
Academic Editors: Călin Căinap and
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Abstract

Background and Objectives: Colorectal cancer (CRC) is a major cause of cancer morbidity
and mortality worldwide. Genetic and epigenetic changes, especially DNA methylation
alterations, are key in CRC development. LINE-1 hypomethylation marks global DNA
methylation loss and genomic instability, making it a potential early CRC biomarker. This
study investigates the methylation status of LINE-1 in colorectal adenocarcinoma, pre-
cancerous lesions (tubular and serrated adenomas), and the surrounding normal mucosa,
aiming to elucidate its role as an epigenetic marker in early colorectal tumorigenesis. Mate-
rials and Methods: Paired lesion and normal tissue samples from 66 patients were analyzed
for LINE-1 methylation at three CpG sites using bisulfite pyrosequencing. Results: Ade-
nocarcinomas and tubular adenomas showed significant hypomethylation, especially at
loci A and B, while serrated adenomas exhibited no significant differences. Conclusions:
LINE-1 hypomethylation is associated with colorectal tumorigenesis, with distinct patterns
observed between tubular and serrated adenomas, indicating distinct pathways forming
and progressing specific adenomas. These findings support the potential of LINE-1 methy-
lation as an early epigenetic biomarker for CRC risk stratification and highlight the need
for further research into its clinical utility.
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1. Introduction
Colorectal cancer (CRC) is the third most common cancer worldwide, with over

1.15 million new cases and 576,000 deaths annually [1]. CRC develops through a multistep
process driven by genetic and epigenetic alterations, primarily via three pathways: chro-
mosomal instability (CIN, ~85%), microsatellite instability (MSI, ~15%), and CpG island
methylator phenotype (CIMP, ~25%) [2,3].

Epigenetic mechanisms—DNA methylation, histone modifications, and non-coding
RNAs—regulate gene expression without altering the DNA sequence [4–7]. DNA methyla-
tion, especially at CpG islands in gene promoters, is the most studied in CRC and is linked
to gene silencing, carcinogenesis, and potential biomarker development [8].
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Histone modifications and non-coding RNAs also influence gene regulation and cancer
progression [9–11]. Notably, DNA methylation changes, including hypermethylation of
tumor suppressor genes and global hypomethylation, often occur early in CRC, even in
adjacent normal mucosa, reflecting an epigenetic “field effect” [12–18].

LINE-1 retrotransposons are normally silenced by methylation to maintain genomic
stability. Their hypomethylation is common in CRC and precancerous lesions, correlating
with genomic instability and cancer risk. LINE-1 methylation thus serves as a marker for
global methylation status and early CRC detection [19,20].

This study examines LINE-1 methylation in colorectal cancer, precancerous lesions
(tubular and serrated adenomas), and adjacent normal tissue to assess its potential as an
early biomarker for CRC.

2. Materials and Methods
2.1. Study Population

From January to April 2021, 66 patients undergoing a colonoscopy screening at our in-
stitution were prospectively enrolled. Inclusion criteria were age 50–74 years, positive fecal
immunochemical test (FIT), absence of gastrointestinal symptoms, and no active infections.

2.2. Tissue Collection and Classification

Paired samples were taken during colonoscopy from lesions (tubular adenoma >10 mm,
serrated adenoma, or adenocarcinoma) and adjacent normal mucosa. Lesions were clas-
sified histologically. The study included 30 tubular adenoma, 15 serrated adenoma, and
21 colorectal adenocarcinoma patients.

2.3. LINE-1 Methylation Analysis

All samples were stored in RNAlater (Qiagen, Hilden, Germany) at −80 ◦C. DNA was
extracted with QIAamp Mini Kit (Qiagen, Hilden, Germany) and quantified by Nanodrop
2000 (Wilmington, DE, USA). Bisulfite conversion used 500 ng DNA and the EpiTect
Kit (Qiagen, Hilden, Germany). LINE-1 methylation was analyzed by pyrosequencing
(PyroMark Q24 LINE-1 kit, Qiagen, Hilden, Germany) targeting three CpG sites.

Bisulfite DNA was PCR-amplified using a PyroMark PCR Kit (Qiagen, Hilden, Ger-
many) with 12.5 µL Master Mix, 2.5 µL CoralLoad, 0.5 µL primers, 2 µL DNA, and 7 µL
water. PCR: 95 ◦C 15 min; 45 cycles (94 ◦C 30s, 50 ◦C 30 s, 72 ◦C 30 s); final 72 ◦C 10 min.
Products were checked on 1% agarose gel.

For pyrosequencing, 20 µL biotin-labeled PCR product was processed with Sepharose
beads, the primer was added, and the product was then analyzed on PyroMark™
Q96 system (Qiagen, Hilden, Germany).

2.4. Statistical Analysis

Methylation levels at three LINE-1 CpG loci (A, B, C) were quantified and expressed
as mean ± standard deviation (SD) values. Paired t-tests compared methylation between
pathological and adjacent normal tissues within each lesion type. An ROC analysis was per-
formed using Graphpad Prism 8. A p-value < 0.05 was considered statistically significant.

3. Results
We performed a LINE-1 DNA status analysis in three promoter CpG loci (A, B, C) in

pathological tissue (tubular adenoma (TA), serrated adenoma (SA), or adenocarcinoma)
and surrounding tissue. These loci correspond to cytosine positions 328, 321, and 318
within the CpG islands of the gene X58075.1.
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This study revealed statistically significant differences in methylation levels between
different CpG islands. In this study 66 FIT positive patients were selected (Figure 1):
30 samples from TA (36.3%), 15 from SA (23.9%) and 21 from adenocarcinoma (29.9%).
The mean age of patients was 62.9 ± 6.3 for TA, 59.9 ± 5.0 for SA, and 65.7 ± 7.1 for
adenocarcinoma. Demographic variables were selected to ensure approximate equivalence
across groups.

FIT-positive patients sent from outpatient clinic for  
screening colonoscopy according Lithuanian early  

colon cancer screening program   
(n=130)   

Excluded (n=13):   
1. Declined to participate (n=10)   
2. Other reasons (n=3)   
  

Signed informed consent form (n=117)   

Divided to groups   after colonoscopy  
(n=66)   

Excluded (n=51): without  pathology   
  

Tubular adenoma >10 mm (n=30)   Serrated adenoma >10 mm  
(n=15)   

  

Adenocarcinoma   
(n=21)   

  

Figure 1. Study patients.

3.1. LINE-1 Methylation in Pathological and Adjacent Tissues

Locus A

• TA: LINE-1 methylation was lower in adenoma (72.53 ± 1.48) than normal mucosa
(81.63 ± 0.71; p < 0.05).

• SA: No significant difference between lesion (78.67± 1.11) and normal tissue (79.6 ± 0.58).
• Adenocarcinoma: Tumor tissue showed reduced methylation (66.33 ± 2.24) vs. mucosa

(83.76 ± 0.76; p < 0.05).

Locus B

• TA: Lower methylation in lesion (67.53 ± 1.26) than normal tissue (70.97 ± 0.91; p < 0.05).
• SA: No significant difference.
• Adenocarcinoma: Tumor tissue (64.43 ± 2.61) showed significantly less methylation

than normal mucosa (73.24 ± 0.72; p < 0.05).

Locus C

• TA: Lesion methylation (67.07 ± 1.53) was lower than normal tissue (72.27 ± 1.15; p < 0.05).
• SA: No significant difference.
• Adenocarcinoma: Tumor tissue (65.05 ± 1.70) had significantly reduced methylation

compared to normal mucosa (72.76 ± 0.90; p < 0.05).

3.2. Comparative Analysis

• The ROC analysis revealed statistically significant differences in methylation levels
among the three CpG loci (Figure 2 and Table 1).
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Table 1. ROC analysis summary for CpG loci methylation levels. ROC, receiver operating characteris-
tic; AUC, area under receiver operating characteristic curve; CI, confidence interval.

AUC Std. Error 95% CI p Value

TA (Loci)

A 0.885 0.043 0.80 0.97 <0.0001

B 0.657 0.069 0.52 0.79 <0.05

C 0.712 0.065 0.59 0.84 <0.01

SA (Loci)

A 0.594 0.104 0.39 0.80 >0.05

B 0.565 0.103 0.36 0.77 >0.05

C 0.604 0.102 0.40 0.80 >0.05

Adenocarcinoma (Loci)

A 0.950 0.043 0.87 1.00 <0.0001

B 0.851 0.065 0.72 0.98 =0.0001

C 0.838 0.063 0.71 0.96 <0.001

 

Figure 2. ROC curve analysis of LINE-1 methylation at three CpG sites for discriminating tubular
adenoma, serrated adenoma, and adenocarcinoma from adjacent healthy tissue. Red dotted line
indicates random classifier. Black line indicates ROC curve.

• Adenocarcinoma tissues consistently exhibited the lowest LINE-1 methylation across
all loci, with the greatest difference at locus B.
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• Tubular adenomas showed intermediate hypomethylation, with the most pronounced
difference at locus A.

• Serrated adenomas did not display significant methylation differences between patho-
logical and normal tissues at any locus.

3.3. Summary of Findings

• LINE-1 hypomethylation is most pronounced in adenocarcinoma, less so in tubular
adenoma, and minimally in serrated adenoma.

• The largest methylation differences were observed at locus A, suggesting its potential
as a focal point for future biomarker studies (Table 2).

Table 2. LINE-1 methylation levels in CpG island A.

Number Mean ± SD 95% CI

Adenocarcinoma 21

Pathological 66.33 ± 10.27 61.66 71.01

Surrounding 83.76 ± 3.49 82.17 85.35

Tubular adenoma 30

Pathological 72.93 ± 7.73 70.04 75.82

Surrounding 81.77 ± 4.03 80.26 83.27

Serrated adenoma 15

Pathological 78.67 ± 4.03 76.28 81.05

Surrounding 79.6 ± 2.23 78.37 80.83

• No significant methylation changes were detected in serrated adenomas, indicating
possible differences in their tumorigenic pathways compared to tubular adenomas
and adenocarcinomas (Table 2).

4. Discussion
4.1. The Role of DNA Methylation and LINE-1 in Colorectal Carcinogenesis

CRC develops through genetic mutations and epigenetic changes, especially DNA
methylation. Normally, LINE-1 is heavily methylated to prevent harmful activity, but in
tumors, hypomethylation reactivates LINE-1, causing mutations and instability [21,22].
This study examined methylation at three LINE-1 promoter CpG sites using a commercial
kit, focusing on overall methylation and the importance of specific loci.

4.2. Distinct Pathways in Serrated Versus Tubular Adenomas

Our study found SAs lack significant LINE-1 hypomethylation versus normal tissue,
unlike TAs and carcinomas, indicating distinct pathways. SAs involve BRAF mutations,
CIMP, and MSI; tubular adenomas show chromosomal instability and global hypomethy-
lation [23]. This limits LINE-1 methylation’s role in SA risk assessment. Our findings
stress the need to study gene-specific methylation for better CRC biomarkers. Since SAs
may progress faster, current screening intervals based on TAs might need revision. De-
tailed methylation research and blood-based markers could improve screening and enable
non-invasive detection.

4.3. Limitations and Future Directions

This study offers valuable insights but is limited by the small sample size, focus on
FIT-positive patients, and lack of a healthy control group, making it hard to distinguish
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cancer-specific methylation changes from normal variation. Including healthy controls was
unfeasible due to the invasive nature of colonoscopy. Future research should use larger,
diverse cohorts with a longitudinal follow-up, integrate molecular and clinical data, and
include functional studies to clarify LINE-1 hypomethylation’s role in tumorigenesis and
its reversibility.

5. Conclusions
In summary, our results reinforce the central role of LINE-1 hypomethylation in the

pathogenesis of CRC, particularly within the conventional adenoma–carcinoma sequence.
The locus-specific analysis highlights the potential of targeted methylation assays for early
detection and risk assessment. The distinct epigenetic profiles of serrated and tubular ade-
nomas underscore the need for subtype-specific biomarkers and personalized approaches
to CRC prevention and management.
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