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The importance of atrial cardiomyopathy (AtCM) as a specific clinical entity is increasingly recognized. Past definitions have varied, and
the lack of consistent cut-offs for imaging parameters and biomarkers have limited clinical utility to diagnose and track AtCM progression.
While research has mainly focused on AtCM in the context of atrial fibrillation, emerging evidence underscores its relevance in remodelling
and development of heart failure. The aim of this consensus document was to provide a contemporary framework for AtCM, evolve
the definitions of AtCM and atrial failure for more widespread clinical use, and help to direct emerging research and future clinical trials.
Supporting the work of early career researchers, this consensus document evaluates diagnostic markers and summarizes the underpinning
mechanisms, clinical characteristics and prognostic impact of AtCM. Our objective was to bring together new translational scientific progress,
catalyse future research and enable clinical application to facilitate better management, for example in patient groups where aggressive
control of risk factors or comorbidities could prevent AtCM progression. We redefined AtCM as a graded disorder that includes electrical
dysfunction of the atria along with evidence of either mechanical atrial dysfunction, atrial enlargement and/or atrial fibrosis. Atrial failure is the
end-stage manifestation of AtCM, characterized by progressive structural, electrophysiological and functional changes. Earlier identification,
risk stratification and ongoing research into therapeutic options have the potential to prevent the clinical consequences of AtCM and atrial
failure, including adverse patient outcomes and poor quality of life associated with atrial fibrillation and heart failure.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Graphical Abstract

The diagnosis of atrial cardiomyopathy (AtCM) requires electrical atrial dysfunction, with evidence of either mechanical atrial dysfunction, atrial
enlargement, or excessive atrial fibrosis. The diagnostic cut-points presented are for standard electrocardiogram and echocardiogram studies (see
Figure 1 for further detail). ECG, electrocardiography.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Keywords Atrial cardiomyopathy • Atrial fibrosis • Heart failure • Atrial fibrillation • Imaging •
Electrocardiography

Introduction
The atria play a significant role in overall cardiac function, as
well as systemic and pulmonary haemodynamics.1 Beyond their
impact on ventricular filling, they serve as volumetric reservoirs
supporting effective ventricular contraction, and house pacemaker
cells and other crucial components of the cardiac conduction sys-
tem. Moreover, they secrete natriuretic peptides, which are piv-
otal in regulating fluid homeostasis and vascular tone. Notably, the
atrial myocardium is susceptible to various cardiac and non-cardiac
diseases and is particularly sensitive to loading conditions and
extra-cardiac factors.

There is a growing realization of the importance of atrial dis-
ease, of which the most evident consequences are heart failure ..
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.. (HF), a syndrome where cardiac function is insufficient for the
individual’s needs,2,3 and atrial fibrillation (AF), characterized by
uncoordinated electrical activation that impedes atrial contrac-
tion.4 AF is the most common sustained arrhythmia,5 and increases
the risk of stroke and other thromboembolic outcomes, HF and
mortality.6,7 The lack of direct correlation in many studies between
episodes of AF and subsequent thromboembolism is indicative that
AF can be an intermittent manifestation of underlying cardiomyopa-
thy.8,9 For example, in patients with continuous pacemaker mon-
itoring, subclinical AF >6 min is detected in only 15% of patients
during the month before an embolic event.10 Rather than wait-
ing for incident AF or HF to occur, earlier identification of atrial
remodelling may provide an opportunity to intercede. Left atrial
(LA) reservoir strain (LASr) is more closely associated with stroke

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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and dementia risk than AF,11,12 and in patients with HF and pre-
served ejection fraction (HFpEF), mechanical atrial dysfunction is
an independent and better predictor than AF to stratify for adverse
clinical outcomes.13 There may also be treatment implications;
for example, in patients with an embolic stroke of undetermined
source, rivaroxaban in the NAVIGATE-ESUS trial had no overall
advantage over aspirin in reducing the recurrence of stroke or sys-
temic embolism,14 except in patients with an LA diameter exceed-
ing 46 mm.15

The term atrial cardiomyopathy (AtCM) was initially proposed
in 1972 to describe patients with first-degree heart block and
ectopic supraventricular rhythms progressing to persistent atrial
standstill.16 Subsequent definitions and consensus documents have
moved the field forward scientifically, initially based on correlated
histological changes to provide a solid framework for AtCM diagno-
sis.17,18 Whilst there are genetic variants proposed in the pathology
of AtCM in rare patients,19 genetic predisposition in the majority of
those with AtCM is complex and multifactorial, with polygenic risk
markers associated with both structural and functional LA param-
eters.20,21 The ‘common soil hypothesis’22 suggests that stressors
such as ageing, cardio-metabolic risk factors and concomitant dis-
eases promote (sub)clinical atrial disease through mechanisms such
as inflammation, endothelial and microvascular dysfunction, fibro-
sis, hypercoagulability, and atrial stretch. Underlying atrial disease
therefore becomes a specific clinical entity and a potentially tar-
getable indicator of adverse prognosis, even in the absence of
clinically-detected AF or HF.

The primary aim of the present consensus document was to
propose a definition of AtCM that could be applied with ease in
clinical practice, and be a scaffold for emerging research that could
inform the development of this field (Graphical Abstract). This docu-
ment evolves prior definitions, reflects the current state-of-the-art
in clinical research, and was designed to be applied not just by elec-
trophysiology or HF specialists, but earlier and more widely across
different medical specialties. The approach was developed follow-
ing a number of in-person and virtual meetings coordinated by the
Committee on Atrial Disorders from the Heart Failure Association
(HFA) of the European Society of Cardiology (ESC). This included
early career investigators involved in basic, translational or clinical
research on the mechanisms or clinical manifestations of AtCM.
These early career researchers performed and presented reviews
of the available literature within each section to inform the con-
sensus approach. Our objective was to stimulate this new field
within cardiology, underpinning research and clinical trials that can
improve patient care and prevent the development of AF, HF and
other adverse outcomes.

Proposed definition of atrial
cardiomyopathy and atrial failure
In light of the presently available body of evidence, we propose
defining AtCM as ‘electrical and mechanical dysfunction of the atria,
resulting from underlying pathological changes that lead to atrial enlarge-
ment or atrial fibrosis, with the potential to produce clinical conse-
quences’. ..
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.. Consensus was built on the need for both clinical simplicity and
also to ensure specificity for AtCM. Hence the diagnosis of AtCM
requires demonstration of electrical atrial dysfunction in combination
with evidence of either mechanical atrial dysfunction, atrial enlarge-
ment and/or excessive atrial fibrosis (Figure 1). Combining markers
in this way may also avoid over-diagnosis, particularly as a variety
of diseases can cause similar features of atrial disruption. The pos-
sible manifestations of electrical and mechanical atrial dysfunction
are discussed below. Further, we comment on the cut-offs for atrial
enlargement, emerging methods to detect atrial fibrosis, biomark-
ers that could in future help to refine risk and diagnosis of AtCM,
and the molecular underpinning of AtCM that could reveal future
targets for therapeutic intervention.

Atrial cardiomyopathy can be due to primary atrial disease
without other relevant initial cardiac abnormalities, or secondary
to existing ventricular and/or valvular disease. Similar to ventricular
myopathy, AtCM has a spectrum of severity and the combination
of different atrial disease markers will likely indicate a higher
risk of progression. AtCM can manifest through abnormalities in
atrial geometry, wall structure and function, which are typically
detected by cardiac imaging techniques. However, the severity
and consistency of these abnormalities lack universally accepted,
and prognostically documented cut-offs. Furthermore, reference
values are only available for a limited number of atrial markers.23,24

Underpinning this iterative proposed AtCM framework is the
ability for surrogate biomarkers to allow for earlier and more
accurate detection of AtCM. Most of the atrial markers studied
have shown association with risk of stroke and thromboembolism
even in the absence of AF, including LA size25 and advanced
inter-atrial block (IAB).23,26 However, there is clear need for more
research to identify the most reproducible and easily applicable
markers for routine clinical practice.

More pragmatic and hence earlier diagnosis of AtCM has the
potential to prevent atrial failure, the end-stage of AtCM manifes-
tation occurring due to progressive structural, electrophysiological
and functional changes.27 Atrial failure is characterized by clinical
manifestations such as persistent AF or documented HF, with dys-
pnoea, fatigue and impaired quality of life attributable (at least in
part) to atrial disease. A combination of the proposed AtCM mark-
ers presumably leads to a higher risk of atrial failure. This presents
an opportunity for timely risk stratification and management in
patients with AtCM, or those at risk of AtCM, to prevent or delay
atrial failure. Pending future clinical trials in AtCM, at present this
could include aggressive management of underlying risk factors and
comorbidities.

Future directions
Clinical validation studies of the proposed AtCM definition frame-
work will be required, along with iterative updates over time to
reflect new research findings, new technology, and changing patient
substrate and comorbidity patterns. There is limited evidence cur-
rently on the role of natriuretic peptides and other biomarkers to
stratify risk of AtCM and atrial failure. Well-powered studies are
essential to develop approaches that have diagnostic accuracy for
AtCM and can be easily implemented in routine practice. It is likely

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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4 J. Weerts et al.

Figure 1 Consensus approach to diagnosis of atrial cardiomyopathy (AtCM) and prevention of atrial failure. AtCM is defined as electrical
and mechanical dysfunction of the atria, resulting from underlying pathological changes that lead to atrial enlargement or atrial fibrosis, with
the potential to produce clinical consequences. The diagnostic cut-points for AtCM in this document will need to be updated with new
studies; although somewhat arbitrary, they represent the consensus group’s best approximation of a workable AtCM diagnosis at this time. 2D,
two-dimensional; AF, atrial fibrillation; CMR, cardiac magnetic resonance; CVD, cardiovascular disease; ESC, European Society of Cardiology; HF,
heart failure; IAB, inter-atrial block. aNumbers in circles represent the AtCM P-wave score; see Table 2 for other relevant P-wave abnormalities.
bFor women aged >65 years, the 2D-echo AtCM threshold for indexed left atrial volume is >48 ml/m2. cClinical trials are needed specifically
in patients at risk or with AtCM. dThe 2024 ESC guidelines on AF have class I recommendations on primary prevention of AF for maintaining
optimal blood pressure, normal weight and an active lifestyle, and avoidance of binge drinking.4 The 2021/2023 ESC guidelines on HF have
class I recommendations on primary prevention of HF for treatment of hypertension; statins in those at high risk of CVD; sodium–glucose
co-transporter 2 inhibitors in patients with diabetes and CVD, or diabetes and chronic kidney disease; finerenone in patients with diabetes and
chronic kidney disease; and counselling against sedentary habit, obesity, smoking and alcohol abuse.2,3

that additional manifestations of atrial failure remain undiscovered
and warrant further exploration. Robust studies are needed that
can inform on strategies to prevent progression of AtCM to atrial
failure.

Diagnostic criteria for electrical
atrial dysfunction
Surface electrocardiography (ECG) is a widely available technique
to assess cardiac electrophysiology in humans. The ECG has been
the hallmark of AF diagnosis.28 The ECG can also be used to
predict future incidence of AF or HF,29,30 with ECGs displaying
distinct features once atrial dysfunction develops (Figure 2). The
presence of paroxysmal AF is an opportunity to intercede in the
progression of AtCM at a ‘pre-atrial failure’ stage, but many of these
ECG markers occur even earlier, allowing for pre-emptive action
to address the underlying drivers of AtCM.

P-wave abnormalities in atrial
cardiomyopathy
Under normal conditions, the sinoatrial impulse propagates from
the right to the left atrium predominantly through the Bachmann ..
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.. bundle, allowing fast and synchronic biauricular depolarization.31

A normal P-wave has duration <110 ms, is positive in inferior
leads, with a biphasic morphology only in V1. Additionally, the
normal P-wave usually has a voltage >0.1 mV and an axis between
0 and 75∘. Any alteration in electrophysiological properties, atrial
structure or atrial function are typically reflected by changes in
P-wave morphology, highlighting the importance of P-wave analysis
to indicate AtCM.

Several P-wave abnormalities have been reported.31,32 One of
the most studied parameters is the presence of IAB, caused by
a conduction delay or Bachmann’s bundle block.33 In this context,
the depolarization of the left atrium occurs caudo-cranially via sep-
tal and coronary sinus fibers, causing significant electromechanical
asynchrony. IAB is defined as a P-wave duration ≥120 ms and is
classified into three degrees: partial (P-wave duration>120 ms with
positive polarity and usually bimodal morphology in the inferior
leads); advanced (P-wave duration ≥120 ms with Bachmann’s bun-
dle block showing biphasic configuration in ≥2 inferior leads due
to caudo-cranial depolarization); and intermittent (when a variable
degree of block appears).34 The diagnosis of IAB is frequently asso-
ciated with LA remodelling and fibrosis. IAB, especially advanced
IAB, has been associated with an increased risk for adverse out-
comes, such as AF, ischaemic stroke, cognitive impairment, HF

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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ESC/HFA consensus statement on atrial cardiomyopathy 5

Figure 2 Electrocardiographic markers indicating atrial disorders. Visual summary of P-wave abnormalities measured on an electrocardio-
gram. Most P-wave abnormalities have been associated with imaging modalities of atrial cardiomyopathy, as well as cardiovascular adverse
events.

and mortality.23,35–38 The association between IAB and new-onset
supraventricular arrhythmias, including AF, is known as Bayes syn-
drome.39 The risk of AF has been reported to increase twofold and
fourfold in patients with partial and advanced IAB, respectively.40

Although the majority of evidence comes from advanced IAB,
other P-wave indexes have also been linked with AtCM. Further-
more, IAB is typically associated with an advanced AtCM stage and
may be absent in patients with a diffuse or patchy disease sub-
strate.41 Therefore, it is important to combine IAB assessment
with other sensitive ECG parameters to evaluate earlier stages of
AtCM. Measurement of the P-wave duration allows the quantifica-
tion of interatrial conduction slowing in patients with AtCM and
is also associated with ischaemic stroke, cognitive impairment, HF
and mortality.42,43 However, the reported cut-off values for vari-
ous clinical outcomes are highly variable. In a large cohort study,
both a very short and a very long P-wave duration were associ-
ated with the occurrence of death, stroke and AF.44 This might be
explained by patients with advanced AtCM having hidden or under-
estimated P-wave prolongation, as low-amplitude P-wave compo-
nents may not be visualized on the 12-lead ECG using standard
settings.41,43 Amplification of the 12-lead ECG might be useful to
appreciate low-amplitude components, allowing for measurement
of the amplified P-wave duration that is highly correlated with
LA hypertension, mechanical dysfunction, and invasively-measured
low-voltage areas.45 Other techniques that enhance ECG analysis
and aid AtCM detection include additional leads and higher sample
rates for advanced post-processing analysis.46–51 ..
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.. Additional P-wave indexes, such as voltage, axis, morphology,
dispersion, area, and terminal force in V1, have also been described
as risk factors for AF, stroke, HF, dementia and mortality.52–54 Each
ECG parameter has advantages and disadvantages in determining
AtCM (Table 1). Besides these ‘classical’ ECG parameters, artificial
intelligence has the potential to significantly improve AtCM diag-
nosis, as demonstrated for new-onset AF, HF, and mortality.55

P-wave characteristics to diagnose atrial
cardiomyopathy
P-wave abnormalities may identify a subset of patients with pre-
viously undetected AtCM, allowing for risk stratification and the
potential for specific preventive or therapeutic measures. We pro-
pose a score based on the P-wave, where the parameters with
the most evidence provide the most weight (Table 2). Explana-
tion on how to perform P-wave measurements is elaborated in
Appendix 1 and Figure 3. Intermediate risk (score of 1 or 2) is
represented by patients with prolonged P-wave duration or IAB,
but without clinical atrial arrhythmias. The management of these
earlier stages of AtCM (preceding clinical AF) remains an area of
relative knowledge gap,56–58 although it may be possible to prevent
or delay AtCM progression and inhibit progression to atrial fail-
ure. The use of anticoagulants and rhythm control strategies in this
group remains controversial and requires further investigation. It is
conceivable that diligent comorbidity and risk factor management
of patients with intermediate risk may slow down atrial remodelling

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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6 J. Weerts et al.

Table 1 Strengths and weaknesses of P-wave parameters to predict atrial cardiomyopathy

P-wave parameter Strength Weakness
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IAB Evidence +++ for advanced IAB in
advanced AtCM stages

Easy to measure

Less evidence for partial IAB
Moderate sensitivity

P-wave duration Evidence ++ for early AtCM stages
Easy to measure

Undersensing of low-amplitude P-wave
components using standard settings

Signal-to-noise ratio
No established pathological cut-off

P-wave voltage Evidence
Easy to measure

Undersensing of low-amplitude P-wave
components using standard settings

Signal-to-noise ratio
P-wave axis Evidence ++

Easy to measure
Cannot be calculated in the presence of

advanced IAB
P-wave terminal force V1 Evidence ++

Only one lead is needed
Difficult to measure

P-wave dispersion Evidence Long recording ECG
Difficult to measure

P-wave area Easy to measure Little evidence
Difficult to measure

P-wave morphology in
orthogonal leads

Evidence Difficult to measure

AtCM, atrial cardiomyopathy; ECG, electrocardiography; IAB, inter-atrial block.

Table 2 Atrial cardiomyopathy P-wave score

P-wave disturbances to identify
electrical atrial dysfunction and AtCM risk

Score

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Absence of any changes in P-wave parameters 0
Prolonged P-wave duration (≥120 ms on

standard ECG or ≥150 ms on amplified
12-lead ECG)a

1

Advanced inter-atrial block (P-wave ≥120 ms
plus biphasic morphology in ≥2 inferior
leads) without clinical atrial arrhythmia

2

Advanced inter-atrial block with episodes of
paroxysmal atrial arrhythmia

3

Persistent atrial arrhythmia 4

The diagnosis of AtCM according to this consensus approach requires docu-
mented electrical atrial dysfunction (AtCM P-wave score of 1 or more) in com-
bination with evidence of either mechanical atrial dysfunction, atrial enlargement,
or excessive atrial fibrosis. Patients at risk of AtCM (score of 1 or 2) deserve
proactive management of comorbidity and risk factors to prevent or revert pro-
gression of structural and mechanical dysfunction. A total score of 3 or more
warrants an evaluation of thromboembolic risk, and the use of anticoagulation
or antiarrhythmic strategies as per clinical practice guidelines.
AtCM, atrial cardiomyopathy; ECG, electrocardiography.
aThe presence of partial inter-atrial block (P-wave ≥120 ms with positive polarity
and usually bimodal morphology in inferior leads), abnormal P-wave voltage
(≤0.1 mV), axis (<0∘ or >75∘), P-wave terminal force in V1 (>40 mm/ms or
>4 mV/ms) and dispersion (>40 ms) also constitute an AtCM P-wave score of 1.

and subsequently prevent the onset of AF and/or HF.59 A score of
≥3 is obtained in the presence of paroxysmal or persistent AF, high-
lighting the need for anticoagulation or antiarrhythmic strategies to
effectively manage the condition. In the presence of persistent AF, ..
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. the 12-lead ECG becomes less useful, and prognostic stratification

tools become more relevant. These include, for example, continu-
ous monitoring to determine AF burden or ventricular response.60

Patients with AF but without demonstrable AtCM are of special
interest to deepen the understanding of the AtCM framework,
including AF due to specific triggers such as critical illness, alcohol
intake and genetic background.

Future directions
Improved ability to distinguish anatomical versus functional fac-
tors underpinning specific P-wave disorders would help to rede-
fine ECG-based risk prediction of AtCM. The appropriate ablation
strategy in patients with AF61 and advanced atrial failure, and its
ability to modify the substrate and progression of the disease,
requires further investigation. In addition, clarification is needed
on the role of invasive techniques, such as atrial high-density
electro-anatomical mapping, to diagnose AtCM and for prognostic
stratification. Artificial intelligence algorithms are being developed
to automate P-wave analysis,62 and could play an increasing role
in future clinical practice once reliability, accuracy and diagnos-
tic/prognostic prediction are clarified.

Diagnostic criteria for mechanical
atrial dysfunction
Atrial remodelling occurs in parallel with electrical dysfunction
and leads to persistent changes in atrial size and function, often
associated with increased susceptibility to atrial arrhythmias.63

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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ESC/HFA consensus statement on atrial cardiomyopathy 7

Figure 3 Electrocardiogram (ECG) and imaging evaluation for atrial cardiomyopathy. (A) Steps for calculating P-wave duration (see Appendix
1 for details). Step 1: an unfiltered P-wave in V1 shows small changes in electrical activity (arrows) which can be a result of small artefacts
(electrical noise, muscle activity, or others). Step 2a: by applying routine filters for a standard ECG recording, the macro-shape of the P-wave
becomes visible and many artefacts will disappear, as well as small changes in atrial electrical activity. Step 3a: parts of the P-wave with small
atrial electrical activity and low amplitudes may be neglected in marking the earliest and last atrial electrical activity. Step 2b: a signal-averaged
P-wave consists of a long recording of unfiltered ECG (light grey lines). By calculating the average P-wave signal (black line) of these unfiltered
ECGs, randomly distributed artefacts disappear while small changes in atrial electrical activity are preserved. Step 3b: this allows exact marking
of the earliest and last atrial electrical activity. (B) Steps for calculating left atrial (LA) strain (see Appendix 2 for details). LA reservoir strain:
the reservoir phase of LA strain represents the positive wave with a peak during systole and negative deflection in the phase of passive LA
filling. The obtained value is always positive. LA conduit strain: the second positive peak following the P-wave in the pre-contraction phase.
In sinus rhythm, this phase occurs from the time of mitral valve opening through diastasis, until the onset of LA contraction. In subjects with
atrial fibrillation, the LA conduit phase has the same value as the LA reservoir strain but it is negative. LA booster strain: this occurs from the
onset of LA contraction until end-diastole in patients with sinus rhythm. It always has a negative value.

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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8 J. Weerts et al.

Figure 4 Evolution of atrial markers obtained by multimodal imaging. Multimodality imaging represents a useful approach to intercept
subclinical changes in the left atrium, together with the surface electrocardiogram and serum biomarkers. Due to limited data currently, only
indexed left atrial (LA) volume and LA reservoir strain are incorporated in the present atrial cardiomyopathy (AtCM) diagnostic framework.
4D, four-dimensional; CMR, cardiac magnetic resonance; CT, computed tomography; LAVi, left atrial volume index; LGE, late gadolinium
enhancement; MR, mitral regurgitation; PA-TDI (TACT), P-wave on surface electrocardiogram to peak A’-wave on tissue Doppler imaging (also
known as the total atrial conduction time); TR, tricuspid regurgitation.

In contrast to the left ventricle, the left atrium presents a
pressure–volume loop pattern with three main functional com-
ponents: filling (or reservoir), passive emptying (or conduit), and
active emptying (or booster pump). Each of these components
is progressively hampered in diastolic dysfunction, with a gradual
reduction of LA functional reserve. Atrial remodelling can be dis-
tinguished into a functional component (consisting of an impaired
function without necessarily an increment in size) and structural
component (with altered geometry and/or wall fibrosis). Imag-
ing techniques, most notably echocardiography and cardiac mag-
netic resonance (CMR), as well as cardiac computed tomography
(CCT) are able to capture different aspects of atrial remodelling
(Figure 4).17,27,64

Left atrial function, particularly atrial contraction, is reflected by
the amplitude and width of transmitral atrial-induced flow veloc-
ity (a wave).65 The ratio with peak early mitral velocity (E/a ratio)
has classically been used as an index of LA and left ventricular (LV)
pressures. More recently, LA strain analysis has been introduced
to estimate reservoir, conduit and booster function,66,67 for which
practical recommendations have been released by scientific soci-
eties66 (‘how-to’ explanations in Appendix 2 and Figure 3). LA strain
depends on the preload, afterload, and intrinsic atrial contractility.
Specifically, LASr is tightly coupled to LV longitudinal shortening
and is strongly influenced by LV strain, LV end-diastolic pressure
and pulmonary capillary wedge pressure.68–71 LA strain is use-
ful for the assessment LV filling pressures, defining the severity
of diastolic dysfunction, and establishing the diagnosis of HFpEF.72

Its role has been demonstrated for risk stratification in several ..
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.. disease settings.13,73 For instance, LASr was shown to be a deter-

minant for morbidity (e.g. HF) and cardiovascular mortality in the
general population,74 as well as acute HF.71 Evaluation of LA func-
tion may help identify patients at high risk of atrial arrhythmias75

and risk of ischaemic stroke,76,77 similar to use in those undergo-
ing AF catheter ablation to establish propensity to maintain sinus
rhythm.78 Given the relatively easy assessment of LASr and the
available evidence as prognostic factor compared to other LA
strain assessments, only LASr is included in this proposed definition
of AtCM.

Normal ranges for two-dimensional (2D) echocardiography-
derived LA strain have been established.79–81 Thresholds for abnor-
mal LASr are proposed at <23%, with LA booster strain thresh-
old <5% for ages 40–65 years and <8% in those >65 years.68–71,80

Three-dimensional (3D) strain analysis can also be conducted,
however normative values remain unclear and the impact of
different pathologies warrants further validation.82 Other func-
tional metrics of potential value are LA emptying fraction,83 LA
mechanical dispersion index84 and LA stiffness index,85 whereas
tissue Doppler-based strain assessment has been superseded by
speckle-tracking approaches.86 CMR-based feature tracking anal-
ysis provides information on atrial deformation comparable to
echocardiographic speckle tracking. The proposed CMR-derived
cut-offs for abnormal LA function are <23% for LASr and <8%
for LA booster strain.87–90 Table 3 provides common atrial imag-
ing values to indicate AtCM,79,80,88–101 and multimodality atrial
imaging has recently been reviewed in an ESC clinical consensus
statement.102

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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ESC/HFA consensus statement on atrial cardiomyopathy 9

Table 3 Atrial imaging parameters used in clinical practice to define structural and functional alterations

Echocardiography Cardiac magnetic resonance
imaging

Cardiac computed tomography

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Strengths Quick and easy to conduct with
wide access

Timely assessment of LA dimensions,
LV/RV function, atrio-ventricular
valves

3D analysis
Speckle-tracking analysis

High spatial and contrast resolution
Better reproducibility and lower

variability
Identification of LA appendage

thrombus, LV/RV function,
atrio-ventricular valves

3D analysis
Possibility of feature-tracking analysis
Tissue characterization (LGE, ECV, T

mapping);
Useful in pre-procedural planning

(catheter ablation)

High spatial resolution
Identification of LA appendage

thrombus
Presence of atrial septal defect or

patent foramen ovale; atrial wall
thickness and dimension
assessment

Better reproducibility and lower
variability

3D analysis
Possibility of feature-tracking analysis
Tissue characterization (late iodine

enhancement, ECV), epicardial
adipose tissue characterization

Useful in pre-procedural planning
(catheter ablation, LA appendage
occlusion, tricuspid/mitral valve
intervention)

Limitations High interobserver variability (lower
for 3D analysis)

Limited spatial resolution
Limited by acoustic windows
Tissue characterization not available

Limited availability
Use of contrast medium (gadolinium)

Limited availability
Use of iodinated contrast medium
Exposure to radiation
Data on normal values

Proposed thresholds of abnormality suggestive for atrial cardiomyopathy
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Left atrium
LA diameter

(anteroposterior)
>40 mm in men
>38 mm in women91

>42 mm in men
>41 mm in women92

>45 mm in men
>44 mm in women93

LA maximum volume
indexed by BSA

2D: >40 ml/m2

>48 ml/m2 in women >65 years
3D: >41 ml/m2

>48 ml/m2 in patients >65 years80

>60 ml/m294 2D: >73 ml/m2

3D: >78 ml/m295

LA area >22 cm2 for SR patients
>28 cm2 for AF patients96

>28 cm292,97

LA reservoir strain 2D: <23%79,80,98
<23%88–90 No studies in sufficiently large

populations to propose optimal
cut-offs

LA conduit strain 2D: <12%
<9% in patients >65 years80

<21%99

LA booster strain 2D: <8%80
<8%88–90

LA emptying fraction 2D: <48%
3D: <43%

<46%80,94

Right atrium
RA volume indexed

by BSA
>36 ml/m2 in men100

>30 ml/m2 in women100
>61 ml/m2 in men
>54 ml/m2 in women94

>89 ml/m295

RA area >22 cm2101 in men
>18 cm2101 in women

>27 cm2 in men
>24 cm2 in women97

>22 cm2100

Note that studies vary in the methodology of assessment, inclusion or exclusion of appendage or venous structures, and automated or post-processing approaches.
3D, three-dimensional; BSA, body surface area; ECV, extra-cellular volume; LA, left atrial; LGE, late gadolinium enhancement; LV, left ventricular; RA, right atrial; RV, right
ventricular.

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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10 J. Weerts et al.

Diagnostic criteria for left atrial
enlargement
Left atrial enlargement and geometrical changes typically result
from chronically elevated LA pressures in non-AF patients.65,103 2D
LA volume indexed for body surface area (LAVi) represents the
most extensively investigated parameter of LA remodelling, pro-
viding important prognostic implications,104 particularly in patients
with HF or AF.105,106 In those with HF, adverse LA remodelling
is associated with higher risk of death and HF hospitalization,
with increases in LA diameter preventable through up-titration of
angiotensin-converting enzyme inhibitors or angiotensin receptor
blockers,107 and sodium–glucose co-transporter 2 inhibitors.108

LA size also predicts AF, stroke and mortality in the general pop-
ulation.109,110 The proposed cut-off for diagnosing LA enlargement
based on 2D echocardiography is LAVi >40 ml/m2, with a higher
threshold of >48 ml/m2 for women aged >65 years80 (Table 3). 3D
echocardiography and CMR have better spatial resolution and can
enhance the accuracy of volume estimates. The proposed cut-offs
for diagnosing atrial enlargement using 3D echocardiography LAVi
are>41 ml/m2 (>48 ml/m2 for women>65 years),80 and>60 ml/m2

using CMR-derived LAVi.94 Atrial enlargement has typically been
measured at maximal volume on echocardiography, however min-
imal LA volume may be more highly associated with clinical out-
comes in patients with HF,111,112 albeit with greater measurement
variability.113

Diagnostic criteria for atrial
fibrosis
Atrial fibrosis is a primary manifestation of AtCM that is linked
to the electrical, mechanical and structural alterations discussed,
and associated with development of atrial failure, AF, HF and
adverse events. Scientific understanding of atrial fibrosis and its
relevance is advancing.114 Notably, atrial fibrosis manifests in var-
ious forms, including reactive and replacement fibrosis.115 CMR
can detect atrial fibrosis through late gadolinium enhancement
(LGE),116 but this is limited by the spatial resolution of current
CMR scanning in relation to the thin atrial wall. Furthermore, a
variety of different acquisition and post-processing protocols are
available which differ in both the amount and regional distribu-
tion of detected LA fibrosis.117,118 Small studies suggest that LA
LGE ≥10–15% can predict incident atrial arrhythmias, stroke and
arrhythmia recurrence after pulmonary vein isolation,119–121 but
further research is clearly warranted prior to widespread clinical
use. LASr correlates with the extent of histological atrial fibrosis
in advanced HF patients, highlighting the possibility of echocar-
diography as a surrogate measure.122,123 Due to limited histolog-
ical validation,124 it remains unclear whether detected atrial fibro-
sis, which relies on threshold settings of LGE wash-out, primarily
identifies larger areas of replacement fibrosis or is also sensitive
to reactive (endomysial and perimysial) fibrosis. CMR and CCT
can be valuable tools for planning AF ablation125 and quantifying
epicardial adipose tissue, which plays an important role in atrial
remodelilng.126 ..
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.. Future directions
Further study is needed on the relationship between LA struc-
tural and functional alterations and AF/stroke occurrence, hard
endpoints (cardiovascular mortality, HF hospitalization), as well as
the response to drug therapy in HF with reduced ejection frac-
tion (HFrEF) and HFpEF, and to percutaneous interventions for
aortic and mitral valve disease. There is a clear requirement to
identify cut-offs for LA size and function that have prognostic
value or can stratify risk of AtCM. This includes optimal clini-
cal thresholds that indicate atrial remodelling, for example with
combined electrical/structural markers such as the total atrial con-
duction time that measures duration from depolarization to active
LA contraction.127 Histological validation of imaging modalities to
quantify atrial fibrosis will be important to further our mech-
anistic understanding of AtCM, and to quantify any reversal of
atrial fibrosis in response to medical therapy and other interven-
tions. This includes sodium–glucose co-transporter 2 inhibitors
and glucagon-like peptide-1 receptor agonists which have known
antifibrotic properties, but where the impact on atrial fibrosis
development and progression is unclear.128

Role of the right heart
and comorbidities in atrial
cardiomyopathy
A notable gap exists in our understanding of the interactions
between the right heart and AtCM. Similarly, the mechanisms
whereby systemic conditions and non-cardiac comorbidities may
influence cardiac remodelling and affect the electrophysiologi-
cal and mechanical properties of the atria have not been fully
elucidated.

The interplay between right heart abnormalities and LA dys-
function has been explored in patients with HFpEF.109 The term
‘disproportionate LA myopathy’ was introduced to describe a con-
dition where LA dysfunction was more pronounced than expected
based on observed LV dysfunction. Right heart dysfunction through
enhanced left-to-right atrial interaction and heightened pericardial
constraint may be a contributor to LA myopathy.109 The exacer-
bation and progression of cardiovascular conditions with adverse
cardiac remodelling because of systemic, non-cardiac comorbidi-
ties is well established, and is particularly evident in HFpEF and
AF.129–134 Physiological ageing, coupled with common comorbidi-
ties such as hypertension, obesity, diabetes mellitus and valvular
disease can all contribute to atrial remodelling.17,135 The obe-
sity phenotype of HFpEF is characterized by right ventricular
dilatation and LV diastolic dysfunction through pericardial con-
straint and ventricular interdependence.136 Tricuspid regurgita-
tion, causing right ventricular volume overload, may also lead to
HFpEF and atrial myopathy.137,138 Comorbidities have been linked
to reduced LA and right atrial strain parameters in paroxysmal
AF, particularly when more than three conditions are present,
including hypertension, diabetes, coronary artery disease, obesity,
age >65 years, moderate-to-severe mitral regurgitation and kidney
disease.139

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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ESC/HFA consensus statement on atrial cardiomyopathy 11

Whether incidence or progression of AtCM can be prevented
through effective management of AtCM precursors requires dedi-
cated clinical trials. In the interim, it may be reasonable to encour-
age early aggressive management of risk factors and comorbidi-
ties in selected patients to prevent or reduce the progression
of AtCM. This is similar to the AF-CARE approach detailed
in the 2024 ESC guidelines on AF. In patients with clinical AF,
there were sufficient trials for class I recommendations to reduce
arrhythmia recurrence and prevent AF progression by better man-
agement of hypertension, diabetes mellitus and obesity, in addi-
tion to enhancing exercise capacity and restriction of alcohol
intake.4

Future directions
Collectively, systemic conditions and non-cardiac comorbidities
have the potential to significantly influence cardiac remodelling and
can impact the electrophysiological and mechanical properties of
the atria. However, the mechanisms by which these effects occur
are not fully understood and warrant further exploration through
mechanistic studies, and potentially preclinical or experimental
investigations.

Future molecular targets
for atrial cardiomyopathy
New mechanisms can shed light on AtCM and the bidirectional
relationship between AF and HF and its therapeutic targets.140,141

Here we provide promising insights into the evolving research on
the development, diagnosis or progression of AtCM.

Biomarkers
B-type natriuretic peptides are used in clinical practice to diag-
nose HF,142 although their utility for AtCM is unclear. The Atrial
Cardiopathy and Antithrombotic Drugs in Prevention after Cryp-
togenic Stroke (ARCADIA) trial used B-type natriuretic peptide
(>250 pg/ml) or P-wave terminal force to indicate AtCM, but
was stopped early due to futility for the comparison between
apixaban versus aspirin to prevent recurrent stroke.143 LA wall
stretch also prompts atrial natriuretic peptide (ANP) release. The
left atrium in a failing heart exhibits abundant yet defective ANP
synthesis,144,145 leading to a relative deficit of the active ANP
form.146 Altered processing and clearance of natriuretic peptides
increase susceptibility to volume overload, acute decompensa-
tion147 and progression of HF.148 ANP exerts anti-hypertrophic
effects on the left ventricle149 and may stimulate autophagy and
mitophagy,150,151 and it exhibits anti-arrhythmic properties, reduc-
ing the likelihood of re-entry and preventing AF maintenance.152

In AF, ANP synthesis is initially stimulated but reverses with
arrhythmia progression, with a negative correlation between ANP
production and atrial collagen deposition. In contrast, exces-
sive ANP production can lead to amyloid fibril deposition, iso-
lated atrial amyloidosis and AtCM.153,154 Mid-regional proANP
has emerged as a potentially-specific biomarker for AF155 and ..
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.. AtCM in HFpEF,156,157 although distinct thresholds require further
research.

Bone morphogenetic protein 10 (BMP10) belongs to the trans-
forming growth factor-beta family and is a novel biomarker for atrial
remodelling and AF. As an atrial-specific ligand, higher plasma levels
may reflect more severely altered atrial structure.158,159 Elevated
BMP10 levels have been linked to increased risk of adverse cardio-
vascular events,160–164 higher AF recurrence after rhythm control,
and late postoperative AF after cardiovascular surgery.165 The pre-
cise interaction between BMP10 and AF or HF remains unclear,
but may not be directly causal,166 hence the need for further inves-
tigation in its role as a risk stratifier for AtCM.160,161,163,167

Atrial fibrosis
The pathophysiological mechanisms leading to atrial fibrosis are
diverse, involving stretch-induced activation of fibroblasts, sys-
temic inflammatory processes, activation of coagulation factors,
and fibro-fatty infiltrations.168 While activated fibroblasts are the
principal cells involved in collagen synthesis, other cell types such
as atrial myocytes, adipocytes, and immune cells also play crucial
roles in sensing environmental factors that contribute to atrial
fibrosis.169,170 On a microscopic scale, diffuse endomysial fibro-
sis causes discontinuous conduction, longitudinal dissociation, and
endo-epicardial dissociation of electrical activity during AF.171,172

Larger, patchy fibrosis areas on a macroscopic scale are more likely
to anchor macro re-entrant circuits. Further relevant histopatho-
logical findings have previously been summarized.18 The hetero-
geneity of atrial fibrosis mechanism complicates the development
of effective therapeutic strategies, but also presents an opportunity
for innovation.128

Inflammasome
Metabolic and cardiovascular disorders, such as hypertension, obe-
sity, diabetes, gut dysbiosis, chronic kidney disease and sepsis, are
known to stimulate the activation of nucleotide-binding oligomer-
ization domain-like receptor protein 3 (NLRP3).173–180 Increased
NLRP3 inflammasome activity in atrial cardiomyocytes, immune
cells181 and fibroblasts182 mediates active interleukin-1β and
interleukin-18 release and the promotion of a fibro-inflammatory
cycle. This can contribute to atrial and ventricular structural and
electrical remodelling, promoting AtCM and an AF-maintaining
substrate by affecting ion channel functionality and Ca2+ handling.
Mechanistic studies are needed to elucidate the causal relationship
between inflammasome activation in atrial cells and AtCM, as well
as the efficacy of NLRP3-specific inhibitors.177,179,183–188 It should
be noted that clinical trials of conventional anti-inflammatory drugs
such as colchicine have demonstrated a mixed response,189 with
the largest randomized trials showing no significant prevention of
AF.190,191

Electrical and anatomical remodelling
Cardiomyopathies associated with arrhythmia and diastolic dys-
function often share intrinsic cardiac triggers that may underly

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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12 J. Weerts et al.

AtCM.192 Electrical remodelling, usually defined as shortening
of the atrial effective refractory period and action potential
duration, contributes to atrial arrhythmogenesis by promoting
re-entrant activity.193 Novel therapeutical targets have been iden-
tified, including inhibition of phosphodiesterase (PDE) type-8,
particularly the atrial-selective PDE8B2 isoform,194 and upreg-
ulation of the Ca2+-dependent SK current.195 Reactive oxygen
species-dependent activation of Ca2+/calmodulin-dependent pro-
tein kinase IIδc could also be an important target to prevent
adverse remodelling.196 In HF, elevated filling pressures impose
mechanical stress and chronic overload on the atria. This leads
to varying degrees of atrial remodelling, but the precise molecu-
lar mechanisms remain elusive.197 Genetic and non-genetic alter-
ations in active and passive force generation at the sarcomere
level can contribute to electrical dysfunction via altered myofila-
ment Ca2+ sensitivity, sarcomere integrity, impaired contractility
and disturbed coordination of signalling molecules, all of which
could induce and maintain AF by causing re-entry-promoting atrial
remodelling.198–200 Atrial cardiomyocytes exhibit Ca2+ handling
and structural, but not electrical, remodelling in HFrEF patients,201

unless AF co-occurs.201 Ca2+-handling abnormalities that cause
cellular triggered activity are likely the major trigger of AF in
HFrEF,201 with AF subsequently producing electrical remodelling
that promotes its maintenance.202 Mainly in HFrEF, reduced phos-
phorylation of cardiac myosin-binding protein C leads to con-
tractile dysfunction and Ca2+-cycling abnormalities, contributing
to cardiac arrhythmias.203,204 In HFpEF, increased myocardial stiff-
ness, titin isoform alterations and fibrosis result in heteroge-
neous conduction that, when present in the atria, are a substrate
for the persistence and propagation of atrial arrhythmias.205–207

Defective mitochondrial oxidative capacity, particularly fatty acid
metabolism, appears to be present within atrial cardiomyocytes
in AF208 and HFpEF.209 Restoring the fatty acid metabolism oxi-
dation presents an opportunity to tackle both disorders,209,210

although glucose metabolism and comorbidities such as obesity
are confounders. Further understanding these electro-mechanical
mechanisms will be crucial to delineate the common and distinct
triggers of these conditions, and their role in the pathogenesis
of AtCM.

Epicardial adipose tissue
Epicardial adipose tissue has been implicated in the pathogen-
esis of AF and HFpEF,211,212 and could influence progression
of AtCM211,213,214 through atrial fat infiltration, release of
pro-inflammatory and pro-fibrotic mediators, oxidative stress,
altered ion currents, gap junction modulation, and autonomic
dysfunction.211,215,216 Patients with HFpEF have more epicardial fat
than controls or those with HFrEF,214,217 and more atrial epicardial
adipose tissue when AF is co-occurring.212 The browning of these
adipocytes may offer protection against AF and other cardio-
vascular conditions by mitigating inflammation and improving
metabolic profiles,218 contrasting with that observed in HFpEF.219

The negative cardiometabolic effects of adipocytes may be more
pronounced in women than men, potentially increasing the risk of
AtCM and a HFpEF phenotype in women.220 ..
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.. Clinical application, gaps
in evidence and future directions
To diagnose and stratify AtCM, we suggest a comprehensive assess-
ment of clinical status, evaluation of electrical atrial dysfunction
using ECG to assess for P-wave abnormalities, and imaging to deter-
mine mechanical atrial dysfunction and atrial enlargement. The lat-
ter is most commonly interrogated with echocardiography (includ-
ing speckle-tracking analysis), with CMR considered as a comple-
mentary examination, especially when better resolution or tissue
characterization is clinically indicated. It is essential to integrate the
assessment of the left atrium with thorough evaluation of LV sys-
tolic and diastolic function, valve disease and the right heart. This
comprehensive approach will allow the exclusion of other struc-
tural heart alterations as a cause of symptoms, and put the potential
diagnosis of AtCM in context. The presence of any one AtCM
marker (electrical atrial dysfunction, mechanical atrial dysfunction,
atrial enlargement or excessive atrial fibrosis) should prompt this
diagnostic work-up. However, electrical atrial dysfunction plus one
of the structural markers is required under this proposed defi-
nition to confirm AtCM, in order to avoid over-diagnosis. This
is a key development over previous AtCM definitions, with the
enhanced specificity designed to stimulate new clinical research and
trials that can demonstrate opportunities to prevent AtCM or its
progression.

Regardless of whether a patient is deemed at risk or with AtCM,
they should undergo detailed screening for HF using imaging and
natriuretic peptides, and appropriate ECG monitoring for atrial
arrhythmias as outlined in the respective ESC guidelines.2–4 The
role that gender plays on risk stratification or management of
AtCM is unclear, although studies have demonstrated that women
have a higher prevalence and more extensive regions of low-voltage
zones in the left atrium than men221,222 that could indicate more
advanced underlying cardiomyopathy by the time of diagnosis or
treatment. AtCM with confirmation of either HF or persistent AF
provides a diagnosis of atrial failure that requires therapy for each
condition as per clinical guidelines,2–4 with the potential for prog-
nostic benefit. Considering the high risk of adverse outcomes in
patients with AtCM and atrial failure, monitoring by a cardiolo-
gist with either HF or AF expertise is advisable, depending on
local infrastructure. Important evidence gaps and possible future
research directions for the AtCM diagnostic framework are sum-
marized in Table 4,101,223–234 with the aim of galvanizing AtCM
research, and providing clearer diagnostic cut-offs for clinical use
and enhancing their implementation in routine practice.

Conclusions
Atrial cardiomyopathy is a progressive condition that starts from
apparently healthy atria, traverses a subclinical phase of atrial dis-
ease, and continues to an end-stage of atrial failure that has irre-
versible consequences for the patient. This paper, coordinated by
the HFA of the ESC and supporting early career investigators, was
designed to stimulate the field, coalesce research targets and facil-
itate future clinical trials to prevent progression of AtCM. We

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Table 4 Important evidence gaps in atrial cardiomyopathy and suggested future directions

Evidence gaps Future directions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Expected clinical course of the
AtCM spectrum and relevant
clinical markers

• More population and mechanistic studies are needed to identify the natural course of AtCM and its
relation to clinically relevant outcomes. Specifically, are there features or markers that indicate a
higher risk of stroke, thromboembolism or progressive HF development in individuals with or at risk
of AtCM?

• How do common comorbidities (such as hypertension, obesity, diabetes mellitus and coronary artery
disease) or lifestyle (smoking, obesity and exercise) as well as treatment impact the course of AtCM?

• Do women have the same trajectory for AtCM development and progression as men after accounting
for biology and diagnostic/treatment biases?

• Which underlying causes lead to AtCM independent of left ventricular, right heart or valvular
dysfunction?

• Secondary functional mitral or tricuspid valve regurgitation due to atrial remodelling (enlargement)
may indicate progressed atrial failure, but what are important modifiable factors in this
process?101,223,224

AtCM diagnostic framework is not
clinically validated

• Well-powered studies are essential to improve this diagnostic framework for AtCM.
• Evaluation and refinement of the AtCM diagnostic framework in retrospective and prospective studies

requires careful balancing for age, gender, cardiovascular risk factors and history of cardiac disease.
• Registry data on HF are essential to comprehensively assess AtCM/atrial failure prevalence across the

ejection fraction spectrum.
• Attention is needed on the interaction and ability to distinguish between AtCM-related atrial failure

and HFpEF phenotypes.

Serum biomarkers to facilitate AtCM
diagnosis

• Studies exploring the role of a range of natriuretic peptides, corin, and BMP10 biomarkers in
diagnosing AtCM or identifying targets for therapy, including relevant clinical cut-points.

Easily obtained or clinically reliable
parameters to facilitate AtCM
diagnosis

• Explore the clinical relevance of implementing ambulatory rhythm devices, such as wearables,
photoplethysmography signal processing, and implantable devices, within the AtCM framework.225–229

• The role of invasive techniques such as atrial high-density electro-anatomical mapping for the
diagnosis of AtCM and prognostic stratification requires further investigation.

• Which artificial intelligence algorithms can improve the AtCM diagnostic framework and selection for
future therapies?

Reliability of imaging parameters
when scanned in the presence of
AF

• Reproducibility of imaging parameters is poor in the context of AF, with further data awaited on
alternative approaches such as the index-beat method of acquisition following two preceding R-R
intervals of similar duration.230

Uncover additional manifestations of
atrial failure

• Further studies on the relationship between left atrial structural and functional alterations and
AF/stroke occurrence, hard endpoints (mortality, hospitalization), as well as response to optimized
medical therapy.

The role of right heart dysfunction in
AtCM

• Right heart dysfunction and its impact on AtCM development requires further dedicated imaging
studies.

• How does the interaction between the left and right atria impact AtCM?
• A range of imaging modalities could improve insights into AtCM and the right atrium.

Patient selection for future clinical
trials and the threshold of AtCM
markers to initiate therapy and
prevent disease progression

• Identification of AtCM markers with strong prognostic value that can aid patient selection for clinical
trials to improve outcomes.

• Randomized controlled trials assessing the use of anticoagulants in individuals with AtCM but without
AF are needed to enhance our understanding of the impact of AtCM on stroke and
thromboembolism.

Functional properties underlying
different stages within the AtCM
framework

• Studies on relevant atrial fibrosis cut-off values by cardiac magnetic resonance imaging to diagnose
AtCM are needed.

• The digital twin approach231 could enhance (pre-)clinical research by providing a platform for studying
the isolated and interconnected effects of the specific disease subsets that are relevant to the AtCM
spectrum. This involves validating and translating these models for practical clinical applications,
necessitating further research to seamlessly integrate theoretical frameworks into real-world
healthcare practices. Examples include improved ability to distinguish anatomical versus functional
factors underpinning specific P-wave disorders to redefine ECG-based risk prediction for AtCM, or
to better phenotype AtCM on tissue property levels such as atrial myocardial compliance and
contractility.

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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14 J. Weerts et al.

Table 4 (Continued)

Evidence gaps Future directions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The effect of therapies on AtCM
substrates and clinical outcomes

• The potential benefit of using anticoagulant and antiarrhythmic therapy in patients with pathological
P-wave parameters in the absence of atrial arrhythmias is controversial and requires further
investigation.

• What kind of clinical benefit can be achieved with anti-remodelling treatments (such as neprilysin or
sodium–glucose co-transporter 2 inhibitors) in patients with early stages of AtCM?

• The appropriate ablation strategy in patients with AF and advanced AtCM, and its ability to modify
substrate and disease progression, requires specific investigation.

• What patient outcomes are relevant for those with AtCM, what could predict atrial failure, and what
is the optimal way to monitor and subsequently intervene in selected populations?

Targeting of specific underlying
mechanisms to halt or reverse
AtCM progression and prevent
atrial failure

• Future research should focus on elucidating the inflammasome effectors on cardiac electrophysiology
and AF pathogenesis, and delineating their role in cardiomyocyte inflammatory signalling with
fibroblasts and immune cells. Are selective inhibitors for these pathways effective at preventing
development of AF or HF?

• Studies are needed to assess the efficacy of inhibitors in the electrical remodelling pathway, explore
the regulation of atrial ion channels and calcium handling, and identify genetic predispositions to HF
(for example, through PITX2232–234).

• Future research should investigate the influence of epicardial adipose tissue on atrial fibrosis,
sex-dependent mechanisms and the relationship with inflammation.

• Patients with AF and without AtCM who eventually develop atrial failure are of special interest to
deepen the understanding of the AtCM framework.

AF, atrial fibrillation; AtCM, atrial cardiomyopathy; BMP10, bone morphogenetic protein 10; ECG, electrocardiography; HF, heart failure; HFpEF, heart failure with preserved
ejection fraction.

propose a new pragmatic framework for AtCM based on elec-
trophysiology, imaging, biomarkers, and clinical status. Straightfor-
ward criteria are suggested to confirm electrical atrial dysfunc-
tion, mechanical atrial dysfunction and atrial enlargement in the
clinical environment. Atrial fibrosis is an important part of the
proposed AtCM definition, with further preclinical and clinical evi-
dence required to understand its role in AtCM stratification. Earlier
detection of AtCM utilizing a range of developing and promising tar-
gets could harness novel therapeutics, or repurposing of existing
therapy, to prevent overt atrial failure, AF, HF and their sequalae.
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Appendix 1

How to perform P-wave analysis
The P-wave duration marks the beginning and end of atrial electrical
activity. Hence, exact marking is of utmost importance for any
further analysis of P-wave parameters, such as inter-atrial block
(IAB) and others. The measurement of P-wave duration can be
performed using various techniques.

Routinely, P-wave duration is measured via a standard 12-lead
electrocardiogram (ECG) (e.g. recorded 6–12 s, 200 Hz sample
frequency, bandwidth filtering 0.05–100 Hz) by marking the ear-
liest onset of the P-wave in any lead of the frontal plane, and the
lead where the end of P-wave is recorded (especially lead I, V5 and
V6, and aVR and in some cases V1 [sagittal force]) (see Figure 3).
The interval between these two points (it is recommended to
trace vertical lines) will be the total P-wave duration (Figure 3A,
Steps 2a and 3a). While the onset of the atrial electrical activity
is usually clearly seen, the end of atrial electrical activity is more
difficult. It can be complicated by small amplitude electrical activ-
ity, in particular in atria with inhomogeneous electrical propagation
and different conduction properties such as seen in patients with
atrial cardiomyopathy (AtCM). These small atrial electrical activi-
ties can be filtered out by routine filtering techniques. It should be
noted that measurement of the P-wave can underestimate the real
duration, especially if the P-wave has low amplitude.

Several more sophisticated techniques are available to measure
the P-wave duration by means of ECG amplification or by calculat-
ing a signal-averaged P-wave. When performing an amplified P-wave
duration (aPWD) measurement, it is paramount to amplify the dig-
ital ECG recording to visualize also the low amplitude parts of the
P-wave in patients with AtCM. To achieve a good ECG quality, fil-
ter settings should be set to 0.05 to 100 Hz without additional
noise filtering at a sample rate of 1000 Hz. For measurement of
aPWD, the digital ECG should then be amplified to 40–80 mm/mV
with a sweep speed of 100 to 200 mm/s. Calculation of a signal
averaged P-wave requires several P-waves for a robust result. It
is recommended to consider 300 P-waves which equals approxi-
mately 5 min of recording time. The recording should be performed
without any applied filter and in high-resolution (1000 Hz or more).
The signal-averaged P-wave is calculated as a mean signal out of all
recorded unfiltered P-waves. Any random artefacts superimposed
on the unfiltered signal disappear, but small changes in the electri-
cal propagation will be preserved in the resulting signal-averaged
P-wave (Figure 3A, Steps 2b and 3b).

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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16 J. Weerts et al.

Inter-atrial block is defined as a P-wave of 120 ms or more and
is classified into three degrees of block: partial (P-wave ≥120 ms
with normal axis and usually bimodal morphology); intermittent
(variable degree of IAB detected on the same ECG record-
ing); and advanced (or third-degree IAB, with P-wave ≥120 ms
plus biphasic morphology [positive–negative] in the inferior leads
II, III and aVF). Some atypical patterns of advanced IAB have
been described, by duration (P-wave <120 ms with biphasic mor-
phology), or by configuration (with ‘positive–negative–positive’
morphology or with the presence of isodiphasic components).
Nevertheless, in all cases of advanced IAB there will be a final neg-
ative component in aVF, reflecting retrograde activation of the left
atrium.

Appendix 2
How to perform left atrial echocardiography
Left atrial (LA) size and function should be measured using a
non-foreshortened view (as much LA length as possible) in the
apical four-chamber and/or two-chamber view. A good quality
electrocardiogram (ECG) trace is mandatory, with clearly visible
P-wave.

Indexed left atrial volume
The preferred method to quantify LA size is the volumetric
method because it accounts for variations in the shape of the left
atrium. There are two different principles with which volumes can
be obtained: the area–length method and the method of discs
(Simpson method). For both methods, tracing of the atrial cavity is
required. LA length is measured from the centre of the connecting
line between both sides of the mitral annulus to the LA roof.
For Simpson, this is done on a four-chamber view at end-systole,
shortly before the mitral valve opens. For the biplane approach,
which is even more exact, also use a two-chamber view. The
volume obtained should be indexed for body surface area (LAVi).

Left atrial strain
We recommend to use a speckle tracking technique and measure
atrial function using ECG R-R gating, with baseline at zero on
four- or two-chamber views. Depth should be adjusted to enlarge
the left atrium and ensure it is fully visualized, including the roof
of the atrium without foreshortening (Figure 3B). The left atrium
should be focused in four- and/or two-chamber view, obtained
with narrow image sector, in order to improve the definition of
the grey-scale image and frame rate. Use the mid-wall contour of
the atrium cavity from one to another mitral ring point, leaving
pulmonary veins and atrial appendix excluded from the contour.
Adequate measurements are achieved if the region is around 3 mm
thin and covers only the LA myocardium. The zero reference is
end-diastole and multiple or index beats should be analysed where
sinus rhythm is not present.
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