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 A B S T R A C T

Background: Labeling images for supervised learning in nephropathology is highly time-consuming and 
dependent on domain-expertise. Unsupervised strategies have been suggested for mitigating this bottleneck. 
For instance, previous work suggested that clustering/grouping of glomeruli based on image features might 
enable a more semi-automated labeling of morphological classes or even a completely unsupervised training. 
However, even for the most basic separation between globally sclerosed and non-globally sclerosed glomeruli, 
the performance of clustering approaches has not yet been fully elucidated. The current study sought to fill 
this gap by extensively evaluating the accuracy and limitations of capturing these two classes via clustering.
Methods: Clustering was investigated across 10 labeled datasets with diverse compositions and histological 
stains and across the feature embeddings produced by 34 different pre-trained CNN models.
Results: As demonstrated by the study, clustering of globally and non-globally sclerosed glomeruli is generally 
highly feasible, yielding accuracies of over 95% in most datasets.
Conclusions: While further work will be required to expand these experiments towards the clustering of 
additional glomerular lesion categories, the study clearly demonstrates that clustering might serve as a highly 
accurate means of pre-labeling glomeruli. Importantly, these findings strongly support clustering as a solid basis 
for downstream interactive labeling approaches or unsupervised learning approaches. Together, these results 
might greatly improve the possibilities and lookout for the establishment of clinically applicable glomerular 
classification models in the community. Further improvements in this area might be achieved by exploring 
more domain-specific feature extractors through contrastive learning or established foundation models.
1. Introduction

With the advent of digital nephropathology, many diagnostic tasks 
in the evaluation of a kidney biopsy can now be addressed using 
artificial intelligence (AI), ushering in a new era of computer-assisted 
diagnosis [1]. For example, one of the most central tasks in the di-
agnosis of chronic kidney disease is the characterization of glomeruli, 
clusters of capillaries that act as the basic filtration units of the kidney 
and that can be affected by a myriad of disease-related morphological 
changes [2]. The classification of these structures, when done manu-
ally, can be quite time consuming and difficult, and it has therefore 
been the focus of recent developments of deep learning (DL)-based 
nephropathology applications [3–8].

However, while clearly demonstrating the potential of DL for auto-
matic classification of glomerular lesions, these works remain mostly 
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proof-of-concept, often lacking sufficiently large and diverse training 
datasets to achieve clinical applicability. In fact, while whole slide 
scanners have enabled the rapid and feasible collection of vast amounts 
of histological image data, few of these data can be readily used to 
build DL models. Specifically, the training of such models is still mostly 
conducted in a supervised fashion, requiring additional image labels. 
However, the labeling of histological images is typically an extremely 
time-consuming task and highly dependent on domain expertise and 
thus remains a critical barrier to the development of AI tools.

Possible solutions for overcoming these bottlenecks include the 
use of more interactive labeling strategies [9–12] or alternative ‘‘not-
so-supervised’’ learning regimes [13], i.e. training strategies not ex-
plicitly relying on extensively labeled data. Out of such approaches, 
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unsupervised and self-supervised learning strategies appear particularly 
appealing, because they can operate on completely unlabeled data 
and in the absence of supervision of a pathologist. Instead, utilizing 
a data-driven approach to identify a potentially meaningful separation 
between histological images, such methods can help to (i) group images 
and patches [14–17] or to (ii) pretrain models [18–21], which in turn 
can be used as feature extractors or be repurposed for downstream tasks 
via transfer learning.

However, while a plethora of unsupervised and self-supervised 
learning paradigms has been developed in the computer vision field
[22–29], very little research has so far focused on the application of 
such approaches in the field of glomerular lesions. Liu et al. [30] 
employed self-supervised learning on glomerular images, but only 
for the downstream classification between patches with and without 
glomeruli. Yao et al. [31] utilized self-supervised learning to pretrain 
a CNN on web-mined images of glomeruli, but subsequently still 
followed with a supervised fine-tuning using thousands of labeled 
images. Sato et al. [15] asked the question of whether a purely un-
supervised definition of glomerular classes might provide a clinically 
meaningful basis for classifying glomerular changes in the absence of 
labels. While the study produced some promising concepts and initial 
results pertaining to the clustering of glomerular images, the separation 
between morphological classes and the purity of clusters appeared only 
limited and was not fully evaluated. Furthermore, the study utilized 
only a very restricted dataset, including only a single histological stain 
(Hematoxylin & Eosin; HE), and investigated only a single convolu-
tional neural network (CNN) for feature extraction. Consequently, there 
is still a substantial lack of understanding regarding the full potential of 
clustering for the unsupervised distinction between glomerular lesions.

In theory, the clustering of morphological lesions might yield bet-
ter results when performed on more extensive image datasets and/or 
when using a stain such as Periodic Acid Schiff (PAS) that better 
highlights relevant glomerular structures [32]. However, the majority 
of glomerular lesions might also be inherently difficult to distinguish 
via clustering, as the morphological changes in these cases are often 
segmental [33,34], i.e. affecting only part of the glomerulus, while the 
remaining structure would be normal or displaying other lesions. Thus, 
an unsupervised separation might be most successful for glomeruli with 
global lesions, i.e. with a morphological change affecting the entire 
glomerulus.

Consequently, towards investigating the feasibility of clustering 
glomerular lesions, it would be prudent to demonstrate it first in the 
context of such a well delineated task, i.e. a separation of the most 
distinct lesion categories, enabling a systematic proof-of-concept eval-
uation of methodology and performance. Specifically, the current study 
hypothesized that the best separation would probably be achieved for 
globally sclerosed glomeruli (GS), as they represent a global pattern 
without any normal structures. This assumption is aligned with the 
observation that it is likely the class most easily classified [3–5]. The 
notion is further supported by the study by Altini et al. [7], who il-
lustrated several CNN-based feature embeddings of glomerular images, 
where the most substantial separation appeared to manifest between 
the GS and non-globally sclerosed glomeruli (nonGS). Similarly, an-
other recent publication showed that the unsupervised clustering of 
kidney biopsy image patches could theoretically distinguish between 
patches containing (globally) sclerosed and patches containing other 
glomeruli [14].

Beyond serving as a proof-of-concept for ongoing clustering efforts, 
the unsupervised separation of GS and nonGS would also provide 
an avenue for semi-automatic labeling opportunities enabling a more 
straightforward collection of DL datasets for the training of GS clas-
sifiers. However, while the previous studies have demonstrated the 
general feasibility of such an approach, to the best of our knowledge, 
there is virtually no research systematically evaluating the clustering 
of GS and nonGS, including (i) an investigation of the most suitable 
strategy for clustering GS images, and (ii) explicitly documenting the 
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accuracy with which such an unsupervised strategy can distinguish 
globally sclerosed glomeruli.

Accordingly, the current study thoroughly investigated the hypoth-
esized possibility of detecting global glomerulosclerosis through clus-
tering, by (i) utilizing larger datasets from varied sources and across 
different histological stains, (ii) evaluating a large number of feature 
extraction methods, (iii) carefully measuring the separation of classes 
in the associated feature embeddings, and (iv) explicitly evaluating the 
performance of clustering in capturing the classes.

2. Material and methods

The project was conducted in four major stages as outlined in 
Fig.  1. Utilizing various repositories, a large collection of glomerular 
image patches was compiled (Fig.  1A) and preprocessed (Fig.  1B) 
for downstream analyses. Subsequently, numerous CNN models were 
employed to extract image features from the glomerular image patches, 
and the class separation between GS and nonGS in the resulting feature 
embedding was evaluated (Fig.  1C). Finally, it was investigated how 
accurately the GS and nonGS classes could be captured by clustering of 
the images in the feature space (Fig.  1D). A more detailed account of 
the individual steps is given below and in the Supplemental Material.

2.1. Data

2.1.1. Glomerular image datasets
The current study utilized glomerular image patches from seven 

sources: Besusparis et al. [5] (Besusparis2023, n = 3993), Bueno et al. 
[36,37] (Bueno2020, n = 946), Gallego et al. [38] (two datasets: 
Gallego2021-HE/Gallego-PAS, n = 611/527) [39], the Kidney Precision 
Medicine Project (KPMP, n = 5978) [35], the Human BioMolecular 
Atlas Program (HuBMAP, n = 4130) [40], the Norwegian Renal Reg-
istry (three datasets: NRR-PAS/NRR-HE/NRR-SIL, n = 250/555/568), 
and Weis et al. [8] (Weis2022, n = 5210). The sources displayed 
different properties, e.g. with respect to image formats, histological 
stains, availability of glomerular segmentations and/or class labels, 
which diagnoses and morphological lesions (beyond GS) are present 
in the dataset, and the proportion of GS and nonGS images, which are 
further described in the supplemental material and in supplementary 
tables 1 and 2.

2.1.2. Image patch generation and preprocessing
Depending on the source, the kidney biopsy images containing 

glomeruli came in different formats and were thus subjected to a se-
quence of preprocessing steps (Fig.  1A-B) to generate the final glomeru-
lar image patches.

Specifically, where not already available, glomeruli were segmented 
from the surrounding tissue and classified as either GS or nonGS 
(Fig.  1A). The segmentation annotations were utilized to compute the 
bounding box for each glomerulus, the image region within which was 
then extracted (Fig.  1A).

The resulting raw glomerular image patches were first rescaled to 
224 × 224 pixels. Then, similar to the procedure documented by Sato 
et al. [15], image patches within each dataset were subjected to a 
stain-normalization step utilizing the Macenko method [41] (Fig.  1B). 
To evaluate the robustness of the feature embedding and clustering 
results with respect to the choice of reference image used during stain-
normalization, 20 reference images with substantial color differences 
were selected per stain (Supp. Fig. 1) and utilized to generate 20 
different stain-normalized versions of each dataset.

Finally, after image normalization, the surrounding tissue (pixels 
outside of the annotated glomerulus) in each image patch was masked 
out by replacing it with black color (Fig.  1B) [5,7].
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Fig. 1. Workflow illustrating the overall procedure employed for data generation and analysis. (A) Gathering glomerular patches from WSIs or other images: where necessary, 
glomeruli were segmented and labeled (here shown on part of a WSI from the Kidney Precision Medicine Project (KPMP) [35]); subsequently, glomerular images where cropped 
using the bounding box. (B) Glomerular image patch preprocessing: All image patches were first resized to 224 × 224 pixels, then stain-normalized, and finally the surrounding 
tissue background was replaced by black pixels. (C) Feature embedding: Each glomerular image patch was fed into a CNN for feature extraction, and in the resulting feature 
embedding for a single dataset, the separation between GS and nonGS images was evaluated quantitatively. (D) Clustering of glomerular image patches: For each dataset, the 
images were clustered in the feature embedding, and the cluster assignments were compared to the corresponding class labels.
2.2. Feature extraction and evaluation

2.2.1. CNN models used for feature extraction
The current study compared the separation of GS and nonGS groups 

of glomeruli in the embedding of features obtained by different CNN 
models (Fig.  1C). A total of 34 CNNs were utilized (Supp. table 2), 
largely overlapping the models investigated for glomerular classifica-
tion by Weis et al. [8] and Altini et al. [7], and also including the 
NASNetLarge model used in the previous clustering study by Sato et al. 
[15]. The CNN models were run either using the implementations 
available from Keras [42] or from the classification_models (https://
github.com/qubvel/classification_models) library (Supp. table 3). All 
models were utilized without the top (classification) layers, the input 
tensor size was set to 224 × 224 × 3, weights pretrained on ImageNet 
were used, and a global average pooling was applied to the output of 
the final convolutional layer. All models were utilized with the existing 
pre-trained weights without any further fine-tuning.

2.2.2. Evaluating class separation in feature embedding
The separation between nonGS and GS glomeruli in a feature em-

bedding was evaluated visually and through standard cluster evalu-
ation metrics. Specifically, visual assessment involved the inspection 
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of scatter plots after a Uniform Manifold Approximation and Projec-
tion (UMAP) [43] of the high-dimensional feature space down to two 
dimensions. For a quantitative assessment, the nonGS and GS labels 
were instead interpreted as cluster assignments, and then three internal 
cluster validity indices (CVIs) were applied to measure the quality 
of this ‘‘clustering’’ in the high-dimensional feature embedding: the 
Silhouette score [44], the C-index [45], and the Dunn index [46]. For 
the C-index, a better clustering would result in a lower score, while 
for the other two methods, a better clustering would result in a higher 
score.

2.3. Clustering analyses and evaluation

To cluster the glomerular images in the feature embedding (Fig. 
1D), the project utilized either a Gaussian mixture model (GMM) 
strategy, similar to the study by Sato et al. [15], or a Leiden cluster-
ing [47] approach, in both cases aiming for exactly two clusters. The 
performance of clustering in capturing the nonGS and GS classes (Fig. 
1D) was then evaluated (i) using confusion matrices, displaying the 
association between glomerular classes and the identified clusters, (ii) 
by one metric measuring the similarity between two clusterings, i.e. the 
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adjusted Rand index (ARI) [48], and (iii) by one metric measuring 
classification performance, i.e. accuracy (ACC).

2.4. Hardware

Experiments were conducted on a HP Z4 G4 workstation, with an 
Intel® Xeon® W-2245 processor, 128 GB DDR4 RAM, and two NVIDIA®
RTXTM A4500 graphic cards.

2.5. Code availability

Representative code, demonstrating the preprocessing of patches, 
feature extraction, and clustering, is available on GitHub: https://git
hub.com/patologiivest/GlobalGlomerulosclerosisClustering.

3. Results

3.1. CNN-based feature embedding separates GS and nongs

To evaluate the ability of automatically distinguishing between GS 
and nonGS glomerular images via unsupervised learning, the study first 
aimed to assess the separation of these classes in the feature space 
provided by different CNN models. Towards this end, ten datasets of 
glomerular images were selected, referred to respectively as Besus-
paris2023, Bueno2020, Gallego2021-HE, Gallego2021-PAS, HuBMAP, 
KPMP-PAS, NRR-HE, NRR-PAS, NRR-SIL, and Weis2022, covering var-
ious histological stains and glomerular lesion categories (Supp. tables 
1-2). Each dataset was labeled for GS and nonGS and was further stain-
normalized with 20 different reference images (Supp. fig. 1), producing 
a total of 200 datasets for testing. Subsequently, 34 different CNNs 
(Supp. table 3) were selected by screening for models evaluated in 
recent glomerular classification or clustering studies [7,8,15] and with 
available pretrained weights accessible in Keras. The models were then 
utilized to extract image features from each of the datasets.

Evaluating the relationship between class affiliations and feature 
embeddings via internal CVIs, i.e. the Silhouette score [44], the C-
index [45], and the Dunn index [46], the models displayed substan-
tial differences in the separation achieved between the two classes 
(Fig.  2A-C, Supp. fig. 2). Specifically, the MobileNet, DenseNet169, 
DenseNet201, SE-ResNet101, and Xception were among the best per-
forming models, while SE-ResNeXt50, EfficientNetV2M, EfficientNetV2L
VGG16, and VGG19 ranked generally the lowest.

When visually evaluated in respective two-dimensional UMAP em-
beddings, models with different ranks according to the CVIs also dis-
played differences in the separation between GS and nonGS (Fig.  2D-F), 
suggesting that the ranking provides some insight into how well the 
model-related features capture differences between the two classes. In 
addition, the normalization of datasets with different reference images 
also led to slight variations of the embeddings (Supp. fig. 3).

Finally, visualizing the resulting UMAP embeddings for two of 
the most promising feature extractors, i.e. the MobileNet and the 
DenseNet169, a marked separation between the GS and nonGS classes 
was observed across all datasets (Fig.  3, Supp. fig. 4), in comparison 
to the UMAP embeddings produced by some of the worst performing 
models such as the SE-ResNeXt50 or the EfficientNetV2L model (Supp. 
fig. 5-6).

3.2. Unsupervised learning captures GS and nongs classes

Having demonstrated that CNN-derived features can enable a visu-
ally highly pronounced separation between the GS and nonGS classes, 
the next question was then whether a clustering strategy could also 
automatically detect the two glomerular classes from the respective 
feature embedding. Towards this goal, the project first adopted a strat-
egy equivalent to what was proposed by Sato et al. [15], i.e. a UMAP 
projection followed by GMM clustering. Applied to the ten datasets, this 
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approach generally produced good clustering results (data not shown). 
However, when investigating the robustness of this finding across the 
different stain-normalized versions of each dataset, there were cases 
in which GMM clustering failed to pick up the two visually apparent 
groups (Supp. fig. 7).

To overcome this issue, the project instead adopted a Leiden cluster-
ing strategy [47], which has recently also been shown highly feasible 
for the clustering of histological images in other studies [16]. Leiden 
clustering produced a similar separation of glomeruli (data not shown), 
but also managed to pick up the visually apparent groups of glomeruli 
in the cases in which GMM clustering failed (Supp. fig. 7, Supp. fig. 8). 
Consequently, downstream evaluations of the clustering performance 
between GS and nonGS were based solely on Leiden clustering.

Specifically, for each dataset, clustering was then performed on the 
features extracted by each of the 34 different CNNs, followed by the 
computation of the adjusted Rand index (ARI), comparing the ground 
truth labels (GS and nonGS) to the resulting cluster assignments (C1 
and C2). The models displayed a wide range of ARI values (Supp. fig. 
9 A, and data not shown), which could not be explained by differences 
in the number of trainable parameters (Supp. fig. 9B) or the number 
of returned features (Supp. fig. 9C). Similarly, for each model, ARI 
variations where also observed between the different stain-normalized 
variants of the respective dataset (Supp. fig. 9A, and data not shown). 
An investigation of ARI values with respect to the stain-normalization 
reference image among all PAS datasets suggested that the choice 
of reference image might play some role in these differences (Supp. 
fig. 10). Specifically, ARI values were often worse in datasets stain-
normalized with a reference image with a fainter or more bluish stain 
appearance.

Upon ranking models based on the observed ARI values (Fig.  4A), 
it was found that the MobileNet [49] might generally produce the 
best clustering performance across datasets. Particularly, assuming the 
minor cluster (C2) to capture the GS glomerular patches, and inspecting 
the corresponding confusion matrices for one stain-normalized version 
of each dataset, it was found that the use of the MobileNet in combi-
nation with Leiden clustering led generally to few false-negative (FN, 
≤11%) and very few false-positive (FP, ≤3.69%) detections (Fig.  4B-
K). These findings were confirmed by inspecting the ARI (Fig.  4L) 
and balanced accuracy (Fig.  4M) values across all 20 stain-normalized 
versions for each dataset, with the mean balanced accuracies exceeding 
93% in the Bueno2020 and NRR-SIL datasets, and exceeding 97% in all 
other datasets.

3.3. Characterization and detection of misclustered cases

To understand the limitations of the clustering performances, a 
detailed investigation of the misclustered cases was conducted. Specif-
ically, the analysis utilized a single stain-normalized version of each 
dataset, the MobileNet for feature extraction, and the Leiden algorithm 
for clustering. Subsequently, images labeled as GS and assigned to 
the major cluster (C1) where considered FNs, while images labeled as 
nonGS and assigned to the minor cluster (C2) were considered FPs. A 
preliminary inspection of these images across all ten datasets (Supp. 
fig. 11-13) revealed six different categories of glomerular images: (i) 
truly misclustered cases, (ii) mislabeled cases, (iii) borderline cases with 
advanced sclerosis, (iv) globally sclerosed glomeruli with holes or split 
tissue, (v) images with potentially insufficient information for accurate 
labeling, e.g. tangential sections of glomeruli, and (vi) artifacts.

In addition, in the UMAP embedding, many of the misclustered 
images were also located on the border between the two clusters 
(Supp. fig. 11-13). We anticipated that these might predominantly be 
borderline cases either on the gradient between segmental and global 
sclerosis or otherwise difficult to distinguish from global sclerosis. 
Accordingly, we hypothesized that the cluster affiliation of these cases 
might not be robust across different clustering runs, which would en-
able their detection as uncertain cases. To investigate this question, we 
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Fig. 2. Evaluating the separation of GS and nonGS image patches between different CNN feature extractors. (A-C) Heatmaps displaying the ranking of models based on internal 
cluster validity indices (CVIs), i.e. Silhouette score (A), C-index (B), and Dunn index (C). For each dataset, the models were ranked 20 times, once per stain-normalized version 
of the dataset, and the heatmap was generated based on the mean across these 20 rankings. (D-F) UMAP embedding of the NRR-HE dataset using features from three different 
models, i.e. DenseNet169 (D), NASNetLarge (E), and EfficientNetV2M (F), chosen based on decreasing scores in all three CVIs. The shaded ellipses represent the 95% confidence 
ellipse for each class in the respective embedding.
conducted two additional experiments, in which we compared either 
(i) the clustering of the 20 stain-normalized variants of the KPMP-PAS 
dataset after feature extraction with the MobileNet (Fig.  5A), or (ii) 
the clustering of one stain-normalized variant of the KPMP-PAS dataset 
processed with three different CNNs, i.e. DenseNet169, MobileNet, 
and MobileNetV3Small (Supp. fig. 14A). Uncertain cases were then 
identified as those not always assigned to the same cluster across the 
different runs, and they covered many of the previously misclustered 
cases. Following a detailed re-labeling of these uncertain cases and 
the remaining FP and FN cases (those not absorbed into the uncertain 
group) by the consensus of two experienced nephropathologists, it was 
found that, in addition to distinct GS and nonGS images, they consti-
tuted many images with borderline GS, GS glomeruli with extensive 
white areas due to holes/split tissue, images with insufficient detail on 
the glomerulus for adequate labeling, or different types of artifacts (Fig. 
5 
5B). In addition, the re-labeling also suggested that many of the FN 
and FP clusterings were caused by a mislabeling in the initial labeling 
round (Fig.  5C-D, Supp. fig. 14B-C). The uncertain glomeruli were 
only very seldom mislabeled (Fig.  5E-F, Supp. fig. 14D-E). Glomeruli 
with more difficult appearances (borderline sclerosis, GS with holes, 
glomeruli with too little detail, or artifacts) were clearly present at 
varying percentages among all four groups of misclustered cases (Fig. 
5C-F, Supp. fig. 14B-E), potentially explaining inconsistent clustering 
results for these cases.

4. Discussions

The detection of global glomerulosclerosis plays a clear role in CKD 
diagnostics since it is one of the most prominent lesions examined dur-
ing biopsy reporting. Thus, the automatic classification of GS glomeruli 
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Fig. 3. Scatterplots illustrating the separation of GS and nonGS glomerular image patches following feature extraction with the MobileNet and UMAP embedding in two dimensions. 
Each scatterplot depicts the feature embedding and classes of one stain-normalized variant of each of the ten datasets: Besusparis2023 (A), Bueno2020 (B), Gallego2021-HE (C), 
Gallego2021-PAS (D), HuBMAP (E), KPMP-PAS (F), NRR-HE (G), NRR-PAS (H), NRR-SIL (I), and Weis2022 (J). Light and dark purple colors indicate nonGS and GS glomerular 
images, respectively.
represents a key objective in the development of computer-assisted 
diagnostic tools [4,50]. However, current DL models for the classifica-
tion of glomerular lesions are almost exclusively trained via supervised 
learning [3–8], which relies on extensively labeled image datasets, 
the establishment of which is often very costly. The current project 
demonstrated that, across several large collections of glomerular images 
and histological stains, the GS and nonGS classes could be consistently 
separated using clustering, enabling the labeling of glomerular images 
through a purely data-driven, unsupervised approach.

The current findings are closely related to the publication by
Sato et al. [15], which appears to be one of the first documented 
studies on clustering glomeruli. However, while the authors outlined 
6 
a framework for the clustering of glomeruli based on CNN-derived 
image features, they did not document any quantitative measure of 
how well this clustering separated between different glomerular le-
sions. Instead, the authors utilized the cluster affiliations as labels 
for downstream supervised fine-tuning of the network (NASNetLarge), 
and the softmax output of the final model was then interpreted as 
a score that could be evaluated in terms of association with clinical 
parameters. Furthermore, the authors only utilized a single glomeru-
lar dataset, and did not evaluate clustering with respect to different 
CNN models or different reference images for stain-normalization. In 
contrast, Altini et al. [7], compared a large panel of DL models for the 
classification of glomerular lesions, and showed the feature embeddings 
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Fig. 4. Evaluating the agreement between cluster and class labels. (A) Heatmap displaying the ranking of CNN models within each dataset based on the adjusted Rand index 
(ARI). The ARI was computed between the class labels and the cluster assignments produced by Leiden clustering on the features produced by the respective CNN model. For each 
dataset, the models were ranked 20 times, once per stain-normalized version of the dataset, and the heatmap was generated based on the mean across these 20 rankings. (B-K) 
Confusion matrices illustrating association between cluster (C1, C2) and class (nonGS,GS) memberships for the ten datasets: Besusparis2023 (B), Bueno2020 (C), Gallego2021-HE 
(D), Gallego2021-PAS (E), HubMap (F), KPMP-PAS (G), NRR-HE (H), NRR-PAS (I), NRR-SIL(J), and Weis2022 (K). (L-M) Quantitative evaluation of the agreement between cluster 
affiliations and class labels as measured by the adjusted Rand index (ARI, L) and the balanced accuracy (ACC, M). Each data point represents the measurement performed on one 
of the 20 different stain-normalized variants of the respective dataset. The red lines indicate the mean across the 20 values for each dataset.
of the best performing models. Importantly, highlighting the class labels 
of glomeruli in the embedding plots, the results suggested a notable 
separation between GS and nonGS glomeruli even when only using 
the original pretrained model without further fine-tuning. However, 
beyond an illustration of feature embeddings in relation to glomerular 
class labels, the authors did not conduct any clustering experiments to 
evaluate the unsupervised separation between glomerular lesions.

Of note, the presented approach is likely not suited for use in a 
diagnostic setting because a single biopsy section typically contains 
too few glomeruli to warrant clustering. Instead, the outlined approach 
might help in easing the manual labeling requirements and/or enable 
downstream unsupervised learning strategies [15], pushing towards 
more robust and clinically relevant GS detection models. Specifically, 
given the high accuracy with which GS images could be identified in 
the current study, the method appears highly suited for approaching a 
7 
(semi-)automatic labeling of GS images, which would greatly simplify 
the collection of DL training datasets.

Furthermore, while the clustering of GS serves only as a first proof-
of-concept, the accuracies achieved in the current study also represent a 
promising starting point to investigate the further subclustering of other 
glomerular lesions. For instance, a similar clustering strategy applied 
and evaluated on the GS cluster alone might provide insight into 
the separation between obsolescent, solidified, and disappearing GS 
[31,51]. In addition, it could also be investigated whether the clustering 
of sclerosis and non-sclerosis can be extended to smaller image patches 
from within glomeruli, as suggested by Sato et al. [15], which would 
potentially enable the separation between nonGS, GS, and segmentally 
sclerosed glomeruli (SS). Finally, the separation of other glomerular 
lesions might also be possible by evaluating feature embedding and 
clustering strategies on the nonGS cluster alone. However, achieving 
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Fig. 5. Evaluation of incorrectly clustered image patches: voting over multiple stain-normalized variations of the same dataset. (A) Consensus of the clustering of the KPMP-PAS 
dataset following 20 different stain-normalizations and feature extraction using the MobileNet. Light and dark green circles indicate, respectively, glomeruli that are nonGS and 
always in cluster 1 and GS glomeruli that are always in cluster 2. Red and blue triangles indicate glomeruli that are always false-positives (nonGS in cluster 2) and false-negatives 
(GS in cluster 1), respectively. Brown and yellow diamonds indicate nonGS and GS glomeruli, respectively, that switch clusters between the different stain-normalizations and can 
thus be identified as uncertain cases. (B) Three examples for each of the six different categories, i.e. nonGS, GS, borderline glomeruli with advanced sclerosis, GS with holes, 
glomeruli with insufficient detail for labeling, and artifacts, employed during relabeling of misclustered glomeruli. (C-F) Barplots representing the percentages (absolute number 
above each bar) of these six groups among the glomeruli from each of the four misclustered categories, i.e. false-positives (C), false-negatives (D), and uncertain nonGS (E) and 
GS (F) glomeruli.
such a subclustering of meaningful nonGS lesion categories would 
likely require further efforts in identifying or establishing suitable 
feature extraction models able to capture features relevant to the sep-
aration of other morphological lesions. Possible avenues towards such 
improved feature extractors are for instance the use of existing general-
histology foundation models [18–21] or the use of self-supervised 
learning on kidney biopsy images [30,31].

Importantly, unsupervised approaches should be approached with 
care. For instance, the current project always assumed that all datasets 
contained a subset of globally sclerosed glomeruli and that this subset 
constitutes the minor cluster. However, such a cluster-to-class assign-
ment might fail if no globally sclerosed glomeruli are present or if 
8 
they are more abundant than the non-globally sclerosed glomeruli. 
Possible solutions might be to either inspect a few randomly sampled, 
representative cases from each cluster, or to include a set of exter-
nal reference GS and nonGS images with known labels. Specifically, 
when processed together with the unlabeled dataset, including stain-
normalization, feature extraction, and clustering, the cluster affiliation 
of the reference images might be used to automatically identify the GS 
and nonGS clusters.

Furthermore, the clustering of GS and nonGS might only work 
if a sufficient total number of glomeruli and a sufficient number of 
GS image patches is included. The clustering might also be substan-
tially affected by the composition of the dataset, including e.g. the 
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types of diseases from which glomeruli were extracted, the types of 
glomerular lesions included, and the amount of pruning and curation 
performed on the image patches. Specifically, the best separations of 
the GS and nonGS classes were observed in the Besusparis2023 and 
HuBMAP datasets. While the former comprised a variety of different 
lesion categories, image patches were highly curated, being subjected 
to multiple rounds of validation to only include the image patches 
with the cleanest and most discernible lesions, thus potentially leading 
to the exceptional separation between GS and nonGS images. The 
HuBMAP data on the other hand appeared to lack, apart from globally 
sclerosed glomeruli, a large diversity of other lesions, thus leading 
to a clustering of almost exclusively GS and normal glomeruli, again 
resulting in a superb separability. The NRR, KPMP-PAS, Weis2022, and 
Bueno2020 datasets on the other hand were known or assumed to 
comprise both a broad range of diseases and/or lesion categories and 
were collected without much curation or pruning, thus representing a 
more natural distribution of glomerular appearances in both the GS 
and nonGS classes and consequently also a potentially more difficult 
task for clustering. In addition, the images in the Weis2022 dataset 
were also less clean with respect to glomerular extraction, containing 
sometimes only incompletely cropped glomeruli. The worst cluster-
ing performance was observed with respect to the NRR-SIL dataset. 
However, this finding was somewhat anticipated, considering that the 
pathologist also experienced difficulties labeling some of the images 
solely based on an inspection of the Periodic Acid Schiff Methenamine 
Silver (SIL)-stained glomerulus itself, instead requiring a cross-check 
with corresponding PAS-stained images. With respect to the evaluation 
of clustering performance, it should also be noted that the distinc-
tion between GS and SS might often be subjective. Specifically, the 
development of GS is a gradual process [52], and the definition of a 
consistent cut-off between SS and GS might be difficult. In light of this 
consideration, a more complete evaluation of clustering performance 
might benefit from the labeling of glomeruli with any level of sclerosis, 
to be able to distinguish misclustered cases into true mistakes (e.g. non-
sclerotic glomeruli in the GS cluster) and borderline cases. Importantly, 
the observation of images that occur on the boundary between the 
two clearly clustered groups of glomeruli is also expected and highly 
consistent with the results published by Walker et al. [12]. Ultimately, 
when using the clustering as a starting point for labeling glomeruli, 
the glomeruli on the boundary between the two clusters would then 
likely require more detailed inspections and labeling by pathologists, 
while the glomeruli clearly associated to either one of the clusters 
would probably have more easily verifiable labels and would often 
only require a superficial screening for any obvious mistakes [12]. 
Considering the accuracy of the clustering and the low number of 
boundary images documented in the current study, such a strategy 
could then result in a drastic speedup in labeling.

Importantly, while all employed CNNs were pretrained on ImageNet 
data, they performed often quite different in terms of feature embed-
ding and clustering accuracy. The study found no evident association 
between performance and the number of trainable parameters or the 
number of extracted features. Other factors might be differences in 
preprocessing, the dimension of input images, or the particular training 
procedure, all of which might affect the feature outputs of the network. 
Thus, fully elucidating the causes for such discrepancies might be 
difficult and would likely require a much more extensive investigation 
of differences between model features and their impact on glomerular 
class separation. Ultimately, there is likely no one-fits-all CNN when it 
comes to feature embedding for clustering of GS and nonGS. Specifi-
cally, while the MobileNet appeared to be a generally good choice for 
feature extraction in combination with Leiden clustering, it was not the 
best choice across all datasets, with differences likely determined by 
variations in dataset composition, image properties, and histological 
stain. Thus, when applied to a new, unlabeled dataset, a strategy to 
find the feature extractor resulting in the best clustering might be to test 
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different CNNs and then to evaluate the respective clustering qualities 
via internal CVIs.

However, as indicated in the present study, selecting the best feature 
embedding and/or clustering based on internal CVI is not always 
straightforward. Specifically, there exists a vast number of internal 
CVI methods in the literature [53], each of which evaluates a specific 
objective function that might or might not align with the objective 
function optimized in the chosen clustering approach. In fact, in the 
current study, the ARI results for clustering with the Leiden algorithm 
did not correlate very well with the internal CVIs applied to the 
class separation in the feature embedding and discrepancies were also 
observed between the different CVIs. While the high-dimensional data 
makes it difficult to visualize and fully investigate the cause for such 
discrepancies, a likely explanation might still be base differences in 
what these CVIs evaluate. For instance, while the Silhouette score 
measures cluster quality by determining how well each individual point 
fits into its own cluster as compared to other clusters, the Dunn index 
is computed on more global estimates of inter-cluster distance and 
intra-cluster similarity [54]. Furthermore, CVIs might work differently 
depending on the skewness, noise, or subclusters in the data [53,55].

The current study was also subject to some technical and method-
ological limitations. Specifically, given the numerous combinations 
of models, datasets, and stain-normalizations utilized, the UMAP and 
GMM functions were run with default parameters to make them gener-
ically applicable rather than fine-tuning them separately for each in-
dividual case. In addition, only a single stain-normalization method 
was utilized, but it would be relevant to investigate how alternative 
approaches [56,57] might affect clustering. The study also demon-
strated that the choice of stain-normalization reference can affect the 
outcome of the clustering and discussed a possible reason for some of 
this effect. Specifically, in the PAS datasets, a reference image with a 
fainter or more bluish stain appearance often resulted in a lower ARI 
value, possibly due to a lower contrast between the PAS-positive, PAS-
negative, and/or nuclear compartments. These preliminary findings 
warrant further investigations into the effect of reference image choice 
on clustering and how to select reference images accordingly.

Furthermore, it is not known how changes to the other preprocess-
ing steps, i.e. the cropping and scaling or the removal of non-glomerular 
background, would influence clustering results. For instance, globally 
sclerosed glomeruli are often smaller than normal glomeruli [52], but 
by cropping and rescaling all glomeruli based on a bounding box rather 
than just using a fixed-sized crop, information about glomerular sizes is 
lost. Lastly, the study evaluated only the use of pre-trained CNN-based 
feature extractors, but did not explore other techniques for feature 
embedding such as autoencoders [15,58] or feature extractors trained 
on histological data [18–21]. Given the results of the current study, the 
clustering of GS versus nonGS might already be approaching a limit in 
achievable performance even when only using models pretrained on 
ImageNet, since the remaining misclustered glomeruli often just repre-
sent artifacts, outliers, mislabelings, or glomeruli that are also difficult 
to label for a pathologist. However, in order to achieve an acceptable 
clustering of other glomerular lesions, fine-tuning or domain-specific 
pretraining, e.g. through contrastive learning, might likely be required 
to achieve image representations and feature extractors more adapted 
to the underlying histology.

5. Conclusion

In summary, the current study clearly demonstrated that an un-
supervised learning approach, utilizing CNNs pre-trained solely on 
ImageNet, can separate globally and non-globally sclerosed glomerular 
images with very high proficiency. Specifically, among the evaluated 
CNN models, the MobileNet [49] was found to generally perform best 
for clustering nonGS and GS glomeruli, achieving accuracies of over 
95% in most datasets.
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An inspection of the presumably misclustered glomeruli suggested 
that many such cases were either mislabeled during dataset generation 
or represented borderline glomeruli that are inherently difficult to clas-
sify even for a pathologist. Furthermore, many such misclustered/un-
certain glomeruli could be automatically detected by clustering the data 
multiple times, either using different stain-normalization references or 
different CNN models for feature extraction. Following this approach, 
glomeruli that require manual attention by a pathologist can easily 
be highlighted, while clearly clustered glomeruli could potentially be 
screened more rapidly for any obvious mistakes, resulting in a speedup 
as compared to manual labeling from scratch.

We are convinced that the outlined strategy will aid researchers 
(i) in achieving a more labeling-efficient generation of datasets for the 
training of deep-learning GS classifiers, and (ii) by providing a basis for 
ongoing research into the clustering of glomerular lesions. Specifically, 
considering the findings of the present work as a proof-of-concept, 
it appears promising to further explore the potential of unsupervised 
learning towards the detection of a broader range of glomerular lesions 
patterns.
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