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Abstract 

Biological insights often depend on comparing conditions such as disease and health. 
Yet, we lack effective computational tools for integrating single-cell genomics data 
across conditions or characterizing transitions from normal to deviant cell states. Here, 
we present Decipher, a deep generative model that characterizes derailed cell-state 
trajectories. Decipher jointly models and visualizes gene expression and cell state 
from normal and perturbed single-cell RNA-seq data, revealing shared and disrupted 
dynamics. We demonstrate its superior performance across diverse contexts, includ-
ing in pancreatitis with oncogene mutation, acute myeloid leukemia, and gastric 
cancer.

Keywords:  Deep generative model, Cell-state trajectories, Acute myeloid leukemia, 
Dimensionality reduction

Background
Single-cell genomic technologies have enabled the detailed characterization of cellular 
states in healthy and disease contexts, including cancer [1–5], inflammatory bowel dis-
ease [6, 7], and COVID-19 [8–10]. Within a tissue sample, cells exist in various cellular 
states and at various stages of differentiation. This variation allows a single snapshot of 
single-cell RNA sequencing (scRNA-seq) to reveal cellular states, their evolution, and 
characterize cell-state transitions by applying pseudotime inference approaches [11–
15]. In particular, reconstructing how cells derail from normal to diseased states along 
a pseudotime axis promises to improve our knowledge of early disease stages, identify 
drivers of this derailment, and inform early detection and prevention strategies.

A prime example of derailed development occurs in acute myeloid leukemia (AML), 
a lethal cancer of the hematopoietic system. In AML, bone marrow hematopoietic stem 
and progenitor cells (HSPCs) acquire genetic and epigenetic abnormalities, leading to 
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the accumulation of HSPC-like leukemic cells called “blasts” that fail to differentiate ter-
minally. The origin of pre-leukemic and leukemic stem cell states in AML [5, 16] remains 
poorly characterized, which makes it difficult to target these cells and prevent disease 
recurrence [17–19]. Importantly, we do not know how specific mutations lead to dis-
tinct disease trajectories. These trajectories differ across patients [20] and can initiate 
from healthy states or pre-malignant and early malignant states such as clonal hemat-
opoiesis and myelodysplastic syndromes [21–25]. Numerous other contexts, including 
disorders of embryonic development, neurodegenerative diseases, and T-cell exhaustion 
[26–29], require the accurate reconstruction of aberrant trajectories to understand their 
mechanisms.

However, existing methods often fail to reconstruct the order of events faithfully; lin-
ear approaches, such as principal component analysis (PCA), cannot capture biological 
complexity, while alternatives, such as neural networks, typically fail to represent the 
underlying biology and can mix the ordering of cell states. There is an urgent need for 
methods to accurately reconstruct the order of transcriptional events, precisely align 
trajectories, and compare disparate conditions, such as healthy to disease and control to 
genetic or chemical perturbation.

To compare trajectories, obtaining a faithful joint embedding and accurately visual-
izing the cellular relationships it represents is critical. This faithful embedding space 
can then be given as input to trajectory inference methods to extract and automati-
cally compute trajectories. Embedding multiple samples, especially from heterogene-
ous cancers, is sensitive to minor differences in gene programs between samples, such 
that they typically fail to co-embed in a biologically meaningful way. Existing integration 
methods [30–37] are primarily designed for batch correction; they assume that samples 
share similar cell states and attempt to eliminate differences—including genuine bio-
logical differences, particularly for continuous and diverging trajectories—as technical 
effects. Moreover, most approaches compress information from thousands of genes into 
10–50 factors that are independent, thereby neglecting dependencies between related 
biological processes (ignoring, for example, that divergent differentiation trajectories are 
related). The resulting latent spaces help annotate discrete cell states but often do not 
preserve gene-gene relationships and the order of cell states [38]. Furthermore, data is 
usually visualized by projecting latent embeddings onto two dimensions [39, 40], which 
can distort topology and obscure functional relationships [41]. These limitations high-
light the need for approaches that address interpretability, preserve global geometry 
in the latent space, and enable visualization to better model trajectories perturbed by 
mutation, genetic manipulation, drugs, or disease.

In this work, we present Decipher (deep characterization of phenotypic derailment), an 
interpretable deep generative model for the simultaneous integration and visualization 
of single-cell data from disparate conditions. Decipher is a hierarchical model that learns 
two representations for each cell from the observed expression: a low-dimensional state 
(in an “intermediate” latent space of roughly ten dimensions, similar to existing methods 
[37, 42]), as well as a two-dimensional representation (“top” latent space) for visualiza-
tion. Several design features allow this unifying model to characterize continuous trajec-
tories more accurately: (1) it connects gene expression and the latent spaces with simple 
linear or one-layer neural network transformations to limit distortion, (2) the stacking of 
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two latent spaces over gene expression space enables flexible capture of nonlinear mech-
anisms, despite the use of simple transformations, (3) it learns the dependency structure 
of cell-state latent factors with the top latent space embedding (unlike other methods, 
which assume that latent factors are independent), enabling the discovery of both shared 
and unique biological mechanisms from sparse trajectories, and (4) the 2D top latent 
space provides a direct visualization of the geometry learned by the model.

The hierarchical structure of Decipher allows for a comprehensive understanding of 
the relationships between gene expression, cell states, and their visual representation. 
We show that it is the only approach that preserves cell-state organization and conti-
nuity in synthetic data and demonstrate its substantial advantage for deriving insight 
from three disease contexts of increasing complexity—published data from a pancreatic 
ductal adenocarcinoma (PDAC) mouse model with an oncogenic mutation, new data 
from heterogeneous AML patient specimens, and a published patient cohort spanning 
two subtypes of gastric cancer.

Results
The Decipher method

Aligning trajectories from normal and perturbed contexts requires a joint representa-
tion that preserves the topology and order of cells along both trajectories without forc-
ing artificial overlap. Decipher’s key assumption is that perturbed trajectories maintain 
shared transcriptional programs with normal trajectories for common processes, such as 
cell maturation. To create a joint representation that captures both biological differences 
and shared mechanisms, Decipher employs a hierarchical model featuring two levels of 
latent representations, each with its own encoder and decoder networks. This unique 
architecture allows for correlation between some latent factors, enabling the identifica-
tion of shared gene programs that would be missed under the standard requirement for 
independence. Decipher uses simple linear transformations and single-layer neural net-
works to connect all representations within a unified probabilistic framework, making it 
sufficiently flexible to learn nonlinear mechanisms while imposing a rigid inductive bias 
that prevents arbitrary distortion of the global geometry.

To enable correlated latent factors, Decipher extends the successful single-cell vari-
ational auto-encoder (VAE) architecture [37, 42–45] into a deeper generative model 
inspired by the deep exponential family [46, 47]. In Decipher, each cell has not one but 
two complementary latent representations (Fig. 1a, b). First, we embed cells in a two-
dimensional representation that encodes global cell-state dynamics. We refer to this 
high-level embedding as the Decipher space and its two dimensions as Decipher com-
ponents. Decipher components represent the dominant axes of variation in the data, 
typically progression (maturation) and derailment (degree of deviation from a normal 
process, e.g., in disease). Then, we generate a higher-dimensional representation con-
ditional on the two Decipher components, designed to capture more refined cell-state 
information. We call the space of refined representations the latent space and refer to 
its dimensions as latent factors. The latent space is similar in principle to previous VAEs 
[37, 43, 44], except that the design of Decipher, which conditions the latent space on the 
Decipher components, enables dependencies between latent factors. Finally, Decipher 
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generates the denoised gene expression of each cell from its inferred cell state (Fig. 1b 
and Methods section).

This three-step generative process interpolates between different degrees of non-lin-
earity and generates latent factors whose dependencies are shaped by high-level Deci-
pher components, offering major advantages for interpretation. Cell representations can 
be visualized in 2D directly from Decipher components, eliminating the need for fur-
ther dimensionality reduction with methods such as t-distributed stochastic neighbor 
embedding (tSNE) or uniform manifold approximation and projection (UMAP), whose 
usage is a subject of debate [41] (Fig. 1c). Within the Decipher space, derailed trajecto-
ries can be constructed along a joint pseudotime that we call Decipher time.

In addition, Decipher is formulated to give explicit mapping functions between gene 
space and Decipher space, enabling a straightforward reconstruction of gene expres-
sion anywhere in Decipher space (Methods section) and enabling the imputation of gene 
trends along the entire trajectory (Fig.  1d). This is particularly useful for determining 
gene expression levels in sparse locations of the Decipher space with few observed cells. 
It also enables the reciprocal computation of Decipher components (and straightforward 

Fig. 1  Overview of the Decipher framework. a Decipher accepts multiple single-cell datasets (e.g, a 
normal reference and a perturbed condition), which its probabilistic model represents in a hierarchical 
shared latent space without removing biological differences. The latent space reveals shared cell-state 
transitions and characterizes diverging phenotypes. b Decipher’s generative model has three levels of cell 
representations (distributions shown at bottom): 2D Decipher components v, latent factors z, and gene 
expression x. Decipher components summarize heterogeneous cell states and are used to directly visualize 
the latent space. c Example of Decipher space visualization, colored by the dataset of origin (normal or 
disease) and by independently annotated cell states. Two distinct trajectories (lines and circles; stars depict 
start) are computed in the Decipher space. d Gene expression patterns are computed along each trajectory 
using Decipher’s decoders mapping v to x and then decomposing into representative patterns (basis). The 
corresponding weights are used to compare patterns between the two contexts to pinpoint disrupted and 
conserved genes
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visualization) for any cell with measured gene expression. In contrast, there is no explicit 
mapping between UMAP space and the gene expression space. Decipher offers a unique 
framework for dimensionality reduction, 2D visualization, trajectory alignment, and 
characterization of cell state transitions.

Decipher preserves sparse simulated trajectories

To benchmark Decipher against alternative methods, we simulated ground truth contin-
uous cell-state trajectories by randomly sampling two-dimensional vectors (represent-
ing cell states) along a forked trajectory containing regions of low (0% to 10%) sampling 
density (Fig. 2a). The sparsely sampled regions reflect realistic variation in data collected 
from snapshots of a stepwise differentiation process [14, 48]. We transformed ground 
truth cell-states into gene expression using random neural networks, similar to scVI’s 
generative process (Methods section), then visualized the data using popular dimension-
ality approaches (force-directed layout [40], UMAP [49], PHATE [50], scVI [37]), and 
measured how well they recover the true organization of cell states.

Only Decipher produced visualizations that reflect the two trajectories in the correct 
order (Fig. 2b). Errors made by the other tested methods, such as the proximity of ini-
tiating and terminal cells in the scVI latent space visualized with UMAP, are caused by 
low cell densities in transitional regions. Although cell-state transitions are common 
and important in biology, current methods are only designed to preserve distances in 
locally continuous data and thus lose the global geometry of cell states. We quantita-
tively evaluated the latent representation using a global preservation metric [41], which 
measures the accuracy of cell-state ordering by first computing a nearest-neighbor graph 
on ground-truth data clustered into cell states, then determining whether neighbors 
are retained in the learned visualization (Methods  section). Decipher space exhibits 
much greater global preservation than the other methods across a realistic range [51] 

Fig. 2  Comparison of methods on simulated data. a Simulated cell states along diverging trajectories 
with downsampled (0% to 10% cell density) cell-state transitions. Color gradient represents ground-truth 
simulated pseudotime. b Latent spaces learned by different methods on ground truth data with a cell-state 
transition density of 0%. Only Decipher preserves the global order of cell states. c Global preservation 
of five independent random datasets across a range of cell-state transition densities, and by method 
(Methods section; 1 indicates best preservation). Error bars, s.d. Decipher best preserves the global order of 
cell states for all cell-state transition densities
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of transitional cell densities, with the most pronounced improvement in lowly sampled 
regimes (Fig. 2c).

Decipher improves the interpretation of oncogenic trajectories

We show how Decipher can characterize the impact of oncogenic Kras mutation on 
pancreas regeneration in mice [52, 53]. Following injury, wild-type epithelial cells 
undergo physiological metaplasia and regeneration, whereas Kras-mutated cells enter 
a premalignant state that begins expressing oncogenic programs, presaging cancer 
[54] (Fig. 3a). We apply Decipher to the data collected by [52, 53]. Decipher’s 2D space 
successfully separates wild-type (“normal”) from mutant conditions and organizes 

Fig. 3  Decipher delineates the impact of Kras mutation on pancreatic regeneration. a Model of pancreatitis 
in mice. Injury drives acinar cells to ductal-like cell states, aiding regeneration in wild type but promoting 
tumorigenesis in an oncogenic Kras background. b Decipher 2D space colored by Kras mutation status, 
latent factor z6 loading, or acinar (Try4) or ductal (Krt19) marker expression. c Pearson correlation between 
Decipher components (v) and latent factors (z). d Decipher 2D space colored by expression of the Kras 
mutational signature, p53 targets, and Kras targets (Dusp4, Dusp6, Spry2). e Pathways depleted in Decipher 
z6 (top 25 selected from the 42 pathways with FDR < 0.25). f Absolute value of the t-statistic comparing the 
distributions of each latent factor in Kras-mutated (KrasG12D ) versus normal cells for Decipher and scVI, sorted 
from least to greatest t-statistic
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cells into three smooth visual trajectories corresponding to two normal conditions 
and a Kras-mutated condition (Fig. 3b).

Importantly, Decipher 1 captures the well-known process of acinar-to-ductal 
metaplasia (ADM), which appears as a smooth progression from acinar (Try4+) to 
ductal (Krt19+) cells (Figs. 3b and S1a; Methods  section). ADM is a normal regen-
erative response to injury in both healthy and disease systems [55, 56], highlighting 
Decipher’s ability to model shared cellular processes. At the same time, Decipher 2 
delineates the derailed trajectory to Kras-induced premalignant states, separating tra-
jectories by the degree of deviation from normal while maintaining their alignment 
to the shared ADM process. Decipher correctly identifies that one normal condition 
is more similar to the Kras-mutated condition, as supported by the shared expres-
sion of important regulators such as the AP1 factors, likely induced by stress, which 
also occurs during normal regeneration (Additional file 1: Fig. S1b). By faithfully rep-
resenting the global geometry of the data, Decipher thus generates highly interpret-
able 2D components (v).

The latent factors (z) learned by Decipher offer further insight into the derailment 
by distinguishing key cell populations (Additional file 1: Fig. S1c) and revealing which 
genes inform these distinctions. We identified the top factor separating Kras-mutant 
and normal cells. We found that this top factor (z6) highlights the Kras-mutated 
population and is strongly driven by Decipher 2 (Fig. 3b, c and Methods section). To 
identify genes associated with z6, we computed the correlation between the expres-
sion of genes across all cells and latent factor weights. Notably, Kras target genes 
Dusp6, Dusp4, Spry2, and Spry4 were ranked significantly higher, by correlation with 
negative z6, than the ranking distribution of all genes (p = 0.006, Wilcoxon rank sum 
test; Fig. 3d and Additional file 3: Table 1). Gene set enrichment analysis on factor z6 
using these correlation-based gene rankings identified 42 significantly enriched path-
ways (FDR q < 0.25; Additional file 3: Table 2), including TNF, TGFB, MYC, and p53 
pathways associated with tumorigenesis (Fig. 3e; Additional file 2: Table S2). Finally, 
a Kras mutational signature derived from bulk data [52] increases along the Decipher 
1 axis and is only enriched in the Kras mutated population of cells, while p53 targets 
[57] increase along all three trajectories (Fig. 3d), reflecting p53’s intact status at this 
premalignant stage. These results support Decipher’s ability to dissect premalignant 
states and clearly illustrate the derailment from normal regeneration caused by a sin-
gle oncogenic mutation. Notably, while gene set enrichment analysis on the latent fac-
tor of scVI highlighting the Kras-mutant population returns similar hits (Additional 
file 1: Fig. S1e), the separation between Kras mutated and wild-type cells in the z fac-
tors of Decipher is generally greater than the separation in the latent space of scVI 
(Fig. 3f ). This result suggests that Decipher may be more successful in capturing the 
distinction between key biologically distinct populations in its latent spaces.

Decipher can recover more pathways associated with the Kras-deviated trajectory 
since it allows dependencies between factors, which helps identify shared and distinct 
features of each sample (Fig. 3c). By simultaneously capturing the shared physiologi-
cal metaplasia (via Decipher 1) and the distinct oncogenic derailment (via Decipher 2 
and z6), Decipher provides a robust framework for interpreting both normal and dis-
ease trajectories. This dual capability for modeling and visualizing shared and distinct 
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processes helps elucidate how mutations like Kras alter normal cell-state transitions 
and initiate oncogenic programs.

Leukemic derailment in AML initiates from immature cells

Next, we applied Decipher to investigate the complex and poorly understood derailment 
of early leukemic cells in AML. We collected 104,116 single-cell transcriptomes from 
bone marrow specimens of a cohort of AML patients bearing TET2 epigenetic muta-
tions (n = 12), with and without NPM1 mutations, as well as a healthy donor as refer-
ence (Additional file 3: Table 3). NPM1 is among the most commonly mutated genes in 
AML (20–30% of cases), yet its role in leukemogenesis [58] is unknown. NPM1mut AML 
often co-occurs with mutations in the epigenetic modifiers TET2 and DNMT3A. These 
genes are known drivers of clonal hematopoiesis, a condition associated with an elevated 
relative risk of progression to myeloid malignancy in older adults [59]. The epigenetic 
mutations likely originate in pre-leukemic hematopoietic stem cells (HSCs) [60], facili-
tating the development of AML after NPM1 mutation [61]. However, the transcriptomic 
consequences of NPM1 mutations and the influence of pre-existing epigenetic abnor-
malities remain unclear.

Consistent with prior studies [20, 62], we found significant inter-patient heterogene-
ity in leukemic blast cells (Additional file 1: Fig. S2a, b), which is unlikely due to tech-
nical effects given that lymphocytes are well mixed. Surprisingly, the most immature, 
HSC-like cluster (448 cells; 0.4% of total) is the top non-lymphoid cluster shared by most 
patients (Additional file 1: Fig. S2a, c). The phenotypic similarity of immature leukemic 
or pre-leukemic cells across patients contrasts with the heterogeneity of leukemic cells, 
motivating the reconstruction of patient-specific trajectories diverging from normal 
HSPCs (Fig. 4a). However, our samples contained too few HSC-like cells to characterize 
NPM1-mediated derailment effectively. To address this, we identified two differentially 
expressed surface markers from our cohort data, CD34 (log fold change: 6.67, adjusted 
p <1e−6) and a novel maker, PROM1 (CD133 [63]; log fold change = 7.23, adjusted p < 
1e−6), and used them to enrich the immature population in NPM1mut patients. Sorting 
for cells expressing either marker expanded the target population from 179 to 13,210 
cells in patient AML1 (Fig. 4b), and a total of 29,266 immature cells from AML1–AML3 
(Methods section). NPM1 mutations can be detected directly from scRNA-seq data [64] 
because the vast majority occur at the 3′ end of the gene [58] in AML (Additional file 2: 
Table  S1). The expanded HSC-like population revealed cryptic heterogeneity in both 
NPM1 mutation status and maturation (Additional file 1: Fig. S2d, e). Our data spanning 
leukemic progression, especially the rare early stages around NPM1mut-mediated derail-
ment, thus poised us to ask exactly when and how cells diverge from myeloid differentia-
tion in normal HSPCs.

Decipher reconstructs maturation and derailment in AML

We applied Decipher to integrate data from a healthy individual with data from each 
patient AML1, AML2, or AML3 separately (Figs. 4c, S3a, b). For each patient, we found 
that Decipher 1 and 2 faithfully represent the shared processes of cell maturation and 
disease derailment, respectively. Specifically, Decipher 1 captures the stepwise matura-
tion of leukemic cell states from immature to blast 0 through 3 in a leukemic derailment 
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Fig. 4  Decipher reconstructs derailed myeloid developmental trajectories in AML. a AML is characterized 
by patient-specific trajectories with similar immature wild-type cells, shared initial states, and divergent 
trajectories to terminal states following NPM1 mutation. b UMAP projection of AML1 single-cell 
transcriptomes with (right) and without (left) the inclusion of sorted CD34+/PROM1+ cells to enrich for 
HSC-like cells. c–f Decipher space embedding of 37,395 sorted cells from patient AML1 and a healthy donor, 
colored by the sample of origin (c), cell states (d), key cell markers (e), and NPM1mut-to-NPM1wt proportion 
(f) (Methods section). Decipher 1 organizes cells along maturation, and Decipher 2 along leukemia initiation 
axes. Lines and circles represent post-analysis trajectories; stars indicate initiating states. g, h Two metrics that 
measure a latent space’s interpretability and faithfulness to underlying biology (g; Methods section) used to 
benchmark Decipher against dimensionality reduction and harmonization methods (h). i Comparison of scVI 
[37] (left) and Decipher (right) latent spaces for pairs of the first four latent dimensions colored by cell state 
(top; the other latent dimension pairs give similar results) and for all latent dimensions colored by sample 
origin (bottom). The scVI latent space collapses biological differences while Decipher preserves them. j 
Decipher space colored by latent factors z1, z10, and z2, each capturing a different state transition
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trajectory (Figs.  4d, S3a, b). It also captures myeloid differentiation, as determined by 
loss of CD34 (stem marker) and gain of MPO in a normal cell-state progression tra-
jectory (Fig. 4e). Decipher 2, in contrast, represents an axis of leukemic initiation and 
progression that can be further interpreted using NPM1 mutation status. We found a 
subset of pre-leukemic immature NPM1wt cells close to healthy HSCs, and an NPM1mut 
progenitor-like population (blast0,1) that lies between NPM1wt and leukemic cell states 
resembling myeloid-committed cells (blast2,3) in all three patients (Figs. 4d, f and S3a, 
b). The increase in NPM1mut cell fraction and upregulation of PROM1 along Decipher 2 
confirm that it distinguishes leukemic from normal cell states (Fig. 4e, f ). Thus, similar 
to the pancreatitis example, the Decipher 2D space represents major axes of biological 
variation and preserves global relationships between cell states in the complex context 
of AML. It correctly places NPM1wt leukemic cells closest to normal (Fig. 4f ) and orders 
leukemic blasts by maturation (Additional file 1: Supplementary Information). We fur-
ther find that the relative ordering of cell states is robust to the choice of gene-filtering 
before training Decipher (see Methods section), and is correct even when running Deci-
pher with all the genes, without any gene filtering (Additional file 1: Fig. S12). Decipher 
also identifies trajectories with both shared and distinct features for patients AML1 to 
AML3. AML2 has a larger gap between NPM1wt and NPM1mut cells in Decipher space 
(reinforced by the absence of detected blast 0 cells in this patient). Branching in AML3 
occurs during blast1 rather than before blast0, suggesting later derailment in this patient 
than in AML1 or AML2 (Additional file 1: Fig. S3a, b). To reinforce these patient-specific 
differences, we use Decipher to integrate cells from AML1, AML2, and AML3 (Addi-
tional file 1: Fig. S3c) and determine if these trends are shared. This analysis reveals a 
correct alignment of cell states between patients, including preserving the gap in AML2 
corresponding to the missing blast 0 population.

To further characterize early disease processes, we used gene set enrichment analy-
sis (GSEA) on cells projected onto the Decipher 2 derailment axis. We identified TNFa 
signaling, inflammatory response, IL6/JAK/STAT3 signaling, IFNg response, and KRAS 
signaling pathways (Additional file 3: Table 4 and Methods section). These findings agree 
with the well-elucidated role of Tet2 in repressing IL6 transcription [65] and with the 
association of Tet2 loss-of-function with the accumulation of inflammatory myeloid cells 
in conditions from clonal hematopoiesis-related atherosclerosis [66] to AML [67].

In contrast to Decipher, we found that the visualization approaches tSNE [68], UMAP 
[49], and force-directed layout (FDL) [40] fail to capture the global data geometry, the 
expected overlap in immature cell states, or the order of blast maturation stages. Fur-
thermore, data integration methods tend to force cell states to overlap—including leu-
kemia cells and normal HSPCs—and thus cannot be used to characterize derailed 
differentiation (Additional file  1: Fig. S4). To systematically benchmark the ability to 
characterize derailed trajectories, we defined two metrics that evaluate biological faith-
fulness to AML derailment (Fig.  4g and Methods  section). The ordering score evalu-
ates whether each method’s latent space correctly orders cell states by the maturation 
stage. The divergence score assesses the preservation of biological differences by reward-
ing immature cell proximity and penalizing the mixing of normal and disease terminal 
states. We applied these metrics to a range of visualizations (FDL [40], UMAP [49], tSNE 
[68], PHATE [50]), dimensionality reduction (PCA), and integration methods (Seurat 
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[31], scVI [37], Harmony [69]). Decipher components and latent factors scored highest 
in both metrics for all three patients, demonstrating that it balances between integrating 
across conditions and preserving their unique geometries and cell states (Fig. 4h).

Decipher can represent correlated biological mechanisms

The hierarchical dimensionality reduction in Decipher confers more expressive factors 
that cannot be attained by simply increasing the number of latent factors in other meth-
ods [46]. Since Decipher’s latent factors can be correlated (Fig. 4i), they are able to cap-
ture overlapping transcriptional programs between trajectories and shared mechanisms 
underlying consecutive cell state transitions. For example, factor z7 is mainly encoded 
with Decipher 1 (Additional file 1: Fig. S5a) and represents common trends along both 
normal and AML trajectories (Additional file 1: Fig. S5b).

Latent factors can also highlight features that distinguish normal and perturbed states. 
For example, factors z1 and z2 are positively correlated in immature cells but negatively 
correlated in blasts (Figs. 4i, S5c). They represent different transitions along AML derail-
ment—z1 is highest early in blast formation (blast0, 1, and 2), z10 marks an intermediate 
(from blast1 to 2), and z2 marks the final stage of leukemic maturation (blast3) (Fig. 4j). 
GSEA further supports these interpretations. Factor z1 is enriched for reduction in oxi-
dative phosphorylation, a pathway that is altered in leukemic stem cells [70], while z10 
and z2 are enriched for TNFα , IFNg and inflammation [71, 72] (Fig. 4j and Additional 
file 3: Table 4). Indeed, the enrichment of IFNg and inflammation in z2 (Additional file 3: 
Table 4) is expected as it captures most mature myeloid/monoblastic cells [71, 72]. Deci-
pher thus enables a more comprehensive and nuanced understanding of cellular dynam-
ics, especially when integrating normal and perturbed conditions.

Decipher’s unique ability to model correlated latent factors avoids the requirement 
for independent factors, which can remove biological differences between cell states. 
For example, scVI collapses the healthy and AML conditions onto each other in every 
latent dimension (Fig. 4i), deforming the geometry and disrupting continuous trajecto-
ries (Additional file 1: Fig. S4b).

Gene patterns along Decipher trajectories reveal altered regulation in AML

To uncover gene expression dynamics along cell maturation and disease derailment tra-
jectories visualized by Decipher (Fig. 4c, d), its decoders can directly transform any cell 
state in Decipher space, including sparsely sampled states, to their corresponding gene 
expression mean and variance.

We constructed paths along the visual trajectories in Decipher space and computed 
expression along these paths to obtain gene patterns (Fig.  5a and Methods  section). 
Explicit trajectories can be defined manually or obtained with any trajectory inference 
method. The resulting coordinates along those paths define a pseudotime called Deci-
pher time (Fig. 5a). Importantly, since different conditions are integrated into the same 
joint space, the trajectories have comparable Decipher time, with no further alignment 
needed to compare trajectories. The gene patterns inferred by the Decipher decoder can 
thus be directly compared “out of the box”  without the additional challenging trajec-
tory alignment required by standard integration methods. The similar patterns of key 
developmental markers CD34 [65], AVP (stemness), PABPC1 (protein synthesis in HSC 
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differentiation), and LYZ (myeloid differentiation) in aligned segments of the trajectories 
defined in the integration of AML and healthy (Fig. 5b), as well as the patterns of key 
genes in the combination of AML patients across the cohort (Additional file 1: Fig. S3c), 
confirm that the inferred pseudotime is comparable between datasets.

We implemented a simple method that clusters cells in the latent space, generates a 
minimum spanning tree to link clusters, and then interpolates between clusters in 
Decipher space (Figs. 5b, S6 and Methods section). As an alternative, one can use any 
existing trajectory inference method with the Decipher space as input instead of their 
default dimensionality reduction. We show examples with Monocle [66], Slingshot [12], 
and PAGA [67]. Monocle and Slingshot recover equivalent trajectories when they are 
run on the Decipher space (Additional file 1: Fig. S6e, i). In contrast, they fail to recover 

Fig. 5  Reconstructing gene expression patterns and characterizing the regulatory landscape in AML 
compared to healthy HSPCs. a The Decipher generative model reconstructs gene expression along each 
trajectory directly from the 2D Decipher representation. b Steps involved in trajectory inference, from left to 
right, based on the inferred representation from Decipher (Methods section). c Reconstructed expression 
of stemness and differentiation markers for each trajectory along Decipher time. Shaded bands represent 
the interquartile range of Decipher model uncertainty (Methods section). d Reconstructed gene expression 
dynamics of HOXA9 and MEIS1 (known deregulated TFs) and other disrupted TFs. Solid lines show inferred 
mean, shaded areas reflect ±1 s.d.
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biologically meaningful trajectories when they are used with their default embedding 
strategy like PCA or UMAP (Additional file 1: Fig. S6c, g). For example, Monocle with-
out Decipher incorrectly connects the blast 3 cells to immature cells within the AML 
patient and fails to link blast 1 to blast 2 cells (Additional file 1: Fig. S6c). Slingshot with-
out Decipher produces a degenerate trajectory, implying that blast 3 cells mature into 
blast 1 cells (Additional file 1: Fig. S6g). The proximity of the blast 3 cells to the imma-
ture cells leads Slingshot to mix those two cell states, thereby misaligning healthy and 
AML trajectories. As a result, the gene patterns we would obtain with those incorrect 
trajectories are also biologically inaccurate and misleading (Additional file 1: Fig. S6d, 
h). For instance, computing the gene patterns using Monocle introduces a spurious spike 
(at t = 10) in the developmental marker AVP in healthy cells (Additional file 1: Fig. S6d). 
In contrast, the gene patterns obtained with Monocle and Slinghsot on the Decipher 
space are biologically coherent (Additional file 1: Fig. S6f, i). As such, using a dimension-
ality reduction method like Decipher, which preserves the global ordering of cell states 
and minimizes distortion, is essential for Monocle and Slingshot to recover biologically 
meaningful trajectories.

Finally, PAGA loses the global ordering of cell states on both its default space and on 
the Decipher space (Additional file 1: Fig. S6a, b). The loss is expected because PAGA 
pre-processes its input space by building a graph using local distances, which does not 
preserve global cell-state ordering even if the input does. Thus, using Decipher as a 
dimensionality reduction method, which preserves global ordering and minimizes dis-
tortion, is essential for accurate trajectory inference.

With the gene patterns computed by Decipher, we can estimate when transcription 
factors (TFs) peak along each trajectory, and shed light on the regulatory mechanisms 
underlying disease derailment. By computing this for all TFs, we found that TFs are 
upregulated in concert at specific locations along normal hematopoiesis (Additional 
file 1: Fig. S7a). In contrast, all AML patients display a global loss of TF coordination, 
including the peak at blast0, which is lost in AML precisely when NPM1 mutations 
appear (Additional file 1: Fig. S7a, b). At the level of individual TFs, we confirmed the 
known upregulation of the homeobox genes (HOXA9 [73], HOXB2) and their cofactors 
MEIS1 [74] and PBX3 [74], as well as the downregulation of GATA1 [75] when NPM1 
mutations appear (Fig.  5c). However, we also found diverse TF expression dynamics 
(e.g., LCOR, AHR), illustrating that summarizing by peak expression is insufficient to 
capture the complexity of transcriptional regulation (Fig. 5c). We thus developed a more 
systematic approach to quantify altered expression between two trajectories next.

Basis decomposition reveals specific gene dysregulation in AML

To quantify the differences between gene trends along two trajectories, we devised a 
probabilistic framework that assumes the expression of each gene can be approximated 
by a weighted combination of a few representative patterns with distinct temporal 
dynamics, such as ascending, descending, or peaking in intermediate states (Fig. 6a and 
Methods  section). The model further assumes that representative patterns are shared 
between normal and perturbed trajectories but with a different scale parameter and 
weights. The representative patterns are mathematically defined as basis functions that 
are simultaneously inferred with the decomposition parameters and capture dominant 
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dynamics along trajectories. The decomposition weights ( β ) indicate which patterns 
are associated with each gene, and the scale parameter (s) indicates the magnitude of 
expression (high or low) of the pattern. Specifically, we modeled the patterns using 
Gaussian processes adapted from [76] and approximated them using neural networks 
(Methods section).

Using the basis decomposition, we can distinguish changes in the temporal dynamics 
of genes from changes in the overall scale of expression. The shape disruption measures 
the distance between decomposition weights independent of the scale, while combined 
disruption considers both weights and scale (Methods section). We computed shape and 

Fig. 6  Decipher components unlock transcription factor dynamics. a Overview of Decipher’s probabilistic 
basis decomposition and disruption quantification method. The neural basis decomposition learns the 
dominant representative patterns and decomposes each gene expression pattern onto them; the coefficients 
on the basis for each gene are compared between the normal branch and the AML branch to compute 
the disruption score (Methods section). b, c Timing of TF expression in normal (b) and AML1 (c) samples. 
Heatmaps show log-transformed and z-scored expressions for the top 20 TFs with the highest combined 
disruption scores in AML1 and known TFs from the literature, sorted by timing of maximum expression 
in AML1. The HSPC marker CD34 [74, 77] is included for calibration. Colorbars correspond to cell type and 
proportion of NPM1-mutated cells among the 30 nearest neighbors of each cell in AML1; both are smoothed 
over the 50 nearest neighbors in the Decipher space. d The combined disruption score (Methods section) 
of TFs in three AML patients, with the x-axis representing disruption scores in AML1, the y-axis representing 
disruption scores in AM2, and the point color representing disruption scores in AML3. Labeled points indicate 
the TFs that are among the top 20 disrupted TFs in at least one patient
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combined disruption scores for all genes and identified conserved (unchanged between 
normal and perturbed) and disrupted (altered) genes in both measures (Additional file 1: 
Fig. S8a). For instance, homeobox genes HHEX and HOXB2 have a high shape disrup-
tion score (Additional file 1: Fig. S8b). Inflammatory genes CXCL3 and CXCL8, as well 
as KMT2A (which interacts with Menin, a target of NPM1-mutated AML clinical tri-
als [78]), have a high combined disruption score, as they are upregulated in immature 
AML cells compared to normal, with substantial differences in scale (Additional file 1: 
Fig. S8a, c).

Many of the genes with the highest shape disruption (e.g., HHEX, HOXB2, Additional 
file 1: Fig. S8b) arise early in AML, around the initiation of NPM1 mutation, and sub-
sequently drop to similar expression levels in advanced blasts, highlighting the impor-
tance of enriching our data with early leukemic progenitors to detect such initial events. 
Others, such as the TNFα pathway (CCL4, PHLDA1) and the oxidative phosphorylation 
(ALAS1, TCIRG1) genes, peak late and offer insight into the final transitions to disease 
(Additional file 1: Fig. S8d, e).

The ability of disruption scores to associate genes with cell-state transitions offers an 
opportunity to understand regulatory events underlying derailment in AML. We col-
lated a list of TFs with high disruption scores and known TFs from the literature and 
found that they are transcribed in coordinated waves in normal hematopoiesis and as a 
cascade in AML (Fig. 6b, c). The key myelopoiesis regulators GATA1 and KLF1 are at the 
top of this cascade, followed by HOXA9 and MEIS1 (known to be altered specifically in 
NPM1-mutated AML [74]) at the time NPM1 appears (Fig. 6c). This suggests that TET2 
mutation disrupts the function of key hematopoiesis TFs, which propagate to additional 
TFs in the gene regulatory network. Interestingly, the upregulation of HOX TFs upon 
NPM1 mutation coincides with an increase in interferon type 1 signature genes [71, 79] 
including LY6E, FAM46C, ADAR, and TMEM238 (Additional file 1: Fig. S9a). This is in 
contrast to components of type II interferon (IFNg) response, including MHC-II genes 
that are upregulated most in early immature cells (Additional file 1: Fig. S9b), suggesting 
their link to TET2 mutation. Moreover, we observe that genes in the proinflammatory 
TNFα pathway (Additional file  1: Fig. S8c), the inflammatory cytokine gene IL-1, and 
AP-1 component FOS (Additional file 1: Fig. S9c) are upregulated towards the end of the 
trajectory in the transformation to blasts.

To determine whether dysregulated TF patterns can generalize, we compared the top 
disrupted TFs of all 3 AML patients (Additional file  1: Fig. S10) and observed strong 
similarity in the combined disruption score across patients, with key TF genes includ-
ing HOXB3, HOXA3, and GATA1 among the top 20 disrupted TFs in AML1 and AML2 
(Figs. 6c, d and S10a). AML3 presents other disrupted regulators, such as MYC, which 
is known to be overexpressed in AML [80] (Additional file 1: Fig. S10b). In all 3 patients, 
we observe a cascading effect of key disrupted TFs over time (Additional file 1: Fig. S10a, 
b) that is further supported by single-cell ATAC-seq data (Additional file  1: Supple-
mentary Information). Our approach thus resolves the timing of TF activity concerning 
significant events such as genetic mutations and signaling pathway activation, guiding 
further studies of regulatory relationships.

To evaluate our disruption scores in the context of a larger cohort, we performed dif-
ferential gene expression analysis between NPM1mut AML and normal samples using a 
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publicly available cohort of 125 NPM1mut AML samples and 16 HSC-enriched normal 
subpopulations (see Data availability; Methods section). Examining the top 20 disrupted 
TFs in AML1 (combined disruption score), we found that 18 out of 20 are differentially 
expressed (absolute log2 fold-change > 1.16; p < 6.39e−03) in the larger cohort. We also 
find 12 out of the top 20 disrupted TFs in AML2 (absolute log2 fold-change > 1.6; p < 
4.06e−03) and 7 out of the top 20 TFs in AML3 (absolute log2 fold-change > 1.52; p < 
6.01e−09) to be differentially expressed in bulk data. Interestingly, the TFs that are not 
detected in the larger cohort (e.g., POU2AF1, MAFF; Additional file 1: Fig. S8f ) exhibit 
altered expression in early immature cells whose signal would be diluted in bulk data 
dominated by blasts. It is noteworthy, however, that TFs disrupted in AML1 that over-
lap with the bulk differentially expressed are not the most enriched genes but rather 
among the top 26% of genes ranked according to absolute log2 fold-change. For example, 
six HOX family genes (Fig. 6b, c) have an average rank of 14,376 out of 48,850 genes in 
the bulk analysis. The most differentially expressed genes reflect enrichment in termi-
nal blasts, whereas our profiling of early immature cells and computational modeling of 
their dynamic gene expression deciphers regulators of leukemic initiation.

Comparative analysis of early‑occurring epigenetic mutations in AML

We applied Decipher to compare derailment mechanisms between TET2mut and 
DNMT3A-mutated patients. TET2 and DNMT3A are epigenetic regulators with oppos-
ing roles—DNMT3A adds, and TET2 removes methyl groups [81]. Mutations in these 
genes, along with ASXL1, are observed in pre-leukemic lesions and clonal hematopoie-
sis, supporting a stepwise mechanism for AML progression by which normal HSPCs 
acquire mutations in epigenetic modifiers before a transformative event such as an 
NPM1 driver mutation [59]. We compared derailment in these epigenetic contexts to 
investigate how disease-priming mutations with opposing roles lead to similar vulner-
abilities and to determine whether they share mechanisms of leukemogenesis.

We thus profiled unsorted and CD34-sorted bone marrow cells from DNMT3Amut 
patients (AML13–17), three of whom also harbor NPM1 mutations (Additional file 3: 
Table  3), and used our original TET2mut cohort to annotate the maturation stages of 
clusters in this single-cell data (Methods section). In the DNMT3Amut patients, Decipher 
also successfully aligns AML maturation and normal HSPC differentiation along the 
Decipher 1 axis and resolves disease derailment along Decipher 2 (Additional file 1: Fig. 
S11a–d). We found that in the two DNMT3Amut NPM1mut patients with sufficient sorted 
cells (AML14, AML15), PROM1 marks blast0 states (Additional file 1: Fig. S11b, d), and 
8 of the top 20 disrupted TFs overlap, including regulators of myeloid lineage commit-
ment and differentiation (CEBPE, HOXB3, AHR, KLF2, MYBL2), inflammatory response 
(JUND), homeobox cofactor (MEIS1), and ZBTB20. Interestingly, the reduction in oxi-
dative phosphorylation pathway is enriched along Decipher 2 in both DNMT3Amut and 
TET2mut patients (Additional file 3: Table 4).

For a more comprehensive comparison of epigenetic mutations, we identified dis-
rupted TFs according to both shape and combined disruption (Additional file  1: Fig. 
S11e). Many combined disrupted genes partially overlap; for example, CEBPE and 
HOXB3 are disrupted in both TET2mut and DNMT3Amut patients, while interferon regu-
lator IRF8 shows higher combined disruption in TET2mut and inflammatory response 



Page 17 of 43Nazaret et al. Genome Biology          (2025) 26:219 	

regulator JUND shows higher shape disruption in DNMT3Amut [82, 83]. Decipher thus 
provides a framework for the unbiased characterization of patient-specific disease tra-
jectories and for the comparative analysis of disease mechanisms between patients and 
genetic backgrounds.

Decipher characterizes disease onset in gastric cancer cohorts

In addition to pairwise comparisons, Decipher can be applied to study early and step-
wise transitions in large disease cohorts. To illustrate this, we analyzed scRNA-seq data 
from intestinal (IGC) and diffuse (DGC) primary gastric tumors and paired adjacent 
non-malignant tissue from 24 patients [84] (Fig. 7a). Each type of gastric cancer was pre-
viously shown to capture a partial disease trajectory—specifically, cell-state transitions 
I1 to I3 in IGC, and D1 to D3 in DGC [84]. However, visualizing the data of all patients 
with UMAP suggests alternate cell-state transitions that are incorrect; for example, it 
suggests that enteroendocrine (non-malignant) cells transition to I3/D3 states before I2/
D2 and I1/D1 (Fig. 7a and ref. [84]).

We pooled all patients together and used Decipher to derive a more interpretable rep-
resentation of tumor progression in the two GC types. The Decipher 1 axis correctly 
aligns cells along a continuous shared progression, with non-malignant enteroendocrine, 
I1 and D1 cells at the start, followed by I2 and D2 intermediate states, and finally I3 
and D3 malignant states (Fig. 7b). The inferred Decipher trajectory (Fig. 7c) reveals the 

Fig. 7  Decipher aligns gastric cancer onset. a 2D UMAP projection and trajectory inference with Monocle 
applied to scRNA-seq data from 24 gastric cancer (GC) and precancerous lesions [84]. b–c Decipher reveals 
the order of cancer stages while still harmonizing the different types of cancer without requiring a batch 
correction method or a dimensionality reduction method for visualization. We plot D (top) and I (bottom) 
cells separately, but Decipher is trained on all cells. Cells in Decipher space are colored by cancer progression 
stages in DGC and IGC (b), and the inferred Decipher trajectory and Decipher time on merged data are 
shown in c. d Decipher’s reconstructed gene patterns for known markers of progression states along the 
shared trajectory
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upregulation of malignancy-associated genes at the correct cell-states, including MUC6 
and PGC in normal gland mucous cells, ENO1 in intermediate state I2, and MUC13 and 
CEACAM5 in malignant states (Fig. 7d). The alignment of GC types also illuminates the 
relative timing of disease progression, predicting that premalignant cells transform to 
malignancy in IGC later than in DGC, as I1 extends further than D1 along Decipher 1 
and Decipher time. The Decipher 2 axis, on the other hand, separates the diffuse-like 
malignant state (D4) in DGC, illustrating the drastic derailment from D3 upon upregula-
tion of key DGC markers such as COL1A2 in D4. Finally, fibroblasts and endothelial cell 
states (I4, D5), which are not a part of the progression of cancer, are preserved as distinct 
states, highlighting Decipher’s ability to represent both continuums and distinct states.

Discussion
Decipher is a deep generative model designed to learn and visualize joint representations 
of normal and perturbed data. Unlike single-cell data analysis approaches that carry 
out latent factorization and 2D projection as distinct steps, Decipher uniquely merges 
the two within a single probabilistic, hierarchical structure. As a result, Decipher not 
only provides direct 2D visualization but also captures more intricate information while 
remaining interpretable and discovering dependencies between the underlying latent 
factors. In addition to visualizing cell states with less distortion than other methods, 
Decipher can use the joint representation to infer trajectories of cell-state transitions 
and identify genes with disrupted expression patterns using a novel basis decomposi-
tion technique. Decipher scales to large cell numbers due to its VAE model formulation, 
which allows for stochastic variational inference [85]. Other approaches deploy VAEs 
[37, 42] or Gaussian process latent variable models (GP-LVMs) [86, 87] for nonlinear 
dimensionality reduction. Still, neither are capable of simultaneous 2D visualization, and 
GP-LVMs do not scale to large datasets.

In simulated data, Decipher preserves sparsely sampled cell-state trajectories and 
maintains the geometry of the data better than other methods. We anticipate that Deci-
pher will be a valuable tool for discovering how perturbation or disease initiations derail 
development. It successfully separates normal and mutant cell trajectories in a mouse 
model of PDAC bearing a mutation in the tumorigenic driver Kras, revealing the activa-
tion of distinct molecular pathways in response to oncogenic stress. Decipher’s broad 
applicability is also evinced by its successful joint mapping of transitions from premalig-
nant to malignant cell states in two subtypes of gastric cancer.

The early stages of tumor initiation are understudied in primary AML, and find-
ings from animal models only partially translate to humans [88]. AML presents sig-
nificant genomic and transcriptomic heterogeneity, suggesting multiple vulnerable 
states and origins of derailment from normal hematopoiesis [20, 89]. Decipher is 
able to characterize patient-specific divergence from normal myeloid differentiation, 
confirmed by NPM1 genotyping, whereas other integration methods distort the 
global geometry of trajectories. Our work discovered and characterized a rare subset 
of PROM1+ cells in NPM1-mutated samples that likely define a pre-leukemic cell 
population [90, 91]. Decipher also revealed that NPM1 mutations trigger the upreg-
ulation of inflammatory genes and IFN responses following the loss of coordinated 
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myeloid TF expression due to TET2 mutations. These findings are consistent with 
studies linking high HOX expression to mutant NPM1 and its aberrant cytoplasmic 
localization in leukemic persistence [92, 93].

Recent studies in mice demonstrate that loss of Tet2 induces the expansion of 
aberrant inflammatory monocytic populations by establishing a pro-inflammatory 
microenvironment [71, 94]. Similarly, we find the upregulation of IFN type 2 (spe-
cifically, MHC-II) genes in early TET2-mutated cells in primary samples. NPM1 has 
been reported to regulate IFNg-inducible genes in HeLa cells [95], but the link is not 
established in AML. Our pseudo-time-resolved characterization of transcriptional 
dynamics shows genes involved in IFN type 1 response to be highly expressed, spe-
cifically in transition to aberrant NPM1-mutated progenitor cells, coinciding with 
the expression of HOX TF genes. In further transformation to blasts, we observe 
the upregulation of genes encoding TNFα , IL-1, and FOS. The diverse patterns of 
chemokines and cytokines along the leukemic transformation trajectory also point 
to possible dysregulated interactions among them [96]. Inflammatory cytokines 
such as IL1 can indeed regulate hematopoietic stem cells and promote disease pro-
gression in models [97]. While our data does not contain significant non-leukemic 
myeloid populations and cannot resolve the cellular source of the IL6 and other 
cytokines responsible for inducing these programs, their stark upregulation along 
the Decipher 2 component supports work in Tet2 murine models [73], suggesting 
this inflammation drives cellular plasticity enabling leukemogenesis, rather than 
merely being coincident to it [67, 73–76].

In addition to its role in shaping the AML microenvironment [94], cell-intrinsic 
inflammation is induced by NPM1 perturbation in mice, leading to myelodysplastic syn-
drome-like phenotypes [98] and driving progression to AML [99]. These observations 
motivate future studies on inflammatory response due to NPM1 perturbation, compared 
to epigenetic remodeling in clonal hematopoiesis, and studies disentangling the role of 
pre-existing epigenetic mutations in inducing an inflammatory environment crucial for 
disease transformation. Extending the application of Decipher to other primary cancer 
samples as well as animal models can guide therapeutic strategies for modulating the 
TME and cell-intrinsic effects by attenuating the inflammatory response and, in turn, 
inhibiting cancer progression or increasing sensitivity to treatments. As a method, Deci-
pher could also be extended in multiple ways: (i) the Decipher space could be leveraged 
for transferring cell-type annotations [43, 100], (ii) the complementarity between tra-
jectory inference methods and the Decipher space could be further studied with other 
trajectory inference methods [101, 102], and (iii) Decipher could be extended to charac-
terize multimodal datasets more effectively.

Conclusions
In conclusion, Decipher successfully integrates data across samples and disease contexts. 
It aligns cell states in a novel 2D visualization space with greater faithfulness than cur-
rent state-of-the-art dimensionality reduction tools. Decipher’s VAE architecture addi-
tionally allows for the construction of gene trends along any specified trajectories, with 
the comparison of these trends facilitated by a novel basis decomposition method.
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Methods
Decipher

Given a dataset of single-cell gene expression (xi,g ) of N cells and G genes, Decipher 
models the expression of genes in cells by learning multiple hidden representations 
of each cell, at increasingly finer detail: the Decipher components v gives a high-level 
two-dimensional representations, and the ten-dimensional Decipher latent factors z 
are more refined representations of cells. To do so, Decipher is a generative model that 
extends traditional variational autoencoders—such as scVI and related models [37, 45]—
by adding a higher-level two-dimensional latent space on top of their standard latent 
space. This extra layer allows Decipher to model more complex cell state distributions 
with latent factors that are potentially dependent. At the same time, the top-level two-
dimensional latent variables provide a ready-to-use visualization of the cellular land-
scape, eliminating the need for separate dimensionality reduction techniques. Because 
Decipher models gene expression and the visualization layer together, it also enables 
practitioners to compute gene expression patterns along any trajectory or region in the 
two-dimensional visualization.

The Python code implementing our method is available at https://​github.​com/​azizi​
lab/​decip​her. For each method presented below, we reference its corresponding Python 
function. Our Python code follows the architecture of the scanpy package [103], with 
computation functions in a .tl submodule and the plotting functions in a .pl sub-
module. In the code snippets of the methods below, we assume that we have imported 
the decipher package as follows import decipher as dc and that the data of 
interest is in an AnnData object called adata. For instance, training Decipher is done 
with dc.tl.decipher_train(adata) and plotting the Decipher space colored by 
cell type is performed with dc.pl.decipher(adata, color="cell_type"). 
The Decipher model is also implemented in the scvi-tools package [104].

The generative model

Decipher begins by representing each cell i with a two-dimensional standard normal 
latent variable vi , termed Decipher components. The Decipher components represent the 
two principal axes of cell heterogeneity, such as cell type variation or stages of disease 
progression. They directly serve as a two-dimensional visualization.

A learnable neural network f—the first decoder—maps each vi to a distribution over 
medium-dimensional vectors zi , representing cell states. Each zi is sampled conditionally 
on vi from the distribution, and we refer to zi as the Decipher latent factors. The zi are 
medium-dimensional; they contain richer information about cell i than vi , but are still 
substantially lower dimensional than the number of genes (we set the dimension to 10 
in our experiments). The latent factors are comparable to those of other VAE-based or 
matrix-factorization-based methods [37, 105, 106].

A second neural network h—the second decoder—maps zi to normalized gene expres-
sion means (µi,g )1≤g≤G = h(zi) for each gene g in cell i. The output layer of h uses a soft-
max activation to ensure normalized expression across genes. The final observed counts 
xig are generated from a negative binomial distribution with mean µi,g · li , where li is the 
observed library size of cell i, and with dispersion θg , which are learned for each gene g.

https://github.com/azizilab/decipher
https://github.com/azizilab/decipher
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This generative process is represented in Fig. 1b and is described mathematically as 
follows:

The mapping functions f and h are neural networks. In practice, Decipher uses a single 
linear layer for h to limit distortion [44]. f has two linear layers interleaved with ReLU 
activations. The last layer of f produces a vector in R2L that is split to form two outputs: 
fmean ∈ R

L and fvar ∈ R
L . Other distributions can replace the choice of negative bino-

mial distribution if the user believes it is more appropriate for the data at hand.

High‑level summary  The Decipher components vi represent the high-level organiza-
tion of the cells and form the Decipher space. This space provides a ready-to-use 2D rep-
resentation of the data without requiring further projection methods such as UMAP or 
t-SNE. It offers direct visual access inside the probabilistic model. Then, through the neu-
ral network f, each vi induces a cell state zi , a more detailed representation of cell i. The 
space of the zi corresponds to the latent space of traditional variational-autoencoders.

Decipher’s inference

Given observed gene expression data D = {xi,g }
1≤i≤N
1≤g≤G (if the data comes from multi-

ple patients or samples, the observations are simply concatenated), and parameters 
{(θg )1≤g≤G , f , h} , Decipher’s probabilistic model defines a posterior p(v, z | D) over the 
latent variables v = (vi)1≤i≤N and z = (zi)1≤i≤N . We approximate this exact posterior 
with a variational approximation q(v, z) learned with variational inference [107–109].

We use amortization over the local variables vi, zi as a function of the observations xi . 
The variational family becomes q(v, z) = N

i=1 q(vi, zi|xi) which always factorizes as

The amortized distributions are set to diagonal Gaussian distributions with parame-
ters (mean and variance) given by neural networks—the two encoders. The first neural 
network transforms xi to the mean and the variance of the distribution q(zi|xi) , and the 
second neural network transforms (zi, xi) to the mean and the variance of the distribu-
tion q(vi|zi, xi) . We denote them as d→z

mean
(x), d→z

var
(x), d→v

mean
(x, z), and d→v

var
(x, z) , such 

that:

Variational inference seeks to minimize the KL divergence between the variational 
posterior q and the exact posterior p( · | D) . It is equivalent to maximizing a lower 
bound of the evidence, called the ELBO [109]:

(1)

q(v, z) =

N
∏

i=1

q(vi|zi, xi)q(zi|xi).

q(zi|xi) = N (d→z
mean

(xi), d
→z
var

(xi)), and q(vi|zi, xi) = N (d→v
mean

(xi, zi), d
→v
var

(xi, zi)).
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where β is a scalar controlling the importance of the prior p(vi) , between 0 (no prior) 
and 1 (standard ELBO) [110].

Because we chose the variational posteriors q to be Gaussian distributions, we 
can reparameterize the expectations to sample unbiased low-variance estimates of 
the ELBO. To obtain a sample for (zi, vi) from q(vi, zi|xi) = q(vi|zi, xi)q(zi|xi) , we first 
sample a reparameterized zi from q(zi|xi) and then sample a reparameterized vi from 
q(vi|zi, xi) [111].

The gradients are then computed using automatic differentiation, to update all the 
parameters: θg , the decoder neural networks f and g, and the encoder neural networks 
d→z , d→v . To scale up to large datasets of cells, we further subsample the outer sum 
using a minibatch size of 64 observations to perform stochastic variational inference 
[85]. We use the Adam optimization algorithm [112] to execute the gradient updates. 
The code is implemented in Python using Pyro [113].

Because we have little prior on the distribution of the Decipher components v 
(remember that a limitation of other methods is that the prior enforces unreal-
istic independence between latent variables), we set β to a low value 1e − 1 in our 
experiments.

The Decipher model can be fitted using the function dc.

tl.decipher_train(adata).

Generating the Decipher space v and the latent space z  Once the inference is per-
formed, the “encoders” d→z

mean
(x) and d→v

mean
(x, z) give the posterior expected values of vi 

and zi given each cell xi . For each cell xi , we compute (as in any auto-encoder architec-
ture): ẑi = d→z

mean
(xi) and v̂i = d→v

mean
(xi, zi).

The Decipher space v and latent z are automatically computed when calling dc.
tl.decipher_train. They are stored in adata.obs["decipher_v"] and 
adata.obs["decipher_z"].

Rotating and aligning the Decipher space  Decipher does not use sample or batch IDs 
when learning the latent variables, the encoders and the decoders. However, in a post-
processing step, the sample IDs (or other annotations) can be optionally used to align 
Decipher components to represent the most shared and most distinct information 
between the samples (e.g., perturbed and normal conditions), thus facilitating down-
stream analysis. This is accomplished by rotating or flipping the v components. Like 
most auto-encoder models (e.g., scVI [37]), the axes of the latent spaces v and z can be 
rotated or flipped without changing the likelihood of the data. To automatically rotate 
and flip the Decipher components given the user preferences, the user can specify if 
some cell labels should be aligned with a given component. For example, in our analysis, 
we choose to align the cells’ sample labels (Healthy and AML) along Decipher 2 and the 
cells’ cell-type labels (ordered from blast0 to blast3) along Decipher 1.

ELBO(q) =

N
∑

i=1

E[q(vi, zi)]
∑

g

log p(xi,g |zi, θg )+ log
p(zi|vi)

q(zi|xi)
+ β log

p(vi)

q(vi|zi, xi)
,
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Given cell labels and their target alignment axis (e.g., ordered cell types along Deci-
pher 1, ordered cell sample IDs along Decipher 2), we try 100 rotations (from 0 to 2π ) 
and all possible axis flips (2 for v1 , 2 for v2 ), and pick the setting that maximizes the cor-
relations between the cell labels and their target Decipher axis.

This is accomplished by calling the dc.tl.decipher_rotate_space function.

Construction of trajectories and gene patterns

The Decipher components (vi) organize cells along visual trajectories. For instance, there 
are two trajectories in the joint AML-healthy data: one for healthy maturation and one 
for AML progression (Fig. 4c). The trajectories could be traced manually by the user or 
obtained by trajectory inference methods. Still, we propose a simple automated determi-
nation of the trajectories using, as input, the marker genes for the beginning and the end 
of the trajectories.

Given the cell representations (vi) in the Decipher space and (zi) in the latent space, we 
first cluster cells using the Leiden algorithm [114] on the latent representations (zi)—we 
use the representation (zi) to cluster the cells because they contain more detailed infor-
mation about the cells than the (vi) (Fig. 5b, left). We then compute a minimum span-
ning tree between the clusters’ centroids using the distances in the Decipher space—we 
use the distance in Decipher space because the high-level geometry of the data is better 
captured by the (vi) (Fig. 5b, middle left). Finally, we use the provided marker genes to 
identify the trajectories’ beginning and end, from which we compute the shortest path in 
the minimum spanning tree (Fig. 5b, middle right). We use linear interpolation to form 
parameterized trajectories γ : t �→ v(t) in the Decipher space (Fig. 5b, right). The time t 
that parametrizes the trajectories is called the Decipher time, and we compute one tra-
jectory per sample in our analysis ( γAML and γhealthy ). If the analysis requires it, more 
trajectories or less could be computed.

The procedure is described in Algorithm 1 and is visually represented in extended data 
(Fig. 4a). The trajectories are computed using the function dc.tl.trajectories.

Algorithm 1 Trajectory paths construction with Decipher

Trajectory alignment using Decipher time  While trajectory alignment approaches, 
e.g., with dynamic time warping [115, 116], can alter the relative lengths of trajectories 
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by locally compressing or stretching them and potentially missing rare cell states, our 
jointly inferred Decipher time obtains a common time axis for both trajectories. Deci-
pher assigns a pseudo-time value to each location along the trajectories, called the Deci-
pher time. This is determined by calculating the curvilinear coordinate t along each tra-
jectory within the Decipher space. To assign a Decipher time to any cell from our data, 
we project the cells onto the trajectories. That is, we compute for each cell i in each sam-
ple j (healthy or AML), the closest point γj(t∗) on the dataset-specific trajectory ( γhealthy 
or γAML ), and assign the time of this trajectory point t∗ to cell i (Fig. 1c). The Decipher 
time is computed using the function dc.tl.decipher_time.

Reconstruction of gene expression by Decipher  Given a trajectory γ of Decipher com-
ponents, we can obtain the gene expression along this trajectory using the decoder neu-
ral networks in the Decipher probabilistic model. Indeed, we recall that the encoders 
and the decoders in the Decipher model can convert any gene expression into Decipher 
components and vice versa. Mathematically, given some Decipher components on the 
trajectory v := γ (t) , we use the decoders to compute the associated expected latent fac-
tors z := fmean(v) , followed by the expected normalized gene expressions µ := h(z) , that 
can further be scaled up to the desired library size by multiplying it by ℓ . Because Deci-
pher is a probabilistic model, it is also possible to obtain probabilistic gene expression 
samples instead of a single estimate. This is particularly useful to obtain some model 
uncertainty around the reconstructed gene expression (Fig. 5a). To achieve this, we sam-
ple multiple latent factors given the Decipher components as zm ∼ N

(

fmean(v), fvar(v)
)

 
(instead of just fmean(v) ) and we compute their expected gene expression µm = h(zm).

The Decipher gene expression patterns are computed using the function dc.
tl.gene_patterns.

Basis decomposition

To quantify the difference in patterns between two trajectories, we need a metric that 
accounts for the temporal order of cells—two genes may have the same mean expres-
sion value but opposite patterns, e.g., ascending versus descending along trajecto-
ries. Existing methods that encode temporal dependencies are limited in modeling 
assumptions and scalability. For instance, tradeSeq [117] performs trajectory-based 
differential expression; however, approximating gene patterns with splines may not 
be appropriate for complex transcriptional programs, e.g., with cascades of mutations 
leading to cancer. Additionally, relying on built-in denoising limits compatibility with 
preprocessed data (e.g., from VAEs). Methods such as DPGP [118] utilize Gaussian 
processes model distributions of all functions over time; however, they are computa-
tionally expensive. This motivates a metric that not only accounts for the order of cell 
states and uncertainty but is generalizable and scalable to the size of standard single-
cell datasets. For this, we develop a method that decomposes every gene pattern on 
a basis of dominant patterns learned with neural networks. Comparing different pat-
terns then becomes a comparison of their basis weights.
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The data  The input data for the basis decomposition method is the collection of gene 
patterns observed over a time or pseudotime axis in different conditions, such as nor-
mal, disease, or perturbed (Fig. 5a). Similar to the trajectory φ : t �→ φ(t) =: v that maps 
pseudo-time to Decipher components, we define a gene pattern µg ,c for a gene g under 
condition c to be the function t  → µg ,c(t) that represents the expected expression of 
gene g at time t in condition c. With Decipher, these can be the gene expression patterns 
reconstructed from the inferred trajectories. In a more general setting, these patterns 
can be obtained with time-series bulk RNA-seq or trajectory inference methods [119, 
120], applied in advance to single-cell RNA-seq data, or other dynamic features, such 
as chromatin accessibility (measured with ATAC-seq) or protein expression (CITE-seq).

The set of all genes is G, and the set of conditions is C. For simplicity of the exposition, 
we restrict the conditions to C =

{

healthy, disease
}

 . The input data is the collection of 
functions D =

(

µg ,c

)

g∈G,c∈C
 . The data has |G| · |C| observations, each of which is a func-

tion. In the proposed probabilistic model, each pattern t  → µg ,c(t) is considered a single 
observation.

The model  In light of commonly used generative models [121], the proposed model is 
a linear factor model operating in function space. For gene g and condition c, the model 
associates the data point µg ,c with a latent scalar sg ,c—the gene scale—and a latent vec-
tor βg ,c of K dimensions—the gene shape. Each dimension k corresponds to a latent basis 
pattern t  → bk(t) . The βg ,c,k are coefficients for the function µg ,c in this basis. The coef-
ficient sg ,c is the intrinsic scale of gene c in condition g, which will scale up or down the 
pattern computed from the bases, which, in contrast, are constrained to be between 0 
and 1. The observations µg ,c and the latent basis bk are functions. The scale sg ,c and the 
weights βg ,c,k combine the latent bases bk to generate the observed function µg ,c . That is, 
informally, µg ,c ≈ sg ,c

∑K
k=1 βg ,c,kbk . Each basis function bk forms a representative pat-

tern shared by multiple genes.

The weights βg ,c,k  To ensure the interpretability of the weights, the model mimics 
methods like mixture or topic models and draws positive weights that sum to 1. With 
this, a non-zero weight βg ,c,k signifies that gene g in condition c exhibits the representa-
tive pattern k. Specifically, the weights vectors βg ,c are drawn independently from a Dir-
ichlet distribution with concentration parameter [η, η, ..., η] , denoted as Dir(η) , and with 
density

where B(η) = Ŵ(η)K /Ŵ(Kη) and Ŵ is the Gamma function. In terms of negative log-like-
lihood, this prior induces a regularization of the coefficients that will lead to sparse βk 
when η < 1 and β closer to 1K  when η > 1 . We choose η < 1 to associate the basis with 
dominant patterns and thus obtain a better interpretability of the basis.

The basis  functions bk  To sample the basis functions bk , we represent them as neural 
networks and sample each bk by drawing its neural network parameters. Concretely, 

p(β|η) =
1

B(η)

K
∏

k=1

β
η−1
k ,
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each basis function is modeled by a one-dimensional neural network with two hidden 
layers of 32 units each, followed by the tanh activation. The neural network bk is of the 
form

and its parameters are denoted φk . Each φk is sampled from a centered diagonal normal 
distribution, and the variance of each of its coordinates is set to the inverse of the input 
dimension of the linear layer in which it appears. The study of infinite neural networks 
in Neal [122] demonstrates that with wide hidden units (here 32 ≫ 1 ) and such a prior 
on the parameters, the induced prior in function space is close to a Gaussian process. 
Gaussian processes are used in other methods [118] but are hardly scalable. Using neu-
ral networks for efficient computations solves the problem. The induced prior in func-
tion space is denoted by ϕ . Finally, to design more interpretability for the gene scale sg ,c , 
we normalized the sampled basis by their maximum value so that the maximum value 
reached by a basis is 1.

The gene scales sg ,c  The gene scales sg ,c are learned as variational parameters (no vari-
ational distributions), as the gene scales can greatly vary between genes.

The observations µg ,c

Finally, the gene pattern µg ,c is generated from a distribution parameterized by 
∑

k βg ,c,kbk and the scale sg ,c . More specifically, µg ,c is sampled from a Gaussian process1 
with mean sg ,c ·

∑

k βg ,c,kbk and with a white Gaussian noise kernel (x, x′) �→ σ 2δx,x′ of 
variance σ 2.

The generative process is represented graphically in Fig. 5a and proceeds as follows: 

1.	 For each factor dimension k = 1, . . . ,K  , draw a basis function bk from the function 
prior: bk ∼ ϕ(bk) (that is draw weights φk according to the prior detailed above)

2.	 For each gene g, and condition c do: 

(a)	 For each factor dimension k, draw the basis weight βg ,c,k ∼ E(η)

(b)	 Draw the observed function µg ,c from 

µg ,c ∼ GP

(

sg ,c ·
∑

k

βg ,c,kbk , (x, x
′) �→ σ 2δx,x′

)

For simplicity of notations, the φk are grouped in parameter φ , and the βg ,c,k into param-
eter β.

The inference  We learn an approximate posterior on the model variables 
q(bk ,βk ,g ,c, sg ,c) using variational inference implemented in the Python probabilistic 
modeling library Pyro [113], with automatic guides.

bk : R → R
32

→ R
32

→ R

1  Because the Gaussian process is used here only to define the distribution of the observations, and not to sample an 
unobserved latent variable, there is no computational difficulty in using it.



Page 27 of 43Nazaret et al. Genome Biology          (2025) 26:219 	

The basis decomposition is computed using the function dc.

tl.basis_decomposition.

The disruption scores  From the inferred model parameters, we design multiple disrup-
tion scores that inform us of different types of disruptions for the same gene across two 
conditions c1 = healthy and c2 = disease.

•	 The scale disruption highlights the difference in gene scale between the two con-
ditions, e.g., a gene that is up-regulated in one of the conditions. It is defined as 
| log sg ,c1 − log sg ,c2 |.

•	 The shape disruption highlights the difference in gene shape between the two 
conditions, e.g., a gene that activated later in one of the conditions and earlier in 
another. It is defined as ||βg ,c1 − βg ,c2 ||.

•	 The combined disruption is a combination of both disruption scores to capture a 
general high-level disruption score, including both shape and scale. It is defined as 
|| log(sg ,c1βg ,c1)− log(sg ,c2βg ,c2)||.

The disruption scores are computed using the function dc.

tl.disruption_scores.

Data generation

Simulated data

To evaluate Decipher’s ability to identify cell state evolution trajectories within its 
latent space, we simulate data with ground-truth trajectories (Fig. 2), fit the Decipher 
model on this data, and evaluate the quality of the trajectory reconstruction.

We simulate data in several steps: 

1.	 Sample random locations along the 2d continuous trajectories of Fig. 2a.
2.	 Remove some of the locations up to a certain percentage to simulate rare/low-sample 

cell state transitions: 100% in Fig. 2a, 90% and 95% in Fig. b, and a varying percentage 
in Fig. c.

3.	 The remaining locations are denoted (zi) and are the ground truth cell states.
4.	 In particular, we consider the first coordinate of zi to be the pseudotime of the cell, 

noted ti = zi,1.
5.	 Randomly perturb the ground truth cell states to simulate noise σ : z′i ∼ N (zi, σ

2).
6.	 Sample randomly the weights and biases of a neural network f with output dimen-

sion of size d (in our experiments d = 500 ). The neural network is used as a random 
function to nonlinearly transform the cell state into higher dimensional gene expres-
sion.

7.	 Use this neural network to map the ground truth cell states to the synthetic gene 
expression: xi = f (z′i).

With this simulation, we obtain random gene expression data (xi) that is organized 
along an underlying continuous trajectory with possible rare transitions.
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Evaluation metric on simulated data

We evaluate the quality of a latent space (z′i) using the global preservation metric pre-
sented in Chari and Pachter [41]. We present it here briefly. Our simulation provides 
ground-truth cell states (the zi ). We cluster those cell states into 20 clusters using 
k-means. We denote Cj the indices of cells in cluster j. Then, the global preservation met-
ric from Chari and Pachter [41] computes the pairwise distances between each cluster in 
the ground-truth cell state space di,j =

∑

(i,j)∈Ci×Cj
�zi − zj� , as well as in the new latent 

space d′i,j =
∑

(i,j)∈Ci×Cj
�z′i − z′j� . The global preservation metric is then the average 

Kendall-tau correlation between the distances to each cluster in ground-truth space vs 
new space:

Higher is better, with a maximum of 1, indicating a perfect correlation of cluster order-
ing between ground truth and new latent space. The results are presented in Fig. 2c.

AML data collection

The TET2mut AML cohort consists of 12 cryopreserved (DMSO) BM AML samples 
from the Banque de cellules leucémiques du Québec (BCLQ) biobank, with 10 patient 
specimens collected at the time of diagnosis, and two specimens from the same patient, 
at diagnosis and relapse (Additional file 3: Table 3). The DNMT3Amut AML cohort con-
sists of 5 cryopreserved (DMSO) BM AML patient samples. FAB information for sam-
ples was provided by BCLQ (Additional file 3: Table 3). Karyotyping, as well as mutation 
(variant) calling, was performed via bulk RNA-sequencing as part of the Leucegene pro-
ject with data deposited on GEO with accession IDs GSE106272, GSE49642, GSE52656, 
GSE62190, GSE66917, and GSE67039.

All samples, as well as sorted cells, were profiled using 10X Genomics Chromium 
Single-cell 3′  for scRNA-seq. For scATAC-seq, cells were subjected to 10X Genomics 
Chromium Single Cell ATAC Reagent Kits User Guide (v1.1 Chemistry). The resulting 
nuclei suspension was subjected to a transposition reaction for 60 min at 37 °C and then 
encapsulated in microfluidic droplets using a 10X Chromium instrument following the 
manufacturer’s instructions with a targeted nuclei recovery of approximately 5000. Bar-
coded DNA material was cleaned and prepared for sequencing according to the Chro-
mium Single Cell ATAC Reagent Kits User Guide (10X Genomics; CG000168 RevA). 
Purified libraries were assessed using a Bioanalyzer High-Sensitivity DNA Analysis kit 
(Agilent) and sequenced on an Illumina HiSeq 2500 (High Output) and NovaSeq plat-
form at approximately 100 million reads per sample (around 5000 nuclei) at MSKCC’s 
Integrated Genomics Operation Core.

Flow cytometry activated cell sorting (FACS)  For immature cell enrichment, FACS-
purified CD34+ or PROM+ cells were subjected to single-cell RNA sequencing. Cryo-
preserved mononuclear cells were thawed into 10 ml of prewarmed FACS buffer (phos-
phate-buffered saline (PBS) + 2% fetal bovine serum). Cells were pelleted at 300× G for 
5 min and washed again with FACS buffer. Cells were then resuspended in FACS buffer 

1

20

∑

i

τ((di,j)
20
j=1, (d

′

i,j)
20
j=1).
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containing Human TruStain FcX™ (Fc Receptor Blocking Solution; Biolegend #422301) 
for 15 min at 4 °C. Antibodies against CD34 (Clone 561; FITC Biolegend 343603) and 
CD133 (clone 7; PE Biolegend 372803) were subsequently added, and cells were stained 
for an additional 15 min at 4 °C. Cells were then washed twice with 3 ml of FACS buffer 
and resuspended in FACS buffer with DAPI. Cell sorting was performed on a Sony 
SH800.

Data pre‑processing and analysis

Data pre‑processing  Quantification of counts was done with SEQC [2] and 10X 
Genomics Cellranger Zheng et al. [123]. Counts outputs were loaded into AnnData for-
mat using scanpy 1.7.2 [103]. Cells with low library size were filtered out, with the fil-
tering threshold being selected by the knee-point of a histogram of the log10 of the total 
counts per cell. We obtained a median of 10,504 cells per sample and a median of 5165 
molecules per cell after filtering. Data were then normalized by median library size using 
sc.pp.normalize_per_cell. Doublet detection was performed using DoubletDe-
tection [124], with 25 iterations. scATAC FASTQ files for each sample were preproc-
essed to a cell-by-peak count matrix through the CellRanger ATAC pipeline [125] with 
modifications as described in Alonso-Curbelo et al. [54].

Annotation of AML TET2 cohort  All cells from unsorted AML samples were consid-
ered (Fig. S2a, b). PhenoGraph [5] clustering was run using 100 principal components 
and 15 nearest neighbors. Annotation of clusters with low counts or high mitochondrial 
reads was performed by visual analysis of boxplots for the log10 of counts per cluster, 
as well as the fraction of reads belonging to mitochondrial genes compared to all genes. 
We further annotated lymphoid and erythroid clusters using scanpy’s dotplot function 
to visualize key gene markers. We were able to identify these clusters by analyzing the 
fraction of cells in each cluster expressing key marker genes as well as the mean expres-
sion. Cells forming distinct low-count clusters and additional clusters with high mito-
chondrial fraction, using Phenograph clustering on a per-sample basis, were additionally 
removed, resulting in a global cohort of 104,116 cells.

To annotate the maturation stages of leukemic blasts, we computed correlations 
(scipy.stats.pearsonr) between the mean expression of each cluster and bulk 
gene expression data from sorted HSPCs [126]. The correlation calculation was limited 
to the 5277 most varying genes, 3475 of which overlapped with bulk data. Non-signifi-
cant values ( p > 0.0005 ) were removed (Fig. S2c). To control for cluster size, Shannon 
diversity (Fig. S2c) was computed for the distribution of patient IDs in subsamples of 
N = 1000 (approximating the median cluster size) cells from each cluster and averaged 
across 20 iterations. Paired diagnosis-relapse samples (AML9, AML10) (Fig. S2c) anno-
tations were considered together as they are phenotypically very similar (Fig. S2a). Clus-
ters are ordered within cell-type by decreasing diversity (Fig. S2c).

Mutation identification and metrics  We implemented a mutation calling protocol in 
order to identify mutations in NPM1 and DNMT3A. We first sorted and indexed the 
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patient bam files using samtools [127], then reduced the file to the region contain-
ing the gene of interest. The NPM1 gene was analyzed from chromosome position 
5:171387116-171411137, and the DNMT3a gene was analyzed from chromosome posi-
tion 2:25230961-25344590. Files were then merged and indexed, then converted to 
FASTA format. The indexed bam file was then loaded into the Integrative Genomics 
Viewer [128], and the alignments were visually analyzed for the presence of the muta-
tion. If a mutation is present, a range of 5–20 base pairs are selected for subsequent sin-
gle-cell analysis (Additional file 2: Table S1). For single-cell annotation of mutations, we 
used the previously generated FASTA file and the mutated sequence identified for each 
patient to search for the presence of the mutated sequence in individual cells.

Because the mutation state may be heterozygous (a cell may have both mutant and 
wild-type labels), most of our subsequent analysis utilizes our defined mutation pro-
portion for each cell. Since our detection of mutation is dependent on expression, 
which is affected by dropouts in scRNA-seq, we compute an average mutation pro-
portion in the neighborhood of each cell. To compute the mutation proportion, we 
find the 30 nearest neighbors of each cell on the truncated SVD decomposition (100 
components) of the normalized data. The mutation proportion for each cell is then 
m/(m+ w + 1e−10) , where m = the number of cells bearing the mutated copy of the 
gene and w = the number of cells bearing the wild-type copy of the gene among the 
30 neighbors. The heterozygous NPM1 mutation is detected in 5–39 % of cells in each 
of the unsorted samples.

Verification of immature cell enrichment in sorted samples  The primary purpose of the 
cell sorting was to enrich the populations of CD34+ and PROM1+ immature cells in 
the data (Fig. S2d). To verify that this enrichment was achieved, we first performed a 
visual analysis of the UMAP computed on the subset of cells in AML1 originating from 
the unsorted collection process first, and compared it with the UMAP of cells once 
the sorted cells were included with the unsorted cells. We verified that enrichment of 
PROM1 and CD34, along with cells with low NPM1 mutation proportion, was achieved 
in the UMAP (S2e). We also quantified the expression of CD34 and PROM1 in each of 
four categories: immature and non-immature cells in the unsorted cells only and imma-
ture and non-immature cells in both sorted and unsorted cells. All visualization was per-
formed using scanpy [103].

Cell type mapping onto the DNMT3A cohort  To extend the annotations from the TET2 
cohort to patients in the DNMT3a cohort, we combined the data for all patients in 
the TET2 cohort, normalizing by median library size and log transforming across the 
entire cohort. Cells were then grouped based on their prior cell type annotations, and 
700 differentially expressed genes were identified per cell type using the T-test version of 
scanpy’s [103] rank_genes_groups() function. Mitochondrial and Ribosomal genes were 
excluded from the gene sets. Cells in the DNMT3A cohort were also combined across 
patients, normalized by median library size, and log-transformed. Cells were then split 
into clusters using PhenoGraph [5], computed using 100 principal components and k = 
5. We then computed the cluster centroids of the PhenoGraph clusters in the DNMT3a 
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cohort and the cell types of the TET2 cohort by taking the mean across cells in the clus-
ter, limiting to the differentially expressed genes. Pearson correlation (using scipy 1.7.0 
[129]) was computed between the centroids of the two cohorts, and each DNMT3A 
cluster was labeled with the cell type of the TET2 cell type cluster to which it had the 
greatest correlation coefficient. We can then apply Decipher on these patients, following 
our standard analysis pipeline (Fig. S10a).

Benchmarking  We evaluated the performance of Decipher on simulated data. To fur-
ther benchmark the performances of Decipher on real data, we define two metrics based 
on our prior knowledge of AML and compare Decipher to a large spectrum of com-
monly used methods.

Since we do not have ground-truth trajectory values for the real data, we build 
metrics on prior knowledge of AML progression, AML marker genes, and our inde-
pendently curated cell state annotations: immature, blast0, blast1, blast2, and blast3. 
Among the healthy immature cells, we further use the markers CD34 and MPO to 
distinguish early cells (CD34+), late cells (MPO+), and intermediary cells. Our met-
rics are based on the distances between annotated cell states.

•	 Ordering score: We expect the cell states in a latent space to be spatially ordered 
along the known cell maturation trajectories. For instance, blast1 should be 
between blast0 and blast2. Given the orders o1 = [immature, blast0, blast1, blast2, 
blast3] and o2 = [early, intermediary, late], we want the total distances between 
consecutive cell states to be smaller than the distances between non-consecutive 
cell states. The triangular inequality guarantees that the ratio of these two quanti-
ties (the second over the first one) is maximized when the clusters are perfectly 
aligned in the right order. 

•	 Divergence score: We expect the AML trajectory to diverge from the healthy 
trajectory. That is, the immature cells of the AML sample are close to the early 
immature cells of the healthy sample. But then, the blast3 cells of the AML sample 
are far from the late immature cells of the healthy sample. 

 This metric is higher when non-immature AML cells and non-early healthy cells are 
far from each other and when the immature AML cells and early healthy cells are 
close to each other.

These metrics attempt to capture our high-level prior knowledge of AML. They sum-
marize the latent space of each method in two numbers: the ordering score and the 
divergence score. For further details of each method, one can also directly analyze the 
visualization of the latent space of each method (Fig. S3).

orderj =

∑

|i1−i2|>1 distance(oj[i1], oj[i2])
∑

|i1−i2|=1 distance(oj[i1], oj[i2])
.

divergencej =
∑

c1 ∈ o1

c1 �= immature

∑

c2 ∈ o2

c2 �= early

distance(c1, c2)− 2 ∗ distance(immature(AML),immature early (healthy)).



Page 32 of 43Nazaret et al. Genome Biology          (2025) 26:219 

Below are the benchmarked methods, the implementation we used, the hyperparam-
eters, and which latent space we used to compute the metrics:

•	 PCA

–	 We run PCA with 50 components (default) using scanpy.
–	 sc.tl.pca(adata)
–	 The latent space is the space of 50 PCA components (comparable to our decipher 

z space).
–	 latent = adata.obsm["X_pca"]

•	 TSNE

–	 We run TSNE on the 50-dimensional PCA space using scanpy using a knn-
graph with k = 10.

–	 sc.pp.neighbors(adata, n_neighbors=10); sc.tl.

tsne(adata)

–	 The latent space is the 2d TSNE space (comparable to our decipher v space).
–	 latent = adata.obsm["X_tsne"]

•	 UMAP

–	 We run UMAP on the 50-dimensional PCA space using scanpy using a knn-
graph with k = 10.

–	 sc.pp.neighbors(adata, n_neighbors=10); sc.tl.

umap(adata)

–	 The latent space is the 2d UMAP space (comparable to our decipher v space).
–	 latent = adata.obsm["X_umap"]

•	 Force Atlas

–	 We run Force Atlas in scanpy using a knn-graph with k = 10.
–	 sc.pp.neighbors(adata, n_neighbors=10); sc.tl.draw_

graph(adata)

–	 The latent space is the 2d force-directed layout space (comparable to our deci-
pher v space).

–	 latent = adata.obsm["X_draw_graph_fa"]

•	 scVI with batch correction

–	 We run scVI with two layers, a latent space of dimension 10, and batch correction 
on the origin label (AML vs Healthy), using scvi-tools.

–	 scvi.data.setup_anndata(adata, batch_key="origin"); 
vae = scvi.model.SCVI(adata, n_layers=2, n_latent=10); 
vae.train()

–	 The latent space is the 10-dimensional latent space (comparable to our decipher z 
space).

–	 latent = vae.get_latent_representation()
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•	 scVI without batch correction

–	 We run scVI with two layers, a latent space of dimension 10, and without batch 
correction, using scvi-tools.

–	 scvi.data.setup_anndata(adata); vae = scvi.model.

SCVI(adata, n_layers=2, n_latent=10); vae.train()
–	 The latent space is the 10-dimensional latent space (comparable to our decipher z 

space).
–	 latent = vae.get_latent_representation()

•	 Phate

–	 We run Phate using the phate Python package.
–	 phate_ = phate.PHATE()
–	 The latent space is the 2-dimensional latent space (comparable to our decipher v 

space).
–	 latent = phate_.fit_transform(adata)

•	 Harmony

–	 We run Harmony using scanpy on the PCA with 50 components.
–	 sc.tl.pca(adata); sce.pp.harmony_integrate(adata, ’ori-

gin’)

–	 The latent space is the 50-dimensional PCA-corrected latent space (comparable 
to our decipher z space).

–	 latent = adata.obs["X_pca_harmony]

•	 Seurat

–	 We run Seurat using Seurat R package.
–	 adata <- FindVariableFeatures(data); adata.list <- 

SplitObject(adata, split.by ="origin"); features <- 

SelectIntegrationFeatures(object.list = adata.list); 

adata.anchors <- FindIntegrationAnchors(object.list = 
adata.list,, anchor.features = features);adata.combined 
<- IntegrateData(anchorset = adata.anchors); adata.com-
bined <- ScaleData(adata.combined, verbose = FALSE)

–	 The latent space is the PCA-corrected latent space (comparable to our decipher z 
space).

Application of Decipher to PDAC data  We applied Decipher to data collected by Burd-
ziak et al. [52], consisting of PDAC samples from mouse models with and without KRAS 
mutation. We subsetted the data to cells undergoing acinar-to-ductal metaplasia (ADM), 
from three conditions: normal stress, normal, and KRAS-mutated. For our results in 
Fig. 3, we used 10 latent dimensions (z), 2 Decipher components (v), and β = 0.1 . All 
other parameters were default, and the model was run with early stopping. We rotated 
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the resulting Decipher embedding such that the Decipher 1 axis aligned with acinar-
to-ductal maturation. Since the desired path of trajectories was previously known, we 
manually defined trajectories the normal and KRAS-mutated conditions by specifying 
the order of the clusters.

To interpret the latent dimensions, we selected the latent z component that yielded 
the greatest significant separation between KRAS-mutated and non-mutated cells. 
Degree of separation was quantified by T-testing the distribution of a factor over the 
KRAS-mutated population and the non-mutated population; the absolute value of the 
T-statistic was used for selecting the best separating component. We also computed 
the correlation across cells between each latent dimension and each gene (Additional 
file 3: Table 1). This resulted in a list of genes ranked by correlation values for each 
latent dimension that may be analyzed either individually, or using gene set enrich-
ment analysis (GSEA) (Fig. 3e, Additional file 3: Table 2). For individual gene analysis, 
we looked at genes from the Kras-mutated signature from Burdziak et al. [52], as well 
as p53 targets from Fischer [57]. To demonstrate that a small set of genes (such as the 
Kras targets) are ranked significantly higher compared to the ranking distribution of 
all genes, we applied a Wilcoxon rank-sum test between the set of genes and all genes. 
Finally, we show the relationship between latent components (z) and Decipher com-
ponents (v) through visualization the correlation between each v and z (Fig. 3c).

We repeat the above process using scVI as a comparison. ScVI was run with the 
same data, using 2 layers and 10 latent layers, with the gene likelihood parameter set 
to “nb.” The two-dimensional visualization of scVI was obtained using UMAP visu-
alization (Fig. S1d). We repeat the same analyses as above on the scVI latent compo-
nents, identifying the best separating latent component and running GSEA (Fig. S1e) 
to compare the interpretability of the two methods. We demonstrate that the T-sta-
tistics quantifying the degree of separation between KRAS-mutated and non-mutated 
cells in Decipher’s latent components is higher than in scVI’s latent components, by 
plotting the sorted T-statistics for each significant component (Fig. 3f ).

Application of Decipher to AML patient data  Before applying Decipher to the AML 
patient data, we first performed a gene filtering step to include the most important genes 
representative of all cell types. For each patient, we performed PhenoGraph [5] cluster-
ing using 40 principal components and 30 neighbors. Then, using scanpy’s [103] rank_
genes_groups() function, we performed a T-test to identify the top 400 most differen-
tially expressed genes for each cluster. This list of genes was pooled with a list of known 
marker genes to produce the final set of genes on which the model was run. Including 
known marker genes is optional; we did so to facilitate their visualization in downstream 
analysis. Similarly, the gene-filtering steps are optional, and we showed that Decipher 
would still identify valid trajectories without any gene filtering (Supplementary Informa-
tion; Fig. SI1).

We also removed erythrocytes and lymphocytes from the data, as they were not rel-
evant for the analysis of AML derailment.

We obtain the following.
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•	 3130 genes for the joint dataset AML1 and normal
•	 3264 genes for the joint dataset AML2 and normal
•	 3258 genes for the joint dataset AML3 and normal
•	 2863 genes for the joint dataset AML13 and normal
•	 2532 genes for the joint dataset AML14 and normal
•	 3291 genes for the joint dataset AML15 and normal
•	 2944 genes for the joint dataset AML16 and normal
•	 2664 genes for the joint dataset AML17 and normal

Aside from these filtering steps, we emphasize that no other pre-processing or nor-
malization was performed, as the model is always run on raw counts data. For our 
results (Fig.  4), we use latent factors z of dimension 10, Decipher components v of 
dimension 2, a neural network decoder from v to z with one hidden layer of dimen-
sion 64, a linear decoder from z to x, a neural network decoder from x to z with one 
hidden layer of dimension 128, and another neural network decoder from (z, x) to v 
with one hidden layer of dimension 128. BatchNorm was applied after each hidden 
layer in the neural networks, followed by a ReLU activation. We set β = 0.1 and a 
batch size of 64. The code to reproduce the results in this manuscript is available at 
https://​github.​com/​azizi​lab/​decip​her_​repro​ducib​ility.

Interpretation of Decipher components, latent dimensions, and basis  To identify path-
ways associated with the latent components of Decipher, we computed the covariance of 
each gene with each of the Decipher components, the latent dimensions, and the results 
from basis decomposition (Additional file 2: Table S2). Precisely, we computed for each 
gene g the covariance over cells between xg and each variable v1, v2 and zj for j ∈ [10] . We 
then ran gene set enrichment analysis (GSEA) [130], with genes preranked by covariance 
with each latent component. Next, to interpret the learned basis functions, we ranked 
genes by their weights in each basis to identify pathways most associated with each 
basis. For all use cases, GSEA was run on the pre-ranked setting against the Hallmarks 
Database, with 1000 permutations and no collapse (Additional file 3: Table 4). To select 
genes for visualization in Fig. S6a, we selected a top pathway for each component/basis 
function with known biological importance and found the top disrupted genes belong-
ing to that pathway.

We highlight the usage of Decipher in reconstructing gene patterns over a tempo-
ral dimension. These analyses necessitated the translation of cell-level metadata to 
the temporal dimension. In order to analyze observations such as cell type and muta-
tion proportions, along the temporal dimension, we applied the projection method 
outlined in the trajectory inference section to obtain a cell-level Decipher time. This 
transformation allowed for observations to be directly studied along the temporal 
axis. For discrete observations such as cell type, we first performed nearest-neighbor 
smoothing using Scikit-learn 0.24.0 [131], with 50 neighbors and a radius of 0.2. A 
smoothed label was obtained for each cell by taking the mode of the labels among its 
neighbors. We then visualized the observations along a temporal axis by producing a 

https://github.com/azizilab/decipher_reproducibility
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scatterplot of cell observations, where the x-axis is the computed pseudotime of each 
cell and the color corresponds to the smoothed label (Figs. 6b, c, S9).

A key feature of Decipher is its ability to produce Decipher components that can be 
rotated to align with axes of disease maturation and development. We extended our 
analyses of the NPM1 mutational status of cells to examine its correlation with Deci-
pher component 2 in AML1, 2, and 3. Specifically, we specified a cutoff threshold of 
0.4 for the mutation proportion and classified cells with proportions greater than that 
as belonging to the mutated class and cells with proportions less than as being wild-
type. We then binned cells by their pseudotime projections (with a bin size of 0.5 and 
a sliding window of 0.05). We then counted the number of cells classified into mutated 
and wild-type by our threshold in each bin and smoothed the resulting counts by time 
curves using a 1d Gaussian kernel (using scipy [129]) with a standard deviation of 
2. We visualized the results as distributions along the Decipher component 2 axis to 
emphasize the shift in NPM1 mutational status (Fig. 4f, Fig. S3a).

Application of Decipher to TET2 and DNM cohorts  To evaluate the performance of 
Decipher at the cohort level in AML (Fig. S3c), we first ran the model on the concat-
enated data from AML1, AML2, and AML3 (without the added healthy reference), with 
lymphoids, erythroids, and MEP cells removed. We ran the model with standard set-
tings, and β = 0.001. We then defined cell clusters using 15 neighbors and leiden resolu-
tion = 0.7, and manually specified the three trajectories corresponding to leukemic mat-
uration in each patient by listing the order of clusters. This then allowed for the plotting 
of specific gene markers of interest. The same process was repeated for the combination 
of the TET2 and DNM cohorts (Fig. S3d), but with β = 0.01.

Comparison of disrupted genes across patients  To determine if disrupted mechanisms 
between healthy and AML disruption were shared across patients, we first obtained 
combined disruption scores for each patient as detailed above. We limited our analy-
sis to transcription factors and identified the top disrupted transcription factors in each 
patient in order to identify top shared disrupted gene programs. We also visualized dis-
ruption scores between patients as a 3D scatterplot of individual patients (Fig. 6d), or by 
taking the mean of patients with similar mutational statuses (Fig. S10e).

Distribution of TF peak expression over time  To study the patterns of TF expression 
over time, we directly utilized the gene patterns produced by Decipher that showed the 
expression values of each gene over the learned Decipher time axis. For each TF present 
in the data, expression patterns were first smoothed using a 1d Gaussian filter (using 
scipy [129]) with the standard deviation of the Gaussian kernel set to 3. This smooth-
ing is performed only for detecting peak expression and is not applied to expression 
plots. Local maxima of expression were then identified by searching for points at which 
the first derivative of the curve switches from positive to negative. We furthermore fil-
ter points by using the midrange of expression (defined as the mean of the minimum 
and the maximum expression) as a threshold: local maxima whose expression values 
were less than this value. We additionally included the starting point as a maxima if the 
expression value was greater than the threshold and the first derivative was negative or if 
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the maximum value of the expression was at the start; we included the ending point as a 
maxima if the maximum value of expression was at the end. For visualization, we plotted 
the kernel density estimation (with a bin width of 0.05) of all TF maxima along the Deci-
pher time axis to show the points in time where overall TF activity is concentrated (Fig. 
S6). Kernel density estimation was performed using seaborn [132], and plotting was 
done using matplotlib [133].

Analysis of temporal TF co‑regulation  In conjunction with the visualization of the tim-
ing of TF activity, we also sought to determine if families of similar TFs demonstrated 
coordinated activation times and if these temporal dynamics could be utilized to derive 
insight into regulatory wiring. We focused our analyses on the top 20 most disrupted 
TFs by the combined disruption metric, as well as the known disrupted TFs from the 
literature. The Decipher gene pattern for each TF was visualized as rows in a heatmap, 
with the horizontal axis representing the pseudotime axis and the color representing the 
z-scored expression value. The rows were sorted based on the time at which the maxi-
mum peak occurred, and the TFs were labeled with colors based on their biological 
function (Fig. 6b, c; Fig. S9a, b).

Estimation of uncertainty in expression patterns  Because Decipher is a probabilistic 
model, it learns the uncertainty about the gene expression induced by a cell representa-
tion v. Given a location v in the Decipher space, the distribution of the expected gene 
expression µg (v) of gene g in a cell with representation v is given by,

where z|v ∼ N (fmean(v), fvar(v)).

To compute this uncertainty for each v, we sample 100 values for z from 
z|v ∼ N (fmean(v), fvar(v)) and compute µg = h(z)g for each of them. In Fig.  5b, the 
shaded bands represent the interquartile range (25–75) of the 100 samples.

Analysis of bulk AML data  We applied DeSeq2 [134] to obtain metrics characterizing 
the AML data at the cohort level. Using the resulting L2FC and p values, we were able to 
confirm whether or not expected genes, as well as our newly identified disrupted genes, 
were also differentially detected in the bulk data. For both sets of genes, we selected 
genes whose absolute L2FC was greater than 1 and reported the maximum p value.

Application to gastric cancer evolution  We applied Decipher on the gastric cancer data 
from Kim et al. [84]. We pooled the data from the 24 patients in the study, each with pre-
malignant cells and cancerous cells. Nine of these patients have intestinal cancer and the 
other 15 patients have diffuse-like cancer. The resulting data has 12,612 cells and 8705 
genes. We ran Decipher with its default hyperparameters: z of dimension 10, v of dimen-
sion 2, and for 30 epochs (Fig. 7b–d).

In sum, Decipher on the gastric data was applied on

•	 12,614 cells

µg |v ∼ h(z)g |v
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•	 8705 genes
•	 From 24 patients
•	 With 2 major types of cells (pre-malignant, cancerous)
•	 With 2 types of cancer (diffuse-like or intestinal)
•	 With different stages of cancer
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