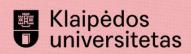


CHEMISTRY AND CHEMICAL TECHNOLOGY

2025

Student Scientific Conference

C


May 9, 2025 NFTMC, Saulėtekio al. 3, Vilnius

000

Chemistry and Chemical Technology 2025

Student Scientific Conference

Scientific committee

Doc. dr. Lina Mikoliūnaitė | VU (chairwoman)

Prof. dr. Aldona Beganskienė | VU

Doc. dr. Živilė Stankevičiūtė | VU

Doc. dr. Inga Grigoravičiūtė | VU

Doc. dr. Vaida Kitrytė-Syrpa | KTU

Prof. dr. Vytautas Getautis | KTU

Prof. dr. Saulius Grigalevičius | KTU

Doc. dr. Vilija Kederienė | KTU

Dr. Tadas Prasauskas | KTU

Dr. Žilvinas Kryževičius | KU

Prof. dr. Audronė Žukauskaitė | KU

Organizing committee

Dr. Lina Mikoliūnaitė | VU (chairwoman)

Dr. Greta Inkrataitė (secretary) | VU

Dr. Živilė Stankevičiūtė | VU

Dr. Inga Grigoravičiūtė | VU

Dr. Julija Grigorjevaitė | VU

Dr. Indrė Misiūnaitė-Vaškevičienė | VU

Dr. Anton Popov | VU

Dr. Agnė Kizalaitė | VU

PhD stud. Eglė Ežerskytė | VU

PhD stud. Gytautė Sirgėdaitė | VU

PhD stud. Justinas Januškevičius | VU

Copyright © 2025 Justinas Januškevičius, Lina Mikoliūnaitė, Živilė Stankevičiūtė. Published by Vilnius University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ISSN 2538-7332 (digital), DOI https://doi.org/10.15388/CCT.2025

OPTIMIZING OPTICAL AND MAGNETIC PROPERTIES AT THE NANOSCALE: A STRATEGY FOR BIMODAL NANOPROBES

<u>Viktorija Vrubliauskaitė</u>^{1*}, Eglė Ežerskytė, Vaidas Klimkevičius¹

¹ Institute of Chemistry, VU Faculty of Chemistry and Geosciences, Lithuania *viktorija.vrubliauskaite@chqf.stud.vu.lt

Nanoparticles with both magnetic and luminescent properties have attracted scientific interest due to their potential applications in diagnostic imaging and therapeutic delivery systems [1]. The optical and magnetic properties of nanoparticles, as well as their viability as nanoprobes in the human body, are strongly related to their size and morphology. This study aims to precisely control the size of NaGdF₄-based nanoparticles by tailoring the synthesis parameters (temperature, duration, and reagent ratios) to maximize optical and magnetic response while not compromising their biocompatibility. The chosen synthesis route was thermal co-precipitation. The phase purity, particle size, and morphology of obtained nanoparticles were examined using X-ray diffractometry and transmission electron microscopy (TEM) imaging. The optical properties, including emission and excitation spectra, as well as decay curves, were analyzed using photoluminescence (PL) spectroscopy. Additionally, the magnetic properties of NPs were evaluated by a 3T clinical-grade MRI apparatus.

Three upconverting nanoparticle sample series doped with the sensitizer/activator pair Yb³⁺/Er³⁺ were synthesized to examine how various synthesis parameters affect their size and optical response. The results indicated that increasing the synthesis temperature and duration, as well as decreasing the molar ratio of NH₄F/Ln³⁺ in the initial reaction mixture, resulted in nanoparticles with larger diameters, which exhibited higher upconversion emission intensities and longer lifetimes.

Another series of NaGdF₄ nanoparticles doped with Eu³⁺ ions were synthesized while varying the synthesis duration to determine the influence of dopant type on particle. Results showed that irrespective of dopants, the increased synthesis duration resulted in particles with larger diameters exhibiting stronger emission intensities. For these Eu³⁺-doped NPs, the paramagnetic properties as a function of synthesis duration (particle size) were examined via 3T clinical MRI apparatus since it is established that Gd³⁺ ion present in the host matrix has strong paramagnetic properties and could change the relaxivity of water molecules [2].

Acknowledgments. Experiments financed by the European Union (project no. P-ST-24-76) in accordance with an agreement with the Research Council of Lithuania.

Bibliography

- 1. P. Das, S. Ganguly, S. Margel, A. Gedanken // Nanoscale Advances, 2021, 3, 6762–6796.
- 2. L. Blomqvist, G.F. Nordberg, V.M. Nurchi, J.O. Aaseth // Biomolecules, 2022, 12(6), 742.