

Article

Discrete Limit Bohr–Jessen Type Theorem for the Epstein Zeta-Function in Short Intervals

Antanas Laurinčikas 1,† and Renata Macaitienė 2,3,*,†

- Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; antanas.laurincikas@mif.vu.lt
- Institute of Regional Development, Šiauliai Academy, Vilnius University, Vytauto Str. 84, LT-76352 Šiauliai, Lithuania
- Faculty of Business and Technologies, Šiauliai State Higher Education Institution, Aušros Av. 40, LT-76241 Šiauliai, Lithuania
- * Correspondence: renata.macaitiene@sa.vu.lt
- [†] These authors contributed equally to this work.

Abstract

We prove a probabilistic limit theorem for the Epstein zeta-function $\zeta(s;Q)$ in the interval [N,N+M] as $N\to\infty$, using discrete shifts $\zeta(\sigma+ikh;Q)$, where h>0 and $\sigma>\frac{n-1}{2}$ are fixed. Here, Q is a positive-definite $n\times n$ matrix, and the interval length M satisfies $h^{-1}(Nh)^{27/82}\leqslant M\leqslant h^{-1}(Nh)^{1/2}$. The limit measure is given explicitly. This theorem is the first result in short intervals for $\zeta(s;Q)$. The obtained theorem improves the known results established for the interval of length N. Since the considered probability measures are defined in terms of frequency, theorems in short intervals have a certain advantage in the detection of $\zeta(\sigma+ikh;Q)$ with a given property, as well as in the characterization of the asymptotic behaviour of $\zeta(s;Q)$ in general.

Keywords: Bohr–Jessen theorem; Haar measure; Epstein zeta-function; convergence in distribution; weak convergence of probability measures; short intervals

MSC: 11M41; 60B10; 60E10

Academic Editor: Hari Mohan Srivastava

Received: 16 July 2025 Revised: 15 August 2025 Accepted: 17 August 2025 Published: 19 August 2025

Citation: Laurinčikas, A.; Macaitienė, R. Discrete Limit Bohr–Jessen Type Theorem for the Epstein Zeta-Function in Short Intervals. *Axioms* 2025, 14, 644. https://doi.org/10.3390/axioms14080644

Copyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let $s=\sigma+it$ be a complex variable. The term "zeta-function" steams from the Riemann zeta-function

$$\zeta(s) = \sum_{m=1}^{\infty} \frac{1}{m^s}, \quad \sigma > 1.$$

Thus, zeta-functions in the classical sense are analytic functions of a complex variable in some half-plane $\sigma > \sigma_0$ defined by Dirichlet series

$$\zeta(s) = \sum_{m=1}^{\infty} \frac{a_m}{m^s},$$

with coefficients a_m of certain arithmetical nature, and have meromorphic continuation to the region $\sigma < \sigma_0$. In other words, zeta-functions are various generalizations of the function $\zeta(s)$.

The function $\zeta(s)$ appears to be quite simple; however, its value distribution is especially complicated. This is clearly illustrated by the Riemann hypothesis on the location of the nontrivial zeros of $\zeta(s)$. Roughly speaking, the value distribution of zeta-functions is

Axioms **2025**, 14, 644 2 of 20

chaotic, and information on their majority concrete values is insufficient. On the other hand, in the context of certain problems, precise information on values of $\zeta(s)$ is not necessary: certain average data are sufficient. This situation led H. Bohr to the idea that statistical methods could be applied for investigation of $\zeta(s)$ (see ref. [1]). By examining values of $\zeta(s)$ on vertical lines $\sigma+it$ with a fixed σ , one can take measurable sets $A\subset\mathbb{C}$ and consider the frequency of t such that $\zeta(\sigma+it)\in A$. The first result of such a kind, for fixed $\sigma>1$, was obtained in [2]. Denote by J the Jordan measure on the real line, and let R be a rectangle with edges parallel to the coordinate axis. Then, the main result of [2] states that the limit

$$\lim_{T\to\infty}\frac{1}{T}\mathrm{J}\{t\in[0,T]:\log\zeta(\sigma+it)\in R\}$$

exists and depends only on R and σ . The case for $\sigma > \frac{1}{2}$ is more complicated than that of $\sigma > 1$, as it depends on the possible zeros of $\zeta(s)$. Therefore, in [3], the existence of the limit for the frequency

$$\frac{1}{T}J\{t \in [0,T] : \sigma + it \in G, \log \zeta(\sigma + it) \in R\}$$

as $T \to \infty$ was considered. Here,

$$G = \left\{ s \in \mathbb{C} : \sigma > \frac{1}{2} \right\} \setminus \bigcup_{\rho = \beta + i\gamma} \left\{ s = \sigma + i\gamma : \frac{1}{2} < \sigma \le \beta \right\},$$

where the union is taken over all zeros ϱ of $\zeta(s)$ located in the strip $\left\{s \in \mathbb{C} : \sigma \in \left(\frac{1}{2},1\right)\right\}$. The proofs of these results are based on a theory of convex curves developed by the authors themselves [4].

Bohr–Jessen theorems were further developed in [5,6], leading to probabilistic limit theorems on weakly convergent probability measures. Let \mathbb{X} be a topological space with Borel σ -field $\mathcal{B}(\mathbb{X})$, and let P and P_n , $n \in \mathbb{N}$, be probability measures on $(\mathbb{X}, \mathcal{B}(\mathbb{X}))$. Recall that P_n converges weakly to P as $n \to \infty$, denoted $P_n \xrightarrow[n \to \infty]{w} P$, if for every bounded continuous real-valued function g on \mathbb{X} ,

$$\lim_{n\to\infty}\int\limits_{\mathbb{X}}g\,\mathrm{d}P_n=\int\limits_{\mathbb{X}}g\,\mathrm{d}P.$$

In this terminology, Bohr–Jessen theorems can be rephrased as follows: on the space $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$, there exists a probability measure P_{σ} such that, for fixed $\sigma > \frac{1}{2}$, and

$$P_{T,\sigma}(A) \stackrel{\text{def}}{=} \frac{1}{T} \text{meas}\{t \in [0,T] : \zeta(\sigma + it) \in A\}, \quad A \in \mathcal{B}(\mathbb{C}),$$

the relation $P_{T,\sigma} \xrightarrow[T \to \infty]{w} P_{\sigma}$ holds (see, for example, refs. [7,8]). Here and throughout, meas{*} denotes the Lebesgue measure on the real line.

A new stage in the development of the probabilistic theory of zeta-functions was initiated by B. Bagchi. In his thesis [9], he created a theory of probabilistic limit theorems in the space of analytic functions and applied it to prove universality property of zeta-functions on approximation of classes of analytic functions. In his theorems, Bagchi proposed a new way for identification of the limit measure. In [10], we applied Bagchi's method to prove a limit theorem for the Epstein zeta-function.

Axioms **2025**, 14, 644 3 of 20

Suppose that Q is a positive-definite quadratic matrix of order $n \in \mathbb{N}$. The Epstein zeta-function $\zeta(s;Q)$ is defined, for $\sigma > \frac{n}{2}$, by the series

$$\zeta(s;Q) = \sum_{\underline{x} \in \mathbb{Z}^n \setminus \{\underline{0}\}} \left(\underline{x}^{\mathsf{T}} Q \underline{x}\right)^{-s},$$

where \underline{x}^T is the transpose of \underline{x} . Moreover, $\zeta(s;Q)$ has analytic continuation to the whole complex plane, except for the point $s=\frac{n}{2}$, which is a simple pole with residue $\pi^{n/2}(\Gamma(\frac{n}{2})\sqrt{\det Q})^{-1}$, where $\Gamma(s)$ is the Euler gamma-function. The function $\zeta(s;Q)$ was introduced and studied in [11]. Its author aimed to define the most general zeta-function with the functional equation of the Riemann type, i.e.,

$$\pi^{-\frac{s}{2}}\Gamma\Big(\frac{s}{2}\Big)\zeta(s)=\pi^{-\frac{1-s}{2}}\Gamma\Big(\frac{1-s}{2}\Big)\zeta(1-s),\quad s\in\mathbb{C}.$$

The attempt was successful: Epstein proved the following functional equation

$$\pi^{-s}\Gamma(s)\zeta(s;Q)=\sqrt{{\rm det}Q}\pi^{s-\frac{n}{2}}\Gamma\Big(\frac{n}{2}-s\Big)\zeta\Big(\frac{n}{2}-s;Q^{-1}\Big),\quad s\in\mathbb{C},$$

for $\zeta(s; Q)$, where Q^{-1} denotes the inverse of Q.

We observe that in a particular case, the function $\zeta(s;Q)$ can be expressed as an ordinary Dirichlet series. Actually, suppose that $\underline{x}^TQ\underline{x} \in \mathbb{Z}$ for all $\underline{x} \in \mathbb{Z}^n \setminus \{\underline{0}\}$, and, for $m \in \mathbb{N}$, $r_Q(m)$ is the number of $\underline{x} \in \mathbb{Z}^n$ such that $\underline{x}^TQ\underline{x} = m$. Then, we have

$$\zeta(s;Q) = \sum_{m=1}^{\infty} \frac{r_Q(m)}{m^s}, \quad \sigma > \frac{n}{2}.$$
 (1)

For example, for the n-dimensional unit matrix I_n and $\sigma > 1$, $\zeta(s; I_1) = 2\zeta(2s)$, $\zeta(s; I_2) = 4\zeta(s)L(s, \chi_4)$, where $L(s, \chi)$ is the Dirichlet L-function, and χ_4 is the non-principal Dirichlet character modulo 4.

Note that the Epstein zeta-function is not only an object of interest in pure mathematics, particularly in algebra and algebraic number theory, but it also has practical applications. In fact, the function $\zeta(s;Q)$ appears in crystallography [12], as well as in physics, including quantum-field theory [13], and in studies related to energy and temperature [14,15].

The function $\zeta(s;Q)$ is, in general, significantly more complicated than the Riemann zeta-function. For example, the analytic continuation and functional equation of $\zeta(s;Q)$ depend essentially on the signature and rank of the real quadratic form Q on \mathbb{R}^n : when Q is positive-definite, the function $\zeta(s;Q)$ admits a meromorphic continuation to the whole complex plane and satisfies a classical functional equation. In contrast, when Q is indefinite, the analytic behavior of $\zeta(s;Q)$ becomes more intricate due to the presence of a continuous spectrum and its connections to non-holomorphic automorphic forms, such as Maass forms. Therefore, it is difficult to expect any general results about the value distribution characteristics of $\zeta(s;Q)$ for all matrices Q.

As previously mentioned, a Bohr–Jessen type theorem for $\zeta(s; Q)$ was obtained under the following restrictions in [10]. Based on (1), it was shown in [16] that

$$\zeta(s;Q) = \zeta(s;E_Q) + \zeta(s;F_Q),$$

where $\zeta(s; E_Q)$ and $\zeta(s; F_Q)$ are zeta-functions of a certain Eisenstein series and a cusp form, respectively, related to the coefficients $r_Q(m)$. Moreover, even for $n \ge 4$, it is known that the mentioned Eisenstein series is a modular form of weight $\frac{n}{2}$ and level $q \in \mathbb{N}$ such

Axioms **2025**, 14, 644 4 of 20

that $q(2Q)^{-1}$ is an integral matrix [17], and then the zeta-function $\zeta(s; E_Q)$ is a certain combination of Dirichlet L-functions [18]. This leads to the representation

$$\zeta(s;Q) = \sum_{k=1}^{K} \sum_{l=1}^{L} \frac{a_{kl}}{k^{s} l^{s}} L(s, \chi_{k}) L\left(s - \frac{n}{2} + 1, \psi_{l}\right) + \sum_{m=1}^{\infty} \frac{b_{Q}(m)}{m^{s}},\tag{2}$$

where k and l run over positive divisors of the level q, and K and L are finite integers; the characters χ_k , $1 \le k \le K$, and ψ_l , $1 \le l \le L$ are the pairwise nonequivalent Dirichlet characters modulo q/k and q/l, respectively, and $L(s,\chi_k)$ and $L(s,\psi_l)$ are the corresponding Dirichlet L-functions. The coefficients $a_{kl} \in \mathbb{C}$ are certain complex numbers. Furthermore, the series with coefficients $b_O(m)$ is absolutely convergent for $\sigma > \frac{n-1}{2}$.

The formulation of the main limit theorem relies on the following object

$$\Omega = \prod_{p \in \mathbb{P}} \{s \in \mathbb{C} : |s| = 1\},$$

where \mathbb{P} is the set of all prime numbers. With the product topology and operation of pairwise multiplication, Ω is a compact topological group, and this leads to the probability space $(\Omega, \mathcal{B}(\Omega), \mu)$, where μ is the probability Haar measure on $(\Omega, \mathcal{B}(\Omega))$. Denote by $\omega = (\omega(p) : p \in \mathbb{P})$ the elements of Ω , and extend $\omega(p)$ to the set \mathbb{N} by using the formula

$$\omega(m) = \prod_{\substack{p^l \mid m \\ p^{l+1} \nmid m}} \omega^l(p), \quad m \in \mathbb{N}.$$

Now, on the probability space $(\Omega, \mathcal{B}(\Omega), \mu)$, define the complex-valued random element

$$\zeta(\sigma,\omega;Q) = \sum_{k=1}^{K} \sum_{l=1}^{L} \frac{a_{kl}\omega(k)\omega(l)}{k^{\sigma}l^{\sigma}} L(\sigma,\omega,\chi_{k}) L\left(\sigma - \frac{n}{2} + 1,\omega,\psi_{l}\right)
+ \sum_{m=1}^{\infty} \frac{b_{Q}(m)\omega(m)}{m^{\sigma}}, \quad \sigma > \frac{n-1}{2},$$
(3)

where

$$L(\sigma,\omega,\chi_k) = \prod_p \left(1 - \frac{\chi_k(p)\omega(p)}{p^{\sigma}}\right)^{-1} \text{ and } L\left(\sigma - \frac{n}{2} + 1,\omega,\varphi_l\right) = \prod_p \left(1 - \frac{\varphi_l(p)\omega(p)}{p^{\sigma - n/2 + 1}}\right)^{-1}.$$

Denote by $P_{\zeta,\sigma}$ the distribution

$$P_{7,\sigma}(A) = \mu\{\omega \in \Omega : \zeta(\sigma,\omega;Q) \in A\}, \quad A \in \mathcal{B}(\mathbb{C}),$$

of the random element $\zeta(\sigma,\omega;Q)$. Then, the main result of [10] is the following.

Proposition 1 (Theorem 2 of [10]). Suppose that $\sigma > \frac{n-1}{2}$ is fixed. Then, the probability measure

$$\frac{1}{T}\mathrm{meas}\{t\in[0,T]:\zeta(\sigma+it;Q)\in A\},\quad A\in\mathcal{B}(\mathbb{C}),$$

converges weakly to the measure $P_{\zeta,\sigma}$ as $T \to \infty$.

Axioms **2025**, 14, 644 5 of 20

In [19], a discrete version of Proposition 1 is presented. To state it, some definitions are needed. A number h is called type 1 if the number $\exp\{\frac{2\pi k}{h}\}$ is irrational for all $k \in \mathbb{N}$. In the opposite case, h is type 2. Then, in this case, there exists the smallest r_0 such that

$$\exp\left\{\frac{2\pi r_0}{h}\right\} = \frac{a}{b}$$
 with cooprimes $a, b \in \mathbb{N}$.

Let \mathbb{P}_0 be a subset of \mathbb{P} :

$$\mathbb{P}_0 = \left\{ p \in \mathbb{P} : \prod_{p \in \mathbb{P}} p^{l_p} = \frac{a}{b}, \quad l_p \neq 0 \right\}.$$

Then, $\#\mathbb{P}_0 < \infty$, where #A denotes the cardinality of the set A.

We now return to the group Ω . For h>0, let Ω_h be the closed subgroup of Ω generated by $\left\{p^{-ih}:p\in\mathbb{P}\right\}$. Then, Ω_h , as Ω , is a compact group. Therefore, on $(\Omega_h,\mathcal{B}(\Omega_h))$, the probability Haar measure μ_h can be defined. It is known (see Lemma 4.2.2 of [9] and Lemma 1 of [20]) that

$$\Omega_h = \begin{cases}
\Omega & \text{if } h \text{ is of type 1,} \\
\{\omega \in \Omega : \omega(a) = \omega(b)\} & \text{otherwise.}
\end{cases}$$

Let $\zeta_h(\sigma,\omega;Q)$, for $\omega \in \Omega_h$, be the complex-valued random element on the probability space $(\Omega_h,\mathcal{B}(\Omega_h),\mu_h)$ given by the Representation (3), and $P_{\zeta,\sigma}^h$ denote its distribution. Let N run over the set $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Then, in [19], the following statement has been obtained.

Proposition 2 (Theorem 1 of [19]). Suppose that $\sigma > \frac{n-1}{2}$ and h > 0 are fixed. Then, the probability measure

$$\frac{1}{N}\#\{0\leqslant k\leqslant N:\zeta(\sigma+ikh;Q)\in A\},\quad A\in\mathcal{B}(\mathbb{C}),$$

converges weakly to the measure $P_{\zeta,\sigma}^h$ as $N \to \infty$.

In Propositions 1 and 2, the weak convergence of probability measures defined by frequencies in the intervals [0, T] and [0, N] is discussed. It is well known that frequencies in short intervals contain more information on the discussed objects. This motivates the refinement of the limit theorems in Propositions 1 and 2, leading to limit theorems in short intervals, i.e., intervals of length shorter than T and N. A result of this type, corresponding to Proposition 1, was obtained in [21].

Proposition 3 (Theorem 2 of [21]). *Suppose that* $\sigma > \frac{n-1}{2}$ *is fixed, and* $T^{27/82} \leqslant H \leqslant T^{1/2}$. *Then, the probability measure*

$$\frac{1}{H} \operatorname{meas} \{ t \in [T, T+H] : \zeta(\sigma + it; Q) \in A \}, \quad A \in \mathcal{B}(\mathbb{C}),$$

converges weakly to the measure $P_{\zeta,\sigma}$ as $T \to \infty$.

The purpose of this paper is to develop a more complex version of Proposition 2 in short intervals. For brevity, we use the notation

$$D_{N,M}(\ldots) = \frac{1}{M+1} \# \{ N \leqslant k \leqslant N+M : \ldots \}, \quad M \in \mathbb{N},$$

Axioms **2025**, 14, 644 6 of 20

where the dots indicate a condition to be satisfied by k. The main result is the following theorem.

Theorem 1. Suppose that $\sigma > \frac{n-1}{2}$ and h > 0 are fixed, and $h^{-1}(Nh)^{27/82} \leqslant M \leqslant h^{-1}(Nh)^{1/2}$. Then, the probability measure

$$P^h_{\zeta,\sigma,N,M}(A) = D_{N,M}(\zeta(\sigma + ikh; Q) \in A), \quad A \in \mathcal{B}(\mathbb{C}),$$

converges weakly to the measure $P_{\zeta,\sigma}^h$ as $N \to \infty$.

Theorem 1 is theoretical, it extends and develops Bohr–Jessen's ideas. Recall that even the eminent mathematician Atle Selberg, who was awarded the Fields Medal, devoted much attention to probabilistic limit theorems for zeta-functions; see [22,23]. Note that results concerning short intervals are highly valued in analytic number theory, especially those related to the distribution of zeros of zeta-functions and prime numbers. Moreover, problems in short intervals are more complicated. Theorem 1 continues investigations in this direction, providing new results that confirm the chaotic behaviour of the function $\zeta(s;Q)$. The results presented here could be useful for researchers studying this function in applied mathematics.

Theorem 1 will be proved in Section 3; the cases where h is type 1 and type 2 will be considered separately. Before that, we prove limit lemmas (Lemmas 7 and 8) for probability measures defined on the one-dimensional torus Ω_h , the structure of which depends on the arithmetic nature of the number h. Using Lemmas 7 and 8, we obtain limit lemmas (Lemmas 11 and 13) for probability measures defined in terms of $\zeta_r(s;Q)$ involving absolutely convergent Dirichlet series. Section 2 is devoted to certain discrete mean estimates for $\zeta(s;Q)$ in short intervals. Lemma 6 occupies a central place with respect to short intervals. It shows that the functions $\zeta(s;Q)$ and $\zeta_r(s;Q)$ are close in the mean in such intervals.

2. Estimates in Short Intervals

We start with recalling the mean square estimate for the Hurwitz zeta-function in short intervals. Let $0 < \alpha \le 1$ be a fixed parameter. The Hurwitz zeta-function $\zeta(s,\alpha]$, for $\sigma > 1$, is defined by the Dirichlet series

$$\zeta(s,\alpha) = \sum_{m=0}^{\infty} \frac{1}{(m+\alpha)^s},$$

and has meromorphic continuation to the whole complex plane with the unique simple pole at the point s=1 with residue 1.

Lemma 1 (Theorem 2 of [24]). Suppose that $\alpha \in (0,1)$ and $\frac{1}{2} < \sigma \leqslant \frac{7}{12}$ are fixed, and $T^{27/82} \leqslant H \leqslant T^{\sigma}$. Then, uniformly in H, the estimate

$$\int_{T-H}^{T+H} |\zeta(\sigma+it,\alpha)|^2 dt \ll_{\sigma,\alpha} H$$

holds.

We recall that the notation $z \ll_{\theta} x$, $z \in \mathbb{C}$, x > 0 shows that there is a constant $c = c(\theta) > 0$ such that $|z| \leqslant cx$.

Axioms **2025**, 14, 644 7 of 20

Let χ be an arbitrary Dirichlet character modulo $q \in \mathbb{N}$, and let $L(s,\chi)$ be the corresponding Dirichlet L function. For $\sigma > 1$, the function $L(s,\chi)$ is given by the series

$$L(s,\chi) = \sum_{m=1}^{\infty} \frac{\chi(m)}{m^s}.$$

The function has analytic continuation to the whole complex plane if χ is a non-principal character, and has a simple pole at the point s=1 with residue

$$\prod_{p|q} \left(1 - \frac{1}{p}\right), \quad p \in \mathbb{P},$$

if χ is the principal character modulo q (χ is the principal character modulo q if $\chi(m) = 1$ for all $m \in \mathbb{N}$ coprime to q).

Lemma 2. Suppose that $\frac{1}{2} < \sigma \leqslant \frac{7}{12}$ is fixed, and $T^{27/82} \leqslant H \leqslant T^{\sigma}$. Then, uniformly in H the estimate

$$\int_{T-H}^{T+H} |L(\sigma+it,\chi)|^2 dt \ll_{\sigma,q} H$$

holds.

Proof. We use the formula

$$L(s,\chi) = \frac{1}{q^s} \sum_{k=1}^{q} \chi(k) \zeta\left(s, \frac{k}{q}\right),\tag{4}$$

see, for example, [25]. Since $|\chi(k)| \le 1$, we have

$$L(s,\chi) \ll_q \sum_{k=1}^q \left| \zeta\left(s,\frac{k}{q}\right) \right| \ll_q \max_{1 \leqslant k \leqslant q} \sum_{k=1}^q \left| \zeta\left(s,\frac{k}{q}\right) \right|.$$

Therefore,

$$\int_{T-H}^{T+H} |L(\sigma+it,\chi)|^2 dt \ll_q \sum_{k=1}^q \int_{T-H}^{T+H} \left| \zeta\left(\sigma+it,\frac{m}{q}\right) \right|^2 dt \ll_{\sigma,q} H$$

in virtue of Lemma 1. \square

For our purposes, we need a discrete version of Lemma 2. For this, we will apply the Gallagher lemma on the connection of continuous and discrete mean squares of certain functions (see refs. [26,27]).

Lemma 3 (Lemma 1.4 of [27]). For $\delta > 0$, suppose that $T_1, T_2 \geqslant \delta$, $\mathcal{A} \neq \emptyset$ is a finite set, $\mathcal{A} \subset [T_1 + \delta/2, T_1 + T_2 - \delta/2]$, and, for $t \in \mathcal{A}$,

$$M_{\delta}(t) = \sum_{\substack{ au \in \mathcal{A} \ |t- au| < \delta}} 1.$$

Let g(t) be a continuous function in the interval $[T_1, T_1 + T_2]$, which has a continuous derivative g'(t) in $(T_1, T_1 + T_2)$. Then, the inequality

$$\sum_{t \in \mathcal{A}} M_{\delta}^{-1}(t) |g(t)|^2 \leqslant \frac{1}{\delta} \int_{T_1}^{T_1 + T_2} |g(t)|^2 dt + \left(\int_{T_1}^{T_1 + T_2} |g(t)|^2 dt \int_{T_1}^{T_1 + T_2} |g'(t)|^2 dt \right)^{1/2}$$

Axioms **2025**, 14, 644 8 of 20

is valid.

Lemma 4. Suppose that $\frac{1}{2} < \sigma \leqslant \frac{7}{12}$ and h > 0 are fixed: $h^{-1}(Nh)^{27/82} \leqslant M \leqslant h^{-1}(Nh)^{1/2}$ and $|t| \leqslant \log^2(Nh)$. Then, uniformly in M, the estimate

$$\sum_{k=N}^{N+M} |L(\sigma + ikh + it, \chi)|^2 dt \ll_{\sigma,q,h} M(1+|t|)$$

holds.

Proof. We will apply Lemmas 2 and 3. In Lemma 3, take $\delta = 1$, $T_1 = N - \frac{1}{2}$, $T_2 = M + 1$, $\mathcal{A} = \{k \in \mathbb{N} : k \in [N, N+M]\}$, and $g(\tau) = L(\sigma + it + i\tau, \chi)$. Then, obviously,

$$M_{\delta}(k) = \sum_{\substack{m \in \mathcal{A} \\ |m-k| < 1}} 1 = 1.$$

Therefore, in view of Lemma 3,

$$\sum_{k=N}^{N+M} |L(\sigma + ikh + it, \chi)|^{2} \ll \int_{N-1/2}^{N+M+1/2} |L(\sigma + it + ih\tau, \chi)|^{2} d\tau + \left(\int_{N-1/2}^{N+M+1/2} |L(\sigma + it + ih\tau, \chi)|^{2} dt \int_{N-1/2}^{N+M+1/2} |L'(\sigma + it + ih\tau, \chi)|^{2} dt\right)^{1/2}.$$
 (5)

It is easily seen that

$$\int_{N-1/2}^{N+M+1/2} |L(\sigma+it+ih\tau,\chi)|^2 d\tau \ll_h \int_{(N-1/2)h-|t|}^{(N+M+1/2)h+|t|} |L(\sigma+i\tau,\chi)|^2 d\tau.$$
 (6)

Moreover, since $(M+\frac{1}{2})h+|t|\geqslant Mh+|t|\geqslant (Nh)^{27/82}$ and $(M+\frac{1}{2})h+|t|\leqslant (Nh)^{1/2}+\frac{h}{2}+\log^2(Nh)\leqslant (Nh)^{\sigma}$ because $\sigma>\frac{1}{2}$. These remarks allow us to apply Lemma 2. Thus, in view of Estimate (6),

$$\int_{N-1/2}^{N+M+1/2} |L(\sigma+it+ih\tau,\chi)|^2 d\tau \ll_{\sigma,q,h} Mh + \frac{h}{2} + |t| \ll_{\sigma,q,h} M(1+|t|).$$
 (7)

Application of the Cauchy integral formula

$$L'(s+it+ih\tau,\chi) = \frac{1}{2\pi i} \int_{\mathcal{L}} \frac{L(z+it+ih\tau,\chi)}{(z-s)^2} dz,$$

where \mathcal{L} is a suitable simple closed contour enclosing s, and (7) gives

$$\int_{N-1/2}^{N+M+1/2} \left| L'(\sigma+it+ih\tau,\chi) \right|^2 d\tau \ll_{\sigma,q,h} M(1+|t|).$$

From this and estimates (5) and (7), the lemma follows. \Box

This result ensures that we can bound discrete means analogously to continuous ones, which is essential for our approximation step.

Axioms **2025**, 14, 644 9 of 20

Now, we will utilise Lemma 4 for approximation of the function $\zeta(s;Q)$ by a certain simple function involving absolutely convergent Dirichlet series. Let $\theta > \frac{1}{2}$ be a fixed number, $r \in \mathbb{N}$, and

 $w_r(m) = \exp\left\{-\left(\frac{m}{r}\right)^{\theta}\right\}, \quad m \in \mathbb{N}.$

Return to the representation (2), and define

$$L_r(s_n, \psi_l) = \sum_{m=1}^{\infty} \frac{\psi_l(m) w_r(m)}{m^{s_n}}, \quad s_n = s - \frac{n}{2} + 1.$$

In virtue of the exponential decreasing with respect to m for $w_r(m)$, the series for $L_r(s_n, \psi_l)$ is absolutely convergent in any half-plane $\sigma > \sigma_0$ with finite σ_0 . Using $L_r(s_n, \psi_l)$, we introduce

$$\zeta_r(s;Q) = \sum_{k=1}^K \sum_{l=1}^L \frac{a_{kl}}{k^s l^s} L(s,\chi_k) L_r(s_n,\psi_l) + \sum_{m=1}^\infty \frac{b_Q(m)}{m^s},$$

and we will approximate $\zeta(s;Q)$ by $\zeta_r(s;Q)$. For this, we will use a certain integral representation for $L_r(s_n,\psi_l)$. Set

$$\kappa_r(s) = \frac{1}{\theta} \Gamma\left(\frac{s}{\theta}\right) r^s,$$

where $\theta > \frac{1}{2}$ is the number from the definition of $w_r(m)$.

Lemma 5. The representation

$$L_r(s_n, \psi_l) = \frac{1}{2\pi i} \int_{\theta-i\infty}^{\theta+i\infty} L(s_n + z, \psi_l) \kappa_r(z) dz$$

is valid.

Proof. By the Mellin formula

$$\frac{1}{2\pi i} \int_{b-i\infty}^{b+i\infty} \Gamma(z) a^{-z} dz = e^{-a}, \quad a, b > 0,$$

and definitions of $w_r(m)$ and $\kappa_r(z)$, we have

$$w_r(m) = \frac{1}{2\pi i} \int_{1-i\infty}^{1+i\infty} \Gamma(z) \left(\frac{m}{r}\right)^{-\theta z} dz = \frac{1}{2\pi i} \int_{\theta-i\infty}^{\theta+i\infty} \frac{1}{\theta} \Gamma\left(\frac{r}{\theta}\right) \frac{r^z}{m^z} dz = \frac{1}{2\pi i} \int_{\theta-i\infty}^{\theta+i\infty} \kappa_r(z) \frac{dz}{m^z}.$$

Therefore,

$$\frac{\psi_l(m)w_r(m)}{m^{s_n}} = \frac{1}{2\pi i} \int_{\theta-i\infty}^{\theta+i\infty} \frac{\psi_l(m)}{m^{s_n+z}} \kappa_r(z) dz.$$
 (8)

Since, for the Gamma function, the estimate

$$\Gamma(\sigma + it) \ll \exp\{-c|t|\}, \quad c > 0, \tag{9}$$

uniformly in $\sigma \in [\sigma_1, \sigma_2]$ with arbitrary $\sigma_1 < \sigma_2$ is valid, and $\Re s_n + \theta > 1$ for $\sigma > \frac{n-1}{2}$, from (8) we find that

$$L_r(s_n, \psi_l) = \frac{1}{2\pi i} \int_{\theta-i\infty}^{\theta+i\infty} \left(\sum_{m=1}^{\infty} \frac{\psi_l(m)}{m^{s_n+z}} \right) \kappa_r(z) dz = \frac{1}{2\pi i} \int_{\theta-i\infty}^{\theta+i\infty} L(s_n+z, \psi_l) \kappa_r(z) dz.$$

Lemma 6. Suppose that $\sigma > \frac{n-1}{2}$ is fixed, and $h^{-1}(Nh)^{27/82} \le M \le h^{-1}(Nh)^{1/2}$. Then,

$$\lim_{r\to\infty}\limsup_{N\to\infty}\frac{1}{N+1}\sum_{k=N}^{N+M}|\zeta(\sigma+ikh;Q)-\zeta_r(\sigma+ikh;Q)|=0.$$

Proof. We begin by proving that

$$\lim_{r \to \infty} \limsup_{N \to \infty} \frac{1}{N+1} \sum_{k=N}^{N+M} |L(\sigma_n + ikh, \psi_l) - L_r(\sigma_n + ikh, \psi_l)| = 0, \tag{10}$$

where $\sigma_n=\sigma-\frac{n}{2}+1$. First, we consider the case $\frac{n-1}{2}<\sigma\leqslant\frac{n}{2}+\frac{1}{4}$. To proceed, we will apply Lemma 5 and the residue theorem. Let $\varepsilon>0$ be a small fixed number, take $\theta=\frac{n-1}{2}+\varepsilon$, and $\frac{n-1}{2}+2\varepsilon\leqslant\sigma\leqslant\frac{n}{2}+\frac{1}{4}$. Moreover, let $\theta_1=\frac{n-1}{2}+\varepsilon-\sigma$. Clearly, $\theta_1<0$ and $\theta_1\geqslant\varepsilon-\frac{3}{4}$. Therefore, the function

$$L(s_n + z, \psi_l)\kappa_r(z)$$

in the strip $\theta_1 \leqslant \Re z \leqslant \theta$ has a simple pole at the point z=0, which is the pole of $\Gamma\left(\frac{z}{\theta}\right)$, and a simple pole at the point $z=1-s_n$ of $L(s_n+z,\psi_l)$ if ψ_l is the principal character modulo q/l. These observations, Lemma 5, and the residue theorem show that

$$L_r(s_n, \psi_l) - L(s_n, \psi_l) = \frac{1}{2\pi i} \int_{\theta_1 - i\infty}^{\theta_1 + i\infty} L(s_n + z, \psi_l) \kappa_r(z) dz + R_r(s_n),$$

where

$$R_r(s_n) = \underset{z=1-s_n}{\operatorname{Res}} L(s_n+z, \psi_l) \kappa_r(z) = \begin{cases} \kappa_r(1-s_n) & \text{if } \psi_l \text{ is the principal character,} \\ 0 & \text{otherwise.} \end{cases}$$

From the latter equality, we derive

$$L_{r}(s_{n}, \psi_{l}) - L(s_{n}, \psi_{l}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} L\left(s_{n} + \frac{n-1}{2} + \varepsilon - \sigma + iv, \psi_{l}\right)$$

$$\times \kappa_{r}\left(\frac{n-1}{2} + \varepsilon - \sigma + iv\right) dv$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} L\left(\frac{1}{2} + \varepsilon + it + iv, \psi_{l}\right) \kappa_{r}\left(\frac{n-1}{2} + \varepsilon - \sigma + iv\right) dv$$

$$+ \kappa_{r}(1 - s_{n}).$$

Hence,

$$\frac{1}{M+1}\sum_{k=N}^{N+M}\left|L_r\left(\sigma+ikh-\frac{n}{2}+1,\psi_l\right)-L\left(\sigma+ikh-\frac{n}{2}+1,\psi_l\right)\right|$$

Axioms **2025**, 14, 644 11 of 20

$$\ll \int_{-\infty}^{\infty} \left(\frac{1}{M+1} \sum_{k=N}^{N+M} \left| L\left(\frac{1}{2} + \varepsilon + ikh + iv, \psi_{l}\right) \right| \right) \left| \kappa_{r}\left(\frac{n-1}{2} + \varepsilon - \sigma + iv\right) \right| dv
+ \frac{1}{M+1} \sum_{k=N}^{N+M} \left| \kappa_{r}\left(1 - \sigma - ikh + \frac{n-1}{2} - 1\right) \right|
= \left(\int_{-\infty}^{-\log^{2}Nh} \int_{\log^{2}Nh}^{\infty} + \int_{-\log^{2}Nh}^{\infty} \right) \frac{1}{M+1} \sum_{k=N}^{N+M} \left| L\left(\frac{1}{2} + \varepsilon + ikh + iv, \psi_{l}\right) \right|
\times \left| \kappa_{r}\left(\frac{n-1}{2} + \varepsilon - \sigma + iv\right) \right| dv + \frac{1}{M+1} \sum_{k=N}^{N+M} \left| \kappa_{r}\left(1 - \sigma - ikh + \frac{n}{2} - 1\right) \right|. \tag{11}$$

By the definition of $\kappa_r(s)$ and Estimate (9), we obtain

$$\kappa_r \left(\frac{n-1}{2} + \varepsilon - \sigma + iv \right) \ll r^{(n-1)/2 + \varepsilon - \sigma} \exp \left\{ -\frac{c}{\theta} |v| \right\} \ll_{\varepsilon} r^{-\varepsilon} \exp \left\{ -c_1 |v| \right\}, \quad c_1 > 0. \tag{12}$$

Moreover, it is known (see, for example, ref. [28]) that, for $\sigma > \frac{1}{2}$,

$$\zeta(\sigma+it,\alpha)\ll_{\sigma,\alpha}|t|^{\frac{1}{2}},\quad\sigma\geqslant\frac{1}{2}.$$

Hence, in view of Representation (4),

$$L\left(\frac{1}{2} + \varepsilon + ikh + iv, \psi_l\right) \ll_{\varepsilon,q} (kh)^{\frac{1}{2}} + |v|^{\frac{1}{2}}. \tag{13}$$

Therefore, by Equation (12),

$$\begin{pmatrix} \log^2 Nh & \infty \\ \int_{-\infty}^{\infty} + \int_{\log^2 Nh}^{\infty} \end{pmatrix} \left(\frac{1}{M+1} \sum_{k=N}^{N+M} \left| L\left(\frac{1}{2} + \varepsilon + ikh + iv, \psi_l\right) \right| \right)$$

$$\times \left| \kappa_r \left(\frac{n-1}{2} + \varepsilon - \sigma + iv \right) \right| dv$$

$$\ll_{\varepsilon,q} \quad r^{-\varepsilon} \begin{pmatrix} \log^2 Nh & \infty \\ \int_{-\infty}^{\infty} + \int_{\log^2 Nh}^{\infty} \end{pmatrix} \left((2N)^{\frac{1}{2}} + |v|^{\frac{1}{2}} \right) \exp\{-c_1|v|\} dv$$

$$\ll_{\varepsilon,q,h} \quad r^{-\varepsilon} N^{\frac{1}{2}} \exp\{-c_2 \log^2 Nh\}, \quad c_2 > 0.$$

For $v \in [-\log^2 Nh, \log^2 Nh]$, we apply Lemma 4. Thus,

$$\begin{split} \frac{1}{M+1} \sum_{k=N}^{N+M} \left| L\left(\frac{1}{2} + \varepsilon + ikh + iv, \psi_l\right) \right| & \ll & \left(\frac{1}{M+1} \sum_{k=N}^{N+M} \left| L\left(\frac{1}{2} + \varepsilon + ikh + iv, \psi_l\right) \right|^2 \right)^{1/2} \\ & \ll_{\varepsilon,q,h} & \left(1 + |v|\right)^{\frac{1}{2}}. \end{split}$$

Hence,

$$\int_{-\log^2 Nh}^{\log^2 Nh} \left(\frac{1}{M+1} \sum_{k=N}^{N+M} \left| L\left(\frac{1}{2} + \varepsilon + ikh + iv, \psi_l\right) \right| \right) \left| \kappa_r \left(\frac{n-1}{2} + \varepsilon - \sigma + iv\right) \right| dv$$

$$\ll_{\varepsilon,q,h} r^{-\varepsilon} \int_{-\log^2 Nh}^{\log^2 Nh} (1+|v|)^{\frac{1}{2}} \exp\{-c_1|v|\} dv$$

$$\ll_{\varepsilon,q,h} r^{-\varepsilon} \int_{-\infty}^{\infty} (1+|v|)^{\frac{1}{2}} \exp\{-c_1|v|\} dv \ll_{\varepsilon,q} r^{-\varepsilon}.$$

$$\tag{14}$$

Using Estimate (9) again yields

$$\kappa_r \left(1 - \sigma - ikh + \frac{n}{2} - 1 \right) \ll r^{-\sigma + n/2 - 1} \exp\{-c_3 kh\} \ll r^{1/2 - 2\varepsilon} \exp\{-c_3 kh\}, \quad c_3 > 0.$$

Hence,

$$\frac{1}{M+1} \sum_{k=N}^{N+M} \left| \kappa_r \left(-\sigma - ikh + \frac{n}{2} \right) \right| \ll r^{1/2 - 2\varepsilon} \frac{1}{M+1} \sum_{k=N}^{N+M} \exp\{ -c_3 kh \} \ll r^{1/2 - 2\varepsilon} \exp\{ -c_3 Nh \}.$$

This, together with (11), (13), and (14), shows that the left-hand side of (10) is estimated as

$$\ll_{\varepsilon,q,h} r^{-\varepsilon} N^{\frac{1}{2}} \exp\{-c_2 \log^2 Nh\} + r^{-\varepsilon} + r^{1/2 - 2\varepsilon} \exp\{-c_3 Nh\}.$$

Thus, letting $N \to \infty$ and subsequently $r \to \infty$, we obtain the Equality (10).

The case of $\sigma > \frac{n}{2} + \frac{1}{4}$ is simpler due to the absolute convergence of the series for $L(\sigma_n, \psi_l)$. Thus, with small $\varepsilon > 0$, we have

$$L(\sigma - \varepsilon + ikh + iv, \psi_1) \ll_{\sigma, \varepsilon, q} 1$$
,

for $\sigma - \varepsilon \geqslant \frac{n}{2} + \frac{1}{4}$. Hence,

$$\frac{1}{M+1} \sum_{k=N}^{N+M} \left| L_r \left(\sigma + ikh - \frac{n}{2} + 1, \psi_l \right) - L \left(\sigma + ikh - \frac{n}{2} + 1, \psi_l \right) \right|$$

$$\ll_{\sigma,\varepsilon,q} \int_{-\infty}^{\infty} \left| \kappa_r (-\varepsilon + iv) \right| + \frac{1}{M+1} \sum_{k=N}^{N+M} \left| \kappa_r \left(1 - \sigma - ikh + \frac{n}{2} - 1 \right) \right|,$$

and this together with (9) proves the lemma in this case. \Box

3. Proof of the Theorem 1

For the proof of Theorem 1, we will apply the method of Fourier transforms, the preservation of weak convergence of probability measures under certain mappings, as well as a connection of weak convergence and convergence in distribution. For the identification of the limit measure, we will apply the results of [10,19].

We start with a limit lemma for probability measures on $(\Omega, \mathcal{B}(\Omega))$. For $A \in \mathcal{B}(\Omega)$, set

$$Q_{N,M}^h(A) = D_{N,M}\Big(\Big(p^{-ikh}: p \in \mathbb{P}\Big) \in A\Big).$$

Lemma 7. Suppose that h > 0 is type 1, and $M \to \infty$ as $N \to \infty$. Then, $Q_{N,M}^h$ converges weakly to the Haar measure μ as $N \to \infty$.

Proof. The group Ω is compact, as the product of compact sets. Therefore, it provides a reason to study the Fourier transform of the measure $Q_{N,M}^h$, and, from its convergence, derive the weak convergence for $Q_{N,M}^h$. Denote by $\hat{\Omega}$ the dual group, or character group, of Ω . It is a well-known and widely used fact that $\hat{\Omega}$ is isomorphic to the group

$$G\stackrel{\mathrm{def}}{=} \bigoplus_{p\in\mathbb{P}} \mathbb{Z}_p,$$

where $\mathbb{Z}_p = \mathbb{Z}$ for all $p \in \mathbb{P}$, and an element $\underline{l} = (l_p : l_p \in \mathbb{N}) \in G$, where only a finite number of integers l_p are non-zero, acts on $\hat{\Omega}$ by the formula

$$\omega \longmapsto \omega^{\underline{l}} = \prod_{p \in \mathbb{P}} \omega^{l_p}, \quad \omega = (\omega(p): p \in \mathbb{P}) \in \Omega.$$

From this, it follows that the characters of Ω are given by the product

$$\prod_{p\in\mathbb{P}}^*\omega^{l_p}(p)$$
,

where the sign "*" shows that only a finite number of $l_p \neq 0$. This implies that the Fourier transform $f_{N,M}(\underline{l})$ of the measure $Q_{N,M}^h$ is

$$f_{N,M}(\underline{l}) = \int_{\Omega} \left(\prod_{p \in \mathbb{P}}^* \omega^{l_p}(p) \right) dQ_{N,M}^h.$$

Hence, the definition of the measure $Q_{N,M}^h$ yields

$$f_{N,M}(\underline{l}) = \frac{1}{M+1} \sum_{k=N}^{N+M} \left(\prod_{p \in \mathbb{P}}^* p^{-ikhl_p} \right) = \frac{1}{M+1} \sum_{k=N}^{N+M} \exp\left\{ -ikh \sum_{p \in \mathbb{P}}^* l_p \log p \right\}.$$
 (15)

For brevity, let

$$L_h(\underline{l}) \stackrel{\text{def}}{=} h \sum_{p \in \mathbb{P}}^* l_p \log p.$$

We observe that the requirement that h is type 1 is equivalent to the linear independence over the field of rational numbers \mathbb{Q} for the multi-set $\left\{(\log p:p\in\mathbb{P}),\frac{2\pi}{h}\right\}\stackrel{\mathrm{def}}{=}A_h$. Actually, if the set A_h is linearly dependent over \mathbb{Q} , then there exist the numbers $k_1,\ldots,k_r\in\mathbb{Z}$, and $m\in\mathbb{Z}\setminus\{0\}$ that

$$k_1 \log p_1 + \dots + k_r \log p_r + \frac{2\pi m}{h} = 0,$$

and

$$\exp\left\{\frac{2\pi m}{h}\right\} = p_1^{k_1} \cdots p_r^{k_r},$$

and this contradicts the definition of type 1. Thus, h of type 1 implies the linear independence of A_h . Similarly, if h is not type 1, then there exists $m_0 \in \mathbb{Z} \setminus \{0\}$ such that

$$\exp\left\{\frac{2\pi m_0}{h}\right\} = p_1^{k_1} \cdots p_r^{k_r}$$

is a rational number. Hence, the set A_h is linearly dependent over \mathbb{Q} . This shows that linear independence of A_h implies the type 1 for h.

The above remarks imply that

$$hL_h(\underline{l}) = 2\pi m$$

with $m \in \mathbb{Z}$ if and only if $\underline{l} = \underline{0}$ and m = 0. Hence, in view of Expression (15),

$$f_{N,M}(\underline{l}) = 1 \tag{16}$$

if and only if $\underline{l} = \underline{0}$. If $\underline{l} \neq \underline{0}$, then $L_h(\underline{l}) \neq 0$, and (15) gives

$$f_{N,M}(\underline{l}) = \frac{\exp\{-iNL_h(\underline{l})\} - \exp\{-i(N+M+1)L_h(\underline{l})\}}{(M+1)(1-\exp\{-iL_h(\underline{l})\})}.$$

Axioms **2025**, 14, 644 14 of 20

Hence, for $l \neq 0$,

$$\lim_{N \to \infty} f_{N,M}(\underline{l}) = 0. \tag{17}$$

Let

$$f(\underline{l}) = \begin{cases} 1 & \text{if } \underline{l} = \underline{0}, \\ 0 & \text{if } \underline{l} \neq \underline{0}. \end{cases}$$

Then, Equalities (16) and (17) show that

$$\lim_{N \to \infty} f_{N,M}(\underline{l}) = f(\underline{l}). \tag{18}$$

Since $f(\underline{l})$ is the Fourier transform of the Haar measure μ on $(\Omega,\mathcal{B}(\Omega))$, and Ω , as a compact group, is the Lévy group, in view of Theorem 1.4.2 of [29] and Equation (18), we determine that the measure $Q_{N,M}^h$ converges weakly to μ as $N \to \infty$. \square

Now consider the case with h of type 2.

Lemma 8. Suppose that h > 0 is type 2, and $M \to \infty$ as $N \to \infty$. Then, $Q_{N,M}^h$ converges weakly to the Haar measure μ^h as $N \to \infty$.

Proof. It is known, see the proof of Lemma 4 of [19], that in this case, characters of Ω_h are of the form

$$\prod_{p\in\mathbb{P}\setminus\mathbb{P}_0}\omega^{l_p}(p)\prod_{p\in\mathbb{P}_0}\omega^{l_p+l\beta_p}(p),\quad l\in\mathbb{Z},$$

and only a finite number of integers l_p are not zero. Here,

$$\mathbb{P}_0 = \left\{ p \in \mathbb{P} : \prod_{p \in \mathbb{P}} p^{\alpha_p} = \frac{a}{b}, \quad \alpha_p \neq 0 \right\}$$

is a finite subset of \mathbb{P} . Hence, the Fourier transform $f_{N,M}(\underline{l})$ of $Q_{N,M}^h$ is

$$f_{N,M}(\underline{l}) = \frac{1}{M+1} \sum_{k=N}^{N+M} \prod_{p \in \mathbb{P} \setminus \mathbb{P}_0} p^{-ikhl_p} \prod_{p \in \mathbb{P}_0} p^{-ikh(l_p+l\beta_p)}$$

$$= \frac{1}{M+1} \sum_{k=N}^{N+M} \prod_{p \in \mathbb{P} \setminus \mathbb{P}_0} p^{-ikhl_p} \prod_{p \in \mathbb{P}_0} p^{-ikhl_p}$$
(19)

due to the equality

$$\prod_{p \in \mathbb{P}_0} p^{-ikhl\beta_p} = \frac{a^{-ikhl}}{b^{-ikhl}} = 1, \quad l \in \mathbb{Z},$$
(20)

since $\omega(a) = \omega(b)$ for $\omega \in \Omega_h$. Taking into account (19) and (20), we find that

$$f_{N,M}(l) = 1 \tag{21}$$

for $l_p = 0$, $p \in \mathbb{P} \backslash \mathbb{P}_0$, and $l_p = l\beta_p$, $p \in \mathbb{P}_0$.

Now, suppose that $l_p \neq 0$ for some $p \in \mathbb{P} \backslash \mathbb{P}_0$, or there is $l \in \mathbb{Z}$ such that $l_p \neq l\beta_p$ for all $p \in \mathbb{P}_0$. Then, we have

$$\exp\left\{-ih\left(\sum_{p\in\mathbb{P}\setminus\mathbb{P}_0}l_p\log p+\sum_{p\in\mathbb{P}_0}(l_p+l\beta_p)\log p\right)\right\}\neq 1.$$
 (22)

Axioms **2025**, 14, 644 15 of 20

Actually, if (22) is not true, then

$$\exp\left\{\sum_{p\in\mathbb{P}\setminus\mathbb{P}_0} l_p \log p + \sum_{p\in\mathbb{P}_0} (l_p + l\beta_p) \log p\right\} = \exp\left\{\frac{2\pi l_0}{h}\right\} \tag{23}$$

with some integer l_0 . If l_0 is a multiple of r_0 (r_0 is from the definition of type 2), then

$$\exp\left\{\frac{2\pi l_0}{h}\right\} = \prod_{p \in \mathbb{P}_0} p^{l_1 \beta_p}$$

with $l_1 \in \mathbb{Z}$. Hence, by (23),

$$\sum_{p \in \mathbb{P} \setminus \mathbb{P}_0} l_p \log p + \sum_{p \in \mathbb{P}_0} (l_p + l_2 \beta_p) \log p = 0$$

with some integer l_2 , and this contradicts the linear independence over Q of logarithms of prime numbers. If l_0 is not a multiple of r_0 , then the number

$$\exp\left\{\frac{2\pi l_0}{h}\right\}$$

is irrational, and this contradicts (23) since

$$\exp\left\{\sum_{p\in\mathbb{P}\setminus\mathbb{P}_0}l_p\log p+\sum_{p\in\mathbb{P}_0}(l_p+l\beta_p)\log p\right\}=\prod_{p\in\mathbb{P}\setminus\mathbb{P}_0}p^{l_p}\prod_{p\in\mathbb{P}_0}p^{l_p+l\beta_p},$$

is a rational number. These contradictions show that inequality (22) is true. Let, for brevity,

$$\hat{L}_h(\underline{l}, l) = \sum_{p \in \mathbb{P} \setminus \mathbb{P}_0} l_p \log p + \sum_{p \in \mathbb{P}_0} (l_p + l\beta_p) \log p.$$

Then, (19) and (22) yield that

$$\begin{split} f_{N,M}(\underline{l}) &= \frac{1}{M+1} \sum_{k=N}^{N+M} \exp \left\{ -ikh \left(\sum_{p \in \mathbb{P} \setminus \mathbb{P}_0} l_p \log p + \sum_{p \in \mathbb{P}_0} (l_p + l\beta_p) \log p \right) \right\} \\ &= \frac{\exp \{ -ihN\hat{L}_h(l_p, l) \} - \exp \{ -ih(N+M+1)\hat{L}_h(l_p, l) \} }{(M+1)(1-\exp \{ -ih\hat{L}_h(l_p, l) \})}, \quad l \in \mathbb{Z}. \end{split}$$

This and Equality (21) show that

$$\lim_{N\to\infty} f(\underline{l}) = \left\{ \begin{array}{ll} 1 & \text{if } l_p = 0 \text{ for } p \in \mathbb{P} \setminus \mathbb{P}_0 \text{, and } l_p = l\beta_p \text{ for all } p \in \mathbb{P}_0 \text{,} \\ 0 & \text{otherwise,} \end{array} \right.$$

and the proof of the lemma is complete because the right-hand side of the latter equality is the Fourier transform of μ^h . \Box

Lemma 7 serves as an important component for the proof of a limit lemma for the function $\zeta_r(s;Q)$. For this, we recall one simple but useful property of weak convergence of probability measures.

Let \mathbb{X}_1 and \mathbb{X}_2 be two topological spaces, and $g: \mathbb{X}_1 \longmapsto \mathbb{X}_2$ a continuous mapping. Then, g is $(\mathcal{B}(\mathbb{X}_1), \mathcal{B}(\mathbb{X}_2))$ -measurable, i.e.,

$$\mathcal{B}^{-1}(\mathbb{X}_2) \subset \mathcal{B}(\mathbb{X}_1).$$

Axioms **2025**, 14, 644 16 of 20

Then, every probability measure P on $(X_1, \mathcal{B}(X_1))$ induces the unique probability measure Pg^{-1} on $(X_2, \mathcal{B}(X_2))$ defined by

$$Pg^{-1}(A) = P(g^{-1}A), \quad A \in \mathcal{B}(X_2),$$

where $g^{-1}(A)$ is the preimage of A.

Lemma 9 (Section 5 of [30]). Let P_n , $n \in \mathbb{N}$, and P be probability measures on $(\mathbb{X}_1, \mathcal{B}(\mathbb{X}_1))$, and $g : \mathbb{X}_1 \longmapsto \mathbb{X}_2$ be a continuous mapping. Suppose that $P_n \xrightarrow[n \to \infty]{w} P$. Then, $P_n g^{-1} \xrightarrow[n \to \infty]{w} P g^{-1}$.

For $\omega \in \Omega$, define

$$\zeta_r(s,\omega;Q) = \sum_{k=1}^K \sum_{l=1}^L \frac{a_{kl}\omega(k)\omega(l)}{k^s l^s} L(s,\omega,\chi_k) L\left(s - \frac{n}{2} + 1,\omega,\psi_l\right) + \sum_{m=1}^\infty \frac{b_Q(m)\omega(m)}{m^s},$$

and, for $A \in \mathcal{B}(\mathbb{C})$, set

$$P_{N,M,r,\sigma}^h(A) = D_{N,M}(\zeta_r(\sigma + ikh; Q) \in A).$$

Lemma 10. Suppose that h > 0 is type 1, $\sigma > \frac{n-1}{2}$, and $M \to \infty$ as $N \to \infty$. Then, on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$, there exists a probability measure $P_{r,\sigma}$ such that $P_{N,M,r,\sigma}^h \xrightarrow[N \to \infty]{w} P_{r,\sigma}$.

Proof. Consider the mapping $g_{r,\sigma}: \Omega \longmapsto \mathbb{C}$ given by the formula

$$g_{r,\sigma}(\omega) = \zeta_r(\sigma,\omega;Q), \quad \omega \in \Omega.$$

All functions involved in the definition of $\zeta_r(\sigma,\omega;Q)$ are absolutely convergent, hence, uniform in ω . Therefore, $g_{r,\sigma}$ is a continuous mapping. Moreover, we have

$$g_{r,\sigma}(p^{-ikh}:p\in\mathbb{P})=\zeta_r(\sigma+ikh;Q).$$

Therefore,

$$P_{N,M,r,\sigma}^{h}(A) = D_{N,M}((p^{-ikh}: p \in \mathbb{P}) \in g_{r,\sigma}^{-1}A) = Q_{N,M}^{h}(g^{-1}A)$$

for all $A \in \mathcal{B}(\mathbb{C})$. Thus, we have $P^h_{N,M,r,\sigma} = Q^h_{N,M} g^{-1}_{r,\sigma}$. This, continuity of $g_{r,\sigma}$ and Lemmas 7 and 9 proves that $P^h_{N,M,r,\sigma} \xrightarrow[N \to \infty]{w} \mu g^{-1}_{r,\sigma} \stackrel{\text{def}}{=} P_{r,\sigma}$. \square

A separate analysis of weak convergence for the measure $P_{r,\sigma}$ as $n \to \infty$ is unnecessary, as it has already been investigated in [19].

Lemma 11. Suppose that $\sigma > \frac{n-1}{2}$ is fixed and h > 0 is type 1. Then, $P_{r,\sigma} \xrightarrow{w} P_{\zeta,\sigma}$.

We notice that the statement of the lemma has been obtained in the proof of Theorem 2 of [10]. For identification of the limit measure of $P_{r,\sigma}$ as $r \to \infty$, elements of the ergodic theory have been involved; more precisely, the classical Birkhoff–Khintchine ergodic theorem (see, ref. [31]) has been applied.

Now, we resume the analysis of the case where h is type 2. Repeating the proof of Lemma 10 and using Lemma 8 leads to the following statement.

Axioms **2025**, 14, 644 17 of 20

Lemma 12. Suppose that h > 0 is type 2. Then, on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$, there exists a probability measure $P_{r,\sigma}^h$ such that $P_{N,M,r,\sigma}^h \xrightarrow[N \to \infty]{w} P_{r,\sigma}^h$.

Proof. We notice that, in the case of type 2, the mapping $g_{r,\sigma}$ depends on h. Thus, $P_{r,\sigma}^h = \mu^h g_{r,\sigma}^{-1}$. \square

The measure $P_{r,\sigma}^h$ does not depend on M. Thus, we may use the results of [19].

Lemma 13 ([19], pp. 12–14). Suppose that $\sigma > \frac{n-1}{2}$ is fixed and h > 0 is type 2. Then $P_{r,\sigma}^h \xrightarrow[r \to \infty]{W} P_{\zeta,\sigma}^h$.

To complete the proof of Theorem 1, one statement on convergence in distribution is needed. Let X_n , $n \in \mathbb{N}$, and X be \mathbb{X} -valued random elements on a certain probability space $(\hat{\Omega}, \mathcal{B}, \mathcal{Q})$, and $P_n(A) = \mathcal{Q}\{\hat{\omega} \in \hat{\Omega} : X_n \in A\}$ and $P(A) = \mathcal{Q}\{\hat{\omega} \in \hat{\Omega} : X \in A\}$, $A \in \mathcal{B}(\mathbb{C})$ be the corresponding distributions. We say that X_n converges to X in distribution $(X_n \xrightarrow[n \to \infty]{\mathcal{D}} X)$ if $P_n \xrightarrow[n \to \infty]{w} P$.

Lemma 14 (Theorem 4.2 of [30]). Let Y_n and X_{ln} , $n, l \in \mathbb{N}$, be (\mathbb{X}, ϱ) -valued random elements on the probability space $(\hat{\Omega}, \mathcal{B}, \mathcal{Q})$, and the space \mathbb{X} is separable. Suppose that, for every $l \in \mathbb{N}$,

$$X_{ln} \xrightarrow[n \to \infty]{\mathcal{D}} X_l$$
 and $X_l \xrightarrow[l \to \infty]{\mathcal{D}} X$.

Moreover, let, for every $\varepsilon > 0$ *,*

$$\lim_{l\to\infty}\limsup_{n\to\infty}\mathcal{Q}\{\varrho(X_{ln},Y_n)\geqslant\varepsilon\}=0.$$

Then, $Y_n \xrightarrow[n\to\infty]{\mathcal{D}} X$.

Proof of Theorem 1. *Case for h of type 1.* On a certain probability space $(\hat{\Omega}, \mathcal{B}, \mathcal{Q})$, define a random variable $\xi_{N,M}^h$ having the distribution

$$Q\{\xi_{N,M}^h = kh\} = \frac{1}{M+1}, \quad k = N, N+1, \dots, M.$$

For $\sigma > \frac{n-1}{2}$, set

$$X^h_{N,M,r}=X^h_{N,M,r}(\sigma)=\zeta_r(\sigma+i\xi^h_{N,M};Q),$$

and

$$Y^h_{N,M}=Y^h_{N,M}(\sigma)=\zeta(\sigma+i\xi^h_{N,M};Q).$$

In virtue of Lemma 10, it follows that

$$X_{N,M,r}^{h} \xrightarrow[N \to \infty]{\mathcal{D}} X_{r}, \tag{24}$$

where $X_r = X_r(\sigma)$ is the \mathbb{C} -valued random element with the distribution $P_{r,\sigma}$. Moreover, in view of Lemma 11,

$$X_r \xrightarrow[r \to \infty]{\mathcal{D}} P_{\zeta,\sigma}.$$
 (25)

Now, we apply Lemma 6 and find that, for fixed $\sigma > \frac{n-1}{2}$ and $\varepsilon > 0$,

$$\lim_{r \to \infty} \limsup_{N \to \infty} \mathcal{Q} \left\{ \left| Y_{N,M}^h(\sigma) - X_{N,M,r}^h(\sigma) \right| \geqslant \varepsilon \right\}$$

Axioms **2025**, 14, 644 18 of 20

$$= \lim_{r\to\infty} \limsup_{N\to\infty} \frac{1}{(M+1)\varepsilon} \sum_{k=N}^{N+M} |\zeta(\sigma+ikh;Q) - \zeta_r(\sigma+ikh;Q)| = 0.$$

The later equality, relations (24) and (25) together with Lemma 14 show that

$$Y_{N,M} \xrightarrow[N \to \infty]{\mathcal{D}} P_{\zeta,\sigma},$$

i.e., $P_{N,M,\sigma} \xrightarrow[N\to\infty]{W} P_{\zeta,\sigma}$.

Case for h of type 2 . We repeat the proof of Theorem 1 in the case of h of type preserving the notations with minor changes.

By Lemma 12, we have

$$X_{N,M,r}^h(\sigma) \xrightarrow[N \to \infty]{\mathcal{D}} X_r^h(\sigma),$$
 (26)

where $X_r^h(\sigma)$ is the \mathbb{C} -valued random element with the distribution $P_{r,\sigma}^h$, and from Lemma 13 it follows that

$$X_r^h(\sigma) \xrightarrow[r \to \infty]{\mathcal{D}} P_{\zeta,\sigma}^h.$$
 (27)

Using Lemma 6 yields, for $\sigma > \frac{n-1}{2}$ and $\varepsilon > 0$,

$$\lim_{r \to \infty} \limsup_{N \to \infty} \mathcal{Q} \left\{ \left| Y_{N,M}^h(\sigma) - X_{N,M,r}^h(\sigma) \right| \geqslant \varepsilon \right\} = 0.$$
 (28)

Now, (26)–(28) and Lemma 14 prove the theorem in the case of h of type 2, i.e.,

$$P_{N,M,\sigma}^h \xrightarrow[N\to\infty]{\mathrm{w}} P_{\zeta,\sigma}^h$$
.

The proof of Theorem 1 is complete. \Box

4. Conclusions

Assuming that Q is a positive-definite quadratic matrix of order $n \in 2\mathbb{N}$, $n \geqslant 4$, and that $\underline{x}^TQ\underline{x} \in \mathbb{Z}$ for all $\underline{x} \in \mathbb{Z}^n \setminus \{\underline{0}\}$, we considered asymptotic properties of the frequency of the values $\zeta(\sigma+ikh;Q)$ of the Epstein zeta-function in the interval [N,N+M], where $h^{-1}(Nh)^{27/82} \leqslant M \leqslant h^{-1}(Nh)^{1/2}$, as $N \to \infty$, and h > 0 and $\sigma > \frac{n-1}{2}$ are fixed. Applying a probabilistic technique, we obtained that the above frequency converges weakly to the distribution of a certain explicitly given complex-valued random element. This random element depends on the arithmetic of the number h. The result obtained improves our earlier result, proved for the interval [0,N], and is closely connected to the mean square estimate

$$\int_{T-H}^{T+H} |L(\sigma+it,\chi)|^2 dt \ll_{\sigma} H, \quad \sigma > \frac{1}{2},$$
(29)

which holds in short intervals (H = o(T) as $T \to \infty$) for Dirichlet L-functions $L(s, \chi)$. We believe that the lower bound for M can be decreased by using a more precise estimate for H in (29).

In the future, we plan to extend the results of this paper to the space H(D), i.e., to obtain weak convergence of probability measures

$$\frac{1}{H}\operatorname{meas}\{t\in[T,T+H]:\zeta(s+i\tau;Q)\in A\}\quad\text{ and }\quad D_{N,M}(\zeta(s+i\tau;Q)\in A)$$

with $A \in \mathcal{B}(H(D))$ in short intervals $(H = o(T) \text{ as } T \to \infty, \text{ and } H = o(N) \text{ as } N \to \infty)$, where $D = \{s \in \mathbb{C} : \frac{n-1}{2} < \sigma < \frac{n}{2}\}$, and H(D) denotes the space of analytic functions

on D endowed with the topology of uniform convergence on compact sets. Such limit theorems and equivalents of weak convergence lead to the universality of $\zeta(s;Q)$ in short intervals. Note that the universality theorem in short intervals is an important step towards the effectivization of universality, i.e., the detection of approximating shifts $\zeta(s+i\tau;Q)$ for a given analytic function.

Author Contributions: Methodology, A.L.; software, R.M.; validation, A.L. and R.M.; formal analysis, R.M.; investigation, A.L. and R.M.; writing—original draft, A.L. and R.M.; writing—review and editing, A.L. and R.M.; supervision, A.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the article; further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Bohr, H. Zur Theorie der Riemann'schen Zetafunktion im kritischen Streifen. Acta Math. 1916, 40, 67–100. [CrossRef]
- 2. Bohr, H.; Jessen, B. Über die Wertverteilung der Riemanschen Zetafunktion, Erste Mitteilung. Acta Math. 1930, 54, 1–35. [CrossRef]
- 3. Bohr, H.; Jessen, B. Über die Wertverteilung der Riemanschen Zetafunktion, Zweite Mitteilung. *Acta Math.* **1932**, *58*, 1–55. [CrossRef]
- 4. Bohr, H.; Jessen, B. Om Sandsynlighedsfordelinger ved Addition af konvekse Kurver. *Dan. Vid. Selsk. Skr. Nat. Math. Afd.* **1929**, *8*, 1–82.
- 5. Borchsenius, V.; Jessen, B. Mean motions and values of the Riemann zetafunction. Acta Math. 1948, 80, 97–166. [CrossRef]
- 6. Jessen, B.; Wintner, A. Distribution functions and the Riemann zeta-function. Trans. Am. Math. Soc. 1935, 38, 48–88. [CrossRef]
- 7. Laurinčikas, A. *Limit Theorems for the Riemann Zeta-Function*; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1996.
- 8. Matsumoto, K. Probabilistic Value-Distribution Theory of Zeta-Functions. In *Sugaku Expositions*; Nagoya University: Nagoya, Japan, 2004; Volume 17, pp. 51–71.
- 9. Bagchi, B. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other ALLIED Dirichlet Series. Ph.D. Thesis, Indian Statistical Institute, Calcutta, India, 1981.
- 10. Laurinčikas, A.; Macaitienė, R. A Bohr-Jessen type theorem for the Epstein zeta-function. Results Math. 2018, 73, 1–16. [CrossRef]
- 11. Epstein, P. Zur Theorie allgemeiner Zetafunktionen. Math. Ann. 1903, 56, 615–644. [CrossRef]
- 12. Glasser, M.L.; Zucker, I.J. Lattice Sums in Theoretical Chemistry. In *Theoretical Chemistry: Advances and Perspectives*; Eyring, H., Ed.; Academic Press: New York, NY, USA, 1980; Volume 5, pp. 67–139.
- 13. Elizalde, E. Ten Physical Applications of Spectral Zeta Functions; Lecture Notes Physics; Springer: Berlin/Heidelberg, Germany, 1995.
- 14. Chen, H.-B.; Li, X.-Z. Casimir energies on a twisted two-torus. Chin. Phys. Lett. 2005, 18, 1163–1166.
- 15. Jiang, T. Epstein zeta function and heavy-quark potential at finite temperature from Nambu-Goto string. *Phys. Lett. B* **1996**, 371, 298–302. [CrossRef]
- 16. Fomenko, O.M. Order of the Epstein zeta-function in the critical strip. J. Math. Sci. 2002, 110, 3150–3163. [CrossRef]
- 17. Iwaniec, H. *Topics in Classical Automorphic Forms; Graduate Studies in Mathematics*; American Mathematical Society: Providence, RI, USA, 1997; Volume 17.
- 18. Hecke, E. Über Modulfunktionen und die Dirichletchen Reihen mit Eulerscher Produktentwicklung. I, II. *Math. Ann.* **1937**, *114*, 316–351. [CrossRef]
- 19. Laurinčikas, A.; Macaitienė, R. A Bohr-Jessen type theorem for the Epstein zeta-function. II. *Results Math.* **2020**, *75*, 1–16. [CrossRef]
- 20. Laurinčikas, A.; Matsumoto, K.; Steuding, J. Discrete universality of *L*-functions of new forms. II. *Lith. Math. J.* **2016**, *56*, 207–218. [CrossRef]
- 21. Balčiūnas, A.; Garbaliauskienė, V.; Macaitienė, R. Extension of a Bohr-Jessen type theorem for the Epstein zeta-function in short intervals. *Math. Modell. Anal.* 2025, *submited*.
- 22. Selberg, A. Collected Papers; Springer: Berlin/Heidelberg, Germany, 1989; Volume 1.
- 23. Selberg, A. Old and New Conjectures and Results About a Class of Dirichlet Series. In *Proceedings of the Amalfi Conference on Analytic Number Theory, Maiori, Italy, 25–29 September 1989*; Springer: Berlin/Heidelberg, Germany, 1992; pp. 367–385.
- 24. Laurinčikas, A.; Šiaučiūnas, D. The mean square of the Hurwitz zeta-function in short intervals. Axioms 2024, 13, 510. [CrossRef]

Axioms **2025**, 14, 644 20 of 20

- 25. Davenport, H. Multiplicative Number Theory, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1980.
- 26. Gallagher, P.X. A large sieve density estimate near $\sigma = 1$. *Invent. Math.* **1970**, 11, 329–339. [CrossRef]
- 27. Montgomery, H.L. *Topics in Multiplicative Number Theory*; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1971; Volume 227.
- 28. Prachar, K. Distribution of Prime Numbers; Springer: Berlin/Heidelberg, Germany, 1957.
- 29. Heyer, H. Probability Measures on Locally Compact Groups; Springer: Berlin/Heidelberg, Germany, 1977.
- 30. Billingsley, P. Convergence of Probability Measures, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1999.
- 31. Cramér, H.; Leadbetter, M.R. Stationary and Related Stochastic Processes; Wiley: New York, NY, USA, 1967.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.