarization degree of freedom, which is parameterized by the optical spin [26].
Vector beams unify both the polarization and spatial information paradigms. Composed of
orthogonal polarization components with different complex amplitudes, they exhibit spatially
varying polarization profiles, thus offering a wide range of applications [27,28].

Optical vector vortex beams [29,30], owing to their spatially varying polarization distribution,
offer a higher capacity for encoding and manipulating information [31,32]. Such beams can be
generated by the vector superposition of two orthogonally polarized, OAM carrying Laguerre-
Gaussian (LG) modes [33]. This results in a heterogeneous distribution of polarization on the
transverse plane creating polarization vortices. The polarization distribution can be radially
symmetric exhibiting radial, spiral, and azimuthal patterns when the two constituent LG modes
have equal and opposite OAMs [27,34].

The interaction of polarization vortices with specific atomic structures can induce unique
effects in atomic media [34-51]. Specifically, it has been experimentally shown that an optical
vector vortex beam induces a spatially structured EIT effect in a four-level tripod atomic system
[35], supported by a theoretical description via the dressed state picture. The full theoretical
model was later presented in [52]. In this system, a weak transverse magnetic field closes the EIT
transitions, generating phase-dependent dark states that result in phase-dependent transparency.
This model was subsequently used to measure the strength and 3D spatial alignment of magnetic
fields [39], as well as the optical concurrence of vector beams [37]. The interaction of vector light
beams with atoms exposed to a time-dependent magnetic field has been explored more recently
[42]. Additionally, a theoretical study [36] based on the density matrix formalism provided a
deeper understanding of the phenomenon observed in [35].

In this paper, we investigate the azimuthally dependent phase and polarization evolutions in
the four-level tripod atomic setup explored earlier [35,37,39]. Compared to the previous studies,
which have primarily considered steady-state solutions focused on atomic coherence, here we
present the full propagation dynamics of an optical vector vortex beam as it interacts with the
atomic medium. By analytically solving the Maxwell-Bloch equations in the linear regime
while neglecting transverse diffraction effects, we capture how both the intensity profile and the
polarization state evolve during the propagation of vector beam. This propagation dynamics
approach not only complements earlier steady-state coherence analyses, but also provides deeper
insight into the mechanisms of beam reshaping and polarization transformation induced by
atom-light interaction during light propagation. In particular, we demonstrate the exchange of
OAM between light and atoms, showing how an initial vortex beam transfers its vorticity to a
generated orthogonal polarization component. Understanding the full propagation dynamics of
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beams carrying vortices is crucial for applications requiring precise control over OAM transfer
between polarization components, such as vortex beam conversion in quantum systems, or for
devices that exploit distance-dependent polarization structuring, like compact atomic sensors.
Unlike steady-state models [35,37,39], our spatially resolved approach quantifies how beam
transformations (in intensity and polarization) evolve with propagation length, providing a more
comprehensive understanding that is essential for optimizing system design, medium thickness,
and performance in applications where spatially varying effects are significant. The key novel
aspects of this study — the spatial polarization conversion driven by the medium’s anisotropic
response and the OAM transfer between orthogonal circular polarization components — are
discussed in detail in Sections 3.2 and 3.3, respectively. Although our analysis is restricted to
the linear regime, it is advantageous in enabling straightforward analytical results, deepening
physical insight and providing practical guidance.

2. Theoretical model
2.1. Atom-light configuration and energy diagram

We consider a four-level tripod system as shown in Fig. 1, interacting with a weak probe vector
vortex beam E = Eper+Egeg propagating along the Z-axis. Here, Eg and E, are the slowly varying
envelope functions for the right (éz) and left (é;) polarization components of the probe beam.
We work in the weak probe regime, with light intensity well below saturation. The right-hand
polarization component couples the transition |1) <> |4) with Rabi frequency Qg = dr - erEg /h,
while the left-hand component couples |3) < |4) with Q; = ZiL - e Er/h. All fields in the
system co-propagate along the z-axis. The atomic configuration can be realized, for example, for
the D, transition (5251, — 52P3/2) of a Rubidium (Rb) vapor, denoting the Zeeman sublevels
of the F = 1 ground state as |1) = |5%Sy0,F = 1,mp = 1), |2) = 52812, F = 1,mp = 0),
13) = |5%S12, F = 1,mp = +1), and the F’ = 0 excited state as [4) = |5°P3)5, F = 0,mp = 0).
While the ground states |1), |2) and |3) are quasi-degenerate, the excited state |4) is well separated
in energy.

Fig. 1. Schematic diagram of a four-level closed atomic system. The transitions between
states |[4) <> |3) and |4) < |1) are driven by circularly polarized components of the probe
field, specifically left-handed (é;) and right-handed (ég) polarization, respectively. Zeeman
sublevels |1), |2), and |3) interact through a weak transverse magnetic field B sin 6, where
6 < /2. The radiative decay process from the excited state |[4) to the ground states |i)
(i € {1,2,3}) is characterized by decay rates y4;. The probe beam propagates along the
z-axis, which is also chosen as the quantization axis.

We consider an arbitrary magnetic field B = B(cos 6Z + sin 6%), where 6 describes the polar
angle between the magnetic field and the optical propagation axis Z, and X denotes the transverse
direction of the field B. The longitudinal component B, = B cos # introduces Zeeman shifts to
ground levels |1) and |3), while the transverse component B, = Bsin 6 facilitates population
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redistribution among ground states | 1), |2) and |3). The angle 6, therefore, determines the balance
between the energy level splitting and state mixing in the system. The transverse magnetic field
component generates a closed-loop configuration, thereby inducing phase-dependent dark states
which, in turn, lead to phase-dependent transparency [35]. In the absence of the transverse field,
the atomic population predominantly accumulates in state |2). However, the introduction of a finite
transverse component enables population redistribution among all three ground states, as will be
analytically demonstrated in the next section. We introduce the parameters 3; = By cos 6 and
Br = Bosinb/ V2 to quantify the Zeeman shift and magnetic ground state mixing, respectively.
Here, By = grupB/h where gr denotes the Landé factor and up is the Bohr magneton.

2.2. Optical Bloch equations for the light-atom interaction

Employing the electric dipole approximation and the rotating wave approximation (RWA), the
Optical Bloch equations describing the system can be expressed as [36]

P11 = Ya1P44 — iffrp21 + iBrp12 + iQppa1 — IQrP14 — 2Ycp11 + VeP22 + VeP33 (D

P12 = ifrp1z — ifr(pn — p11) + iBrp1z + iQppar — 2ycp12. 2

P13 = 2iBrp13 — ifr(p23 — p12) + iQrpa3 — iQLp14 — 2Yc P13, 3)

P14 = —i(Ay = BL)p1a — iBrpas + iQR(pas — p11) — iQ] p13 — Ta1p14, “4)

022 = Ya2044 — ifr(p12 = p21) = iBr(p32 — p23) + YeP11 = 2YeP22 + YeP33, (5)

P23 = ifLp2s — iPrpiz — ifr(pss — p22) — QP24 — 2y 23, (6)

P24 = —ilpp24 — iBr (P14 + P34) — IQp 21 — Ta2p24 — i€ P23, @)

033 = Va3pas — iBr(p23 — p32) + iQ; paz — IQLP34 + Yep11 + Yep22 — 2Yep33s (8)

034 = —i(A, + Br)p3a — iBrpra + Q[ (pas — p33) — QP31 — L4z p34. )

The remaining density matrix equations are derived from the population conservation law
Z?zl pii = 1 and the complex conjugate expressions pj; = pz The coherence decay terms
I4;(j € {1,2,3}) are assumed to be equal I'y; = I'y = I'y3 = I, and can be expressed as

=vy.+ % Z?:l v4;. We also assume that the excited state |4) decays to the ground states with
equal rates, i.e., y41 = y42 = y43 = y/3 where vy is the spontaneous decay rate of state |4).
Furthermore, we consider the collision rate y. of the metastable ground states to be negligible,
which is a reasonable assumption for cold atomic systems.

We now solve the density-matrix equations for the steady state. The probe field is assumed to
be weak enough to be treated as a linear perturbation of the system. The perturbative expansion
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where p;.” is the zeroth-order solution, which can be determined using the counterintuitive
approach as [36]
2
o _ (Br ) Br )
==, =1- an
Pn (ﬁL) P2 (ﬁL
and
o _ O
o _ IBLﬁT (1022 p11 ) (12)
p - b
2 (0 _ (0
(0) A T( _F ”) (13)
Pp3 =" H 5
o _ O
o) _ BLﬁT (.022 p]] ) (14)
Py = )

with all other matrix elements equal to 0. The second and third terms in Eq. (10) denote first-order
solutions of the density matrix elements for both orthogonal polarizations at positive probe field
frequency w,. Note that the solutions in Eqs. (11)—(14) are valid when Br < S, or equivalently,
0 < /2.

‘We now substitute Eq. (10) into Egs. (1)—-(9) and get the steady state solutions for the first-order
density-matrix elements

N
o = —QR + B O (15)

N3 N»
W = o+ B O, (16)

with the coefficients defined as
Ni=yBX (X + B0 o) + 87 (200 = o)) = B3 [P0 + BLel X+ )|, ()
0 0 0 0 0

Ny =X (o) - 059 + vBE 0SS - v} (26 - ) (18)
N = yBX (X = o) o) + 78 (200 = o) = v} [ o)X + Buol) X - 0| (19)
= (82 - B3) (82 + 283 - X°) X, 0)

where X = A, + i, with A, and I representing the probe field detuning and the decay rate of the
excited state, respectively.



Research Article Vol. 33, No. 19/22 Sep 2025/ Optics Express 40936 |

Optics EXPRESS , NN

2.3. Maxwell-Bloch equations for fields and their solution

To study the dynamics of light propagation in the medium, we begin by analyzing the Maxwell-
Bloch (MB) equations for the probe fields. Neglecting the diffraction effects, MB equations for
the optical Rabi frequencies Qr and €y, can be written as follows

0Q
— = 2ikya &, 1)
0z
0Q
= = ik, (22)
0z
where the corresponding linear optical susceptibilities are
_ Nldgl* (1 23)
X41 oliy Pyy»
Nldl* ()
= ———Pys- 24
ehy ¥ @49

Here N is the atomic density of the medium, and dg, d; denote the dipole moments of the
corresponding probe transitions.

The diffraction terms containing the transverse derivatives ViQR and ViQL have been omitted
in the Egs. (21), (22). These terms are negligible if the phase change induced by diffraction
remains much smaller than 7. The diffraction effect can be estimated as ViQR(L) ~ w‘ZQR(L),
where w represents the characteristic transverse dimension of the probe beams, either as the
width of a vortex core (if present) or the typical beam width in the absence of a vortex. The
temporal evolution of the probe fields is approximately 0Qg)/0t ~ ¢ Qp()/L, where L denotes
the medium length. The resulting phase change due to diffraction is given by L/(2kw?), where k
is the wave number of the probe fields. This contribution can be neglected when the condition
LA/w? < 1 holds, ensuring that diffraction effects are insignificant.

Using Eqgs. (15), (16) and (23), (24), Egs. (21), (22) can be transformed into a linear system of
differential equations

. . 2
0Qr _ lFng + lFNZBT

= Q 2
3z o R DL (25)
6QL iFN2ﬁ% iFN3
= Q Q;, 26
0z D R D 't (26)
where we define the coupling strength
2kN|d|?
F = 2V @
ehy

and assume |dg| = |d.| = |d|.
Next, considering € (0) and Qg(0) as the field values at the medium’s entrance, the general
solutions for system (25-26) can be found (for the case 87 # 0) as
Qr(z) = a Qg(0) + ¢y (0), (28)
Q;(z) = ¢ Qr(0) + b Q1 (0). (29)

where we introduced coefficients

1 Ny —N
a=—|(e™M+ ™) + —lM 3 (e™* — ™Y, 30)
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1 Ny —N

b= 5 (emlz +emzz) _ 1M 3 (emlz _emzz)] , 31

N 2
c= —ffT (™7 — "), (32)

and notations -

1

=— (N +N3 = M), 33
mio 2D( 1+ N3 £ M) (33)
M = [Ny - N2)® + 4N (34)

In Eq. (33) m, my correspond to +, — sign, respectively. The propagation of the optical system
is fully described by Egs. (28)—(29) together with the definitions of the various parameters. In
the following sections we will analyze the propagation distance over which these equations hold
and illustrate their implication for several cases of entrance fields Qy(0) and Qg(0).

3. Results and analysis

Analytical solutions for the field propagation, given by Egs. (28)—(29), enable the study of the
evolution of the ; and Q beams within the medium. In what follows, we first examine the
characteristic propagation distances over which these solutions remain valid. Subsequently, we
investigate the propagation dynamics of both vector and scalar vortex beams inside the medium.

3.1. Limits for the propagation distance

The expressions for m; and m, given in Eq. (33) are not purely imaginary; they depend on Ny,
N3, and M, which in turn depend on X, a complex number. Consequently, all exponents in the
solutions provided in Egs. (28) and (29) exhibit decay over large propagation distances z. As a
result, the fields Qg(z) and Q;(z) should asymptotically approach zero for sufficiently large z,
according to these equations. This implies that at very large z, state |2) becomes populated.

Beyond a certain propagation distance, the linear solutions (15) and (16) are no longer valid,
necessitating the inclusion of nonlinear terms in calculating the density matrix elements p4; and
p43. However, these linear solutions remain valid for relatively short distances. To quantify this
limitation, we define the characteristic propagation distance z., within which our solutions hold,
but beyond which the linear regime breaks down due to strong absorption.

The exponential terms ¢! and ¢™2? in coefficients of Egs. (28) and (29) can be rewritten as

MO = eRe(ml(z))Z . eiIm(ml(z))Z, (35)

where the first factor represents exponential attenuation (for Re(m 2)<0), while the second term
describes oscillatory behavior. The linear susceptibility model assumes weak absorption, which
remains valid under the condition

|[Re(m2)|z < 1. (36)

Beyond this regime, exponential decay dominates. The characteristic propagation distance z.

is approximately given by
1

~ max(|Re(m)|, [Re(ms)|)’

which ensures that neither exponential term decays significantly within the validity range of the
linear approximation in Eq. (10). Thus, the linear susceptibility model holds for propagation
distances z<z., where z. is determined by the dominant decay rate among m; and m;.

Since finding an analytical expression for Re(m;) and Re(m;) is highly complex due to their
intricate dependence on Ny, N3, M, D, and other system parameters, we resort to numerical
calculations to determine the characteristic distance z.. Fig. 2 illustrates the variation of the

Ze (37
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characteristic distance z. as a function of polar angle 6 in the range 7/30 < 6 < x/14. It is
important to note that in the limit 8 = 0, the transverse component of the magnetic field vanishes,
and the system reduces to a pure Zeeman configuration. In this case, the coupling strength
between the ground states becomes zero (87 = 0), causing the second terms in Egs. (15) and (16)
to vanish. This breaks the closed-loop configuration of the system, rendering it phase-insensitive,
which is not the focus of this paper, where we are primarily interested in phase-sensitive features.
On the other hand, Eq. (11) motivates operating in a regime where the transverse component of
the magnetic field remains significantly weaker than the longitudinal component, i.e., 8 < /2.
Additionally, Fig. 2 presents this variation under the resonance condition A, = 0. We observe
from Fig. 2 that the characteristic distance z. is largest for the smallest value of 8 = /30, and it
decreases as 6 increases.

Fig. 2. Characteristic distance z. versus magnetic field angle 6. The parameters used are
Bo = 0.01y, T4y = 0.5y, A, = 0.

Figure 3 shows the variation of the characteristic distance z. versus probe detuning for 6 = 7/30,
where the characteristic distance reaches its maximum, as seen in Fig. 2. From Fig. 3, we observe
that the characteristic distance is minimum at the resonance condition A, = 0 and increases as
we move away from resonance. Based on the plots, for § = 7/30, the characteristic distance
at resonance (A, = 0) can be approximated as z. ~ 45/F, while for the non-resonance case
A, = 2y, it can be estimated as 777/F. The characteristic distance obtained from our analytical
and numerical models, as shown in Figs. 2 and 3 will inform our evaluation of the propagation of
the fields €, and Qp in the following sections.

800

Fig. 3. Characteristic distance z. versus probe detuning A,. The parameters used are
Bo =0.01y, 4y = 0.5y, 60 = n/30.

It may be worth estimating these propagation distances using realistic experimental parameters.
According to Eq. (27), the coupling strength F' depends on the atomic density N, the dipole
moment magnitude |d|, and the decay rate y, all of which are well-characterized for the
87Rb D, transition. Using typical values for these parameters, such as N = 2 x 10'! cm™3,
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|d] ~2.54 x 1072 C - m, and y = 27 x 6 MHz, the coupling strength F can be calculated as
F ~5.91 x 10*m™!. Once F is determined, any propagation distance can be easily calculated.
For instance, for 6 = 7/30 considered in this paper, the characteristic propagation distance z. for
the resonance condition (A, = 0) can be estimated as z. ~ 45/F ~ 0.00076 m = 0.76 mm. For
the non-resonant case (A, = 2y) where we have determined z. ~ 777/F, one can estimate its
value to be z. ~ 0.0131m = 1.31 cm.

3.2.  Propagation of vector vortex beams: structured atom-light interaction

Now, we assume that the fields Qg and Q; entering the medium are optical vortices having
opposite OAM. Specifically, both fields are taken to be Laguerre-Gaussian (LG) modes of the
lowest radial order, i.e., LGé). They can be expressed as:

Qz(0) = |QILGR = A(r)e"?, (38)

Q.(0) = |QILGE = A(r)e ™, (39)
where |Q| denotes the Rabi amplitude, and

2

A(r) = (ﬁ)'” =3 (40)

represents the beam amplitude, with +/ denoting the OAM numbers and w denoting the beam
radius. The resulting vortex beam at the entrance to the medium takes the form

E(r, ¢,0) = EL(0)21 + Er(0)eg = cos(a)LG 2, + ¢V sin(a)LGReg, 41)

where « defines relative amplitude, and ¢ is the phase between the two LG modes at the entrance
to the medium. These beams generally carry a net OAM which varies as a function of @. For the
special case @ = n/4, i.e. cos(a) = sin(a), the beam forms a vector vortex beam with spatially
varying linear polarization and zero net OAM. By varying «, the resulting beam structure
smoothly interpolates between purely circularly polarized vortex beams carrying OAM of +/,
and the vector vortex beam at @ = /4. We note that these beams have recently been used in [37]
for measuring the optical concurrence of vector beams with an atomic-state interferometer.

Once the fields enter the medium, according to Egs. (28—29) the beam components evolve
with propagation distance z as

Qr(2) = |Q|(aLGR + ¢ LGh), (42)

Q1(z) = |QI(cLG® + bLGh), (43)

with a, b and ¢ as previously defined in Egs. (30)-(32).

It is evident that the combination of opposite LG modes at the entrance forms a more complex
optical vector vortex beam, which continues to propagate through the medium. The corresponding
electric field is given by f:"(r, ¢,7) = Ere; + Egéeg where

E; = cos(a) [c LGR + bLGL] , (44)

Eg = ¥ sin(a) [a LGR + cLGL] , 45)

represent the left and right circularly polarized field components of the vector beam, while
{ér, ér} represents the circular polarization basis. The resulting beam exhibits a correlation
between its spin and OAM.
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To illustrate the spatial dependence of polarization during beam propagation, we define the
Stokes parameters in the circular polarization basis

So = |Eg|? + |EL|*, S1 = 2Re(EREL), S» = 2Im(EEL), S5 = |Eg|* — |EL|*. (46)

These parameters define ellipticity { = % sin~! (S3/Sp) and orientation angle & = % tan~! (S,/S1),
which both characterize the polarization at each point in the medium [34]. After propagating a
distance z through the medium, the polarization at each point on the vector beam’s transverse
plane rotates by an angle Aé(z) = £(z) — £(0).

In what follows, we explore the intensity distribution and polarization of generated optical
vector vortex beam featured in Eqs. (44)—(45) during its propagation inside the atomic cloud
for the simplest example of singly charged vortex beams with / = 1 in Egs. (38) and (39). We
consider propagation distances z less than the characteristic distance z.. The parameters are
chosen to satisfy the characteristic distance limits given in Eq. 37 and depicted in Figs. 2 and
3. Fig. 4 corresponds to the resonance case A, = 0, while Fig. 5 represents the non-resonance
condition A, = 2y. In both cases, we set Sy = 0.01y and 6 = 7/30. In Fig. 4, the propagation
distances are Fz = 0, 15,25, and 40, satisfying z<z. ~ 45/F as determined in Fig. 2. Similarly, in
Fig. 5, the propagation distances are Fz = 0, 100, 300 and 600, all within the limit z<z. ~ 777/F.
As seen in both figures, at z = 0 (i.e., at the entrance of the atomic medium), the intensity profile
of the vector beam at this stage is characterized by a doughnut shape, indicated by the dark ring.
The polarization distribution of the vector beam exhibits uniform left-circular polarization (red
ellipses) across all spatial patterns, with different polarization textures: radial (a), spiral (e), and
azimuthal (i) for Y = 0, 7/2, and 7, respectively. This occurs because the left-circular component
in Eq. (41), E, dominates over the right-circular component Eg, due to the choice of relative
amplitude @ = 7/8, which results in cos(a)> sin(a), leading to |Ey|>|Eg|. Note that the phase
parameter ¢ controls the spatial polarization texture (radial, spiral, or azimuthal), but does not
affect the handedness, which depends solely on the amplitude ratio E /Eg.

As the beam propagates through the medium, significant modifications occur in both the
intensity and polarization distributions. Notably, the intensity distribution no longer retains the
ring-shaped profile, but instead transforms into a petal-like pattern, due to the superposition of
the left- and right-handed LG beams, as described by Eqs. (44) and (45). This transformation
is a direct consequence of interference between the helical phase structures of the LG modes
(exp(xil¢)), which redistributes energy in the transverse plane. While the intensity profile of
the vector vortex beam itself has a uniform azimuthal intensity (as the opposite orthogonal
polarization components do not interfere), interaction with the atomic medium may be interpreted
as an atomic state interferometer, where optical coupling together with coupling through the
transverse magnetic field between |1), |2) and |3) facilitates interference. The azimuthally varying
phase difference between E; and Er modulates the intensity, creating alternating maxima and
minima that form the observed petals. The polarization evolution is governed by the coefficients
a, b, and ¢, which evolve due to the medium’s dispersive and absorptive response. These
coefficients control the balance between E; and Eg, thereby affecting the size, shape, and degree
of entanglement of the polarization ellipses, making them wider or more entangled. Consequently,
the radial, spiral, and azimuthal polarization patterns evolve as the beam propagates.

Under resonance condition (Fig. 4), the coefficients evolve monotonically, preserving the
dominance of Ep(|EL|>|Eg|) throughout propagation. This maintains uniform left-circular
polarization (red ellipses). The radial, spiral, or azimuthal polarization textures evolve spatially,
but the beam retains its left-circular polarization throughout propagation. In contrast, in the
non-resonance case (Fig. 5), the polarization state, which starts as left-handed at z = 0, oscillates
during propagation. The non-resonant condition (A, # 0) introduces oscillatory dynamics via
the complex eigenvalues m; and m,, which modulate E; and Eg through the coefficients a, b, and
c. This results in periodic energy exchange between E; and Ex and transforms the polarization
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Fig. 4. Transverse intensity and polarization distributions as functions of x/w and y/w for a
vector vortex beam with |/| = 1. The spatial coordinates are normalized to the beam waist
w. The system is considered under the resonance condition A, = 0, with other parameters
set to By = 0.01y, 8 = /30, and @ = /8. The first, second, and third rows show plots
generated for ¢ = 0,7/2, and 7, respectively, while the first, second, third and fourth
columns correspond to Fz = 0, 15,25, and 40. These distances are chosen to be smaller than
the characteristic distance z., as determined in Eq. (37) and illustrated in Fig. 2. The red
colors of polarization correspond to left circular polarization.

state, alternating between left-handed (red ellipses), linear (yellow lines), and right-handed (blue
ellipses) circular polarizations at different distances. At intermediate distances (e.g., Fz = 300),
the azimuthal phase structure of the LG modes introduces a position-dependent phase difference
between E;, and Ep, leading to localized regions where all polarization states coexist. At larger
propagation distances, close to the characteristic distance (e.g., Fz = 600), the evolution of the
system favors the dominance of Ep, resulting in a complete and uniform transition to right-handed
circular polarization.

Figure 5 shows that, within the characteristic distance, there is a transition to a different
polarization state during the propagation of the beam under non-resonance conditions, while
the resonance condition shown in Fig. 4 lacks such a transition. The detuning A, strongly
influences the propagation distance at which this transition occurs. To visualize this polarization
transformation more clearly, Fig. 6 presents a density plot showing the evolution of the spatially
averaged polarization ellipticity angle £ as a function of the detuning A,/ and the propagation
distance Fz. It is evident from Fig. 6 that the propagation distance z, at which the polarization
transition occurs strongly depends on the detuning. The results are in good agreement with
those shown in Figs. 4 and 5. In particular, for the resonant case A, = 0, as seen in Fig. 6 the
beam maintains its initial left-handed circular polarization (indicated by dark red) throughout
propagation, but below the characteristic distance z<z. ~ 45/F, with no observable transition —
consistent with Fig. 4. On the other hand, for off-resonant cases (A, # 0), the transition distance
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Fig. 5. Transverse intensity and polarization distributions as functions of x/w and y/w
for a vector vortex beam with |/| = 1. The spatial coordinates are normalized to the beam
waist w. The system is considered under the non-resonance condition A, = 2y, with other
parameters set to By = 0.01y, 8 = n/30, and @ = 7/8. The first, second, and third rows
show plots generated for ¢ = 0,7/2, and &, respectively, while the first, second, third and
fourth columns correspond to Fz = 0, 100, 300, and 600. These distances are chosen to
be smaller than the characteristic distance z., as determined in Eq. (37) and illustrated in
Fig. 3. The red, yellow and blue colors of polarization correspond to left-circular, linear, and
right-circular polarizations, respectively.

increases with detuning, as also indicated in Fig. 5. In particular for A, = 2y, Fig. 6 shows that
different polarization states coexist at Fz = 300, including linear (white), left-handed circular
(red), and right-handed circular (blue) polarizations. This observation agrees with Fig. 5(c, g, k).
However, after further propagation (e.g., at Fz = 600), the entire field evolves into a right-handed
circular polarization state (blue), in agreement with Fig. 5(d, h, 1). The use of white color to
represent linear polarization in Fig. 6 provides clearer contrast compared to the yellow used for
linear polarization in Fig. 5.

The observed polarization dynamics are a consequence of anisotropic response of the medium
and arise from the interplay of magneto-optical effects, namely, circular birefringence (leading
to a rotation of the polarization direction through the Faraday effect) and circular dichroism
(which alters ellipticity). Circular dichroism, caused by differential absorption of right- and
left-circular components, modifies the ellipticity and intensity of the beam. Which component
is more strongly absorbed depends on the orientation of the polarization ellipse relative to the
applied magnetic field (which lies along the x direction in our model). When the major axis of the
ellipse is aligned with the field, the left-handed component is preferentially absorbed, making the
light more linear; when perpendicular, the right-handed component is absorbed, making it more
circular. The spatial variation of this effect across the beam depends on the local polarization
geometry and is influenced by the Larmor frequency, which is small in our simulations. In the
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Fig. 6. Density plot showing the evolution of the spatially averaged polarization ellipticity
angle { as a function of the detuning A;,/y and the propagation distance Fz. The ellipticity
angle is defined as { = % sin~! (S3/Sp), where S and S are the Stokes parameters associated
with the total intensity and the circular polarization component, respectively. The ellipticity
is averaged over the transverse beam region where the intensity exceeds 10% of its peak
value within 7<1.5w. The colorbar indicates the polarization state: red corresponds to
left-handed circular polarization, blue to right-handed circular polarization, and white to
linear polarization.

off-resonant case (Fig. 5), one Zeeman-shifted absorption line dominates, enhancing differential
absorption and even reversing circular polarization. Differential dispersion also leads to Faraday
rotation, with both effects depending on the relative alignment of the polarization and magnetic
field.

3.3. Propagation of scalar vortex beams: Transfer of OAM

When only the right-handed vortex beam Qz(0) = |Q|LGR is present at the entrance (z = 0), the
medium generates a left-handed component € (z) through parametric coupling governed by the
coefficients a and c in Egs. (30) and (32). The MB solutions in Egs. (42) and (43) simplify to

Qr(2) = aQr(0) = a|QJA(r)e™, 47)

Q1(2) = cQr(0) = c|QIA(r)e™. (48)

where a and ¢ depend on the propagation distance z and system parameters. The generated field
Q1 (z) is proportional to Qg(0), with the coupling strength dictated by c¢. Since both components
share the same OAM charge /, the beam remains a scalar vortex (non-vectorized), despite the
polarization conversion.

The polarization conversion and associated OAM transfer observed here originate from the
magnetically induced closed-loop coherence in the tripod configuration. The transverse magnetic
field establishes coherence between the ground-state Zeeman sublevels, enabling cross-coupling
between left- and right-circular polarization components. As seen in Eqgs. (25) and (26), even if
only one polarization component is initially present, the cross terms drive the generation of the
complementary component, which inherits the same OAM. This process requires no external
seeding, as the internal coherence of the medium itself facilitates both polarization conversion
and faithful OAM transfer.
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The efficiency of €y (z) generation and Qg(z) depletion is quantified by

Qr(2)? 1 Ni - N 2
771(2) — % — |a|2 _ ‘5 [(emlz + emzZ) + ITS (emlz _ emgz)] i (49)
Q(2)? N2f; ’
12(2) = 0L — et = |22 e ) (50)

which depend critically on the non-zero transverse coupling parameter S7. This parameter
closes the EIT system, making the system phase-sensitive and enabling energy exchange between
polarization OAM components. Thus the OAM transfer and generation of the second vortex field
Q) is only possible when both Sy and 6 are not zero.

Figures 7 and 8 illustrate the variation of ratios 7; and 7, as functions of magnetic field angle
0 (in the range 7/30 < 6 < 7/14) and probe detuning A, respectively. In Fig. 7, we set A, = 0.
For each value of 8, we calculate z. using Eq. (37), and for this z., we determine 7, and 77, using
Egs. (49) and (50). From Fig. 7, we observe that n7; and 1, decrease as 6 increases, indicating
that the highest efficiency for generating a new vortex beam occurs at 6 = /30. Larger angles
reduce coherence, suppressing energy transfer.
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Fig. 7. Plots of efficiencies r7; (a) and 17, (b) as functions of magnetic field angle 6. The
parameters used are the same as in Fig. 2.
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Fig. 8. Plots of efficiencies 77; (a) and 77, (b) as functions of probe detuning A,. The
parameters used are the same as in Fig. 3.

Next in Fig. 8, we fix 6 = /30 and, for each value of A,,, we compute z. using Eq. (37). Then,
for the corresponding z., we evaluate 7, and 7, using Eqs. (49) and (50). In Fig. 8, the ratios 7;
and 7, exhibit a periodic behavior with respect to A,, implying that the conversion efficiency
oscillates as a function of A,. This oscillatory behavior may be linked to the exponential terms
™% and ¢"*. If the real parts of m; and m, are small or if they contain imaginary components,
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oscillations can arise. As the detuning A, varies, m; and my also change, directly affecting these
exponential terms. Since m; and my involve the square root M, which depends on A,, M may
become complex for certain detuning values. This could introduce an imaginary component
in m; and mj, leading to oscillations in €”* and ¢"2%, which in turn drive the periodic energy
exchange between Qg and €y, resulting in oscillations in the ratios 77; and 7.

Although our simulations focus on vector vortex beams with first-order OAM components
(I = 1), the general polarization evolution and OAM transfer mechanisms are expected to
apply to higher-order vortex beams as well. Increasing |I| will lead to more complex intensity
and polarization patterns—such as a larger number of petals—but the fundamental dynamics
governed by magnetic-field-induced coherence and OAM exchange remain qualitatively similar.

4. Concluding remarks

To summarize, we have explored the behavior of vortex beams (both polarization and phase
vortices) as they propagate through a four-level tripod atom-light coupling system, where a
transverse magnetic field plays a key role in mediating ground-state coherence. By solving
the Maxwell-Bloch equations, we identified characteristic propagation distances where the
linear response of the medium to the beam is maintained before the regime breaks down. For
vector vortex beams consisting of left- and right-circularly polarized components with opposite
angular momentum, the polarization structure and hence the atomic interaction is spatially
varying. Before entering the medium, the beam exhibits a ring-shaped intensity profile with
spatially varying polarization textures, consisting of polarization ellipses with radial, spiralling
or azimuthal symmetry across the beam profile. However, as the beam propagates through the
medium, we observed significant changes in both the intensity profile and polarization state.
Specifically, the transverse intensity evolved from a ring to a petal-like shape, and the polarization
state shifts between left-circular, linear, and right-circular forms. In particular, for non-resonant
conditions, left-circular polarization can be completely transferred to right-circular polarization
across the entire azimuthal plane. The observed spatially-dependent polarization dynamics can
be attributed to the anisotropy of the atomic medium induced by a magnetic field. As such, it is
determined by the interplay of magneto-optical effects, namely, circular birefringence and circular
dichroism, leading to polarization rotation and ellipticity change, respectively. For phase vortex
beams with uniform polarization (scalar vortex), we observe not a transverse spatial polarization
modulation, but rather a longitudinal evolution of the polarization profile along the propagation
direction. It is associated with a transfer of OAM between the beams of orthogonal circular
polarizations due to a closed-loop configuration of the tripod scheme. This study enhances our
understanding of the interactions between vortex beams and multi-level atomic systems, revealing
novel possibilities for controlling OAM transfer. Finally, we note that our model is amenable to
future experimental investigation. The tripod atom-light coupling scheme can be implemented as
the F = 1 — F’ = 0 transition of the Rb D; line. Our estimates of characteristic propagation
distances are compatible with experiments, especially for near-resonant probe beams.

The current study focuses on the linear response regime, which enables analytical solutions
to the Maxwell-Bloch equations and offers direct insight into the fundamental mechanisms
governing polarization evolution and OAM transfer. This linear approximation is valid for weak
probe fields and propagation distances shorter than a characteristic value z., beyond which
absorption becomes significant and the linear model breaks down. However, at larger propagation
distances z>z., we must go beyond the linear regime, which implies higher probe intensities or
stronger atom-light interactions. In such conditions, nonlinear effects—such as optical Kerr
nonlinearities— play a significant role. These effects could qualitatively alter the beam’s intensity
and polarization dynamics, as well as the efficiency of OAM transfer processes. A full treatment
would require solving the nonlinear Maxwell-Bloch equations numerically, without the weak-field
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approximation. While this lies beyond the scope of the present work, it is an important direction
for future research.
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