
Contents lists available at ScienceDirect

Physics Letters B

journal homepage: www.elsevier.com/locate/physletb

Letter

Faddeev-type calculation of nonelastic breakup in deuteron-nucleus 
scattering 

A. Deltuva
Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio al. 3, LT-10257, Vilnius, Lithuania
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 a b s t r a c t

The nonelastic breakup (NEB), one of channels in (𝑑, 𝑝) inclusive reactions, is studied using the Faddeev-type 
scattering theory. The NEB differential cross section is obtained in terms of the imaginary part of the neutron-
nucleus optical potential sandwiched between the Alt-Grassberger-Sandhas three-body transition operators. The 
momentum-space calculations including the Coulomb force are extended to higher charge numbers. Well con-
verged numerical results are obtained for the energy distribution of the NEB cross section, being roughly con-
sistent with previous works. The spin-dependent interaction terms do not play a significant role. The optical 
potential nonlocality effect shows up at higher proton energies, but is comparable to local potential uncertain-
ties.

1.  Introduction

The collisions of two nuclei are highly complicated many-body prob-
lems, whose complexity led to the development of simplified approaches 
with rather few effective degrees of freedom. The simplest of them is 
the introduction of optical potentials that by an appropriate fit of pa-
rameters can be quite successful in reproducing the elastic scattering 
observables and total reaction cross section for two colliding nuclei. The 
picture becomes more complicated if at least one of the involved nuclei 
is weakly bound, such as the deuteron (𝑑) or halo nucleus. The need 
to account for the breakup possibility leads to an effective three-body 
problem at least. For the deuteron induced reactions the active degrees 
of freedom are the proton (𝑝), neutron (𝑛) and the involved nucleus 𝐴, 
that is most often treated as an inert particle, whereas its composite-
ness is effectively accounted for via nucleon-nucleus optical potentials. 
Within such a model space the elastic scattering, deuteron breakup and 
stripping (nucleon transfer) reactions have been calculated using a num-
ber of approximate [1,2] and rigorous three-body methods [3,4]. All 
these calculations refer to a class of processes where the nucleus 𝐴 re-
mains in its ground state. The inclusion of few lowest excited states and 
the respective reaction channels have been achieved by formulation of 
the problem in an extended Hilbert space [5–8].

However, attempts have also been made to calculate the reactions 
beyond the explicitly considered model space, i.e., when following the 
deuteron breakup 𝑑 + 𝐴 → 𝑝 +𝑋 only one of the nucleons (proton) is 
detected, while another nucleon and the nucleus 𝐴 can be in any state 
𝑋, including disintegration of 𝐴. It is called the inclusive (𝑑, 𝑝) breakup 
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with contributions from several different reaction mechanisms: the elas-
tic breakup (EB), nonelastic breakup (NEB), and preequilibrium and 
compound nucleus (PE+CN). The latter typically is modeled using the 
statistical Hauser-Feshbach theory [9] and is beyond the scope of the 
present work. The EB is the standard three-body breakup with 𝐴 remain-
ing in its ground state, while NEB includes the breakup with simultane-
ous excitation of 𝐴 and inelastic 𝑛 + 𝐴 processes. Both in EB and NEB 
three particles (𝐴 + 𝑝 + 𝑛) are involved explicitly, thus, the three-body 
calculations at least are needed.

Under the assumption that the detected particle acts as a specta-
tor, i.e., predominantly scatters from 𝐴 elastically, several approaches 
by Udagawa and Tamura [10], Kasano and Ichimura [11], Hussein and 
McVoy [12], and Ichimura, Austern and Vincent [2,13] have been pro-
posed to calculate the NEB semi-inclusive differential cross section for 
the detected particle. All of them explicitly include only the ground state 
of the nucleus 𝐴 and rely on the closure method to sum up implicitly all 
final states of the subsystem 𝑋. Although a formal derivation of the scat-
tering wave functions has been performed also using rigorous Faddeev 
theory [14], most practical calculations, e.g., by Jia et al. [9], Moro and 
Lei [15,16], Potel et al. [17], Liu et al. [18], Torabi and Carlson [19] 
so far used three-body scattering wave functions based on the distorted-
wave Born-approximation (DWBA) or Glauber model. Recently also the 
continuum-discretized coupled-channel method has been used [20,21]. 
In particular, Ref. [16] pointed out that “the solution of the Faddeev 
equations is too complicated for many practical applications and, even 
if this solution is available, its implementation for NEB will be very chal-
lenging.”
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A. Deltuva

Experiments performed for the inclusive deuteron breakup, e.g., 
[22,23], aimed to determine the yield of various particles (𝑝, 𝑛, 𝛼, ...). 
The collisions of deuterons with nuclei, possible both in direct and in-
verse kinematics, also enable an indirect study of nucleons capture by 
nuclei; see Ref. [17] for a recent overview. Theoretical and experimen-
tal studies of the inclusive (𝑑, 𝑝) processes revealed that at low proton 
energies the PE+CN mechanism totally dominates the differential cross 
section with small contributions from EB and NEB. This kinematic con-
dition implies also low relative proton-nucleus energy, corresponding 
to long interaction time in the classical picture, and is incompatible 
with the proton spectator assumption. In contrast, at medium to highest 
proton energies the PE+CN mechanism yields very small cross section 
whereas the NEB dominates, with a moderate contribution of EB as well. 
The theoretical predictions [9,15–19] are successful in reproducing the 
experimental data qualitatively, while at the quantitative level some 
discrepancies remain, also between different theoretical approaches for 
NEB. This calls for new independent methods that could possibly resolve 
the existing disagreements.

Given previous successful practical applications of the Faddeev-type 
theory to elastic, inelastic, transfer, and breakup reactions in three-body 
systems [7,24], its extension to NEB appears to be relevant and timely. 
In contrast to Ref. [14] that considered wave functions, in this work 
the Alt, Grassberger, and Sandhas (AGS) equations [4] for three-body 
transition operators will be employed; the calculations proceed in the 
momentum space. This framework offers one more advantage, namely, 
a convenient inclusion of nonlocal optical potentials that have a sig-
nificant impact in one-nucleon transfer reactions [25,26] and deuteron 
inelastic scattering [27]. The coordinate space approaches can include 
the nonlocality via integro-differential equations as well, but this has 
not been performed yet in the context of NEB. Thus, after establishing 
the calculational scheme for NEB, the optical potential nonlocality effect 
will be evaluated as well.

Another key feature of momentum-space calculations [25–27] is the 
inclusion of the Coulomb force via the method of screening and renor-
malization [28–31]. It works very well for light nuclei but becomes te-
dious for high charges or at very low energies, such that practical ap-
plications are limited so far to 58Ni [24]. An extension to higher charge 
numbers is desirable, especially in the view of NEB where majority of 
the data refer to heavier nuclei.

Section 2 contains the AGS three-body scattering formalism. It shows 
how the extended version simulates the processes beyond the standard 
three-body space and includes NEB. The Appendix A presents an alterna-
tive derivation of the same result using a many-body approach. Section 3 
contains the results, while Section 4 collects conclusions.

2.  Three-body transition operators and NEB

The AGS equations [4] represent the integral equation formulation 
of the three-body Faddeev scattering theory [3] for transition operators 
𝑈𝛾𝛽 that are directly related to scattering amplitudes; Greek subscripts 
label the initial and final spectator particle (or the remaining pair in the 
odd-man-out notation), whereas 𝛾 = 0 stands for three free particles. In a 
number of previous works AGS equations have been used for the descrip-
tion of reactions with three inert particles [24,25] while later extensions 
include also the dynamical excitations of the core nucleus [7,26,27]. No-
tably, both versions can be cast into the same form of equations, i.e.,

𝑈𝛾𝛽 = (1 − 𝛿𝛾𝛽 )𝐺−1
0 +

3
∑

𝛼=1
(1 − 𝛿𝛼𝛾 ) 𝑡𝛼 𝐺0𝑈𝛼𝛽 (1)

where 𝐺0 is the free resolvent, and the pairwise interaction potentials 
𝑣𝛼 enter via the respective two-particle transition operators
𝑡𝛼 = 𝑣𝛼 + 𝑣𝛼𝐺0 𝑡𝛼 . (2)

If excitations of the nucleus 𝐴 are allowed, all operators in Eq. (1) be-
come multicomponent operators acting in an extended Hilbert space 
with multiple sectors [7] corresponding to different internal states of 

the nucleus 𝐴. The basis states |𝐩𝛼𝐪𝛼𝑎⟩ ≡ |𝐩𝛼⟩⊗ |𝐪𝛼⟩⊗ |𝑎⟩ for the rela-
tive motion are characterized by Jacobi momenta for the pair (𝐩𝛼) and 
spectator (𝐪𝛼), plus the label 𝑎 for the internal state of the nucleus 𝐴
with the excitation energy 𝐸𝑎, i.e., 𝐸𝑎 = 0 for the ground state. While 
previous studies with explicit core excitation included only few lowest 
bound states of 𝐴, formally also the continuum states corresponding to 
the breakup of 𝐴 can be discretized and included into the set {𝑎} as 
pseudostates. With a finite but sufficiently large number of such states 
(pseudostates) one may expect to account accurately for the 𝐴 contin-
uum. In contrast, no discretization is used for the 𝐴 + 𝑝 + 𝑛 three-body 
continuum, described by two continuous variables, the Jacobi momenta 
𝐩𝛼 and 𝐪𝛼 . The explicit multicomponent equations can be obtained from 
Eq. (1) inserting the completeness relation

1 =
∑

𝑎 ∫ 𝑑3𝐩𝛼𝑑3𝐪𝛼 |𝐩𝛼𝐪𝛼𝑎⟩⟨𝐩𝛼𝐪𝛼𝑎|. (3)

The neutron-proton interaction and the multicomponent free resolvent 
are diagonal with respect to the different Hilbert sectors, e.g.,
⟨𝑎′|𝐺0|𝑎⟩ = 𝛿𝑎′𝑎 (𝐸 + 𝑖0 −𝐻0 − 𝐸𝑎)−1. (4)

Here 𝐸 is the available system energy in the center-of-mass (c.m.) frame 
and 𝐻0 the kinetic energy operator for the relative motion of the three 
clusters 𝐴 + 𝑝 + 𝑛, with eigenvalues 𝑝2𝛼∕2𝜇𝛼 + 𝑞2𝛼∕2𝑀𝛼 , where 𝜇𝛼 and 𝑀𝛼
are the pair and spectator reduced masses. In contrast, the real nucleon-
nucleus potentials 𝑣𝛼 couple the different Hilbert sectors, with nonvan-
ishing ⟨𝑎′|𝑣𝛼|𝑎⟩ for any combination of 𝑎′ and 𝑎. As a consequence, the 
nucleon-nucleus transition operators in Eq. (2) and three-body transi-
tion operators in Eq. (1) couple the different Hilbert sectors. Though 
the above equations are of the three-body type, the many-body char-
acter of the problem resides in the multicomponent nucleon-nucleus 
potentials ⟨𝑎′|𝑣𝛼|𝑎⟩, whose microscopic calculation would require the 
solution of the many-body problem. The solution of the multicompo-
nent three-body Eq. (1) may be also highly challenging, if large number 
of states 𝑎 is included. However, both difficulties can be avoided in the 
calculations of NEB cross section as will be shown in the following. The 
breakup operator is a special case of Eq. (1) with 𝛾 = 0, i.e., 

𝑈0𝛽 = 𝐺−1
0 +

3
∑

𝛼=1
𝑡𝛼 𝐺0𝑈𝛼𝛽 (5a)

= 𝛿𝛽𝛼𝐺
−1
0 + (1 + 𝑡𝛼 𝐺0)𝑈𝛼𝛽 , (5b)

whereas the last equation is valid for any 𝛼 = 1, 2, or 3. For the calcula-
tion of physical observables the operator (5) has to be sandwiched be-
tween the initial and final channel states. The reaction is initiated by the 
collision of particle 1 and the bound pair of particles (23) with energy 
𝜖1 < 0, the initial relative momentum being 𝐪𝑖1 and the available energy 
𝐸 = (𝑞𝑖1)

2∕2𝑀1 + 𝜖1. Thus, the initial channel state is given by the direct 
product of the bound-state wave function |𝜙1⟩ and plane wave |𝐪𝑖1⟩, 𝐴
being in its ground state. The final breakup state could be expressed in 
any of the Jacobi configurations, but for the detected particle 𝛼 the most 
convenient choice is |𝐩𝛼𝐪𝛼𝑎⟩. The corresponding semi-inclusive differ-
ential cross section is obtained from the fully exclusive one [32] via 
summation and integration over all states of the undetected particles, 
i.e.,

𝑑3𝜎𝑏
𝑑3𝐪𝛼

= (2𝜋)4
𝑀1

𝑓𝑠 𝑞𝑖1

∑

𝑎 ∫ 𝑑3𝐩𝛼 𝛿
(

𝐸 −
𝑝2𝛼
2𝜇𝛼

−
𝑞2𝛼

2𝑀𝛼
− 𝐸𝑎

)

× |⟨𝐩𝛼𝐪𝛼𝑎|𝑈01|𝜙1𝐪𝑖1⟩|
2. (6)

The summation is performed also over all initial and final spin states, 
but for the notational brevity it is not explicitly indicated; instead, the 
presence of 1∕𝑓𝑠 in equations will indicate the performed spin summa-
tion. The initial-state spin factor 𝑓𝑠 = (2𝑠1 + 1)(2𝑆1 + 1) takes care of the 
spin averaging, with 𝑠1 (𝑆1) being the spin of the initial-state specta-
tor (pair). Note that due to the energy conservation 𝑞2𝛼 ≤ 2𝑀𝛼𝐸. Ap-
plying the Eq. (5b) and the general relation ⟨𝐩𝛼𝑎|(1 + 𝑡𝛼 𝐺0) = ⟨𝜓−(𝐩𝛼)𝑎|
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between the two-particle transition matrix and scattering wave function 
one gets 
⟨𝐩𝛼𝐪𝛼𝑎|𝑈01|𝜙1𝐪𝑖1⟩ = ⟨𝜓−(𝐩𝛼)𝐪𝛼𝑎|𝑈𝛼1|𝜙1𝐪𝑖1⟩. (7)

The first term in Eq. (5b) does not contribute assuming that the detected 
particle 𝛼 is not free in the initial state, i.e., 𝛼 ≠ 1. Further manipulations 
are similar to those of previous works [2,10–13], i.e., the 𝛿-function in 
Eq. (6) is rewritten as the imaginary part of the energy denominator 
according to 𝛿(𝑥) = −(1∕𝜋)Im(𝑥 + 𝑖0)−1, resulting in
𝑑3𝜎𝑏
𝑑3𝐪𝛼

= − (2𝜋)4
𝑀1

𝜋𝑓𝑠𝑞𝑖1
Im

[

∑

𝑎 ∫ ⟨𝜙1𝐪𝑖1|𝑈
†
𝛼1|𝜓

−(𝐩𝛼)𝐪𝛼𝑎⟩

×
𝑑3𝐩𝛼

𝐸 + 𝑖0 − 𝑝2𝛼
2𝜇𝛼

− 𝑞2𝛼
2𝑀𝛼

− 𝐸𝑎
⟨𝜓−(𝐩𝛼)𝐪𝛼𝑎|𝑈𝛼1|𝜙1𝐪𝑖1⟩

⎤

⎥

⎥

⎥

⎦

. (8)

The differential cross section for nucleon transfer reactions, where 
in the final state the undetected nucleon is captured by the nucleus 𝐴 to 
one of the bound states |𝜙𝑗𝛼⟩ with energy 𝜖𝑗𝛼 , is given as [26] 
𝑑3𝜎𝑡
𝑑3𝐪𝛼

= (2𝜋)4
𝑀1

𝑓𝑠 𝑞𝑖1

∑

𝑗
𝛿

(

𝐸 −
𝑞2𝛼

2𝑀𝛼
− 𝜖𝑗𝛼

)

|⟨𝜙𝑗𝛼𝐪𝛼|𝑈𝛼1|𝜙1𝐪𝑖1⟩|
2. (9)

Note, the summation is over the bound state label 𝑗, since |𝜙𝑗𝛼⟩ may 
contain several components with different 𝑎 [26]. After rewritting the 
𝛿-function as in Eq. (8) it becomes
𝑑3𝜎𝑡
𝑑3𝐪𝛼

= − (2𝜋)4
𝑀1

𝜋𝑓𝑠𝑞𝑖1
Im

[
∑

𝑗
⟨𝜙1𝐪𝑖1|𝑈

†
𝛼1|𝜙

𝑗
𝛼𝐪𝛼⟩

× 1

𝐸 + 𝑖0 − 𝑞2𝛼
2𝑀𝛼

− 𝜖𝑗𝛼
⟨𝜙𝑗𝛼𝐪𝛼|𝑈𝛼1|𝜙1𝐪𝑖1⟩

]

. (10)

The channel resolvent embedded into the three-body space

𝐺𝛼 =
∑

𝑎 ∫
|𝜓−(𝐩𝛼)𝐪𝛼𝑎⟩ 𝑑3𝐩𝛼 ⟨𝜓−(𝐩𝛼)𝐪𝛼𝑎|

𝐸 + 𝑖0 − 𝑝2𝛼
2𝜇𝛼

− 𝑞2𝛼
2𝑀𝛼

− 𝐸𝑎

+
∑

𝑗

|𝜙𝑗𝛼𝐪𝛼⟩ ⟨𝜙
𝑗
𝛼𝐪𝛼|

𝐸 + 𝑖0 − 𝑞2𝛼
2𝑀𝛼

− 𝜖𝑗𝛼
(11)

has continuum and bound-state contributions that can be easily iden-
tified in Eqs. (8) and (10), respectively. The full cross section for the 
detected particle 𝛼, being the sum of (8) and (10), becomes 
𝑑3𝜎
𝑑3𝐪𝛼

= −(2𝜋)4
𝑀1

𝜋𝑓𝑠𝑞𝑖1
Im

[

⟨𝜙1𝐪𝑖1|𝑈
†
𝛼1𝐺𝛼𝑈𝛼1|𝜙1𝐪𝑖1⟩𝑞

]

. (12)

The subscript 𝑞 for the matrix element in Eq. (12) indicates that the in-
termediate variable 𝐪𝛼 is not integrated out, i.e., it is a matrix element 
with respect to the two-body subspace of the undetected pair only. Kine-
matically the nucleon transfer and breakup reactions remain separated, 
as they correspond to 𝑞𝛼 values above and below 2𝑀𝛼𝐸, respectively.

A simple interpretation of Eq. (12) is that the reaction proceeds via 
transfer of the particle 𝛽 ≠ 𝛼 from the bound pair (23) into the contin-
uum of the subsystem (1𝛽), with subsequent rescattering in that subsys-
tem, whereas the particle 𝛼 acts as a spectator. Thus, under the 𝛼 spec-
tator assumption one may expect a reasonable description of the cross 
section also when using a simplified model space. In the standard three-
body approach to deuteron-nucleus reactions only the ground state of 
the nucleus 𝐴 is included explicitly, thus, all involved operators are pro-
jected onto the ground state of 𝐴, while other states are approximately 
accounted for via optical potentials 𝑣𝛼 . The label 𝑎 becomes redundant 
and will be omitted, implying that states |𝐩𝛼𝐪𝛼⟩ refer to this simplified 
model space to be considered in the following. The reaction is then de-
scribed by the AGS Eq. (1) with the single-component version of the free 
resolvent (4), while the channel resolvent becomes 
𝐺𝛼 = (𝐸 + 𝑖0 −𝐻0 − 𝑣𝛼)−1 (13a)

= 𝐺0 + 𝐺0𝑡𝛼𝐺0. (13b)

In particular, 
Im𝐺𝛼 ≡ (1∕2𝑖){𝐺†

𝛼[(𝐺
†
𝛼)

−1 − 𝐺−1
𝛼 ]𝐺𝛼} (14a)

= − 𝜋(1 + 𝐺†
0𝑡

†
𝛼)𝛿(𝐸 −𝐻0)(1 + 𝑡𝛼𝐺0) + 𝐺𝛼𝑤𝛼𝐺𝛼 , (14b)

where 𝑤𝛼 = Im𝑣𝛼 is the imaginary part of the optical potential acting 
within the undetected pair. The relation (14b) in a slightly different but 
equivalent form has been obtained in previous works, e.g., [11], and 
shown to be essential in disentangling EB and NEB. In particular, the 
first term of Eq. (14b) together with (5b) leads to the cross section (6) 
contribution

𝑑3𝜎EB
𝑑3𝐪𝛼

= (2𝜋)4
𝑀1

𝑓𝑠 𝑞𝑖1 ∫ 𝑑3𝐩𝛼 𝛿
(

𝐸 −
𝑝2𝛼
2𝜇𝛼

−
𝑞2𝛼

2𝑀𝛼

)

× |⟨𝐩𝛼𝐪𝛼|𝑈01|𝜙1𝐪𝑖1⟩|
2, (15)

which is the standard breakup cross section with the nucleus 𝐴 remain-
ing in its ground state, i.e., the elastic breakup. The second term of 
Eq. (14b) together with (13b) and (5b) leads to NEB cross section 
𝑑3𝜎NEB
𝑑3𝐪𝛼

= − (2𝜋)4
𝑀1

𝜋𝑓𝑠𝑞𝑖1
⟨𝜙1𝐪𝑖1|𝑈

†
01𝐺

†
0𝑤𝛼𝐺0𝑈01|𝜙1𝐪𝑖1⟩𝑞 (16a)

= − (2𝜋)4
𝑀1

𝜋𝑓𝑠𝑞𝑖1 ∫ [𝑑3𝐩′𝛼𝑑
3𝐩𝛼𝑤𝛼(𝐩′𝛼 ,𝐩𝛼)

× ⟨𝐩′𝛼𝐪𝛼|𝐺0𝑈01|𝜙1𝐪𝑖1⟩
∗
⟨𝐩𝛼𝐪𝛼|𝐺0𝑈01|𝜙1𝐪𝑖1⟩]. (16b)

The obtained NEB differential cross section (16), consistently with 
previous works [2,10–13], is given by the imaginary part of the optical 
potential for the undetected pair. The difference lies in the calculation 
of scattering wave functions, that in the present work are given in terms 
of three-body transition operators. While EB requires only the on-shell 
elements of the breakup operator (5), the NEB involves integration of 
its half-shell matrix elements.

The AGS equations are solved numerically in the momentum-space 
partial-wave representation. The orbital angular momenta up to 3, 
12 and 22 are included for the neutron-proton, neutron-nucleus, and 
proton-nucleus pairs, respectively, with total angular momentum up to 
35. See Refs. [24–27,32] for further details. The Coulomb interaction is 
included via the screening and renormalization method [28–31]. In fact, 
the renormalization factors cancel in the expressions for the cross sec-
tion. Nevertheless, one has to ensure that the screening radius is large 
enough and the results become practically independent of it; this will 
be demonstrated in the next section.

3.  Results

The primary goals of the present work are to establish the calculation 
of NEB in the framework of rigorous three-body AGS equations and to 
evaluate the optical potential nonlocality effect. The comparison with 
the experimental data would involve the preequilibrium and compound 
nucleus contributions that are beyond the reach of the present calcula-
tions and therefore is left to future studies. The most convenient phys-
ical observable for this investigation is the distribution of the energy 
𝐸𝛼 = 𝑞2𝛼∕2𝑚𝛼 of the detected particle in the three-body center-of-mass 
(c.m.) frame, 
𝑑𝜎NEB
𝑑𝐸𝛼

= 𝑚𝛼𝑞𝛼 ∫ 𝑑2𝐪̂𝛼
𝑑3𝜎NEB
𝑑3𝐪𝛼

. (17)

This observable can be calculated directly in partial waves, perform-
ing the angular integration within Eq. (16a). In the considered case of 
deuteron-nucleus scattering the detected particle is assumed to be the 
proton, though the whole formalism could be applied equally well also 
to (𝑑, 𝑛) inclusive reactions.

A realistic neutron-proton interaction with spin-orbit and tensor 
terms such as CD Bonn [33] can be included into solution of the AGS 
equations in the partial-wave representation. However, it was found 
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that the differential cross section (17) is insensitive to fine details of 
the potential, especially of its noncentral part, therefore a simple Gaus-
sian potential from Ref. [2] reproducing the deuteron binding energy 
and low-energy 3𝑆1 phase shift was adopted; it has been used in many 
reaction calculations. Likewise, the optical nucleon-nucleus potentials 
are taken without noncentral parts, which allows the omission of spin 
degrees of freedom and leads to a significant reduction in the number 
of partial waves and calculation time. Few examples with the full spin-
dependent interaction will be shown as well. Several parametrizations of 
the nucleon-nucleus optical potential are used, including those by Kon-
ing and Delaroche (KD) [34], Weppner et al. [35], Watson et al. [36], 
Chapel Hill (CH89) group [37], and Giannini and Ricco (GR) [38]. The 
latter has nonlocal and its equivalent local versions, to be used to esti-
mate the nonlocality effect. Except for the nonlocal one [38], the other 
potential contain energy-dependent parameters. In the present study 
they are taken at half the deuteron energy, a standard choice in the 
calculations of elastic scattering and breakup. It is perhaps too naive for 
NEB where one could consider also explicit energy dependence for 𝑤𝛼
in Eq. (16), but should be fully sufficient for the purpose of the present 
work, i.e., establishing the calculational scheme and evaluating the non-
locality effect.

First, the convergence of NEB cross section with respect to the 
Coulomb screening radius is demonstrated in Fig. 1. The screening func-
tion 𝑒−(𝑟∕𝑅)𝑛  is taken over from Ref. [31] with 𝑛 = 8, though the results 
are quite insensitive to 𝑛 between 4 and 10. Two cases are considered, 
deuteron scattering from 12C and 90Zr nuclei at 50 and 80 MeV beam 

Fig. 1. The convergence of the semi-inclusive NEB cross section with the 
Coulomb screening radius 𝑅. 50 MeV (80 MeV) deuteron scattering from 12C 
(90Zr) nucleus is shown in the top (bottom) panel. KD optical potential is used.

Fig. 2. The semi-inclusive NEB cross section for 80 MeV deuteron scattering 
from 58Ni, 74Ge, 84Kr, and 90Zr nuclei as a function of the proton energy in c.m. 
frame. KD optical potential is used. In the case of 58Ni also the EB cross section 
is displayed by dashed curve.

Fig. 3. The semi-inclusive NEB cross section for deuteron-12C scattering at 
50 and 100 MeV beam energy as a function of the proton energy in c.m. 
frame. Results with several neutron-proton and nucleon-nucleus optical poten-
tial parametrizations are compared.
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Fig. 4. The semi-inclusive NEB cross section for deuteron-40Ca scattering at 50 
and 100 MeV beam energy as a function of the proton energy in c.m. frame. 
Results with several optical potential parametrizations are compared.

energy, respectively. While for 𝑍 = 6 target the convergence is very fast, 
even 𝑅 = 6 fm is quite sufficient, the convergence becomes considerably 
slower for 𝑍 = 40, where 𝑅 around 15 fm at least is needed. Neverthe-
less, achieving well converged results for 90Zr with 𝑍 = 40 is an im-
portant step forward compared to previous Faddeev-type calculations 
with the screening and renormalization approach, limited to 58Ni with 
𝑍 = 28.

Results for 80 MeV deuteron scattering from most abundant isotopes 
of 𝑍 = 28, 32, 36, and 40 nuclei, i.e., 58Ni, 74Ge, 84Kr, and 90Zr are pre-
sented in Fig. 2. The differential NEB cross section has an asymmet-
ric bell shape and shows increase with 𝑍, which is not strictly linear, 
probably indicating the dependence on the neutron-proton asymmetry 
(𝐴 − 2𝑍)∕𝐴 as well. In the case of 58Ni also the corresponding EB cross 
section is shown, which is considerably lower than the NEB one. The 
EB peak around half of the deuteron beam energy corresponds to the 
quasifree neutron scattering off the nucleus 𝐴. As the half-shell breakup 
operator appears also in Eq. (16), the NEB cross section peaks in the 
same energy region. These 58Ni results, transformed to the lab frame, 
allow a comparison with previous works, e.g., [15,19]. Their energy 
distributions also have an asymmetric bell shape (with few wiggles in 
Ref. [15]), but the Faddeev-type approach predicts larger cross section: 
at the peak the results of Refs. [15] and [19] are lower by 10 and 35%, 
respectively. At the same time, as shown in Fig. 3 of Ref. [15], the 
PE+CN contribution is sizable and even becomes dominant at lower 
proton energies.

The optical potential nonlocality effect is investigated in Figs. 3 and 
4. The GR potentials [38] were developed for symmetric 𝑁 = 𝑍 nu-
clei, and further improved for 12C, 16O and 40Ca [25] by an additional 

readjustment of parameters to fit the experimental data. The present 
study explores deuteron scattering from 12C and 40Ca nuclei at 50 and 
100 MeV beam energy. In addition to the GR nonlocal optical potential 
and its roughly equivalent local potential, results were obtained also 
with other commonly used local potentials, i.e., KD [34], Weppner [35], 
Watson [36], and CH89 [37]. The nonlocality effect, taken as the dif-
ference between local and nonlocal GR potentials, visibly increases the 
NEB cross section at the peak and beyond. On the other hand, the sen-
sitivity to the model of the local potential appears even more sizable. 
Noteworthy, at higher 𝐸𝑝 values the nonlocal GR potential results agree 
quite well with those of most local potentials except the GR one. Further-
more, the shape of the NEB cross section depends on the beam energy as 
well, the high-energy tail becoming lower with increasing beam energy.

Fig. 3 also studies the importance of spin-orbit force in the optical 
potential and the realistic neutron-proton potential CD Bonn [33]. Both 
are included in the results labeled “GR nonlocal+spin”. Quite surpris-
ingly, the effect for NEB cross section turns out to be almost negligible. 
Thus, even a very simple and unrealistic 𝑛𝑝 potential might be sufficient 
for NEB calculations.

4.  Conclusions

The nonelastic breakup, comprising a class of channels in (𝑑, 𝑝) inclu-
sive reactions, was studied using the Faddeev-type three-body scattering 
theory. The key steps in deriving the NEB cross section, i.e., the spectator 
assumption for the proton, the closure over final states and the subse-
quent projection onto the ground state of the nucleus 𝐴, are the same 
as in previous works. Consistently, the NEB cross section is driven by 
the imaginary part of the optical potential for the undetected pair. The 
difference lies in the description of scattering states which in the present 
study is given in terms of the AGS transition operators, calculated in the 
momentum-space partial-wave representation.

Well converged numerical results were obtained for the energy dis-
tribution of the NEB cross section. They have asymmetric bell shape 
as found in previous works but are 10 to 35% higher. Benchmark cal-
culations are left for future studies. They are very important given the 
existing differences between various NEB approaches [9,17–19].

The effect of the optical potential nonlocality was also investigated. 
It is possibly more pronounced at higher proton energies, but remains 
within uncertainties due to different local optical potential parametriza-
tions. The NEB cross section appears to be insensitive to the spin-
dependent interaction terms.

Finally, performing calculations with nuclei of higher charge num-
ber, presently up to 𝑍 = 40, is an important step towards application 
of the Faddeev-type momentum-space equations also to other reactions 
involving medium mass and heavy nuclei, e.g., the deuteron stripping 
(𝑑, 𝑝). Preliminary studies [39] indicate that a combination with ma-
chine learning methods could be a powerful tool for a further exten-
sion, whereas the results of direct calculations like here could serve as 
the training data.
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Appendix A.  Many-body approach to NEB 

I consider the collision of the bound pair (𝛼𝛽) with a bound 𝐴-body 
system in the c.m. frame, having the 𝐴(𝑑, 𝑝)𝑋 reaction in mind. This is an 
(𝐴 + 2)-body problem, the Hamiltonian 𝐻0 + 𝑉  contains (𝐴 + 1) kinetic 
energy contributions 𝐻0 from all relative motions plus the sum of all 
(𝐴 + 2)(𝐴 + 1)∕2 pairwise potentials, eventually supplemented by three-
body and higher forces, all being real. Let 𝐸 be the available energy, 
|Ψ+(𝐪𝑖1)⟩ the full many-body scattering wave function with the initial 
relative deuteron-nucleus momentum 𝐪𝑖1, and 𝐪𝛼 the final relative mo-
mentum between the detected particle 𝛼 and the remaining subsystem 
𝑋 which can be in any state.

If 𝑋 forms a bound nucleus with wave function |𝜙𝑗𝑋⟩ and energy 𝜖
𝑗
𝑋 , 

where 𝑗 labels the different bound states, the reaction amplitude can be 
given as ⟨𝜙𝑗𝑋𝐪𝛼|𝑉𝛼𝑋 |Ψ+(𝐪𝑖1)⟩. Here 𝑉𝛼𝑋 is the interaction that is exter-
nal to the final 𝛼 +𝑋 channel, i.e., the sum of all potentials (two-body, 
three-body, etc.) acting between the particle 𝛼 and the subsystem 𝑋. The 
above amplitude also defines the transfer component of the transition 
operator

𝑈𝛼𝑋,𝑑𝐴|𝜙𝑑𝜙𝐴𝐪𝑖1⟩ ≡ 𝑉𝛼𝑋 |Ψ+(𝐪𝑖1)⟩, (A.1)

acting on the initial channel state, given as product of bound-state wave 
functions of deuteron and nucleus 𝐴 and plane wave for their relative 
motion.

If 𝑋 is broken into 𝑛 clusters 𝑋𝑗 with internal energies 𝜖𝑗 , 𝑗 = 1, ..., 𝑛, 
the reaction amplitude can be given as ⟨𝜓−({𝑋𝑗}, {𝐩𝑘})𝐪𝛼|𝑉𝛼𝑋 |Ψ+(𝐪𝑖1)⟩. 
Here ⟨𝜓−({𝑋𝑗}, {𝐩𝑘})| is the full wave function of the subsystem 𝑋 cor-
responding to the set of outgoing clusters {𝑋𝑗} with reduced masses 𝜇𝑘
and asymptotic relative momenta 𝐩𝑘, 𝑘 = 1, ..., 𝑛 − 1. Note that 𝜇𝑘 and 
𝐩𝑘 depend on the clustering {𝑋𝑗}, but this dependence is suppressed for 
brevity. The energy of such a state is 𝐸({𝑋𝑗}, {𝐩𝑘}) =

∑

𝑘 𝑝
2
𝑘∕2𝜇𝑘 +

∑

𝑗 𝜖𝑗 . 
The differential cross section for the detected particle 𝛼 is the sum over 
all possible channels,
𝑑3𝜎
𝑑3𝐪𝛼

= (2𝜋)4
𝑀1

𝑓𝑠 𝑞𝑖1

[

∑

𝑗
𝛿
(

𝐸 −
𝑞2𝛼

2𝑀𝛼
− 𝜖𝑗𝑋

)

|⟨𝜙𝑗𝑋𝐪𝛼|𝑉𝛼𝑋 |Ψ
+(𝐪𝑖1)⟩|

2

+
∑

{𝑋𝑗}
∫

(

∏

𝑘
𝑑3𝐩𝑘

)

𝛿
(

𝐸 −
𝑞2𝛼

2𝑀𝛼
− 𝐸({𝑋𝑗}, {𝐩𝑘})

)

× |⟨𝜓−({𝑋𝑗}, {𝐩𝑘})𝐪𝛼|𝑉𝛼𝑋 |Ψ+(𝐪𝑖1)⟩|
2
]

, (A.2)

i.e., the second sum runs over all possible clusterings.
Rewriting the 𝛿-functions as in Section 2, one can isolate in Eq. (A.2) 

the resolvent for the subsystem 𝑋, i.e.,

𝐺𝑋 =
∑

𝑗

|𝜙𝑗𝑋𝐪𝛼⟩ ⟨𝜙
𝑗
𝑋𝐪𝛼|

𝐸 + 𝑖0 − 𝑞2𝛼
2𝑀𝛼

− 𝜖𝑗𝑋

+
∑

{𝑋𝑗}
∫

(

∏

𝑘
𝑑3𝐩𝑘

)

|𝜓−({𝑋𝑗}, {𝐩𝑘})𝐪𝛼⟩⟨𝜓−({𝑋𝑗}, {𝐩𝑘})𝐪𝛼|

𝐸 + 𝑖0 − 𝑞2𝛼
2𝑀𝛼

− 𝐸({𝑋𝑗}, {𝐩𝑘})
.

(A.3)

Together with Eq. (A.1) the differential cross section (A.2) becomes 
𝑑3𝜎
𝑑3𝐪𝛼

= −(2𝜋)4
𝑀1

𝜋𝑓𝑠𝑞𝑖1
Im

[

⟨𝜙𝑑𝜙𝐴𝐪𝑖1|𝑈
†
𝛼𝑋,𝑑𝐴𝐺𝑋𝑈𝛼𝑋,𝑑𝐴|𝜙𝑑𝜙𝐴𝐪

𝑖
1⟩𝑞

]

. (A.4)

where, as in Section 2, the subscript 𝑞 indicates that the matrix element 
in Eq. (A.4) is taken with respect to 𝑋 variables only.

Finally, the three-body reduction, i.e., the projection onto the 
ground state of the nucleus 𝐴 implies the replacement 𝐺𝑋 → 𝐺𝛼 and 
𝑈𝛼𝑋,𝑑𝐴|𝜙𝑑𝜙𝐴𝐪𝑖1⟩ → 𝑈𝛼1|𝜙1𝐪𝑖1⟩, leading exactly to the three-body result 
as in Eq. (12).

The above derivation is quite similar to those given in Refs. [2,13,
14], but does not assume the infinitely heavy nucleus 𝐴, and instead of 
the distorted proton wave introduces the transition operator. 
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