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ABSTRACT The Bitcoin Lightning Network, a Layer-2 more scalable solution for the Bitcoin blockchain,
has emerged to address the scalability challenges faced by the Bitcoin network. However, the centralization
of the Lightning Network has been a growing concern, as the concentration of highly active nodes within
it could compromise the decentralized nature of the Bitcoin ecosystem. In this research paper, we conduct
a quantitative analysis of centralization in the Lightning Network using various centrality metrics, such as
Gini coefficient, Nakamoto coefficient, Herfindahl-Hirschman Index, Theil Index and Shannon entropy. The
proposed methodology includes data collection, clustering nodes into entities and setting up the experimental
environment. The quantitative analysis of centralization in the BLN reveals complex results, with the
Gini coefficient for node capacity distribution increasing from 0.85 to 0.97 over eight yearly timestamps,
indicating growing inequality. Meanwhile, the Nakamoto coefficient fluctuated, suggesting that while control

over network resources is uneven, it may still be more decentralized than previously thought.

INDEX TERMS Bitcoin, lightning network, centralization, data processing, nodes.

I. INTRODUCTION
The Bitcoin Lightning Network (BLN) is a Layer 2 protocol
built to address the scalability issues which are common
to blockchain-based cryptocurrencies like Bitcoin (BTC).
It enabled fast and inexpensive off-chain transactions through
peer-to-peer channels [1], [2], [3]. As it is processing trans-
actions off-chain, the Lightning Network (LN) is designed
to address the challenges of scaling Bitcoin while adhering
to the principles of its underlying peer-to-peer network.
By enabling off-chain transactions, the LN aims to enhance
network capacity while preserving the core principles of
BTC [4], [5]. This architecture allows fast transactions that
do not need to be settled or stored on the main blockchain.
The LN offers several key advantages, including rapid
and low-cost transactions. By facilitating these efficient
transfers, it contributes to improved blockchain scalability
and enhanced user privacy [6]. The scalability of the
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LN is evident in its ability to handle many transactions
simultaneously. As transactions are conducted off-chain, the
LN can theoretically support a significantly higher number
of transactions per second compared to the Bitcoin main
chain, which is limited to approximately 7 transactions per
second [7], [8]. This technology’s potential to rival traditional
payment systems is evident in its ability to enable instant,
low-fee transactions globally and support micropayments
within local economies [9]. Instant transactions allow a
much higher transaction volume. Moreover, the LN addresses
critical challenges associated with on-chain transactions,
such as high fees and extended validation times, by utilizing
off-chain payment channels [10], [11]. Only the opening and
closing transactions of payment channels are recorded on
the blockchain, minimizing on-chain activity. Since off-chain
transactions also mean that transaction occur off the main
BTC blockchain, they are not publicly recorded, and details
are not visible on public ledger, enhancing the privacy [12].
Another way the LN improves privacy is through its use of
onion routing. The LN employs a source-based onion routing
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scheme like the one used in the Tor network, which obscures
the identities of the sender and receiver by encrypting
transaction data in layers [13].

While the LN offers advantages in scalability and transac-
tion speed, it also has limitations and challenges. One of the
primary limitations of the LN is the security vulnerabilities
— while the LN enhances scalability by enhancing off-
chain transactions, it also opened a potential for systematic
attacks that could compromise multiple payment channels
simultaneously [5], [14]. Liquidity issues are another limi-
tation of the LN. Sufficient funds in payment channels are
needed to successfully route transactions. The ability to route
payments efficiently depends on finding paths with adequate
liquidity, which can become problematic as channels may
become unidirectional over time [15]. If the channel does
not have funds, it cannot facilitate further transactions until
it is topped up, leading to potential payment failures or
delays.

One of the most crucial features Bitcoin provides is
decentralization because it allows peer-to-peer transactions in
a distributed and trustless system. The decentralized structure
of the BTC network, maintained through proof-of-work,
ensures a secure and transparent transaction ledger [16].
It provides independence from control and offers a globalized
and decentralized payment network [17]. BTC achieves
decentralized consensus through a network of miners rather
than central authorities, as seen in the Nakamoto consen-
sus [18]. Its decentralization is essential for the network’s
security, transparency, and independence from traditional
banking systems.

Concerns have arisen regarding the potential for central-
ization within the Lightning Network (LN). The distribution
of channel capacity among nodes raises questions about
whether a small number of nodes are accumulating dispro-
portionate control over the network [19]. The possibility of
powerful, well-capitalized nodes operating as central hubs
with extensive payment channels could lead to a centralized
network structure, undermining Bitcoin’s decentralized prin-
ciples [20].

In this study, centralization refers to the degree to
which a small number of nodes or entities accumulate
disproportionate control over the Bitcoin Lightning Network.
This control can be reflected in their number of connections
(degree), the amount of liquidity they manage, or their role in
facilitating transactions.

To analyze and determine the centralization of the BLN
accurately, it is essential to identify appropriate metrics
and methodology for analysis. However, the network’s
complexities, including challenges of clustering nodes into
entities, further complicates the analysis. Selecting the most
suitable centrality metrics and network variables is crucial for
obtaining reliable results and demands meticulous attention.

The aim of this study is to conduct a quantitative analysis
of centralization trends in the Bitcoin Lightning Network by
employing different centrality metrics.
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To achieve the aim of this study, the following objectives
were raised:

1) Gather and process data from the BLN to create
comprehensive data suitable for analysis.

2) Measure and analyze the changes in centrality metrics
over time within the BLN.

3) Group the BLN nodes into distinct entities.

4) Using statistical methods, analyze how entities control-
ling specific nodes affect the overall centralization of
the BLN.

Based on the emerging concerns, the following hypotheses
are proposed:

« H1. The Bitcoin Lightning Network exhibits centraliza-
tion around large entities, as clusters of nodes grouped
by the entity hold a significant share of the network.

o H2. The centralization of the Bitcoin Lightning Network
is increasing across time-series representations, fol-
lowing a non-linear trend detectable through centrality
metrics.

While previous studies have typically relied on standard
centralization metrics and consistently reported strong cen-
tralization, this paper integrates multiple centrality measures
to provide a broader and more nuanced analysis of central-
ization trends within the BLN. Furthermore, by introducing a
novel entity-level clustering approach, which groups multiple
nodes under a single entity based on similarities in their
alias naming patterns, this study uncovers centralized control
structures that prior research has overlooked. Additionally,
leveraging an extensive dataset spanning eight years (2018—
2025), the analysis offers new and more accurate insights into
the evolution and dynamics of network centralization.

The rest of the paper is structured as follows. Section II
reviews the existing literature, emphasizing the importance
of understanding centralization in the Bitcoin Lightning
Network and identifying gaps in current knowledge and
analyzing centrality metrics used for the research. Section III
outlines the research methodology used in the analysis.
Sections IV and V detail the research findings and compar-
ative analysis of centrality metrics. Section VI presents the
discussion, concluding with suggestions for future research
directions. The key findings and implications of the study are
provided in Section VII.

Il. BACKGROUND AND RELATED WORK

The BLN facilitates fast and cost-effective off-chain Bitcoin
transactions by establishing peer-to-peer channels between
nodes that can be interconnected to create a routing
path [21]. The Lightning Network facilitates frequent,
rapid micro-transactions with minimal fees by using pay-
ment channels, which allow trustless exchanges between
users [22]. These channels, developed from micropayment
channel technology, extend the concept of one-way payment
channels into two-way payment channels [23]. This setup
allows for numerous payments while recording only two
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FIGURE 1. Lightning network.

transactions on the blockchain, reducing costs, and enhancing
transaction speed. To establish a channel, both parties lock a
certain amount of funds in a multisignature address on the
blockchain. Transactions are then exchanged off-chain, with
only the initial and final transactions being recorded on the
blockchain. This method ensures that users can recover their
funds if one party acts maliciously [2]. Fig. 1 illustrates the
interaction between the BTC blockchain (Layer 1) and the
Lightning Network (Layer 2).

Users deposit BTC into the blockchain to open a payment
channel in the LN, enabling them to transact without
recording each transaction on the blockchain. When users
decide to finalize their transactions, they withdraw funds back
to the BTC blockchain by closing the channel, which records
the net result of their transaction.

A. EXISTING STUDIES ON BLN CENTRALIZATION

The centralization of the BLN recently has been an impor-
tant topic within the cryptocurrency community. Existing
research has shown that the BLN currently exhibits a high
trend toward centralization, with a few powerful nodes acting
as hubs [1]. These powerful nodes can be referred to as
dominant nodes - individual nodes that either maintain a
high number of channels or control a disproportionately large
share of the total network capacity, thereby have significant
influence over the network.

The authors of [4] analyzed the BLN over an 18-month
period (from January 2018 to July 2019), focusing on
degree distribution and Gini coefficient, and discovered that
approximately 10% of nodes hold 80% of the bitcoins at stake
in the BLN.

The paper [11] investigated degree and betweenness
centrality patterns within the LN and discovered that
from 2020 to 2022 the centrality has increased significantly
within the LN and the Gini index has risen by more than 10%
over that period.

The paper [19] found that the LN exhibits a centralized
configuration, with the central nodes that play a crucial role
in maintaining the network, the results of the Gini coefficient
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for node capacity distribution were 0.88 and coefficient for
channel distribution was 0.75.

The paper [24] similarly observed the structure of the LN
and noticed that there is a concentration of highly active nodes
which can cause a potential centralization.

While existing research provides significant insights into
the potential centralization of the BLN, it often overlooks
important details necessary for a comprehensive understand-
ing of BLN centralization. Firstly, many studies do not
disclose their methods for data collection and processing
from the LN, which is crucial for verifying and replicating
findings. Secondly, there is a lack of deeper analysis of
different centrality metrics, as most research focuses on
the Gini coefficient. Furthermore, many analyses examine
the centralization of individual nodes without attempting
to group them into entities that control multiple nodes,
which could reveal a higher degree of network centralization.
Additionally, the dynamic nature of the LN is often neglected,
with most research relying on static analysis at specific
timestamps; representing these dynamic changes graphically
would provide a clearer picture of network evolution. Lastly,
existing studies often lack in providing recommendations on
how the LN could be made more decentralized. Addressing
these gaps would contribute significantly to a more thorough
understanding of the BLN centralization and its implications.

To fully understand the structure and possible central-
ization of the BLN, it is essential to explore centrality
concepts and metrics. Subsections II-B and II-C delve into
the background of centrality aspects to gain insights into
the distribution of nodes in the BLN, and centrality metrics,
which could be employed to perform quantitative analysis.

B. TOPOLOGICAL CENTRALITY MEASURES AND THE
ENTITY-BASED PERSPECTIVE

When assessing centralization within the BLN it is important
to consider different centrality aspects. There are four main
centrality aspects such as — betweenness centrality, degree
centrality, weighted degree centrality, eigenvector centrality
and closeness centrality.

One of the key aspects is betweenness centrality which
highlights nodes that have significant influence by controlling
the flow of information in the network [11]. It measures
how often a node appears on the shortest path between other
nodes. In the context of the LN, this highlights a node’s
importance in facilitating payment routes [25]. Nodes with
high betweenness centrality are crucial for routing paths
because they determine which paths for network traffic are
the most efficient, unlike other centrality aspects such as
degree centrality that focus on local connections [11]. This
centrality measure is vital for understanding how information
flows through the network and identifying nodes that act as
intermediaries in the routing process.
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As shown in Equation 1 N is used to represent the total
number of nodes in the network, s and d is used to represent
all pairs of nodes and i is the node which is passed through in
the path between s and d.

Degree centrality is another centrality aspect when eval-
uating centralization in the LN. It quantifies the number of
connections a node has, indicating its level of interaction
within the network [26]. In the case of the LN, degree
centrality quantifies the number of channels a node has.
Nodes with high degree centrality are considered important
hubs in the network, potentially exerting more influence
due to their extensive connections [27]. Understanding the
distribution of degree centrality across nodes can provide
valuable insights into the network’s structure and help
identify potential central points of control or potential
vulnerabilities.

cltdesh) _ 1 @)

As presented in Equation 2 k represents the total number
of channels that node i has in the network.

While degree centrality evaluates the connections of nodes,
weighted degree centrality also considers their importance by
incorporating the capacity, or liquidity, into calculations [28].
This is particularly useful in networks where not all
connections are equal. Weighted degree centrality can be
particularly useful for analyzing centralization trends in
the LN. The nodes in the network are connected through
channels, and each of them has a capacity, a locked amount
of BTC which can be interpreted as weights. By applying
weighted degree centrality, it is possible to identify nodes that
not only have a high number of connections but also those
that facilitate a significant volume of transaction [11]. The
weighted degree centrality formula is below (Eq. 3):

M =>"w; 3)
j

where wy; is the weight of the channel between node i and
node j. The weight of the channel is the capacity between two
nodes — the amount of BTC that is locked up in a payment
channel. It represents the total amount of BTC that can flow
through the channel. The weighted degree centrality of a node
i would be the sum of the capacities of all channels connected
to that node.

Eigenvector centrality considers both the direct and
indirect connections of a node, giving more importance
to connections with nodes that are already well-connected
within the network [26]. Nodes with high eigenvector central-
ity are well-connected to other influential nodes, enhancing
their overall importance in the network [29]. Eigenvector
and closeness centrality both consider the distance between
nodes when identifying the shortest paths between them [30].
Distance between nodes refers to the number of nodes
required to traverse from one node to another, which helps
in determining how quickly the transaction can go through
the network. This centrality aspect is valuable for identifying
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nodes that may have indirect but significant influence due to
their connections with other central nodes.

N
)\,Ci{({elg})} — Zajicj{({elg})} (4)
j=1

In Eq. 4, aj; is an indicator to know if there is a channel
between nodes j and i. If nodes have a channel together, then
aj; = 1, if there is no channel, a;; = 0. Meanwhile, Cj{({elg})}
is the importance of node j, which is assigned to each node
according on how many important nodes it is connected to.

Closeness centrality is another centrality aspect that
assesses how quickly a node can interact with other nodes
in the network [4]. Nodes with high closeness centrality
can reach other nodes more efficiently, which can enhance
the speed of information dissemination or transaction rout-
ing [31]. Analyzing closeness centrality can reveal nodes
that play a critical role in maintaining network connectivity
and ensuring efficient communication across the Lightning
Network.
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Zj:l dij

N is the total number of nodes in the network, d;; is the
shortest path distance between node i and node j. As shown
in eq. 5, nodes with higher closeness centrality can more
efficiently route transactions in the network. For the LN, this
means how many nodes it takes to route a payment. The fewer
the nodes, the closer they are.

Analyzing the centralization of Bitcoin Lightning nodes
alone is not precise, as node owners are often the same
entities. These entities may appear as separate units in the
network topology, but they belong to a single verifier.

A method that allows grouping different, yet related,
nodes is necessary for accurate evaluation. To address this,
this paper introduces a novel aspect of centrality analysis
by grouping individual nodes into entities. This method
identifies and aggregates nodes under common control and
this way enables the assessment of centrality at the entity
level. This approach has the potential to reveal that entities
controlling multiple nodes might have significant influence
over the network’s topology and transaction flow. By ana-
lyzing these entities, this method aims to provide a more
accurate and comprehensive view of network centralization.
The entity-based centrality analysis could reveal potential
risks associated with a few entities having disproportionate
control over the LN, offering crucial insights that were
previously overlooked in traditional node-based analyses.

To conclude subsection II-B, this research is focusing
primarily on the analysis of degree centrality and weighted
degree centrality, which provide critical insights into the
structure and potential centralization within the BLN. These
metrics are particularly useful because they not only highlight
how well-connected certain nodes are but also consider the
capacity or liquidity of channels, offering a more nuanced
understanding of influence within the network. These two
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aspects are not only the focal points of the research but are
also directly incorporated into the calculation of the centrality
metrics, providing a detailed measure of centralization within
the network.

Betweenness, eigenvector, and closeness centrality are not
directly used in the calculations, because they are all based on
routing and do not consider channel capacities, which are cru-
cial in this research. They may serve as points for discussion
and in another research, offering additional perspectives on
node influence and information flow. By focusing on degree
and weighted degree centralities - which consider both direct
connections and the capacity of nodes, this approach enables
a more comprehensive understanding of how centralization
impacts network efficiency and resilience.

In subsection II-C, the analysis of degree and weighted
degree centrality will be explored further, as these metrics
are specifically chosen for their ability to capture both the
number of connections and the capacity of channels. This
allows for a more nuanced understanding of the network’s
structure and centralization trends.

C. QUANTITATIVE METRICS FOR DEGREE AND WEIGHTED
DEGREE CENTRALIZATION ANALYSIS

In this paper, several centrality metrics are analyzed to pro-
vide a thorough view of the potential centralization of BLN,
focusing specifically on degree and weighted degree central-
ities. The metrics considered include the Gini coefficient,
Lorenz curve, Nakamoto coefficient, Herfindahl-Hirschman
Index (HHI), Theil index, Shannon entropy, Atkinson index,
k-core decomposition, PageRank, and Katz centrality. These
coefficients were initially chosen based on their capability to
measure various forms of inequality, although not all metrics
were selected for detailed analysis.

The Gini coefficient, originally introduced in 1921 to
measure income and wealth distribution [32], has since
found applications in various fields. In physics, for example,
it has been used as a morphological measurement of strongly
lensed galaxies in the image plane [33]. In agricultural
economics, the Gini coefficient has been employed to assess
the distribution of direct payments among agricultural farms,
aiming for a more balanced allocation of resources [34].
In medicine, the Gini coefficient has been applied to evaluate
the equity in the distribution of mental health resources in
China, helping to assess how accessible healthcare is across
different regions [35].

In recent years, the Gini coefficient has also been
increasingly applied to blockchain networks, where it is
used to analyze wealth distribution and decentralization. One
such example is its use in blockchain network studies to
measure the decentralization of wealth across users [36].
This demonstrates the versatility of the Gini coefficient in
measuring inequality across various fields.

In the case of the BLN, the Gini coefficient is a commonly
used metric that measures the inequality of channel distri-
bution within the Lightning Network (LN). A higher Gini
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coefficient indicates greater centralization and is recognized
as a strong indicator of overall network centralization,
especially when combined with other measures [4], [37].
The coefficient is calculated based on the Lorenz curve,
which illustrates the cumulative distribution of the variable.
The Gini coefficient ranges from O to 1, where O represents
perfect equality with everyone having an equal share, and
1 represents total inequality where one entity possesses
everything [4], [18]. A lower Gini coefficient suggests a more
balanced (decentralized) network, while a higher coefficient
indicates a more uneven (centralized) distribution of the
resource being analyzed. It can be measured using the
following formula (Eq. 6):

_ it 2 i — xj]
B 2N2%

N is used to represent a total number of nodes, x; and
x;j represent capacity of nodes and x is an average capacity
across all nodes. As shown in Eq. 6, a higher G indicates
greater inequality in capacity distribution across the network.

The Lorenz curve is a valuable function, interpreted as
a graphical representation and used to measure inequality
within a population. It illustrates the proportion of the
distribution held by a certain percentage. The Lorenz curve is
also related to the Gini coefficient as it quantifies inequality
by comparing the area between the perfect equality line (45-
degree angle) and the observed Lorenz curve. It is computed
by subtracting the Lorenz curve area from the perfect equality
line area, and then dividing by the total area under the
equality line [11]. For this paper, the Lorenz curve will be
used to provide a visual dynamic representation of channel
distribution among nodes based on their channel capacity.

The Lorenz curve has been applied in various fields
beyond the LN. For example, [38] proposed a method for
estimating the Lorenz curve to analyze size distributions and
inequality across different scientific disciplines, highlighting
its relevance in social sciences and environmental studies.
In the field of quantum mechanics, [39] introduced the
concept of quantum relative Lorenz curves, applying it
to noncommutative geometry and quantum entanglement,
which highlights the adaptability of the Lorenz curve to
complex systems. [40] used the Lorenz curve in social choice
theory to assess aversion to inverse downside inequality,
emphasizing its importance in understanding societal prefer-
ences regarding inequality. These examples demonstrate the
broad applicability of the Lorenz curve in both sociological
and technological research.

The Nakamoto coefficient is a combined method of the
Gini coefficient and Lorenz curve. It is a recent metric
employed to analyze the level of decentralization within
cryptocurrency networks. Study [41] shown that tokens such
as Chainlink (LINK) and Polygon (MATIC) exhibit high
levels of centralization, where a small number of wallets
control a significant share of the wealth. The Nakamoto coef-
ficient helped to identify this centralization. The Nakamoto
coefficient quantifies a blockchain’s decentralization by

G , (6)
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identifying a minimum number of entities required to control
more than half (51%) of mining power, transaction volume
or total wealth within the network [42]. Initially it emerged
as a metric to assess the susceptibility of the Bitcoin network
to a majority attack [41]. Overall, this coefficient answers
the question how many nodes must be compromised to
undermine the network’s integrity?

Higher value of the minimum Nakamoto coefficient means
that the system is more decentralized. It is defined as (see
Eq. 7):

n N
) 1
K=mlnlneN:21x,~>§.21xi], )
= =

where n is the number of nodes being considered and N is
the total number of nodes in the network. x; is the capacity
of the node, or the number of channels the node has. The
condition for this formula is that the sum of values controlled
by the top n nodes must be greater than half of the total
value in the network. The Nakamoto coefficient, K, gives the
smallest number of entities that can control more than half of
the network.

The Herfindahl-Hirschman Index (HHI) measures the mar-
ket concentrations and can be widely used to assess market
effectiveness. In the healthcare sector, the HHI revealed
significant centralization among healthcare providers, which
impacts competition and patient costs [43]. In banking,
higher HHI values indicated increased concentration and
provided a nuanced perspective on market dynamics [44].
Similarly, in the sports funding context, the HHI was used
to demonstrate the concentration of funding among Olympic
sports, indicating a centralized approach to allocation [45].

The HHI starts near zero in highly competitive markets,
and it can climb up to ten 10,000 if a single node
dominates the network. Overall, value below 1500 indicates
an unconcentrated market with many players, value between
1500 and 2500 signifies a moderately concentrated marked
with some dominant companies, or nodes, and if the results
are above 2500 it suggests a highly concentrated market held
by a few significant nodes [46]. In the BLN analysis, a lower
HHI value would suggest a more distributed set of nodes,
supporting the goal of decentralization, while higher values
might indicate emerging centralization tendencies, where a
few nodes begin to dominate.

It can be measured by using the equation 8 below [47].

n
h.
HHI =" 10000 * (H;?, H; = E ®)
i=1

where h; is the capacity held by node i, and C is the total
network’s capacity by that timestamp.

The Theil index, also known as the Theil coefficient, is a
measure used to assess inequality. It can also be used to assess
the centralization of networks, evaluating the distribution of
network capacity or number of channels among nodes [48].
It ranges between O to inequality, where O signifies a
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perfect equality in the network, while higher values show an
increasing inequality between nodes.

The Theil index had been applied in various studies to
assess centralization and inequality. For example, it was used
to measure regional differences in urban energy consumption,
highlighting significant disparities and centralization of
energy use [49]. Similarly, it was used to analyze civil
vehicle ownership distribution, revealing higher ownership in
urban areas compared to rural regions, indicating centraliza-
tion [50]. In regional poverty analysis, the Theil index showed
economic disparities in the Xiamen-Zhangzhou-Quanzhou
city cluster, with centralization of development in certain
regions [51].

In the context of the BLN, the Theil index can provide
valuable information into the centralization within the
network. A lower Theil index value would indicate a more
balanced distribution of node capacity or number of channels,
while higher values would point to centralization.

The Theil index is measured using the eq. 9 below:

1 " Xi (x,')
T=— —In{—), )
N ; Yo\

where N is the total number of nodes, x; is a capacity of a
single node, and x; is a capacity across all nodes.

However, when comparing Theil index results across
different time periods, it is crucial to use normalized values
rather than raw values. The normalization process adjusts
the differences in the scale of data and ensures that results
are comparable. By normalizing the index values to a range
between 0 and 1, it is easier to interpret and compare.

To be able to calculate normalized Theil values, first it is
important to measure maximum Theil index, which occurs
when all the weight is concentrated in one node (Eq. 10).

Tnax = In(N) (10)

Next step in normalizing Theil index values is to divide the
original Theil index by the maximum value (Eq. 11).

PELim(y) 7
In(N) Tnax
Shannon entropy is a fundamental concept in information
theory that quantifies uncertainty or randomness in a set of
outcomes [52]. Shannon entropy has also been employed in
various fields. For instance, in the social sciences, Shannon
entropy has been used to assess community vulnerability
to natural disasters, illustrating its utility in understanding
the resilience and stability of communities under stress [53].
In technological context, Shannon entropy is pivotal in
information processing tasks, such as data compression and
communication channel capacity. It quantifies the amount
of information that can be reliably transmitted over a
channel, thereby informing the design and optimization of
communication systems [54].
In the context of the BLN, Shannon entropy can be
used to measure the network’s centralization by analyzing

(11)

norm —
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the distribution of node capacity or number of channels.
A higher Shannon entropy indicates a more decentralized
network, as node capacity or the number of channels is
more evenly distributed among nodes, while lower entropy
suggests centralization, with a few nodes holding a significant
part of the network [1], [24].

Shannon entropy is measured using the Eq. 12 below [55].

SE() = — > xilog(xi) (12)
y=1

where x; is the capacity or the number of channels a single
node has.

However, it is also important to calculate normalized
Shannon entropy to be able to interpret and compare the
results across different time periods and datasets. The
normalized entropy values range between 0 and 1, which can
help to assess how it changed throughout time.

To calculate normalized Shannon entropy value, first the
maximum value of the Shannon entropy must be measured.
The equation 13 for the maximum entropy is below, where n
is the total number of nodes.

SEnax = log(n). (13)

Normalized Shannon entropy can be measured using the
following Eq. 14.

— 21 xilogv)  SE(x)
log(n) SEmax

where SE(x) is Shannon entropy value and SE,,, is the
maximum entropy value.

This research has employed several well-known coef-
ficients to measure various aspects of centralization
and inequality, including Gini coefficient, Lorenz curve,
Nakamoto coefficient Herfindahl-Hirschman Index (HHI),
Theil index, and the Shannon entropy. Each of these metrics
was chosen for their ability to highlight different facets of
centralization within the BLN. However, there are other
metrics commonly used to evaluate centralization, which
were considered but decided not to be included in the analysis
for specific reasons. These include metrics such as the
Atkinson index, K-core decomposition, PageRank, and Katz
centrality.

The Atkinson index, which is widely used in economic
studies to measure income inequality [56], was one such
measure considered. While the Atkinson index is highly
effective in evaluating inequality by adjusting the sensitivity
to different parts of the income distribution, it is less
applicable in a network context where individual preferences
about inequality aversion are not as directly relevant [57].
Therefore, the Atkinson index was not included due to its
less straightforward interpretation for network topologies and
centrality.

K-core decomposition was also reviewed as a potential
metric. This measure identifies cores of highly interconnected
nodes, which can help in understanding the robustness and

SEnorm(x) = s (14)
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resilience of networks [58]. However, it is more suitable for
analyzing clusters rather than providing an overall measure of
centralization [59], leading to its exclusion from this study.

PageRank and Katz centrality were similarly evaluated.
PageRank, often used in ranking nodes based on their
connections [60], and Katz centrality, which measures the
influence of a node within a network by considering direct
and indirect connections [61]. However, these metrics are
more focused on ranking nodes rather than quantifying the
overall distribution of resources or influence, which is the
primary focus of this centralization analysis.

In conclusion, the selected metrics provide a comprehen-
sive assessment of BLN centralization, capturing key aspects
of inequality. This selection forms a solid foundation for
research methodology.

IIl. RESEARCH METHODOLOGY

Understanding the centralization within the BLN is crucial
for assessing its reliability, scalability, and potential vul-
nerabilities. Evaluating reliability involves assessing how
decentralization enhances the network’s resilience, as a more
distributed structure reduces the risk of failures and ensures
that the network can continue to function smoothly even if
some nodes go offline. Centralization can affect scalability
by creating bottlenecks if most transactions are controlled by
a small number of nodes. Potential vulnerabilities arise from
centralization making the network more prone to attacks or
service interruptions if key nodes are compromised [5], [14].

While the LN is known as a promising second layer
solution for the BTC, a systematic analysis of its network
topology and the identification of the most influential entities
and nodes have been unexplored. This paper aims to advance
the understanding of the LN topology by developing a
methodology that incorporates a set of centrality metrics,
including Gini index, Lorenz curve, Nakamoto coefficient,
HHI index, Theil index, and Shannon entropy, to quantify and
visualize network centralization. These specific centrality
and inequality metrics were selected due to their effective-
ness in analyzing inequalities and centralization in various
network contexts. Prior literature has validated the use of
these metrics in cryptocurrency and blockchain network
analyses due to their sensitivity in capturing inequalities
and concentration risks [36], [62]. By combining these
metrics, the study ensures a comprehensive assessment of
centralization within the BLN.

A significant challenge in assessing the centrality of
the LN is also inseparable to the complexities of the
network itself. The success of clustering nodes into entities
remains an open question, especially given the presence of
multiple entities using different nodes, which could impact
the reliability of results, as does the precise number of
active channels within the network. Furthermore, mobile
channels of the LN (e.g., Phoenix, Eclair, private channels)
introduce uncertainty into the data. And lastly, selecting the
most appropriate centrality metrics and network variables to
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accurately measure centralization within the LN is a complex
task which requires careful consideration.

The entity-level clustering method employed is based
on alias similarity. Such name-based resolution techniques
have been successfully used in prior research to identify
entities operating multiple nodes in blockchain and financial
networks, where systematic alias naming conventions help
uncover centralized structures [63], [64]. The established
effectiveness of this simpler alias-based clustering approach
lends credibility to its applicability and accuracy in the
context of the BLN.

To address the challenges this paper adopts a quantitative
research approach using various centrality metrics and
proposes a systematic methodology for centrality analysis
in the BLN. By employing a set of centrality metrics and
network properties, this paper aims to provide a thorough and
comparable framework for assessing a network’s centraliza-
tion.

This study will be conducted through several stages. First,
in subsection III-A, data will be collected on nodes, channels
and transactions within the BLN using the LND Database
Reader stack, which integrates LND (Lightning Network
Daemon), a Golang program, and a MySQL database. Next,
in subsection III-B, for Hypothesis 1, a clustering analysis
will be conducted to group nodes into entities. Following
this, in subsection III-C, for Hypothesis 2, the collected data
will be analyzed using centrality metrics such as the Gini
index, Lorenz curve, Nakamoto coefficient, HHI index, Theil
index, and Shannon entropy to evaluate the distribution of
influence and connectivity across the network. These metrics
will be calculated separately for both individual nodes and
clustered entities. In the subsection III-D, experimental setup
employed to implement this methodology is described. The
results will then be visualized to enhance the interpretability
and dynamics of the findings. Finally, a comparative analysis
of the metrics will be performed to identify how each
one reflects network centralization and to explore potential
discrepancies in the results.

A. DATA COLLECTION AND PREPROCESSING

The real-time data collection for this research involves using
the LND Database Reader software stack, which incorporates
three key components: Lightning Network Daemon (LND)
[65], a Golang-based program, and a MySQL database
(Fig. 2). LND was selected as BLN node for the data
collection because of its feature to connect to BTC layer 1 via
Neutrino protocol [66]. Neutrino is a lightweight BTC client
that enables BLN data collection without the need to run a
BTC full node.

Neutrino also known as a BTC light client, allows LND
to interact with the BTC network by only downloading a
subset of the blockchain data. This approach significantly
reduces the resource requirements for running BLN data
collection instance, making it more accessible to run even
several instances if needed.
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LND Database Reader stack is designed for reproducibil-
ity using Docker containerization, with each component
deployed as a separate container orchestrated through Docker
Compose configuration. This containerized approach ensures
consistent deployment across different computational envi-
ronments and facilitates research validation by independent
researchers.

LND stores its data in a BoltDB database [67], which
is file-based and optimized for fast access within the Go
programming language (Golang). However, accessing the
database in real-time poses a challenge, as LND locks the
BoltDB file, preventing simultaneous access by external
programs. To overcome this, the LND Database Reader
begins by initializing its configuration parameters, including
database paths and connection strings. It then creates a
temporary copy of the BoltDB file, allowing the system to
read the data without interrupting LND’s operations.

Once the database copy is created, the Golang program
extracts relevant data such as ‘channel announcements’
and ‘node announcements,” which are key messages broad-
cast across the BLN. The program iterates through each
announcement in the LND database, processing them sequen-
tially. Channel announcements contain critical details about
new payment channels, including their unique identifiers
(ID) and the nodes involved. Similarly, node announcements
inform the network about new nodes joining the BLN,
containing the IDs of the nodes and other information such
as the node’s operator or its public key.

The extracted data is then transferred to a MySQL database
for long-term storage. MySQL was selected for its robust
data management capabilities, including its ability to prevent
duplicate entries during data insertion. This ensures the data
collected from the BLN remains consistent and up to date,
enabling the tracking of real-time network activity.

However, this method captures only real-time data. For this
research, historical data is also necessary to understand how
the network evolved over time. To address this, additional
data is gathered from external sources — the Lightning
Network Research [68] and the BTC blockchain.

«System»
LND Database Reader

«Module» «Module»
LND Node MySQL Database Server

«Component»
LND Daemon «Component»

Database (Ind_data)
«Component»

Neutrino Client «Module»
DB Reader

«Component»
BoltDB Database

«Component»
Database Reader

FIGURE 2. LND database reader system structure.
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The LN Research repository collects BLN data, including
the same ‘channel announcements’ and ‘node announce-
ments’ collected in real-time, but dating back to previous
years. The messages were imported into the same MySQL
database used for real-time data, allowing for direct compar-
ison between historical and current data (Fig. 3).

This approach of integrating on-chain and off-chain
data has been successfully used in previous studies to
analyze temporal network dynamics and assess changes in
structural properties of cryptocurrency systems. For example,
[69] and [70] demonstrated the effectiveness of combining
Bitcoin blockchain data with Lightning Network topology
for uncovering network evolution and centralization trends.
Their work validates the methodological soundness of using
unified datasets built from both BLN and BTC sources,
as implemented in this research.

To collect data on when BLN channels were opened or
closed, the research utilizes the BTC blockchain, as this
information is not available directly within the BLN itself.
A full BTC node, in conjunction with an Electrum node,
is used to index and retrieve transaction data efficiently.
To deploy BTC full node and Electrum node was selected
MyNodeBTC operating system [71] for its convenience of
deployment and management (Fig. 4). The Electrum node
allows for quick access to specific blockchain transactions,
including those that locked BTC into payment channels or
closed them. Each transaction associated with a channel is
identified by its ‘ShortChannellD,” which includes the block
height, transaction index, and output index.

A critical aspect of this research is the ability to link data
collected from the BLN with BTC blockchain data, creating
a unified dataset. The process of connecting these datasets is
centered around the ‘ShortChannellD,” which acts as a unique
key across the different databases.

In the BLN dataset, the ‘ShortChannellD’ is used to
uniquely identify each payment channel. This ID is recorded
when a channel is announced via the LN’s gossip messages
and is stored in the MySQL database. In parallel, the
same ‘ShortChannellD’ is recorded on the BTC blockchain
when BTC is locked into a payment channel. By cross-
referencing the ‘ShortChannelID’ in the BLN and blockchain
datasets, the research can establish a direct link between
the announcements of channel creation in the LN and the
underlying transactions recorded on the Bitcoin blockchain.

In addition to linking channels, node data is aggregated
by combining individual nodes under common aliases. The
MySQL database stores both ‘NodeID’ and ‘Alias’, a user-
friendly name associated with each node. This information
helps to track the activities of entities that control multiple
nodes, providing a higher-level view of network centraliza-
tion. By analyzing historical data on nodes and aggregating
them under shared aliases, the research can observe the
growth of specific entities over time and their influence on
the network.
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FIGURE 3. BLN statistics system structure.
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FIGURE 4. High level overview of BLN Statistics system with data
collection.

After data is collected using this approach, combining the
data from both BLN and BTC blockchain, the data is prepared
to be clustered into nodes and to conduct a quantitative
analysis of centralization trends in the BLN by employing
different centrality coefficients.

Managing and orchestrating long-lived processes, Prefect
server was selected. Prefect is a workflow management sys-
tem that enables task scheduling, execution and monitoring
of complex data pipelines [72]. In this research Prefect facil-
itated tasks such as data import, processing, calculation and
chart generation. By using Prefect, these processes were orga-
nized into workflows with defined dependencies to ensure
that each task was executed in correct sequence. This greatly
reduces complexity for bootstrapping the system and man-
aging in the future. Prefect’s monitoring capabilities allow
real-time insights into the status of each workflow, enabling
quick detection and resolution of any issues during execution.
Automated workflow management ensures reproducibility
and facilitates validation of results across different research
environments.

The following subsection III-B presents how collected and
processed data was used to cluster nodes to entities.
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B. NODE CLUSTERING AND ENTITY IDENTIFICATION

The methodology for Hypothesis 1 is based on the manual
clustering of nodes based on alias data gathered from
historical BLN records. In this context, entity clustering refers
to the process of grouping individual nodes that appear to
be operated by the same organization or individual, based
on similarities in their alias names. This method is based
on the patterns and conventions in node aliases to identify
entities under common ownership or control, also known as
Alias-based Entity Resolution [73]. Although the clustering
approach is relatively simple, it is methodologically sound
and supported by prior literature. [63] demonstrated the
practical effectiveness of simple alias-based entity resolution
techniques in relational datasets, highlighting their utility
even without complex computational methods. Similarly,
[64] validated the successful use of alias-based clustering
in cryptocurrency networks, where entity identification was
effectively achieved through simple alias naming patterns, the
exact approach taken in this study.

This analysis leveraged on the tendency of node operators
to include the names of companies or entities in their
full aliases, which often reflect systematic naming schemes
used for branding of the companies. By examining these
aliases, patterns emerged that suggested certain nodes were
operated by the same entity or group. The largest entities by
network capacity — such as Bitfinex, LNBIG, River, ACINQ,
Kraken, Bitrefill, NiceHash, etc. — often use their company
names directly in their node aliases, making them easily
identifiable.

Initially, a comprehensive list of node aliases was collected
from historical data and prepared for the analysis. The data
was standardized by normalizing text cases and removing
special characters to ensure consistency. This preparation
was crucial for accurately detecting naming patterns without
interference from formatting discrepancies or variations
caused by inconsistent data.

The analysis focused on identifying common prefixes,
suffixes, and full names of companies or entities within the
aliases. For instance, nodes with aliases like ‘“‘bfx-Ind0”’,
“ bfx-Ind1” and “bfx-Ind2” shared the prefix “bfx-ln”
indicating operation by the “bitfinex.com” entity. Similarly,
aliases such as “Bitrefill.com/gift-cards”, “Bitrefill” and
“Bitrefill Routing” were grouped under the “bitrefill.com”
entity. Identifying these prefixes allowed for the grouping of
nodes that share the same company or entity name in their
aliases.

Further examination revealed that some operators
employed thematic naming conventions or included unique
identifiers (IDs) within their aliases. For example, LNBIG
uses aliases like “LNBIG.com [Ind-20]", “LNBIG.com [Ind-
21]” and “LNBIG.com [Ind-22]” incorporating both the
entity name and unique node identifiers. This systematic
naming not only aids internal tracking for the operators but
also facilitates external analysis in identifying clusters of
nodes under common control.
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Unique sequences of letters and numbers within aliases
also offered insights into potential associations between
nodes. Some operators include identifiers like serial numbers
or internal codes (e.g. ‘node204.fmt.mempool.space”,
“node201.val.mempool.space’”), which, when matched
across multiple aliases, indicate a common source. This
approach leverages the operators’ systematic naming for ease
of management while aiding the clustering process.

Finally, the list of all entities and their capacities is
generated to analyze how the liquidity is distributed among
the network and if Hypothesis 1 can be confirmed.

While this alias-based clustering method is practical and
effective, it is not without limitations. Node aliases are
unverified and manually assigned by operators, which may
lead to false positives, by grouping unrelated nodes, or false
negatives, by missing common ownership.

The following subsection III-C describes subsequent steps
in data processing, providing a more detailed methodology
for performing qualitative analysis of centralization in the
BLN.

C. FURTHER PROCESSING STEPS

Following data collection and entity aggregation, the “BLN
Stats” system, introduced by the authors, implements a
comprehensive analysis pipeline that transforms channel and
node announcement data into quantitative metrics suitable for
centralization analysis.

Before node metrics transformation can begin, the sys-
tem performs blockchain block and associated transaction
synchronization. This stage ensures temporal consistency
between BLN data and corresponding Bitcoin blockchain
states. The blockchain synchronization process creates tem-
poral reference points that align BLN events with their
underlying on-chain transactions. This ensures that subse-
quent node metrics calculations are based on clean, validated
datasets with accurate alignment between off-chain Lightning
Network topology and on-chain blockchain transactions.

Next stage involves transforming BLN announcements and
blockchain transaction data into structured node metrics. This
transformation process aggregates channel information at
the node level, computing fundamental network statistics -
node degree (number of connections), weighted degree (total
channel capacity). The system processes historical snapshots
at regular monthly intervals, to capture network evolution
over time. The temporal granularity enables tracking of
individual node growth patterns and network participation
changes over time.

The quantitative centralization analysis employs multiple
statistical coefficients, each providing different perspec-
tives on network concentration. The system implements
standardized calculations for Gini coefficient, Herfindahl-
Hirschman Index (HHI), Theil Index, Shannon Entropy,
and Nakamoto coefficient. Each coefficient calculation
processes the distribution of network resources (capacity
or connections) across participants, generating values that
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indicate the degree of centralization. The system computes
coefficients for both capacity-based and connectivity-based
distributions, providing comprehensive coverage of different
centralization aspects. Temporal coefficient series enable
trend analysis and identification of centralization patterns
over network evolution.

The final processing stage is output generation which
produces both quantitative datasets and visual representa-
tions suitable for research publication and further analysis.
Automated chart generation creates temporal evolution plots,
distribution analysis visualizations, and comparative charts
across different network metrics.

The complete research methodology described in this
study has been implemented as an open-source soft-
ware available through a public GitHub repositories at
VUKNF-Fintech-Research-Group. The containerized archi-
tecture enables researchers to reproduce the entire analysis
pipeline using Docker, eliminating environment-specific
dependencies and ensuring consistent deployment across
different computational platforms. The repositories include
installation and setup instructions and default workflows
that enable independent verification of research results.
Researchers can either utilize the full system initialization
workflow to process complete historical datasets or execute
individual processing components for focused analysis. The
modular design supports customization while maintaining
methodological consistency. This implementation facilitates
collaborative research efforts and enables extension of the
centralization analysis methodology to other cryptocurrency
lightning networks.

The experimental setup employed to implement this
methodology is described in the following subsection III-D.
It outlines the practical procedures, tools, and environment
used to conduct the analysis, detailing the specific conditions
under which the centralization metrics for the BLN were
measured and evaluated.

D. EXPERIMENTAL SETUP

The methodology for Hypothesis 2 employs a quantitative
analysis approach trough static analysis. The BLN is a
dynamic network with nodes and channels constantly being
added or removed. Static analysis is used to freeze the
network and capture a snapshot of the network’s structure
at a specific point in time, making it possible to compare
centrality measures. The study examines network snapshots
at eight distinct points in time, beginning in March 2018
— at the same time when the Lightning Labs’ Ind was
released [74], the first LN implementation — and concluding
in March 2025, using the most recent data available at the
time of the experiment.

While March data points are used as representative
timestamps for annual comparison, the analysis is based on
full monthly data spanning from March 2018 to March 2025,
enabling a continuous and accurate time-series representation
of centrality trends.
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TABLE 1. Lightning Network nodes and channels at specific timestamps.

Abbr. Timestamp Date Number of | Number of
nodes channels

Tl 1519855474 March, 2018 450 828

T2 1551391683 March, 2019 4626 34232

T3 1583014153 March, 2020 6683 37111

T4 1614550557 March, 2021 9629 39979

T5 1646088233 March, 2022 21524 89739

T6 1677621623 March, 2023 19666 86532

T7 1709244541 March, 2024 18541 61675

T8 1740780152 March, 2025 16866 54533

This approach enables the tracking of centralization trends
and the assessment of how key metrics such as the Gini
coefficient, Lorenz curve, Nakamoto coefficient, HHI, Theil
Index, and Shannon entropy evolve over time. The research
is not only concerned with the static centralization at
each timestamp but also seeks to understand the dynamic
shifts in these metrics across different periods, providing a
comprehensive view of centralization.

Table 1 shows the dataset used in this study. Over the
period from March 2018 to March 2025, there is an apparent
growth in both the number of nodes and channels. Starting
with 450 nodes and 828 channels in 2018 (T1), the network
expanded dramatically to reach 21,524 nodes and 89,739
channels by 2022 (T5). There was a steady decrease since
2022 (T5) to 16,866 nodes and 54,533 channels, the latest
trend reflects that the BLN is scaling down.

In this study, the analysis is divided into two primary
scopes of results. First, channel capacity, which is focused
on degree centrality and measures how many channels a node
has within the network at different timestamps. This offers
insights into the distribution across the LN and helps identify
the most connected nodes. Second, node capacity, which is
assessed through weighted degree centrality and measures the
total capacity in each node. This weighted analysis is more
complex and highlights the nodes with the most influence in
the network. By analyzing both channel capacity and node
capacity, the study provides a comprehensive assessment
of network centralization, combining the distribution of
connections with the weight of each node. This way this study
offers a better understanding of the network’s structure.

IV. CENTRALIZATION ANALYSIS OF THE LIGHTNING
NETWORK

This section presents the distribution of entities in the BLN
and calculated centralization coefficients, focusing on key
metrics introduced in the methodology. Comparisons across
timestamps allow for tracking changes in the network’s
centralization over time. Additionally, the findings are
assessed in relation to previous studies that utilized similar
datasets and calculation methods.

A. DISTRIBUTION OF ENTITIES
Visual representation of bubble graph was utilized to illustrate
the distribution of nodes within the network on the exact
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Network.

date of 1st March 2025 (see Fig. 5) — this date is chosen
for visualization, because it is the most recent and accurate
data of BLN nodes. This graph showcases the capacities
of the entities, providing a picture of BLN’s topology.
By representing entities like Bitfinex, LNBIG, Binance,
ACINQ, Kraken and Cequals with proportionally sized
bubbles, the graph highlighted how these entities, through
their multiple high-capacity nodes, play pivotal roles in the
network’s structure. A total number of 15,530 entities that
own a total of 4,839 BTC, is used in this graph and 10% of
entities control 96.5% of the network.

Additionally, an area chart was created to represent the
presence and growth of these entities throughout the entire
existence of the LN, from 2018 to 2025 (see Fig. 6).

It provides insights into how the sizes of entities within
the network have evolved over time. Initially, LNBIG was
the largest entity in the BLN and dominated a significant
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portion of the network’s capacity. As the overall network
capacity increased, LNBIG’s percentage of the total capacity
decreased, and other entities such as Bitfinex, ACINQ, and
River emerged. This evolution indicates that the network
has transitioned from being dominated by a single major
player to a more diversified structure with multiple significant
entities. Despite the rise of these larger entities, there remains
a multitude of smaller nodes and entities that do not have the
same level of influence on the network’s overall dynamics.
However, the emergence of several major players also raises
concerns about potential centralization, as these entities could
collectively have substantial control over the network.

This alias-based clustering methodology illuminated
aspects of centralization within the BLN by revealing how
certain operators might exert influence due to managing
multiple high-capacity nodes. Entities such as Bitfinex,
LNBIG, River, ACINQ, and Kraken emerged as significant
players in the network. By operating numerous nodes that
are easily identifiable through their aliases, these entities
impact the overall topology and centralization metrics of the
network.

By grouping nodes according to the names of companies or
entities in their full aliases, the study provided a foundational
understanding of potential centralization within the BLN.
This initial clustering step was crucial for more in-depth
analysis using centralization metrics. These findings support
Hypothesis 1, demonstrating that centralization appears
around large entities, because the clusters of nodes grouped
by the entity control a significant share of the network.

B. CENTRALITY METRIC RESULTS

This subsection presents the results obtained using each of
the selected centrality metrics. The findings illustrate how
centralization in the BLN has evolved over time and highlight
the differences captured by each measure.

1) GINI COEFFICIENT

The Gini coefficient values for degree centrality (based
on channel distribution) show a clear trend of increasing
centralization over time — it rises from 59.6% at T1 to
75.9% at T6 (see Fig. 7). This indicates a growing inequality
in the distribution of channels among nodes, which means
that over time more channels are concentrated in a smaller
number of nodes over time. The most significant growth is
noticed between the first and second year of the LN — Gini
coefficient increased from 59.8% to 74.6%. This increase is
then followed by more gradual change in the next timestamps.
Although, it’s important to mention that the latest data shows
that Gini coefficient slightly decreased from 76.4% in 2022,
to 74,1% in 2025, which indicates that centralization slightly
decreased in the last 3 years.

In contrast, the Gini coefficients for node capacity are
significantly higher, starting at 84.9% at T1 and rising to
97.0% by T8, as shown in Fig. 8. This indicates that in
terms of node capacity, the amount of liquidity each node
controls, centralization is even more noticeable than in the
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channel distribution. The sharpest increase occurs between
T2 (89.4%) and T3 (93.3%), reflecting growing concentration
of liquidity in fewer nodes.
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FIGURE 8. Lorenz curves of BLN nodes on weighted degree centrality.

These findings align with the trends identified in previous
research on the LN. Study [20] reported a similar increase in
centralization, with the average Gini coefficient of 76% for
the number of channels in nodes and average of 95% for node
capacity in 2022. The results in this study are slightly higher,
with the coefficient of 76.4% for the number of channels and
coefficient of 95.5% for the node capacity in 2022.

2) NAKAMOTO COEFFICIENT

For channel distribution, the Nakamoto coefficient for nodes
starts at 40 in T1 (see Fig. 10), and it indicates that at
the network’s initial stages, only 40 nodes were needed to
control over half of the channels, which means that control
was concentrated in the hands of few nodes. As the network
matures, this figure increases, reaching a peak of 685 in
TS5 before dropping steadily to 510 until T8. The sharp
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rise between T3 (220) and T5 (685) suggests that channel
distribution has become more decentralized, with more nodes
needed to hold significant control over the network. However,
this does not indicate a sustained trend, as the Nakamoto
coefficient begins to decline after TS. While this rise initially
matched with a period of growth in node participation
(see Fig. 9), the later decrease in node count suggests that
overall distribution has become less balanced in subsequent
periods. This can be observed when calculating the Nakamoto
coefficient based on the node capacity.
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FIGURE 9. Total number of BLN nodes in the Lightning Network.

For entities (see Fig. 10 and Fig. 11), Nakamoto coefficient
is progressing similarly to the coefficients of nodes, but the
overall values are lower. This indicates that clusters of nodes
belonging to single entities hold a higher concentration of
control compared to individual nodes acting independently.
When nodes are grouped into entities, fewer of these entities
are needed to control a substantial portion of the network’s
channels or capacity. This suggests that while the network
may appear more decentralized when viewed at the node
level, centralization remains evident at the entity level, where
a smaller number of clusters still hold significant control
over the network’s resources. This observation supports
Hypothesis 1, indicating that despite an increase in nodes, the
influence of key entities continues to play a dominant role in
the network’s structure.

The node capacity results show a different picture,
revealing a higher concentration of liquidity among fewer
nodes. The Nakamoto coefficient begins at a much lower
value — 13 at T1, as shown in Fig. 11. Over time, this
number increases to 81 at TS5, then drops to 27 until T8.
These lower coefficients indicate that node capacity is more
centralized, and fewer nodes are controlling a significant part
of the network ‘s capacity. This concentration shows that
there are risks to network stability if these key nodes fail or
act maliciously. Nakamoto coefficient for entities shows the
same trend as before — the progress is similar to nodes, but
Nakamoto coefficient itself is lower. Research [75] indicated
that the Nakamoto coefficient, alongside the Gini, revealed
a significant concentration in BTC and Ethereum, where a
small number of participants control over 51% of the wealth
and this reveals that there is a security risk for these networks.
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FIGURE 10. Nakamoto coefficient of BLN nodes on degree centrality.
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FIGURE 11. Nakamoto coefficient of BLN nodes on weighted degree
centrality.

These results and differences between channel number
and node capacity reveal that the channel infrastructure is
becoming more distributed among nodes, but node capacity
remains centralized.

3) HERFINDAHL-HIRSCHMAN INDEX

The Herfindahl-Hirschman index (HHI) for degree centrality
starts at a high value of 153.3 at T1 (see Fig. 12), indicating
a strong concentration of channels among a few nodes. But
this value decreases significantly to 26.9 at T2 and remains
stable at around 26 for the next two years, before declining
further to 16.2 at TS and increasing back to 26.9 up until
T8. These results show that the network is becoming more
decentralized in channel distribution, and it becomes more
balanced over time with fewer nodes dominating the network.
The HHI for entities shows a distinct pattern, with an extreme
rise between T2 and T3, followed by a gradual decrease since
and a slight increase again in T8. The peak in T3 may indicate
the emergence of a large entity that temporarily raised the
HHI; however, over time, the network became more balanced.
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FIGURE 12. HHI of BLN nodes on degree centrality.
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FIGURE 13. HHI of BLN nodes on weighted degree centrality.

The weighted degree centrality HHI values are higher,
starting at 282.8 and decreasing to 62.7 in the following
year, but then fluctuating across later timestamps as shown
in Fig. 13.

The HHI value at T8 is 179.6. These higher values indicate
that there is a concentration of liquidity in smaller groups of
nodes. Fluctuation indicated that while some decentralization
occurs, capacity control remains centralized in a limited
number of dominant nodes. The HHI for entities also rises
sharply at T2 and T3, then gradually decreases, confirming
that while large influential entities initially emerged in the
network, it became more balanced over time.

This pattern mirrors early observations in BTC, where [47]
noticed that the sharp rise in HHI for BTC at the beginning
of it was due to the small number of participants at that time.
In the early phases, the Top 100 addresses controlled most
BTC and the clustering of addresses within this group led to
increased HHI values.

4) THEIL INDEX
For degree centrality, the Theil index starts at 0.146 at T1
and steadily increases to 0.183 at T4 (see Fig. 14), indicating
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a rising inequality in the number of channels per node as a
higher value of Theil index signifies greater inequality in the
distribution. Some nodes might be establishing significantly
more channels than others. From T4 to T8 it slightly
decreases, suggesting a minor reduction in inequality, which
means that new nodes with fewer channels could be balancing
the network. For entities, the normalized Theil index is higher
than nodes — rising to over 0.22 between T2 and T4 - and
its overall trend mirrors the HHI observed for nodes. This
indicates that the network is less equal when assessed through
clusters of nodes, highlighting a greater concentration of
control among entity clusters.
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FIGURE 14. Theil index of BLN nodes on degree centrality.

In terms of weighted degree centrality, or node capacity,
the Theil index values are higher, starting at 0.289 at T1 and
increasing to 0.435 at T8 (see Fig. 15). This indicates that
capacity is becoming more concentrated among fewer nodes
and liquidity distribution is becoming centralized in a smaller
number of nodes. The inequality in the distribution of node
capacity is growing. For entities, the normalized Theil index
is also higher, confirming similar findings as observed with
degree centrality.

To sum up both degree and weighted degree centrality
results, the Theil index for node capacity is consistently
higher than for the number of channels, suggesting that
capacity is more unevenly distributed than connectivity. The
number of channels is becoming more balanced and at the
same time, node capacity is becoming more concentrated
among fewer nodes.

5) SHANNON ENTROPY

Normalized Shannon entropy for degree centrality values
begins at 0.854 at T1 and fluctuates during the first half
of the year (see Fig. 16). After this, there is a drastic
decrease from T1 to T4, where entropy decreases from
0.854 to 0.817, indicating a slight increase in inequality
in the distribution of the number of channels per node.
From T4 to T8 entropy rises slightly to 0.822, suggesting a
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FIGURE 15. Theil index of BLN nodes on weighted degree centrality.

minor move toward more even distribution. The values of
Shannon entropy remain consistently high, suggesting that
the channel distribution is balanced throughout the different
timestamps. For entities, the decrease between T1 and T2 is
more gradual and balanced, indicating that, the distribution of
channels among entities is less equal than among individual
nodes.

In contrast, Normalized Shannon entropy for weighted
degree centrality starts at a lower value of 0.711 at T1 and
experiences similar fluctuations during the first year, rising
to 0.726 at T2, then decreasing to 0.629 at T4 (see Fig. 17).
After this decrease the entropy increases again and finally
drops to 0.565 at T8. This lower overall value suggests
that capacity distribution among nodes is more concentrated
compared to channel distribution. The decline over time
implies that, although there might be some decentralization
occurring, it is not as pronounced as the changes seen
in channel distribution. For entities, at T2, normalized
Shannon entropy increases, while for nodes, there is a sharp
decline. Afterward, normalized Shannon entropy for entities
decreases gradually, indicating that capacity distribution
among entities remains more balanced than among individual
nodes.

In study [36] Shannon entropy was used to evaluate
decentralization in various blockchain networks, with results
highlighting that in 2018 the values for BTC and ETH were
11.33 and 10.38, respectively. By 2023, these results have
shifted to 11.55 for BTC and 8.61 for ETH. In this current
study, weighted degree centrality entropy for BLN at T6
(8.69) was lower than both BTC and ETH. This suggests that
while channel distribution is becoming more decentralized,
node capacity remains concentrated in fewer nodes, making
BLN more centralized in terms of resource control compared
to both BTC and ETH.

While the above metrics provide isolated insights, the
following section synthesizes these results through summary
metrics to better understand overall trends.
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FIGURE 17. Shannon entropy of BLN nodes on weighted degree centrality.

V. COMPREHENSIVE SUMMARY OF CENTRALIZATION
METRICS

The analysis of centralization in the BLN across various
centrality metrics reveals a complex picture of the network
‘s evolution. While some metrics indicate that the network
is becoming more decentralized, others suggest the opposite,
highlighting the complexity of centralization within the
system.

Table 2 provides a comprehensive summary of centraliza-
tion metrics based on degree centrality for individual nodes
across eight timestamps.

As shown in Table 2, the Gini coefficient for degree
centrality increases from 0.598 at T1 to 0.764 by T5 and then
slightly decreases at T8 (0.741), indicating a general rise in
inequality in the distribution of channels among nodes over
time. This suggests that some nodes are accumulating more
channels compared to others, leading to a less equal network
in terms of connectivity.
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TABLE 2. Centrality metrics for number of channels (degree centrality) for
individual nodes.

Centrality Tl T2 T3 T4 TS T6 T7 T8
metric
Gini 0.598 [ 0.746 | 0.758 | 0.758 | 0.764 | 0.759 | 0.736 | 0.741
coefficient
Nakamoto 40 208 |220 |274 |685 |644 |[619 |510
coefficient
HHI 15331269 [265 (264 [16.2 |[18.1 |24.1 |269
Normalized |0.146 {0.164 |0.177|0.183]0.172|0.171 | 0.172 | 0.178
Theil index
Normalized |0.854|0.836|0.823|0.817|0.828 | 0.829 | 0.828 | 0.822
Shannon
entropy

However, when viewing centralization through entities, the
control of the network held by key players becomes evident
(see Table 3). For instance, the clustering of nodes by entities
supports Hypothesis 1, pointing to a continued concentration
of control despite minor fluctuations in Gini values as larger
entities that control a significant portion of the network’s
capacity dominate.

TABLE 3. Centrality metrics for number of channels (degree centrality) for
entities.

Centrality Tl T2 T3 T4 TS T6 T7 T8
metric
Gini 0.598 [ 0.756 [ 0.770 | 0.774 | 0.774 | 0.769 | 0.748 | 0.753
coefficient
Nakamoto 40 178 | 165 |180 (481 |[511 [488 |410
coefficient
HHI 153.3 | 134.8 | 1554 [ 118.7 [ 429 [41.7 |33.3 |36.9
Normalized |0.146|0.203 | 0.225|0.2290.200 | 0.195 | 0.189 | 0.194
Theil index
Normalized |0.854(0.797 |0.775|0.772 | 0.800 | 0.805 | 0.811 | 0.806
Shannon
entropy

The Nakamoto coefficient significantly increases at both
levels, from 40 at T1 to 510 at T8 for nodes, and from 40 to
410 for entities. This increase implies that a larger number
of nodes and entities are required to control 50% of the
total channels over time, indicating decentralization in terms
of control distribution. However, the consistently lower
Nakamoto coefficient at the entity level suggests that fewer
entities are needed to hold majority control compared to
individual nodes. This discrepancy highlights that while the
network appears more decentralized at the node level, entities
consolidate control, leading to centralization at a higher level.

The HHI decreases dramatically at the node level, from
153.3 at T1 to 26.9 at T8, indicating reduced concentration
among the top nodes and a more competitive environment.
Atthe entity level, the HHI decreases initially but remains sig-
nificantly higher than the node-level HHI throughout, ending
at approximately 36.9 at T8. This suggests that concentration
remains higher among entities, reflecting their influence in
maintaining control despite apparent decentralization among
individual nodes.

Both the Normalized Theil Index and Normalized Shannon
Entropy exhibit minor fluctuations at both levels. The Theil
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TABLE 4. Centrality metrics for node capacity (weighted degree
centrality) for individual nodes.

Centrality Tl T2 T3 T4 T5 T6 T7 T8
metric
Gini 0.846 | 0.894 1 0.936 [ 0.953 | 0.955 | 0.958 | 0.960 | 0.970
coefficient
Nakamoto 13 61 43 44 81 52 44 27
coefficient
HHI 282.8162.7 |78.9 |109.7|81.5 |144.3|1254|179.6
Normalized |0.289 [ 0.274 | 0.333 | 0.371 [ 0.354 { 0.390 | 0.394 | 0.435
Theil index
Normalized |0.711 [ 0.726 | 0.668 | 0.629 | 0.646 | 0.610 | 0.606 | 0.565
Shannon
entropy

Index increases slightly more at the entity level, indicating
greater inequality among entities compared to nodes. The
Shannon Entropy decreases initially and then increases
slightly, with lower values at the entity level, suggesting a less
even distribution of channels among entities. These trends
reinforce the notion that entities contribute to a more unequal
and concentrated network structure.

Table 4 presents the centralization metrics based on
weighted degree centrality (node capacity).

For node capacity, the Gini coefficient increases from
0.846 at T1 to 0.970 at T8, highlighting a significant rise
in inequality in the distribution of capacities among nodes.
This means that a small number of nodes are holding a
larger proportion of the network’s total capacity over time.
Entity-based clustering results in Table 5 highlights this
centralization effect even further, as entities increase their
influence on network capacity.

The Nakamoto coefficient at the node level increases from
13 at T1 to 81 at TS5, suggesting initial decentralization,
but then decreases to 27 at T8, indicating a shift toward
centralization. At the entity level, the Nakamoto coefficient
remains lower throughout, decreasing from 44 at T5 to 18 at
T8. This suggests that fewer entities are needed to control
the majority of the network’s capacity compared to individual
nodes, highlighting the centralizing effect of entities and their
capacity to consolidate control.

The HHI at the node level decreases initially but fluctuates,
ending higher at T8 than at T2, indicating inconsistencies
in concentration among top nodes. At the entity level, the
HHI is significantly higher, peaking at T3, reflecting a high
concentration of capacity among top entities. The elevated
HHI values at the entity level demonstrate that entities
contribute to a more concentrated distribution of capacity,
reinforcing centralization trends.

Both the Normalized Theil Index and Normalized Shannon
Entropy indicate growing inequality and uneven distribution
of capacity at both levels. The Theil Index increases more
sharply at the entity level, reaching 0.462 at T8 compared
to 0.435 at the node level. The Shannon Entropy decreases
over time, with lower values at the entity level, suggesting
a less even distribution of capacity among entities. These
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metrics confirm that entities exacerbate inequality within the
network.

For degree centrality, while the Gini coefficient indicates
a trend toward higher inequality overall, with minor recent
declines, the Nakamoto coefficient and HHI suggest increas-
ing decentralization and decreasing concentration. These
differences occurs because of the different aspects the metrics
capture — the Gini coefficient measures inequality across the
entire distribution, while the Nakamoto coefficient focuses
on the minimum number of nodes controlling a majority and
the HHI measures network‘s concentration. The HHI might
decrease, suggesting less concentration among top nodes,
even when the Gini coefficient indicates rising inequality.
The influence of dominant nodes might reduce, while overall
inequality still grows due to disparities among smaller nodes.

In weighted degree centrality, the increasing inequality
shown by the Gini coefficient and Theil index aligns with
the decreasing Shannon entropy, all pointing toward growing
inequality. However, the fluctuations in the Nakamoto
coefficient and HHI indicate inconsistencies in the trend
towards centralization, highlighting the complexity of the
network.

TABLE 5. Centrality metrics for node capacity (weighted degree
centrality) for entities.

Centrality T1 T2 T3 T4 TS T6 T7 T8
metric
Gini 0.846 [ 0.901 [ 0.939 | 0.956 | 0.951 | 0.959 | 0.959 [ 0.971
coefficient
Nakamoto 13 41 16 16 44 25 31 18
coefficient
HHI 282.7 [ 753.6 | 850.3 | 569.8 | 280.3 | 310.8 | 245.9 [ 299.1
Normalized |0.289 [0.370 | 0.441 | 0.452]0.399 | 0.432 | 0.420 | 0.462
Theil index
Normalized |0.711|0.630|0.559 | 0.548 | 0.601 | 0.568 | 0.580 | 0.538
Shannon
entropy

As noted in study [75], a high Gini coefficient can coexist
with a high Nakamoto coefficient. This means that while
resources are unevenly distributed, control over the majority
can still be spread across many nodes, creating an illusion of
decentralization.

The observed trends support Hypothesis 1, which suggests
that the BLN exhibits centralization around large entities,
as clusters of nodes grouped by the entity hold a significant
share of the network. The aggregation of nodes into entities
reveals that entities consolidate control, leading to increased
centralization.

Additionally, the results align with Hypothesis 2, confirm-
ing that centralization follows a non-linear pattern over time
rather than consistent increase, with key nodes maintaining
disproportionate influence. The consistent rise in inequality
metrics at both levels indicates that resources are becoming
more unevenly distributed, with entities playing a significant
role in this process.
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VI. DISCUSSION
This section interprets the results compared to the existing lit-
erature, outlines the study’s contributions, discusses practical
implications, and identifies future research directions.

This study investigated the centralization in the BLN using
a range of centrality metrics, incorporating an entity-based
analysis that highlights the influence of clusters of nodes.
The findings provide a detailed view of the network’s central-
ization dynamics, revealing both consistent and conflicting
trends across different metrics, with entity clustering showing
more concentrated control compared to node-based metrics
alone. These results are contextualized through comparison
with existing research on network centrality, highlighting
implications for understanding control and influence in
decentralized networks. Additionally, the study addresses
methodological limitations and discusses how these insights
may inform future approaches to assessing centralization in
decentralized financial networks.

A. REFLECTION ON LITERATURE

The BLN has emerged as a second-layer solution designed
to address Bitcoin’s scalability challenges by enabling rapid
and low-cost transactions through an off-chain framework.
This architecture allows for the establishment of peer-to-peer
channels where transactions occur off-chain, thus preserving
the decentralized nature of Bitcoin [1], [2]. Despite these
advantages, discussions on the degree of centralization within
the BLN raise critical questions about the future of decentral-
ization within this network. Findings from studies suggest
a concerning trend, where a small subset of nodes may
hold a disproportionate share of the network’s total capacity,
potentially compromising the decentralization goal. These
observations relate directly to Hypothesis 1, which states that
larger entities controlling specific nodes might increasingly
dominate the network, potentially impacting decentralization.
Current study’s findings on node centralization dynamics
in the BLN align closely with trends identified in existing
literature. Like prior research indicating that roughly 10%
of nodes hold 80% of the BLN’s capacity [4], our analysis
reveals that 10% of nodes control 96.5% of the network
capacity, suggesting that more recent data indicate even more
significant centralization.

The investigation into centralization metrics within the
BLN reveals various aspects of node centrality that could
influence control and power dynamics within the network.
Degree centrality, for instance, identifies high-activity hubs
that may exert significant influence through numerous
connections [26], [27]. Weighted degree centrality, on the
other hand, measures the liquidity or capacity of these
connections, providing a nuanced understanding of node
significance beyond simple connection counts [28]. These
two metrics reveal different aspects of centralization, and
the results of the study showed that centralization based on
weighted degree centrality is more apparent than on degree
centrality.
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Several statistical tools provide a framework to measure
and interpret inequality within the network. The Gini
coefficient, a commonly used metric for inequality, suggests
that higher values indicate greater centralization; studies
have reported Gini coefficients as high as 0.88 for node
capacity and 0.75 for channel distribution within the BLN,
emphasizing a centralized configuration [4], [37]. Current
study average results confirm with the previous research —
0.92 for node capacity and 0.73 for channel distribution.
Relatedly, the Lorenz curve graphically represents this
distribution of network resources, highlighting the disparity
among nodes [11]. The Nakamoto coefficient, integrating
insights from both the Gini coefficient and Lorenz curve,
specifies the minimum number of entities required to control
the network, thus quantifying decentralization risk [41], [42].
Additionally, the Theil index and Shannon entropy provide
further insights: the Theil index evaluates inequality in node
capacity and transaction volume distribution, while Shannon
entropy reflects the uniformity of node capacity distribution,
where higher entropy values suggest a more decentralized
structure [1], [24], [48], [53].

Findings of the study also support Hypothesis 2, which
suggests that centralization within the BLN may be gradually
increasing over time. Metrics such as the Gini coefficient
for node capacity and weighted degree centrality indicate
a progressive trend toward more significant inequality,
while fluctuations in the Nakamoto coefficient highlight the
nuanced dynamics of this centralization process. These met-
rics collectively offer a comprehensive view of centralization
trends within the BLN, and their implications suggest both
challenges and considerations for the network’s development
and sustainability.

B. CONTRIBUTION ON THE RESEARCH

This research contributes to the understanding of cen-
tralization dynamics in the BLN by analyzing multiple
inequality and centralization. In line with Hypothesis 1,
which highlights that larger entities controlling specific nodes
may dominate the network, findings indicate that increasing
capacity inequality could indeed pose centralization risks as
a small number of nodes accumulate a larger proportion of
the network’s total capacity. Additionally, consistent with
Hypothesis 2 - that centralization in the BLN is gradually
increasing over time - the study observes growing trends
in capacity inequality, underscoring potential centralization
over time despite some metrics showing signs of decentral-
ization.

Unlike previous research that largely presented centraliza-
tion as uniformly strong and increasing, this study highlights
a more nuanced insight. The introduction of entity-level
clustering further differentiates this study by analyzing
previously unrecognized centralized structures at the entity
level, offering insights that extend beyond conventional
node-level analysis. These nuanced findings show the
importance of adopting multiple metrics and perspectives
to accurately assess centralization dynamics, contributing
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meaningful advancements to both academic research and
practical strategies for maintaining the decentralized integrity
of the BLN.

By differentiating between degree centrality and weighted
degree centrality, the study reveals that while inequality is
growing in both aspects, the impact on decentralization is
complex, with increasing inequality in connectivity accompa-
nied by enhanced decentralization (as control spreads across
more nodes), whereas increasing capacity inequality poses
potential centralization risks due to capacity concentration
among fewer nodes. This analysis highlights the importance
of using multiple metrics to capture different dimensions of
centralization, uncovers nuanced insights into the network’s
structural changes, contributing valuable insights that inform
network development, policy-making, and future research to
ensure the BLN remains secure, efficient, and aligned with its
decentralized principles.

C. IMPLICATIONS FOR PRACTICE

The practical implications of this research emphasize the
need for proactive measures to address growing inequality
and potential centralization within the BLN. Consistent with
Hypothesis 1, which suggests that the centralization of the
BLN may increase as larger entities controlling specific nodes
dominate the network, it is essential for network participants
to regularly monitor inequality and centralization trends
using metrics like the Gini coefficient and Theil index to
detect early signs of centralization [1], [4]. This monitoring
can reveal shifts in power dynamics, allowing for timely
interventions.

Moreover, in line with Hypothesis 2, that centralization
in the BLN is gradually increasing over time, encouraging
an equal distribution of capacity is crucial. This can be
achieved by incentivizing smaller nodes, supporting new
users, and promoting diverse connectivity to help maintain
decentralization [76]. Additionally, enhancing network secu-
rity by mitigating single points of failure and implementing
redundancy measures is vital in reducing risks associated with
high-capacity nodes that may increase centralization [11].

Adjusting network policies and protocols to balance
efficiency with decentralization, educating the community
about the importance of decentralization, and fostering
collaborative efforts among stakeholders are also critical
steps. By implementing these practices, the BLN could
effectively address the challenges posed by centralization
and ensure security, efficiency, and alignment with the
foundational principles of blockchain technology.

D. LIMITATIONS AND FUTURE RESEARCH DIRECTIONS

This study identifies several limitations in assessing central-
ization within the BLN. A key limitation is the use of static
data rather than dynamic data, which may not fully capture
the network’s evolvement over time. Although March of each
year was selected as a reference point for presenting results in
figures, the full analysis relies on monthly network snapshots
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from March 2018 to March 2025, minimizing sampling bias.
The inherent complexity of the network further complicates
efforts to accurately cluster nodes into entities and determine
the exact number of active channels.

Moreover, the alias-based clustering method used in this
study assumes that nodes create their aliases based on their
entity name, which may not always be accurate. This manual
approach could introduce errors and biases. Future research
could benefit from exploring alternative clustering methods,
to more accurately group entities.

While a comparative analysis of centrality metrics has been
conducted, this study focused only on degree centrality and
weighted degree centrality. Other important measures like
betweenness, closeness, and eigenvector centrality were not
quantified, because they are based on routing and do not
consider channel capacities. Future research should include
these additional centrality aspects to provide a more complete
understanding of the network’s structure.

VII. CONCLUSION

This research concludes that the centralization dynamics
within the BLN are complex and multifaceted. While some
centrality metrics indicate increasing centralization, others
suggest a potential for decentralization, revealing nuanced
results of network centralization. The study highlights the
importance of employing diverse metrics to accurately assess
centralization and emphasizes the need for entity-based
analysis to uncover the influence of grouped nodes. These
findings provide critical insights for stakeholders seeking
to enhance the resilience and decentralization of the BLN,
guiding future strategies and policy development.

DATA AND CODE AVAILABILITY

Data and code used in this study are openly accessible. The
scripts used for data collection are available at VUKNF-
Fintech-Research-Group/Ind-dbreader. The repository con-
taining the code for calculating the centrality metrics and
creating the graphs is available at VUKNF-Fintech-Research-
Group/blnstats. Additionally, a database of all the results is
accessible at blnstats.knf.vu.lt.
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