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Nisin is a known bacteriocin, which exhibits a wide spectrum of antimicrobial activity,
while commonly being inefficient against Gram-negative bacteria. In this work, we
present a proof of concept of novel antimicrobial methodology using targeted magnetic
nisin-loaded nano-carriers [iron oxide nanoparticles (NPs) (11–13 nm) capped with
citric, ascorbic, and gallic acids], which are activated by high pulsed electric and
electromagnetic fields allowing to overcome the nisin-resistance of bacteria. As a cell
model the Gram-positive bacteria Bacillus subtilis and Gram-negative Escherichia coli
were used. We have applied 10 and 30 kV cm−1 electric field pulses (100 µs × 8)
separately and in combination with two pulsed magnetic field protocols: (1) high dB/dt
3.3 T × 50 and (2) 10 mT, 100 kHz, 2 min protocol to induce additional permeabilization
and local magnetic hyperthermia. We have shown that the high dB/dt pulsed magnetic
fields increase the antimicrobial efficiency of nisin NPs similar to electroporation or
magnetic hyperthermia methods and a synergistic treatment is also possible. The results
of our work are promising for the development of new methods for treatment of the
drug-resistant foodborne pathogens to minimize the risks of invasive infections.

Keywords: antimicrobial resistance, bacteria inactivation, B. subtilis, E. coli, iron oxide nanoparticles, nisin

INTRODUCTION

Consumption of food, which is contaminated by pathogenic bacteria represents a serious public
health problem (Pinilla and Brandelli, 2016). The drug-resistant foodborne pathogens are of
greatest concern due to the invasive infections, high risks of death, and massive outbreaks of disease
(Roca et al., 2015; Lammie and Hughes, 2016). The situation is complicated by the increasing
rates of antimicrobial resistance, which can ultimately be a consequence of the abuse or misuse of
antibacterial agents (Roca et al., 2015). Therefore, the applied research of antimicrobials, alternative
or combinational methods for the biocontrol, and sensitization of pathogenic microorganisms are
in constant focus (Ristic et al., 2014; Ziuzina et al., 2015; Campion et al., 2017). The main interest
lies within the development of natural additives and minimally processed foods to preserve taste
and nutritional value (Chemat et al., 2017). Nevertheless, the array of available food preservatives,
generally recognized as safe (GRAS) and approved by EU and US food and drug administration
committees is limited (Gharsallaoui et al., 2016).
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One of such prominent bacteriocins (E234) unspotted in
health problems is nisin, an oligopeptide produced by certain
strains of Lactococcus (Cotter et al., 2012; Rao et al., 2016).
Nisin is a cationic peptide composed of 34 amino acid
residues. It belongs to lantibiotics and contains unusual amino
acid residues dehydrobutyrine, dehydroalanine, lanthionine, and
β-methyl lanthionine. The molecular mass of nisin is 3.5 kDa.
However, at higher pH values (8–9) nisin is prone to form
multimers (Gharsallaoui et al., 2016). It is active against a broad
spectrum of Gram-positive foodborne pathogens; however, its
use as a biopreservative is limited due to low efficiency against
Gram-negative bacteria (Gharsallaoui et al., 2016; Pinilla and
Brandelli, 2016). Moreover, the repeated exposure of bacteria
to increasing nisin concentrations leads to patterns of nisin
resistance, which also participate in the resistance to other
antimicrobials or antibiotics (Blake et al., 2011; Zhou et al.,
2014). Gram-negative bacteria are resistant to nisin mainly
due to impermeable outer membranes, since nisin has to
incorporate itself in the bacterial cell membrane by binding to
essential precursors for cell wall biosynthesis, which ultimately
leads to formation of pores, loss of solutes in bacteria, and
subsequent cell death (Wiedemann et al., 2004; Campion et al.,
2017).

The straightforward solution is to use combinational methods
to improve the bacteria inactivation efficiency (i.e., garlic extracts,
CO2, pressure, thermal stress), which all showed an improvement
in nisin-mediated biopreservation (Lee and Kaletunç, 2010; Al-
Holy et al., 2012; Chandrasekaran et al., 2013; Pinilla and
Brandelli, 2016; Rao et al., 2016). However, since the bacteriocins
can lose their antimicrobial activity due to environmental factors
such as pH, temperature, or food composition (Zhou et al., 2014)
additional encapsulation and use of nanostructures as carriers
are advantageous (Lopes and Brandelli, 2017). Development
of nisin-loaded nanoparticles (NPs) can improve the stability
and efficiency of the nisin-mediated antimicrobial treatment
(Prombutara et al., 2012; Zohri et al., 2013; Krivorotova
et al., 2016). However, the physical methods that are used in
combination should be targeted and preferably non-thermal to
guarantee high stability and efficiency of nisin treatment, preserve
nutritional value, and quality of food (Keenan et al., 2010; Rawson
et al., 2011). Also, since nisin employs a plasma membrane
interaction mechanism and its efficiency is highly dependent
on the pore formation, the applied physical methods should be
synergistic and exhibit similar effects (Novickij et al., 2016b).
The perfect candidate is the pulsed electric field (PEF) processing
methodology or electroporation, which triggers reversible or
irreversible process of pores formation in the cell wall or cell
membrane (Kotnik et al., 2012; Mahnič-Kalamiza et al., 2014;
Pillet et al., 2016). The method is non-thermal and already made
its way to food science and food processing as a sterilization or
extraction method (Bobinaite et al., 2014; Golberg et al., 2016;
Pal, 2017). However, electroporation is an emerging technique
for sensitization of bacteria to antimicrobials (Khan et al., 2016;
Novickij et al., 2016b; Ravensdale et al., 2016). Recently, a proof
of concept that it is possible to overcome the nisin-resistance of
Gram-negative bacteria using electroporation and nisin-loaded
NPs was presented (Novickij et al., 2016b).

As an alternative to electroporation, a pulsed electromagnetic
field (PEMF) methodology has been proposed recently (Kardos
and Rabussay, 2012; Towhidi et al., 2012; Novickij et al.,
2017a). The concept is based on generation of the time-varying
pulsed magnetic field, which induces electric field and triggers
contactless electroporation (Kranjc et al., 2016). The PEMF
method has an additive effect with PEF, which allows significant
increase of the treatment efficiency without contamination
(Novickij et al., 2016a, 2017c). It is a fundamentally new
phenomenon, which can be triggered only in extremely high
magnetic fields, while the exact mechanism of the effect
currently is not fully understood. However, weak PEMF-
based methodologies are well studied and are frequently
used in combination with magnetic NPs (Lee et al., 2011;
Chandrasekaran et al., 2013; Vallejo-Fernandez et al., 2013;
Niemirowicz et al., 2016). Magnetic NPs have attracted
increasing attention as an efficient tool in various areas of
application. In the biomedical field, they are used for magnetic
hyperthermia, thermoablation therapies, targeted drug delivery,
and as contrast agents for magnetic resonance imaging (Wu
et al., 2015). In biotechnology, iron oxide magnetic NPs
functionalized with various biomolecules find their application
in the biological separation, biosensing, bioremediation, and
magnetofection process (Assa et al., 2016; Dinali et al.,
2017).

Therefore, we have speculated that it is possible to increase the
antimicrobial efficiency of nisin using different encapsulation to
improve stability and binding of the structure to magnetic nano-
carriers, while the nisin-resistance can be overcome by controlled
poration of the cell membrane in PEF. The PEMF methodology
can be further used to increase the treatment efficiency. As
a result, we are first to present a proof of concept of novel
antimicrobial methodology using targeted magnetic nisin nano-
carriers, which are activated by combination of electric and high
PEMF.

MATERIALS AND METHODS

Pulsed Power Methods
The experimental setup consisted of three generators: (1) up to
3 kV, 100 ns – 1 ms square wave high voltage pulse generator;
(2) up to 3.3 T, high dB/dt generator, where B – magnetic
flux density; and (3) 10 mT, 100 kHz PEMF generation setup.
The first experimental setup generated electrical pulses (1 and
3 kV) in a sequence of eight pulses (1 Hz) in a commercially
available 1 mm gap electroporation cuvette (Biorad, Hercules,
CA, United States). A fixed duration of 100 µs was used, which
is typical in electroporation studies (Haberl Meglic et al., 2015).
The resultant electric field in the cuvette was 10 and 30 kV/cm,
respectively.

We have used two pulsed magnetic field setups to induce
different magnetic phenomena. The high dB/dt generator was
based on Marx circuit topology. The total discharge voltage
was 23 kV, resulting in up to 5 kA current in the coil (two
layers, six windings), which was compatible (inner diameter of
5.2 mm) with 0.2 ml polymerase chain reaction (PCR) sterile
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tubes (Quali Electronics Inc., Columbia, SC, United States).
A maximum amplitude of 3.3 T could be generated.

The second PEMF setup was based on the high frequency
resonance oscillator with maximum current support of 70 A. As
a load 25 mm inner diameter coil was used (single layer, eight
windings), which was compatible with standard 1.5 ml Eppendorf
tubes (Eppendorf, Hamburg, Germany). A maximum amplitude
of 10 mT could be generated at a 100 kHz frequency. The
measured waveforms of both PEMF generators and the protocols
for treatment of the cells are presented in Figure 1.

The protocol EMF1 was for the high dB/dt system and
included 50 oscillations generated at repetition frequency of
0.25 Hz (total treatment time of 3 min 20 s). High dB/dt
component allowed to induce electric field of 0.2 kV cm−1

inside the sample and thus potentially enable interaction with the
plasma membrane of the cell to promote permeabilization.

The protocol EMF2 was developed for the high frequency
PEMF setup and was dedicated for the induction of local
hyperthermia and additional motion of NPs inside the sample.
The cells were subjected to 10 mT, 100 kHz PEMF for 2 min.
In both cases, the methodologies were contactless; however, the
concomitant delivery of magnetic field pulses after electric field
pulses was used to determine if a phenomenon of increased
inactivation efficiency by PEF and PEMF can be triggered
(Novickij et al., 2016a).

Preparation of Nanoparticles
Materials
FeSO4.7H2O (≥99% p.a.), α(+)-ascorbic acid (≥99% p.a.)
(Asc), and gallic acid (Gal) monohydrate were purchased from
Roth, citric acid (Ca) monohydrate, and FeCl3.6H2O were
obtained from Fisher Chemicals and Merck, respectively. Nisin

FIGURE 1 | Applied magnetic field protocols. The pulses have been measured
using a calibrated loop sensor (VGTU, Vilnius, Lithuania), a DPO4034
oscilloscope (Tektronix, Beaverton, OR, United States), and a Gaussmeter
475DSP (Lakeshore, Carson, CA, United States), post-processed in OriginPro
Software (OriginLab, Northampton, MA, United States).

(NisinZTM P) was purchased from Handary S.A. (Brussels,
Belgium). All materials were used without additional purification.

Preparation of Nisin-Loaded Iron Oxide Magnetic
Nanoparticles
Nisin-loaded iron oxide magnetic NPs were prepared as
previously described (Gruskiene et al., 2017). Briefly, under
vigorous stirring, 0.587 g FeC3.6H2O and 0.278 g FeSO4.7H2O
were mixed in 10 ml of water and heated to 80◦C under nitrogen
in a three-necked flask. Then, 3.5 ml of NH4OH (10%) was
dropped into the solution. After reaction for 30 min at 80◦C,
0.3 g of Ca (Asc or Gal) in 0.6 ml water was added directly
into the reaction solution. The temperature was increased to
95◦C, and stirring continued for an additional 90 min. Then, the
solution was cooled down to room temperature naturally. The
iron oxide particles were separated by a magnet from reaction
mixture, washed with deionized water for several times, and dried
at 45◦C for 12 h. The prepared dried powder was stored in the
refrigerator. Before using, the required amount of iron oxide was
redissolved in water using an ultrasonic water bath for 3 h and
centrifuged at 6400× g for 2 h. The final iron oxide nanoparticles
(IONP) solution was used for the following nisin loading.
Synthesized iron oxide nanoparticles capped with Ca (IONP-Ca),
Asc (IONP-Asc), or Gal acid (IONP-Gal) corresponded to Fe2O3
phase (Maghemite-C, ICDD Card No. 00-039-1346) as judged by
X-ray diffraction method.

For the preparation of nisin-loaded particles, a volume of
nisin solution in water at the concentration of 10 µg/ml was
added dropwise to the IONP solution (0.05 mg/ml) at the
ratio 1/4 (v/v) under constant stirring at room temperature.
For the preparation of control, instead of nisin solution, water
was used. The solution of prepared nisin loaded IONP was
stored at +4◦C. Nisin loading on the particles was confirmed by
Fourier transform infrared spectroscopy and thermogravimetric
analysis.

The average diameter of nisin-loaded IONP-Ca, IONP-Asc,
and IONP-Gal was equal to 11, 13, and 12 nm, respectively, as
determined by atomic force microscopy. Nisin-loaded NPs were
stable at least for 6 weeks as judged by dynamic light scattering
method. The concentration of nisin for all NPs was 2 µg/ml.

Bacterial Cultures and Growth
Conditions
Bacteria representing both Gram-positive and Gram-negative
microorganisms were selected in accordance with widely adopted
model organisms for laboratory studies and industrial application
of PEF and food technology (Pillet et al., 2016; Murashita et al.,
2017; Pan et al., 2017). Gram-negative bacteria Escherichia coli
BL21 [F-dcm ompT hsdS(rB-mB-) galλ (DE3)] (ThermoFisher
Scientific, Vilnius, Lithuania) and Gram-positive bacteria Bacillus
subtilis ATCC 6633 (kindly provided by the Vilnius University,
Vilnius, Lithuania) were propagated in Luria-Bertani (LB)
medium (2% tryptone, 2% yeast extract, 1% NaCl) for 16–
18 h with continuous shaking at 37◦C. For exponential growth,
overnight cultures were transferred to fresh LB medium and
incubated at 37◦C for additional 3 h.
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Analysis of Antimicrobial Activity by Agar
Plate Count Method
Stationary and exponential B. subtilis and E. coli cells (1 × 107–
1× 108 cells/sample) were collected by centrifugation at 6000× g
for 5 min, washed with 0.9% NaCl solution, suspended in 100 µl
of solution containing nisin unloaded/loaded IONP, and used for
electric and/or high PEMF treatment. Afterward samples were
incubated at room temperature (20◦C) for 2 h, serial dilutions
performed in 0.9% NaCl, and 50 µl of each solution was spread
onto LB-agar plates with following incubation overnight at 37◦C.
All assays were carried out in triplicate. After incubation, colonies
were counted as colony forming units (CFU), and then the mean
value of CFU/ml was calculated.

Statistical Analysis
One-way analysis of variance (ANOVA; P < 0.05) was
used to compare different protocols. Tukey’s HSD multiple
comparison test for evaluation of the difference was used when
ANOVA indicated a statistically significant result (P < 0.05
was considered statistically significant). The data were post-
processed in OriginPro Software (OriginLab, Northampton, MA,
United States). All experiments have been performed at least
in triplicate and the treatment efficiency was expressed as
mean ± standard deviation normalized to untreated control
sample.

RESULTS

The antimicrobial activity of NPs depends on the encapsulation
method used, and therefore, we have used IONP with different
capping agents. Citric and Asc are well-known stabilizers of
NPs (Moore et al., 2015; Sreeja et al., 2015). Recently, Gal has
been used for coating of IONP, which are applicable for trypsin
immobilization by physical bonds (Atacan et al., 2016). However,
these acids differ in their chemical structure and properties and
consequently may influence on the chemisorption of nisin and its
biological activity. Therefore, each nisin-loaded version of NPs
(i.e., Nis-IONP-Ca) had a corresponding nisin-free version as
a reference (IONP-Ca) to distinguish the influence of separate
treatment components. The NPs have been used in combination
with PEMF to induce higher inactivation efficiency.

Inactivation in Pulsed Electric Fields
The conventional protocol of 8 × 100 µs was used with the
bacteria during the exponential and the stationary growing phase.
The results for E. coli are summarized in Figure 2. Both the
nisin-loaded and nisin-free NPs did not result in high inactivation
rates (up to 0.75 log CFU reduction) when used separately from
electroporation. However, 30 kV cm−1 pulsing protocol showed
a high increase in antimicrobial efficiency of the treatment (up to
3 log CFU reduction).

When PEF was used separately from NPs, up to 2 log reduction
in cell survival was detected (Figure 2A, 30 kV cm−1), while
in all cases with the nisin-loaded NPs a synergistic treatment
was triggered. The 10 kV cm−1 PEF procedure showed a
less profound effect (up to 1 log reduction); however, still

FIGURE 2 | Inactivation of Escherichia coli using different pulsed electric field
(PEF) protocols and nanoparticles (NP), where (A), exponential bacteria
growth phase; (B), stationary bacteria growth phase. CTRL, control samples
without NPs; IONP, iron oxide nanoparticles; Nis, nisin-loaded. Different
capping agents were used such as citric (Ca), ascorbic (Asc), and gallic (Gal)
acids. The number of residual culturable cells in the samples after the PEF
treatment (CFUT) was compared with ones in the control samples without
treatment (CFUC). The asterisk (∗) represents statistically significant (P < 0.05)
difference versus untreated control.

in Nis-IONP-Ca and Nis-IONP-Gal cases the difference was
significant (Figure 2A, 10 kV cm−1). The same tendency was
observed for E. coli in the stationary growth phase. Bacteria
were less susceptible to treatment resulting in a maximum
1.6 log reduction in cell survival (PEF + NPs), nevertheless a
significant improvement in inactivation efficiency was detectable
if compared to separate procedures.

The same methodology was applied for Gram-positive
bacteria (i.e., B. subtilis). The results are summarized in Figure 3.
More than 2 log reduction in cell survival was triggered solely
by nisin-loaded NPs (Figure 3A, Nis-IONP-Gal). Also, the
electroporation protocols were more effective, however, the
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FIGURE 3 | Inactivation of Bacillus subtilis using different PEF protocols and
NP, where (A), exponential bacteria growth phase; (B), stationary bacteria
growth phase. CTRL, control samples without NPs; IONP, iron oxide
nanoparticles; Nis, nisin-loaded. Different capping agents were used such as
Ca, Asc, and Gal acids. The number of residual culturable cells in the samples
after the PEF treatment (CFUT) was compared with ones in the control
samples without treatment (CFUC). The asterisk (∗) represents statistically
significant (P < 0.05) difference versus untreated control.

difference between combinational (PEF + NPs) and PEF only
treatment was not as apparent as in E. coli case for most of the
used NPs, which indicates a saturated permeabilization.

The results for B. subtilis in stationary growth phase agree
with previously observed phenomena for E. coli. The synergistic
treatment efficiency was detectable in all cases when nisin-loaded
NPs were used in combination with PEF (Figure 3B).

Inactivation in Pulsed Electromagnetic
Fields
Firstly, we have investigated the influence of EMF protocols
(with and without PEF component) in distilled water. The

FIGURE 4 | Inactivation of E. coli and B. subtilis using different treatment
protocols without NP, where PEF – 10 kV cm−1

× 8 × 100 µs; EMF1 –
3.3 T × 50, 0.25 Hz; EMF2 – 10 mT, 100 kHz, 2 min. The number of residual
culturable cells in the samples after the PEF treatment (CFUT) was compared
with ones in the control samples without treatment (CFUC).

10 kV cm−1 protocol was selected on purpose to prevent
occurrence of saturated permeabilization and thus, potentially
enable detection of synergistic response. The results for both
bacteria are summarized in Figure 4.

As it can be seen in Figure 4, both the EMF protocols are
barely influencing the survival of bacteria. Also, no additive effect
with PEF was detected. Considering the acquired data, we have
added NPs to include additional interactions of electromagnetic
field. However, based on the inactivation efficiencies in PEF,
we have narrowed the NPs to a pair of nisin-loaded (Nis-
IONP-Ca) and nisin-free versions (IONP-Ca), which showed
a stable antimicrobial response for both bacteria previously
(Figures 2, 3). Then, the bacteria suspended with the selected
NPs were treated in accordance with the methodology described
above. The results for IONP-Ca and both bacteria are presented
in Figure 5.

As it can be seen in Figure 5, the E. coli during exponential
growth phase reacted to all of the applied external stimuli with
both EMF protocols being similarly effective or even better than
the 10 kV cm−1 PEF (up to 1 log reduction). The result was not so
apparent for the B. subtilis, nevertheless both the EMF protocols
showed an increase in antimicrobial efficiency if compared to
NP-treatment only. Bacteria in stationary growth phase showed
a weak response to the treatment, which is in agreement with the
experimental data in PEF (Figures 2, 3); however, the synergistic
response for the EMF2 + PEF protocol was still detectable for
E. coli.

Results for the nisin-loaded version of NPs (Nis-IONP-Ca) are
summarized in Figure 6. As it can be seen in Figure 6, a similar
tendency is apparent for E. coli. A clear increase in inactivation
efficiency is observed when the synergistic EMF+ PEF protocols
were applied. However, we have detected a significant reduction
of treatment efficiency for B. subtilis when the NPs were
used with EMF protocols. The effect was also apparent during
combinational protocol (EMF2+ PEF).
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FIGURE 5 | Inactivation of E. coli and B. subtilis using different treatment
protocols and nisin-unloaded iron oxide NP with Ca as a capping agent
(IONP-Ca), where PEF – 10 kV cm−1

× 8 × 100 µs; EMF1 – 3.3 T × 50,
0.25 Hz; EMF2 – 10 mT, 100 kHz, 2 min. The number of residual culturable
cells in the samples after the PEF treatment (CFUT) was compared with ones
in the control samples without treatment (CFUC). The asterisk (∗) represents
statistically significant (P < 0.05) difference versus NPs only treatment.

FIGURE 6 | Inactivation of E. coli and B. subtilis using different treatment
protocols and nisin-loaded iron oxide NP with Ca as a capping agent
(Nis-IONP-Ca), where PEF – 10 kV cm−1

× 8 × 100 µs; EMF1 – 3.3 T × 50,
0.25 Hz; EMF2 – 10 mT, 100 kHz, 2 min. The number of residual culturable
cells in the samples after the PEF treatment (CFUT) was compared with ones
in the control samples without treatment (CFUC). The asterisk (∗) represents
statistically significant (P < 0.05) difference versus NPs only treatment. The
asterisk (∗∗) represents statistically significant (P < 0.05) difference versus
PEF + NPs treatment.

DISCUSSION

Various emerging technologies for food processing are
introduced every year with a hope to present an economical,
effective, and simple methodology for successful biopreservation
of food without reduction of food quality. In this work, we

have presented a novel method using targeted magnetic nisin
nano-carriers, which are activated by combination of electric and
high PEMF, allowing to overcome the initial nisin-resistance of
E. coli. We have developed magnetic IONP and increased the
antimicrobial efficiency of treatment using pulsed electric and
magnetic fields. As a result, a proof of concept has been presented
that the high pulsed magnetic fields increase the antimicrobial
efficiency of nisin NPs similar to electroporation or magnetic
hyperthermia methods, while a synergistic treatment is also
possible.

We have shown that the electroporation can be effective
by itself (30 kV cm−1) with or without the nisin NPs, which
is in agreement with other PEF works (Žgalin et al., 2012;
Flisar et al., 2014; Pataro et al., 2014). The effect could be
attributed to the high permeabilization, which is induced due the
increase of the transmembrane voltage in PEF (Zou et al., 2015).
The cell wall of bacteria serves as an ultimate barrier against
environment, however, electric field higher than 10 kV cm−1

is already sufficient to cause irreversible cell wall deterioration
induced by both the mechanical and physical damage (Pillet
et al., 2016). The plasma membrane protects Gram-negative
bacteria from nisin incorporation, however, the application of
PEF allows to permeabilize the bacteria and thus sensitize them
to nisin treatment, which is in agreement with the currently
known mechanisms of nisin resistance and PEF effects (Wouters
et al., 2001; Vesković Moračanin et al., 2014; Zhou et al., 2014;
Gharsallaoui et al., 2016). However, the combination of nisin NPs
with PEMF was of upmost interest.

The high dB/dt protocol proved to be as effective as the
10 kV cm−1 PEF procedure for the E. coli. Nevertheless, without
the NPs both EMF protocols were ineffective. The explanation
could lie within the mechanism behind the high pulsed magnetic
field treatment. The high dB/dt treatment is an emerging
technique, however, the dominant idea is that the high magnetic
field can result in induction of additional transmembrane
potential in the cell and thus, stimulate permeabilization or
affect the activity of ion channels (Towhidi et al., 2012; Kranjc
et al., 2016; Zablotskii et al., 2016; Polyakova et al., 2017). The
inability to affect the survival of bacteria solely by EMF is an
expected result, due to relatively low (up to 0.2 kV cm−1) induced
electric field if compared to the 10 kV cm−1 PEF treatment.
The result is in agreement with the established electroporation
theory, indicating that higher dB/dt magnetic fields are required
to permeabilize bacteria (Chen et al., 2006; Towhidi et al., 2012;
Kranjc et al., 2016; Rems and Miklavčič, 2016; Novickij et al.,
2017b). On contrary, magnetic NPs in combination with EMF
induce significantly higher local field gradients, hyperthermia,
and motion of both the cells and NPs, which all could attribute
to increased inactivation efficiency (Deatsch and Evans, 2014;
Salunkhe et al., 2014; Polyakova et al., 2017). The effect is
apparent both with nisin-loaded and nisin-free NPs, which
confirms the hypothesis.

Lastly, we have shown that both EMF protocols result in
additive effects with PEF for inactivation of E. coli using
nisin-loaded NPs, however, a significant reduction in treatment
efficiency was observed for B. subtilis. B. subtilis is initially
permeable to nisin, while high PEF exposure results in saturated
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permeabilization, which can explain the absence of additive
effect with EMF. However, the decreased inactivation efficiency
could be the cause of dielectrophoretic movement of cells and
electromotive forces that are induced during EMF exposure,
affecting passive diffusion and incorporation of nisin in the
membrane. Currently, it is not possible to determine the exact
mechanism and this phenomenon requires further investigation
in future works.

We conclude that EMF is a versatile tool, which can be
successfully used both separately and in combination with
electroporation for sensitization of bacteria to antimicrobial
peptides. However, further research is required in order to
better understand the mechanisms of effect, determine the
optimal parameters, and optimize the treatment efficiency.
From the technological point of view, EMF methods are
advantageous due to ease of incorporation in existing food

processing systems, contactless treatment possibility, and thus
absence of electrolysis and contamination, while we have shown
a proof of concept that additive effects with PEF are also
possible.
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