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Abstract. The first part of the paper presents major concepts and theoretical statements on prediction of processes. The 

second part presents the obtained results on the geometric renewal process by indicating its distribution which has a binomial 

distribution and is a process with independent and stationary increments. Further, having applied the theory introduced in the 

first part to the geometric renewal process, the sufficient and unbiased prediction with the minimum-variance has been found. 
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1. Introduction 

The concept of prediction sufficiency was introduced by K. Takeuchi and M. Akahira (1975). The primary 

application of prediction sufficiency was demonstrated by E. N. Torgersen (1977). More comprehensive applications of 

this concept were demonstrated by B. Johansson (1990). 

It is shown that much of the classical theory of unbiased parameter estimation can be transferred to a predictive 

setting. The main object of the present papers [7, 3] is to develop these ideas further and, in particular, to study a close 

connection which exists between unbiased prediction and time reversal of Markov processes (Björk & Johansson, 

1992). Johansson (1990) replaced the usual sufficiency concept by that of prediction sufficiency, so the Rao-Blackwell 

and Lehmann-Scheffé theorem can be rephrased to suit the above context. 

The return from prediction to the parameter estimation theory, enriching the latter by the new findings obtained 

after prediction, was demonstrated by T. Björk and B. Johansson (1996). These studies investigated Poisson processes, 

the Yule model, a Wiener process with the unknown drift, diffusion with the unknown drift, and the geometric 

Brownian motion. 

The aim of this research is to find the minimum variance unbiased predictor of the geometric renewal process 𝑁𝑡, 

𝑡 > 𝑠, based on observations {𝑁𝑢, 0 ≤ 𝑢 ≤ 𝑠}. 

Major concepts and results of prediction of processes introduced in the second section of the paper have been 

mostly based on the research study [3]. This is displayed in a similar manner in [1], too. In the third section, using paper 

[6], we introduce a definition of the geometric renewal process, demonstrate that it has a binomial distribution and is a 

process with independent and stationary increments. The geometric renewal process is called by some authors the 

discrete Poisson process [9] which, together with the continuous Poisson process, is considered to be classical in the 

theory of renewal processes. Therefore they are often investigated in monographs dealing with this theory. At the end of 

the section, the form of the process of local density (Radon-Nikodym derivative) of the geometric renewal process, 

taken from [5], is presented. Basic concepts of renewal processes are presented in [4]. The fourth section displays the 

found UMSEUP (“Uniformly Minimum Squared Error Unbiased Predictor”) predictions of the renewal process, both 

when a parameter is unknown and when it is known. 

2. Unbiased prediction 

We now recall the definitions of a prediction sufficient statistic and main theorems (see e. g. [3, 7]). We consider 

some sample space Ω and two 𝜎-algebras ℱ1 and ℱ2, where ℱ1 is generated by some set of random variables which we 

observe, and ℱ2 is generated by a set of (yet) unobserved variables. We also have a family 𝒫 of probability measures on 
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(Ω,  ℱ1 ∨ ℱ2). The objective is to predict some square integrable, ℱ2-measurable random variable (r.v.) W. A predictor 

is any square-integrable, ℱ1-measurable r.v. X. The performance of the predictor X is evaluated by its quadratic loss 

function 𝑃 → 𝔼𝜃[(𝑋 − 𝑊)2],  𝑃 ∈ 𝒫. The predictor X is called unbiased, if 𝔼𝑃[𝑋] = 𝔼𝑃[𝑊], ∀𝑃 ∈ 𝒫. The predictor X is 

said to be complete for 𝒫 if, for every fixed Borel-function 𝑔, the condition 

𝔼𝑃[𝑔(𝑋)] = 0,  𝑃 ∈ 𝒫 

implies  

𝑔(𝑋) = 0, 𝑃 – almost surely (a.s.). 

Definition 1. An ℱ1-measurable statistic Y is said to be prediction-sufficient with respect to (w.r.t.) (ℱ1, ℱ2, 𝒫), if 

Y is sufficient w.r.t. 𝒫 restricted on ℱ1, i.e. for every bounded ℱ1-measurable r.v. Z, there exists a common version of 

𝔼𝑃[𝑍|𝑌], 𝑃 ∈ 𝒫; and for every 𝑃 ∈ 𝒫, ℱ1 and  ℱ2 are conditionally independent given Y. 

Theorem 1. (Rao–Blackwell) [3]. Suppose that Y is prediction-sufficient w.r.t. (ℱ1, ℱ2, 𝒫). Let X be an ℱ1-

measurable predictor of the ℱ2-measurable variable W. Then the predictor 𝜑(𝑌) = 𝔼𝑃[𝑋|𝑌] = 𝔼[𝑋|𝑌] satisfies 

𝔼𝑃[(𝜑(𝑌) − 𝑊)2] ≤ 𝔼𝑃[(𝑋 − 𝑊)2],  ∀𝑃 ∈ 𝒫. 

Theorem 2. (Lehmann–Scheffé) [3]. Assume that the statistic Y is prediction-sufficient w.r.t. (ℱ1, ℱ2, 𝒫) and 

complete w.r.t. 𝒫. Also assume that there exists some ℱ1-measurable unbiased predictor X of W. The predictor 𝜑(𝑌) =

𝔼[𝑋|𝑌] then satisfies 

𝔼𝑃[(𝜑(𝑌) − 𝑊)2] ≤ 𝔼𝑃[(𝑍 − 𝑊)2],  ∀𝑃 ∈ 𝒫, 

for every ℱ1-measurable unbiased predictor Z. It is also unique, P-a.s. unique with this property. 

Definition 2. An unbiased predictor X of W is UMSEUP if, for every other unbiased predictor Z, 

𝔼𝑃[(𝑋 − 𝑊)2] ≤ 𝔼𝑃[(𝑍 − 𝑊)2],  ∀𝑃 ∈ 𝒫. 

Corollary (Theorem 2). If we have a complete and prediction sufficient statistic (prediction) Y and can find the 

function 𝑓(𝑌) such that 𝔼𝑃[𝑓(𝑌)] = 𝔼𝑃[𝑊],  ∀𝑃 ∈ 𝒫, then 𝑓(𝑌) is UMSEUP. 

3. Geometric renewal process 

On a stochastic basis (Ω, ℱ, 𝔽, 𝑃𝜃 , 𝜃 ∈ Θ), where Θ is an abstract space, let there be given a counting process 

𝑁𝑡 = ∑ 𝟏(𝑇𝑛 ≤ 𝑡)∞
𝑛=1 , 𝑡 ≥ 0, such that the random moments 𝑋𝑖 = 𝑇𝑖 − 𝑇𝑖−1, 𝑖 = 1, 2, … (𝑇0 = 0) are independent and 

identically distributed. Such a process is called a renewal process. 

We consider a geometric renewal process 𝑁𝑡 = ∑ 𝟏(𝑇𝑛 ≤ 𝑡)∞
𝑛=1 , 𝑡 ≥ 0, with random variables 𝑋𝑖 = 𝑇𝑖 − 𝑇𝑖−1, 𝑖 =

1, 2, …, having the geometric distribution 𝑃𝜃(𝑋𝑖 = 𝑘) = 𝜃(1 − 𝜃)𝑘−1, 𝜃 ∈ Θ = (0, 1), 𝑘 = 1, 2, … . 

We can note that by the renewal process definition 

𝑃𝜃{𝑁𝑡 = 0} = 𝑃{𝑡 < 𝑋1} 

and 

𝑃𝜃{𝑁𝑡 = 𝑘} = 𝑃{𝑋1 + ⋯ + 𝑋𝑘 ≤ 𝑡 < 𝑋1 + ⋯ + 𝑋𝑘 + 𝑋𝑘+1}, 𝑘 = 1, 2, … . 

Theorem 3. [6]. Suppose  𝑇𝑛 = ∑ 𝑋𝑖 
𝑛
𝑖=1  for 𝑛 ≥ 1, 𝑇0 = 0 and 𝐹𝑛(𝑡) = 𝑃𝜃(𝑇𝑛 ≤ 𝑡). Then 

𝐹𝑛(𝑥) = 1 − (1 − 𝜃)𝑥 ∑ 𝐶𝑥
𝑖 (

𝜃

1−𝜃
)

𝑖
𝑛−1
𝑖=0 ,   𝑥 = 𝑛, 𝑛 + 1, …, 

and 

𝑃𝜃{𝑁𝑡 = 𝑛} = 𝐶[𝑡]
𝑛 𝜃𝑛(1 − 𝜃)[𝑡]−𝑛, 𝑛 = 0, 1, 2, … , [𝑡].        

It is a formula of binomial distribution with parameters ([t], 𝜃). We shall characterize this renewal process. 

Now, let 𝑁𝑡 be a renewal process, determined by successive interarrival times 𝑋1, 𝑋2, … that are independent and 

identically distributed (i.i.d.) nonnegative integer r.v.s. 

Condition A.  

For each ω, 𝑁𝑡(𝜔) is a nonnegative integer as t ≥ 0, 𝑁0(𝜔) = 0 and lim𝑡→∞ 𝑁𝑡(𝜔) = ∞. Further, for each ω, 

𝑁𝑡(𝜔) as a function of t is non-decreasing and right-continuous and the point of discontinuity 𝑁𝑡(𝜔) − sup𝑠<𝑡 𝑁𝑠(𝜔) is 

exactly 1. 

Condition B. 

𝑋1, 𝑋2, … are independent, having the geometric distribution with the parameter 𝜃. 

Condition C. 

(a) For 0 < 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑘 increments 𝑁𝑡1
, 𝑁𝑡2

− 𝑁𝑡1
, …, 𝑁𝑡𝑘

− 𝑁𝑡𝑘−1
 are independent and 

𝑃𝜃{𝑁𝑡𝑖
− 𝑁𝑡𝑖−1

= 𝑛𝑖 , 1 ≤ 𝑖 ≤ 𝑘} = ∏ 𝑃𝜃{𝑁𝑡𝑖−𝑡𝑖−1
= 𝑛𝑖}

𝑘

𝑖=1
. 
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(𝑏) The increments have the binomial distribution, i. e. 

𝑃𝜃{𝑁𝑡 − 𝑁𝑠 = 𝑘} = 𝐶[𝑡]−[𝑠]
𝑘 𝜃𝑘(1 − 𝜃)[𝑡]−[𝑠]−𝑘,   𝜃 ∈ Θ,  0 ≤ [𝑠] < [𝑡],  𝑘 = 0, 1, … , [𝑡] − [𝑠]. 

Theorem 4. [6]. Conditions B and C are equivalent in the presence of condition A. 

By [9] the simplest example of the renewal process is the discrete Poisson process with a shifted geometric 

renewal distribution 

𝑝𝑘 = 𝑃𝜃(𝑋𝑖 = 𝑘) = 𝜃(1 − 𝜃)𝑘−1, 𝜃 ∈ Θ = (0, 1), 𝑘 = 1, 2, … . 

However, by [9] the simplest way to define the discrete Poisson process is by introducing an i.i.d. sequence 𝑌1, 𝑌2, … of 

{0; 1} r.v.s 

𝑌𝑖 = {
1, with probability 𝜃,        
0, with probability 1 − 𝜃,

 

and assuming 𝑁0 = 0 and 𝑁𝑡 = ∑ 𝑌𝑗
[𝑡]
𝑗=1 , 𝑡 ≥ 0. 

It follows that 𝑁𝑡 is binomially distributed and, therefore, the discrete Poisson process is also called a binomial 

process. 

We denote ℱ𝑡
𝑁 = 𝜎(𝑁𝑠, 𝑠 ≤ 𝑡) and suppose that 𝔽 = (ℱ𝑡

𝑁)𝑡≥0. Let 𝜃, 𝜃0 ∈ Θ = (0, 1) and 𝜃 ≠ 𝜃0. Then [5] 

𝑃𝜃
𝑡~𝑃𝜃0

𝑡 , where 𝑃𝜃
𝑡 = 𝑃𝜃|ℱ𝑡

𝑁, and Radon-Nikodym derivative is 

𝑑𝑃𝜃
𝑡

𝑑𝑃𝜃0
𝑡 = (

𝜃

𝜃0
)

𝑁𝑡
(

1−𝜃

1−𝜃0
)

[𝑡]−𝑁𝑡
.         (1) 

It is easy to prove that this formula is correct valid grounding on the equality 

𝔼𝜃0

𝑑𝑃𝜃
𝑡

𝑑𝑃𝜃0

𝑡 = ∫
𝑑𝑃𝜃

𝑡

𝑑𝑃𝜃0

𝑡 (∙)𝑑𝑃𝜃0

𝑡 = ∑ (
𝜃

𝜃0

)
𝑘

(
1 − 𝜃

1 − 𝜃0

)

[𝑡]−𝑘

𝑃𝜃0
(𝑁𝑡 = 𝑘)

[𝑡]

𝑘=0

= ∑ (
𝜃

𝜃0

)
𝑘

(
1 − 𝜃

1 − 𝜃0

)

[𝑡]−𝑘

𝐶[𝑡]
𝑘 𝜃0

𝑘(1 − 𝜃)[𝑡]−𝑘

[𝑡]

𝑘=0

 

= ∑ 𝐶[𝑡]
𝑘 𝜃𝑘(1 − 𝜃)[𝑡]−𝑘

[𝑡]

𝑘=0

= 1. 

4. Model for predicting of the geometric renewal process  

Let us observe the period 𝑢 ∈ (0, 𝑠) of the geometric renewal process 𝑁𝑢. Our aim is to obtain prediction of  𝑁𝑡 , 

𝑡 > 𝑠, according to these observations of the process. To this end, we define a family of probability measures 𝒫 =

{𝑃𝜃 ,   𝜃 ∈ Θ =]0,1[} and 𝜎-algebra ℱ(𝑠,𝑡) = ℴ{𝑁𝑢 ,   𝑠 < 𝑢 < 𝑡}. We shall obtain the prediction model 

(ℱ[0,𝑠],   ℱ(𝑠,𝑡],  𝒫). 

1. Finding of a sufficient statistic.  

Since the likelihood ratio of the process 𝑁𝑠, given observations {𝑁𝑢, 0 ≤ 𝑢 ≤ 𝑠}, is 

𝑑𝑃𝜃
𝑠

𝑑𝑃𝜃0

𝑠 = (
𝜃

𝜃0

)
𝑁𝑠

(
1 − 𝜃

1 − 𝜃0

)

[𝑠]−𝑁𝑠

, 

according to the factorisation theorem, 𝑁𝑠 is a sufficient statistic to estimate the parameter 𝜃.  

2. Finding of a complete statistic. 

For every fixed Borel function 𝑔 

𝔼𝜃𝑔(𝑁𝑠) = ∑ 𝑔(𝑘)∞
𝑘=0 𝐶[𝑠]

𝑘 𝜃𝑘(1 − 𝜃)[𝑠]−𝑘 = 0, for all 𝜃 ∈ Θ =]0,1[. 

This implies that  

𝑔(0) = 𝑔(1) = ⋯ = 𝑔([𝑠]) = 0. 

Therefore the statistic 𝑁𝑠 is complete. 

Corollary 1. Statistic 𝑁𝑠 is complete and sufficient. 

Corollary 2. Since the geometric renewal process 𝑁𝑠 has the binomial distribution and is a process with 

independent increments, that has a valid expression 

𝑁𝑠 = ∑ 𝑌𝑗
[𝑠]
𝑗=1 ,   i.i.d.  𝑌𝑖 = {

1,     with probability 𝜃,        
0,     with probability 1 − 𝜃,

 

ℱ[0,𝑠] and  ℱ(𝑠,𝑡] are independent w.r.t. 𝒫. Thus, the geometric renewal process 𝑁𝑠 is prediction-sufficient w.r.t. 

(ℱ[0,𝑠],   ℱ(𝑠,𝑡],  𝒫) and complete w.r.t. 𝒫. Therefore by Corollary of Theorem 2, the predictor of the process 𝑁𝑡, 𝑡 > 𝑠, is 

𝑓(𝑁𝑠), where the function f is unknown as yet. 

Since the process 𝑁𝑠 has the binomial distribution with parameters 𝜃 and [𝑠], we obtain 

𝔼𝜃𝑁𝑠 = 𝜃[𝑠],   𝜃 ∈ Θ. 
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Consequently, we should find a function f such that 

𝔼𝜃𝑓(𝑁𝑠) = 𝜃[𝑡],   𝜃 ∈ Θ, 

because 𝔼𝜃𝑁𝑡 = 𝜃[𝑡],   𝜃 ∈ Θ. 

Case 1. Let the distribution parameter 𝜃, 𝜃 ∈ Θ be unknown. Then, the function (predictor) 𝑓 will be sought for as   

𝑓(𝑁𝑠) = 𝛼𝑁𝑠, 

where 𝛼 is yet unknown constant. 

Hence we obtain that 

𝔼𝜃𝑓(𝑁𝑠) = 𝔼𝜃𝛼𝑁𝑠 = 𝛼𝔼𝜃𝑁𝑠 = 𝛼𝜃[𝑠]. 

𝛼𝜃[𝑠] = 𝜃[𝑡]. 

Next, 

𝛼 =
[𝑡]

[𝑠]
. 

Thus, we derive: 

𝑓(𝑁𝑠) =
[𝑡]

[𝑠]
𝑁𝑠 = 𝑁𝑠 +

𝑁𝑠

[𝑠]
([𝑡] − [𝑠]). 

Therefore, according to the theory, we obtain that   

𝑓(𝑁𝑠) = 𝑁𝑠 +
𝑁𝑠

[𝑠]
([𝑡] − [𝑠]) 

is the unbiased predictor of 𝑁𝑡 and then UMSEUP according to Theorem 2. 

Case 2. Let the parameter 𝜃, 𝜃 ∈ Θ be known. 

According to the theory, the best predictor of 𝑁𝑡 is a conditional expectation (also see [3], Introduction): 

𝜑(𝑁𝑠) = 𝔼𝜃(𝑁𝑡|𝑁𝑠). 

Since the process 𝑁𝑠 is a process with independent increments, it follows that 

𝜑(𝑁𝑠) = 𝔼𝜃(𝑁𝑡|𝑁𝑠) = 𝔼𝜃(𝑁𝑠 + 𝑁𝑡 − 𝑁𝑠|𝑁𝑠) = 𝑁𝑠 + 𝜃([𝑡] − [𝑠]) 

is the prediction of 𝑁𝑡 which is unbiased and UMSEUP. When basing on formula (1), it is easy to prove that, according 

to observations {𝑁𝑢, 𝑢 ∈ [0, 𝑠]}, the maximum likelihood estimator of the parameter 𝜃 is 
𝑁𝑠

[𝑠]
 . Hence we can understand 

the relation between optimal estimators and optimal predictors. 

5. Conclusions 

1. By applying the theorem of factorization and the definition of the complete statistic, we have found out that the 

statistic 𝑁𝑠 is prediction-sufficient w.r.t. (ℱ[0,𝑠],   ℱ(𝑠,𝑡],  𝒫) and complete w.r.t. 𝒫, 𝒫 = {𝑃𝜃 ,   𝜃 ∈ Θ =]0,1[}. 

2. In case the model’s parameter 𝜃 is unknown, the best predictor (UMSEUP) of the geometric renewal process 𝑁𝑡 is 

𝑓(𝑁𝑠) = 𝑁𝑠 +
𝑁𝑠

[𝑠]
([𝑡] − [𝑠]). 

3. In case the model’s parameter 𝜃 is known, the best predictor (UMSEUP) of the geometric renewal process 𝑁𝑡 is 

𝜑(𝑁𝑠) = 𝑁𝑠 + 𝜃([𝑡] − [𝑠]). 
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GEOMETRINIO ATSTATYMO PROCESO PROGNOZAVIMAS 

Vaidotas Kanišauskas, Karolina Piaseckienė  

Santrauka. Pirmoje straipsnio dalyje pateiktos pagrindinės sąvokos ir teoriniai teiginiai apie procesų prognozavimą. Antroje darbo 

dalyje pateikiami žinomi rezultatai apie nagrinėjamą geometrinį atstatymo procesą, nurodant jo skirstinį, kuris, pasirodo, turi  

binominį skirstinį ir yra procesas su nepriklausomais ir stacionariais pokyčiais. Geometriniam atstatymo procesui pritaikius pirmos 

dalies teoriją, surandama prognoziškai pakankama ir nepaslinktoji prognozė, turinti tolygiai mažiausią dispersiją. 

 

Reikšminiai žodžiai: atstatymo procesas, binominis skirstinys, prognozė, nepaslinktoji prognozė. 
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