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INTRODUCTION 

 

Importance of the topic 

Stability of any either natural or artificial system is a valuable and desired 

property. Stabilization in particular of unstable equilibrium (UEQ) of dynamical 

systems is an important problem in basic science and engineering applications, 

if periodic or chaotic oscillations are unacceptable behaviours. Usual control 

methods, based on proportional feedback control [Kuo, 1995; Ogata, 2010] 

require knowledge of a mathematical model of a dynamical system or at least 

the exact coordinates of the UEQ in the phase space for the reference point. 

However, in many real complex systems, especially in biology, physiology, 

economics, sociology, and chemistry neither the full reliable models, nor the 

exact coordinates of the UEQ are a priori known. Moreover, the position of the 

UEQ may change with time because of external unknown and unpredictable 

forces. Therefore, in these cases adaptive, i.e. model-independent and reference-

free methods, automatically tracing and stabilizing unknown UEQ, can be 

helpful, e.g. [Rulkov et al., 1994; Namajūnas et al., 1995b, Pyragas et al., 2002]. 

Synchronization is a universal and very common phenomenon, widely 

observed in nature, science, engineering, and social life [Pikovsky et al., 2003]. 

Coupled oscillators and their arrays, exhibiting synchrony, range from pendulum 

clocks to electronic oscillators, chaotic lasers, chemical systems, and various 

biological populations. Though in the most cases synchronization plays a 

positive role, sometimes it has a negative impact. Strong synchronization in the 

human brain is an example. It is widely believed that synchrony of spiking 

neurons in a neuronal population causes the symptoms of the Parkinson’s disease 

[Rosenblum & Pikovsky, 2004]. Therefore, the development of the methods and 

practical techniques for controlling, more specifically, for suppressing 

synchrony of coupled oscillators, in general, and particularly with possible 

application to neuronal arrays, is of great importance [Popovych et al., 2005; 

Pyragas et al., 2007; Ratas & Pyragas, 2014; Pyragas & Tass, 2016]. 
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Goals of the work: 

1. Development of fast feedback methods using unstable filter control, 

stable filter control and proportional feedback control techniques for 

stabilizing various equilibrium states with a priori unknown coordinates 

of both weakly and strongly damped dynamical systems. 

2. Development of methods for destroying synchrony or suppressing 

oscillations in mean-field coupled oscillators. 

 

 

To achieve the scientific goals the following tasks have been assigned: 

1. Design of an electronic analog of the DuffingHolmes system. 

2. Investigation of the unstable filter control technique with applications to 

switching between stable equilibrium and unstable equilibrium. 

3. Design of an electronic analog of a conservative saddle equilibrium. 

4. Creation of complex feedback techniques using: 

(a)  unstable filter control and stable filter control applied in parallel, 

(b)  linearly combined unstable filter control and stable filter control, 

(c)  unstable filter control enhanced by a derivative control, 

(d)  nonlinear feedback controller. 

5. Development of the mathematical methods to estimate the uncertain 

(unknown) equilibrium points. 

6. Design of an asymmetric version of an electronic analog of the 

FitzHughNagumo (FHN) oscillator. Design of an electronic analog of 

an array of the mean-field coupled FHN oscillators. 

7. Development of feedback techniques for implementing the method of 

repulsive coupling and the method of nullifying the mean field, both 

aimed to desynchronize the FHN oscillators.  

8. Application of stable filter control to damping oscillations in an array of 

coupled FHN oscillators. 
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The following new scientific results have been obtained: 

1. The unstable filter control technique has been demonstrated to switch 

from stable equilibrium to unstable equilibrium in motionless (non-

oscillating and non-rotating) dynamical systems. 

2. Several synergetic methods, based on combined unstable feedback 

control and stable filter control techniques also with an auxiliary 

differentiator in the feedback loop, have been shown to stabilize the 

saddle equilibrium. 

3. The proportional feedback control for stabilizing unknown equilibrium 

has been developed to estimate the reference points. 

4. Two-terminal feedback controllers have been demonstrated either to 

desynchronize or to damp array of coupled oscillators. 

Main scientific statements: 

1. The unstable filter inverts the stability properties of the originally stable 

and the originally unstable equilibrium, thus makes it possible to switch 

a dynamical system from an originally motionless stable equilibrium, to 

an a priori unknown unstable equilibrium. 

2. Complex feedback loop, containing an unstable filter, a stable filter or a 

derivative unit, enable fast stabilization of saddle equilibrium in 

conservative and weakly damped dynamical systems. 

3. Either natural or artificial stable equilibrium states allow finding 

unknown reference points and use them in the proportional feedback. 

4. Feedback controllers, using the negative impedance converters, either 

desynchronize or damp oscillations in arrays of mean-field coupled 

FitzHughNagumo oscillators. 

Personal input of the author 

Elena Adomaitienė (guided by the scientific supervisor) derived differential 

equations and performed mathematical stability analysis of equilibrium. Author 

obtained numerical results using the package MATHEMATICA. In addition, some 

of the simulations she performed using the circuit simulator ELECTRONICS 

WORKBENCH PROFESSIONAL.  
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CHAPTER 1 

CONTROLLING EQUILIBRIUM AND SYNCHRONY OF  

DYNAMICAL SYSTEMS (review) 

1.1. Methods for controlling unstable equilibrium  

Control of dynamical systems is one of the most important fields in applied 

nonlinear science. Although engineers and applied mathematicians have solved 

many basic problems a long time ago, the pioneering idea of “controlling chaos” 

introduced by Ott, Grebogi, and Yorke (OGY) [Ott et al., 1990] inspired many 

physicists worldwide to develop new techniques for controlling chaos, e.g., 

[Pyragas, 1992; Pyragas & Tamaševičius, 1993; Schöll & Schuster, 2008; Lenci 

& Rega, 2006; Ahlborn & Parlitz, 2006; Tamaševičius et al., 2009b; Olyaei & 

Wu, 2015, Pyragas & Pyragas, 2015]. The OGY method and new approaches 

are based on the fact that a chaotic attractor embeds an infinite number of 

unstable periodic orbits (UPOs) which can be stabilized only through tiny, 

carefully chosen perturbations. 

Stabilization of unstable equilibrium1 (UEQ) of dynamical systems is also 

an important problem in basic science and engineering applications, when 

neither chaotic nor periodic oscillations are desirable behaviours. 

Let us consider time continuous n-dimensional autonomous nonlinear 

dynamical system with at least one accessible output to observe (to measure) the 

state of the system and with at least one accessible input to apply a control signal, 

given by a set of ordinary differential equations 
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   (1.1) 

with the initial conditions x(0) and y(0). In Eq. (1.1) x(t) is the (n1)-

dimensional vector variable, the y(t) is a scalar variable, the F(…) and the f(…) 

is a vector and a scalar nonlinear function, respectively. We assume that an 

                                                           
1 ‘Equilibrium’ is also called either ‘steady state’ (to characterize a physical state) or 

‘fixed point’ (to present the state as a geometrical image in phase space). 
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autonomous system has at least one equilibrium. Its coordinates (x0,y0) are found 

from the algebraic equations 
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,0),(
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xF
   (1.2) 

If the (x0,y0) is a stable equilibrium (SEQ), then the system (1.1) converges to 

the SEQ, (x(t)x0, y(t)y0) with t. At the beginning stage (t 0) starting 

from x(0) and y(0) the system exhibits transient, either damped oscillations 

(stable spirals) or relaxation behaviour (stable nodes). An exception is rare case 

when the initial conditions either intentionally or accidentally are set on the SEQ, 

x(0)=x0 and y(0)=y0. 

If the (x0,y0) is an unstable equilibrium (UEQ), the system (1.1) either 

escapes from it to some SEQ (xSEQ,ySEQ), coexisting with the UEQ due to the 

nonlinearity, or exhibits periodic/chaotic oscillations. If these cases are 

undesirable behaviours, one should apply a proper stabilization technique, which 

makes the initially unstable equilibrium to become stable, without changing its 

original coordinates (x0,y0). Here, in Sec.1.1 we will consider the feedback 

algorithms only (non-feedback technique will be briefly discussed in Sec.5.4). 

There are number of methods developed so far for stabilizing the UEQ in 

system (1.1). The general form of the scalar feedback methods can be presented 

in the following way 
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  (1.3) 

Here r is the reference coordinate, depending on a specific control method is 

either a constant value r0 or a scalar variable r(t). In general, the feedback 

function (r,y(t)) should be designed so that it should vanish when the desirable 

SEQ is achieved: 

00 )(and )( if ,0))(,( ytyxttyrΦ  x . (1.4) 

This requirement guarantees that the coordinates of the initial UEQ (x0,y0) are 

not changed. The form of  for different control techniques is discussed below. 

In some specific cases the “diagonal” scalar variable y(t) in (r,y(t)) should be 
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replaced with an appropriate measurable scalar component xi(t), where 

1 i  n1, of the vector variable x(t). 

Proportional feedback control (PFC). Conventional control methods, based on 

proportional feedback [Kuo, 1995; Ogata, 2010], require knowledge either of a 

full mathematical model of a system or at least the exact coordinates of the UEQ.  
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Here and elsewhere time t is omitted for simplicity. Evidently, k(y0y)0, when 

yy0. In Eq. (1.5) and elsewhere k is the feedback coefficient (feedback gain). 

Its threshold value kth in most cases can be derived analytically (if the dynamics 

is known), else it is an empirically adjusted parameter. 

However, in many real systems, especially in biology, physiology, 

economics, sociology, chemistry, neither the reliable models are available nor 

the exact locations of the UEQ are a priori known. Moreover, the position of the 

UEQ may slowly vary with time because of external unknown and unpredictable 

forces. Therefore, adaptive methods, automatically tracing and stabilizing 

unknown UEQ, are needed. 

Derivative control. The simplest adaptive technique for stabilizing UEQ is based 

on the derivative controller.  
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Evidently the derivative ix  becomes zero, when all variables x,y become 

constant. Control term ixk  does not change the original system, since it vanishes 

when the variable xi(t) approaches the stabilized equilibrium. This technique 

works well for originally oscillating systems [Bielawski et al., 1993; Johnston 

& Hunt, 1993, Parmananda et al., 1994].  

Stable filter control (SFC). Another adaptive method for stabilizing UEQ 

employs either low-pass filter (LPF) in the feedback loop [Rulkov et al., 1994; 

Namajūnas et al., 1995b, 1997; Schenk zu Schweinsberg & Dressler, 2001; 
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Huijberts, 2006], or high-pass filter (HPF) [Ciofini et al., 1999]. Provided the 

cut-off frequency of the filter is low enough, the filtered image v(t) of the 

observable y(t) or xi(t) asymptotically approaches the UEQ and therefore can be 

used as a reference point in the proportional feedback. This method has been 

successfully applied to several experimental systems, including electronic 

circuits [Rulkov et al., 1994; Namajūnas et al., 1995b, 1997] and lasers [Ciofini 

et al., 1999; Schenk zu Schweinsberg & Dressler, 2001].  

The system (1.3) is supplemented with an auxiliary equation, describing 

the first order stable filter (its variable v(t)) 
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Here f is the cut-off frequency of the filter (commonly f <<1). When the 

equilibrium of the overall system (1.7) is stabilized, the v0=y0. Consequently, the 

control term k(v0y0) in Eq. (1.7) vanishes, as required.  

Delayed feedback control (DFC). This method [Pyragas, 1992] is originally 

designed to control chaos that is to stabilize UPOs. Under appropriate setting of 

parameters, it can stabilize UEQ as well [Pyragas, 1995; Chang et al., 1998; 

Hövel & Schöll, 2005; Yanchuk et al., 2006; Hövel, 2010; Ding et al., 2010; 

Rezaie & Motlagh, 2011; Gjurchinovski et al., 2013; Zhou & Yang, 2013]. The 

DFC can be presented by: 
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Here y  is a time delayed version of the original variable y(t): y  y(t). 

Evidently, when y(t)y0, the y(t)y0 as well. Therefore, the control term in 

Eq. (1.8) vanishes.  

Notch filter control (NFC). Similarly to the DFC, the NFC has been originally 

to stabilize UPOs [Ahlborn & Parlitz, 2006; Tamaševičius et al., 2007a; 

Tamaševičius et al., 2009b]. The technique employs either single Wien-bridge 

filter [Ahlborn & Parlitz, 2006], or single LC filter [Tamaševičius et al., 2007a], 
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or several LC filters coupled in series [Tamaševičius et al., 2009b]. To stabilize 

UEQ two notch filters with incommensurate cut-off frequencies 1 and 2 

should be applied [Ahlborn & Parlitz, 2006]. The method is given by the set: 
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  (1.9) 

Unstable filter control (UFC). However, it turns out that for a wide class of 

dynamical systems the developed methods [Pyragas, 1992; Pyragas & 

Tamaševičius, 1993; Schöll & Schuster, 2008; Ahlborn & Parlitz, 2006; Rulkov 

et al., 1994; Namajūnas et al., 1995b; Ciofini et al., 1999; Schenk zu 

Schweinsberg & Dressler, 2001] do not work. If an unstable state, say an UPO, 

is a torsion-free orbit (or in mathematical language an orbit with an odd number 

of real positive Floquet exponents), more sophisticated controllers should be 

used. The idea of using an auxiliary unstable degree of freedom in the feedback 

loop was introduced in [Pyragas, 2001] and has been experimentally verified for 

stabilizing torsion-free UPOs of autonomous the van der Pol oscillator [Höhne 

et al., 2007] and nonautonomous the DuffingHolmes oscillator [Tamaševičius 

et al., 2007b] dynamical systems.  

To solve the problem of the odd number limitation of the methods for 

stabilizing UEQ Pyragas et al. [Pyragas et al., 2002] proposed to use an unstable 

filter that is an elegant idea to fight one instability with another instability. The 

method has been demonstrated to stabilize saddles in a variety of mathematical 

models [Pyragas et al., 2002; 2004; Braun, 2008] also in the experiments with 

an electrochemical oscillator [Pyragas et al., 2002; 2004; Pyragas, 2007].  

In contrast to the SFC, described by Eq. (1.7), the UFC employs an 

inherently unstable filter (the auxiliary equation for variable u): 
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Note the positive sign of the variable u on the right hand side in the 

equation for u, in contrast to the negative sign of the variable v on the right hand 

side in the equation for v in Eq. (1.7). Similarly to the case of SFC, the control 

term k(uxi)0, since uu0 = xi0 and xixi0. The method has a limitation 

concerning the damping coefficient of the system under control. Let us illustrate 

this point with a simple 2nd order linear (linearized around the saddle) dynamical 

system as an example: 
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This advanced method is limited, however, to dissipative dynamical 

systems only. It is not applicable to conservative systems. The limitation of the 

unstable filter method can be proved analytically using the RouthHurwitz 

stability criterion. The necessary condition for stabilizing a saddle UEQ is that 

the cut-off frequency f of the unstable filter is lower than the damping 

coefficient b of the system [Pyragas et al., 2004; Braun, 2008].  

.f bω     (1.12) 

In conservative systems, damping b is zero by definition. Formally, the cut-

off frequency could be set negative. However, this would mean that the unstable 

filter should become a stable one and, therefore, inappropriate to stabilize a 

saddle UEQ. Detailed mathematical proof of (1.12) is presented in Sec.3.3 using 

the RouthHurwitz criterion. The inequality (1.12) holds for diverse systems, 

including the mechanical pendulum, the DuffingHolmes oscillator, a body at 

the Lagrange points of the SunEarth system, the Lorenz system [Lorenz, 1963], 

the Duffing Lindberg autonomous chaotic electronic oscillator [Lindberg et al., 

2009; Tamaševičius et al., 2009a].  

The above control techniques deal with single oscillators. In a very recent 

paper [Zou et al., 2017] coupled dynamical networks have been considered. 
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1.2. Methods for controlling synchrony of coupled oscillators 

Synchronization is a universal and very common phenomenon, widely observed 

in nature, science, engineering, and social life [Pikovsky et al. 2003]. Coupled 

oscillators and their arrays, exhibiting synchrony, range from pendulum clocks 

to electronic oscillators, chaotic lasers, chemical systems, and various biological 

populations [Pikovsky et al. 2003; Rosenblum & Pikovsky, 2003; Luo, 2009]. 

Though in the most cases synchronization plays a positive role, sometimes it has 

a negative impact. Strong synchronization in the human brain is an example. It 

is widely believed that synchrony of spiking neurons in a large neuronal 

population causes the symptoms of the essential tremor and the Parkinson’s 

disease [Rosenblum & Pikovsky, 2004]. Therefore, development of the methods 

and practical techniques for controlling, more specifically, for suppressing 

synchrony of coupled oscillators, in general, and particularly with possible 

application to neuronal arrays, is of great importance [Rosenblum & Pikovsky, 

2004; Popovych et al., 2005; Pyragas et al., 2007]. Seeking to destroy 

synchrony, the feedback methods, e.g. based on the inversion of the mean field 

[Tsimring et al., 2005; Hong & Srogatz, 2011], might be promising. 

Let us consider an array of N nonidentical 2nd order oscillators, given by 

the 2N-dimensional system 
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In Eq. (1.13) the individual oscillators are not coupled and each of them 

oscillates at its own frequency and its own phase. Evidently, they behave in a 

nonsynchronous way2. To make the oscillators synchronous some coupling 

between them should be introduced. There are several different architectures of 

coupling, e.g. each-to-each coupling, mean-field coupling, the nearest-

neighbours coupling. To be specific, we illustrate the synchronous and 

nonsynchronous behaviours with the example of the mean-field coupling 

                                                           
2 Synchronous behaviour of ideally identical oscillators, i.e. fi(xi,yi) = f(xi,yi) and 

gi(xi,yi) = g(xi,yi) for all indexes i, is a formal and impractical exception. 
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where  x  is the mean value of the variables xi 


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
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x
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1
.   (1.15) 

The specific phase portraits and waveforms are presented in Fig. 1.1 and 

Fig. 1.2, respectively for the array of 30 mean-field coupled FitzHughNagumo 

(FHN) oscillators, given by the 60-dimensional system 
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Here 
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30
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1

i
ixx .   (1.17) 

The oscillators in Eq. (1.16) are all different due to different bias terms ci. Note 

in Fig. 1.1a that there is a finite width loop in the phase portrait. This means that 

it is not a complete synchronization, xj(t)=xi(t), but is the so-called phase 

synchronization, xj(t+j)=xi(t). All units oscillate at the same frequency and 

have stable phase differences j, which are not necessarily zero. 

 

FIG. 1.1. Phase portraits, xj vs. xi, ji for the FHN oscillators. (a) coupled (k0; 

therefore synchronized; Eq. (1.16)), (b) either uncoupled (k = 0; therefore 

nonsynchronized; Eq. (1.16)), or coupled (k0; but desynchronized; Eq. (1.19)). 

 = 0.3, b = 0.1, ci+1 = ci+0.05, c1 = 5. 

 

xj xj 

xi xi 
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FIG. 1.2. Waveforms of the mean-field variable <x> for the FHN oscillators. 

(a) coupled (k0; therefore synchronized; Eq. (1.16)), (b) either uncoupled 

(k = 0; therefore nonsynchronized; Eq. (1.16)), or coupled (k0; but  

desynchronized; Eq. (1.19)).  = 0.3, b = 0.1, ci+1 = ci+0.05, c1 = 5. 

To avoid synchrony, if it is not a desirable, but a harmful state, a number 

of non-feedback and feedback methods have been developed so far. The most 

popular of the non-feedback methods is the external periodic forcing 
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where the external frequency should be much higher than the natural frequencies 

of the oscillators ( >> 0). Above some threshold amplitude Ath the inherent 

oscillations, e.g. spikes in neuronal models, are totally inhibited. This is not a 

desynchronization in its genuine sense. We simply get around the problem of 

synchrony by a straightforward damping of the oscillators. On one hand, the 

effect can be considered as a dynamical stabilization of the UEQ of the 

oscillators [Thomsen, 2003; Pyragas et al., 2007; Pyragas & Tass, 2016]. On the 

other hand, some residual (response) oscillations (about 10 to 20 % of the 

original amplitude) in the individual oscillators xi(t) and in their mean-field 

<x>(t) (a) 

<x>(t) (b) 
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variable )(tx  at the external drive frequency  are still observed. Therefore, 

the effect can be interpreted as the synchronization of the array of the oscillators 

to the high frequency external driving force, whereas with an essentially lower 

response amplitude compared to the original natural oscillations. 

The external periodic forcing is conventionally used as a therapy for 

patients with the Parkinson’s disease. In medicine, it is called ‘deep brain 

stimulation’ (DBS). Strong relatively high frequency (100 to 200 Hz) periodic 

pulse trains are applied to the appropriate regions of the brain. Unfortunately, 

this treatment is often accompanied with side effects.  

A large number of feedback techniques to avoid synchronization of 

interacting oscillators in general and more specifically with the possible 

application to neuronal arrays have been described in the literature, e.g. 

[Rosenblum & Pikovsky, 2004; Popovych et al., 2005; 2006; Tsimring et al., 

2005; Tass, 2007; Tukhlina et al., 2007; Pyragas et al., 2007; Luo & Xu, 2011; 

Hong & Strogatz, 2011; Sheeba et al., 2011; Franci et al., 2012]. 

Extremely small mean field values (Fig. 1.2b) can be achieved by the 

feedback techniques, for example by the so-called ‘repulsive coupling’ or 

‘repulsive synchronization’ method [Tsimring et al., 2005]3, where the  x  is 

fed back into the array with an inverted sign: 
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Note the minus sign in front of  x . The physical mechanism behind the 

‘repulsive synchronization’ has a simple intuitive explanation. Once  x  in 

Eq. (1.14) means ‘attractive coupling’ and provides synchronous states, the 

 x  in Eq. (1.19), in contrast, means ‘repulsive coupling’ and yields 

nonsynchronous states. In mathematics, it is easy to replace ‘+’ with ‘’. 

However, in practical implementations it is a nontrivial problem. 

                                                           
3 Tsimring et al. considered an array of simple 1-dimensional phase oscillators (the 

Kuramoto model), in contrast to the 2-dimensional (2nd order) oscillators in Eq. (1.19). 
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CHAPTER 2 

PYRAGAS’ UNSTABLE FILTER METHOD FOR CONTROLLING 

SADDLE EQUILIBRIUM 

2.1. Switching from stable states to unknown saddle states [2] 

Proportional feedback control (PFC) and stable filter control (SFC). A dyn-

amical system given by 

)( *xxax   

with a > 0 has an unstable equilibrium (UEQ) point x0 = x*. If the value of x* is 

known, the point x0 can be easily stabilized by means of a PFC: 

).)(()()( *** xxkaxxkxxax   

The equilibrium point of the controlled system is x0=x*, i.e., exactly the same 

as that of the free-flowing system. The PFC does not change the location of the 

equilibrium, but makes it stable if k > a.  

 If the equilibrium point is unknown, one can think of the conventional 

SFC used to stabilize UEQ in chaotically oscillating systems [Rulkov et al., 

1994, Namajūnas et al., 1995b, Ciofini et al., 1999]. Let us try to apply such a 

filter to the unstable system: 
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Here  is an unknown parameter, k is the control gain, v is the variable of the 

stable filter control (SFC), and f is its cut-off frequency. However, by means 

of simple stability analysis one can show that the new point (x0,v0) = (,) is a 

saddle, i.e., the SFC fails to stabilize UEQ of this type for any set of the 

parameters a, k, and f. 

Unstable filter control (UFC). Let us consider a simple one-dimensional 

nonlinear example 

.2 ξxxx   

For  < 0.25 the system has two equilibrium points .25.05.002,01 x  

The first one, x01 is a stable equilibrium (SEQ) and the second one an UEQ. If 
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the value of the parameter  is either unknown for some reasons or  is not a 

constant, but slowly varies with time, the locations of both equilibrium points 

become unspecified.  

 

 

 

 

 

 

 

FIG. 2.1. Block diagram of controlling unknown equilibrium of a dynamical 

system by means of an UFC. 

Now we supplement the system with an auxiliary degree of freedom 

implemented by an unstable filter [Pyragas et al., 2002] (Fig. 2.1): 
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Here u is the variable of the filter. The equilibrium points of the closed-loop 

system (x,u) are (x01,02,x01,02), i.e., their x components are exactly the same as 

those of the free-flowing systems. Their stability properties can be easily 

checked using standard analysis method. The parameter matrices of the 

linearized equations are 
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The corresponding traces 1,2 and the determinants 1,2 of the matrices A1,2 are 
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Since 1 < 0, the first fixed point x01, originally a SEQ point, becomes a saddle, 

i.e., an UEQ point. The eigenvalues of the characteristic equation 
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u(t) 

ux 

u(t) 

x(t) 

k(ux)  

Dynamical system 

Unstable 

LPF 
 1  

 k 



31 

 

are both real and have opposite signs. Instability of the fixed point depends 

neither on the parameter  nor on the value of the control gain k > 0.  

 Since 2 < 0, the second, originally UEQ point x02 becomes a SEQ point 

if 2 < 0. Its stability does not depend on , similarly to the first fixed point, but 

here the trace σ2 should be negative, that is, the control gain k should exceed 

some threshold value )21( 0 fth xkk  . The eigenvalues 1,2 of the 

corresponding characteristic equation 

022
2    

either are both real and negative or Re1,2<0. The stabilized point is either a 

stable node, if 2
2
2 4 , or a stable spiral, if 2

2
2 4 . The fastest control is 

achieved when both negative eigenvalues are equal: 02/
221

  . This is 

satisfied if the discriminant 04
2

2

2
D , yielding

2
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thopt
kk . 

 In summary, the UFC inverts the stability properties of the two 

equilibrium points. The originally SEQ point loses its stability, while the 

originally UEQ (a saddle) gains stability. 

Switching the states of a mechanical pendulum. As a simple second-order 

nonlinear example, we consider a mechanical pendulum 

  sin .     (2.1) 

Here  is the angle between the downward vertical and the pendulum,  is a 

damping parameter, and  is a constant or slowly varying torque. There are two 

equilibrium points: ]0,[arcsin],[ 0101   , ]0,arcsin[],[ 0202   . The 

first one is a SEQ point, either a spiral or a node, depending on the damping 

parameter . The second one is an UEQ point (a saddle). We present Eq. (2.1) 

in a form of two 1st-order equations and add an equation for the unstable filter 

(variable u) also a feedback term in the equation for the angular velocity : 
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Switching from the originally SEQ to the originally UEQ, including the 

transient process, is shown in Fig. 2.2 for two different values of the damping 

parameter . To achieve stability the cut-off frequency of the filter f should 

be set sufficiently low (f<) [Pyragas et al., 2004]. For small  this leads to a 

very slow transient. For larger , the f can be increased and the transient 

becomes shorter. 

 

FIG. 2.2. Switching from the SEQ to the UEQ of the pendulum from Eq. (2.2) 

with ),0(0 0201   . (a) .05.0,1.2,1.0 
f

k   (b) ,6,2  k  

.1f Upper traces in the top and bottom plots are the angles , lower traces 

(shifted down by 2 for clarity) are the control terms )( uk . Control is turned 

on at t = 0. 

 

Switching the states of the DuffingHolmes (DH) system. The second 

example is the DH oscillator. We consider it without external periodic drive 

but with a constant external force : 

.3  xxxbx        (2.3) 

(a) 

(b) 
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Here b is the damping coefficient. In the case, when the force  is not too large

)27/2(  , Eq. (2.3) has three real equilibrium points )0,( 03,02,01x . Their x-

projections are found from a cubic algebraic equation :00

3

0  xx  

,
3

cos,
3

cos
0302,01


hxhx 


 

with 3/2h  and )/3arccos( h  . In the limit case of zero force (=0), the 

auxiliary angle 2/  . Then 1,0,1 *
03

*
02

*
01  xxx , as expected, and 

correspond to the symmetric double-well potential of the DH system. Two of 

the points )0,( 01x  and )0,( 03x  are SEQ points, while the middle point )0,( 02x  is 

a saddle. We rewrite Eq. (2.3) in a more convenient form and add a feedback 

term that combines the observable x(t) and the output of the filter u(t): 
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 Let us consider the equilibrium points and their stability properties for 

k > 0. The x0 and the y0 projections remain unchanged, while the u0 projection 

coincides with the x0 projection. This means that control does not influence the 

location of the equilibrium points. However, the originally UEQ )0,(
02

x  under 

certain conditions can become a SEQ ),0,( 0202 xx . In order to check the 

stability of the system, we linearize Eq. (2.4) around this point: 
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    (2.5) 

and analyse its characteristic equation 

.0)31()( 2
02

23  fff bxkb    (2.6) 

The system is stable, if the real parts of all three eigenvalues of Eq. (2.6) are 

negative. The necessary and sufficient conditions can be found using the 

RouthHurwitz matrix 
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The eigenvalues 3,2,1Re  are all negative if all diagonal minors of the H matrix 

are positive: 
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  (2.7) 

These inequalities are satisfied if 

.3,0 2
02xb

b

b
kkb f

f

thf 


 


   (2.8) 

For small b and  the threshold gain )./( fth bbk   For example, at 

0,03.0,1.0   fb , the gain .43.1
th

k  In order to find the optimal value 

of the gain corresponding to the maximum convergence rate we have solved 

Eq. (2.6) numerically (Fig. 2.3). 0Re   and Re  have maximal values at 

.3.2optk  We note that in Fig. 2.3 two originally positive  become negative 

at 43.1k , coinciding with the thk  found from the RouthHurwitz criterion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 2.3. Dependence of the real parts of the eigenvalues Re on the control 

gain k from Eq. (2.6). .03.0,1.0,0  fb   

kth 

kopt Re 

 Re 
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 Numerical results obtained by integrating Eq. (2.4) are presented in 

Fig. 2.4. The lengths of transient processes in the DH system, as in the 

pendulum, are different for weak and strong damping. 

 

 

 

 

FIG. 2.4. Switching from the SEQ to the UEQ of the DH oscillator from 

Eq. (2.4) with k = 2 and  = −0.3. (a) .03.0,1.0 
f

b   (b) .1.0,2 
f

b   

Upper traces in the top and bottom plots are observables x; lower traces 

(shifted down by 4 for clarity) are the control terms k(u–x). Control is turned 

on at t = 100. 

 

 

Experiment. Experimental results are presented in Fig. 2.5. An electronic 

circuit, imitating dynamics of the DH oscillator is given in Appendix 1, the 

circuit implementing the UFC is referred in Appendix 5. 

The main difference between the results in Figs. 2.2, 2.4, and 2.5 and the 

investigations in [Pyragas et al., 2002, 2004] lies in the following. The 

electrochemical oscillator [Pyragas et al., 2002], the pendulum, and the Lorenz 

system [Pyragas et al., 2004] are all in the oscillating regimes before the 

control is turned on. In contrast, the control in Figs. 2.2, 2.4, and 2.5 is 

Time 

(a) 

(b) 
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activated when the systems are in the SEQ (either stable spirals or stable 

nodes). Although it is stated nowhere in the text of [Pyragas et al., 2002, 

2004], the presented illustrations of originally oscillating and rotating systems 

give an inadequate impression that a saddle point can be stabilized only if it is 

surrounded or approached by the trajectories of the limit cycles and chaotic 

attractors. In our case the original SEQ and UEQ points are fixed and rather 

remote objects in the phase space. In addition, the examples of overdamped 

systems (bottom plots in Figs. 2.2, 2.4, and 2.5) show that in order to switch 

from a SEQ to a saddle it is not necessary (even for the transient trajectories) to 

oscillate around the saddle. In contrast, the target can be reached point blank. 

 

 

 

FIG. 2.5. Experimental control of the equilibrium of the DH electrical circuit 

with R11=5 k (k = 2), V*=30 V (V0=−300 mV). (a) R=20  (b = 0.1), C1=330 

nF (f = 0.03). (b) R=400  (b = 2), C1=100 nF (f  = 0.1). Upper traces in the 

top and bottom photos are the signals VC  x; the lower traces are the control 

signals Vcontr  −k(u–x). 

 

  

(a) 

(b) 
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2.2. Controlling slowly varying equilibrium by means of unstable 

 high-pass filter (HPF) [17] 

The saddle equilibrium also can be controlled by means of the unstable HPF 

(Fig 2.6 and Fig. 2.7), which allows much simpler practical implementation. 

 

 

 

 

 

FIG. 2.6. Block diagram of controlling unknown equilibrium of a dynamical 

system by means of an unstable HPF. 

 

 In addition, the saddles can be slowly varying states. The corresponding 

equations are exactly the same as Eq. (2.4), except the unknown force  which 

is considered here to be time-dependent term: 𝜉(𝑡) = 𝜉0 + 𝜉1 sin(Ω1𝑡) ,  Ω1 ≪ 1. 

 

 

 

 

 

 

 

 

FIG. 2.7. Switching from slowly varying spiral to slowly varying saddle of the 

DH oscillator from Eq. (2.4) with k = 3, 0 = 0, 1 = 0.2, Ω1 = 0.03. b = 2, f 

= 0.4. Lower trace (control term k(u−x)) is shifted down by 2 for clarity. 

Control is turned on at t = 1000. 

 

 

Experiment. A photo taken from the screen of a multichannel oscilloscope is 

presented in Fig. 2.8. Experimental results are in a good agreement with the 

numerical simulations. 

 

 t 

 

  

x 

k(u–x) 

x 

k(x-u) 

k(x-

ux 

Dynamical system 

Unstable HPF 
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FIG. 2.8. Control of slowly varying saddle state of the DH electrical circuit 

(Appendix 1) with R7=R8=20 kΩ (k = 3), V0=0, V1=2 V, f1=50 Hz (Ω1= 0.03). 

R=400 Ω (b = 2), Rf =−20 kΩ, C1=13 nF (f = 0.4); Upper trace is the main 

signal VC  x, lower trace is the control signal Vcontr  −k(u−x). 

 

2.3. Analogue controller with the instrumentation amplifiers (IA) for 

 stabilizing saddles, spirals and nodes [10] 

The diagram of controller is shown Fig. 2.9. The dynamical system is supposed 

to have an inverting input, as the physical examples provided below. Otherwise 

a signal inverter should be inserted between the controller and the system. In 

the case the inherent gain of the controller (k0 = 2) is insufficient, an additional 

amplifier, either inverting or non-inverting unit, should be used. 

 

FIG. 2.9. Circuit diagram of the controller. We use rectangular boxes with 

small triangles inside as the symbols of IA to avoid confusion with the 

standard operational amplifier (OA). 

 The electronic controller in Fig. 2.9 is an extremely simple device. It 

includes four units only: two IAs, a stable RC filter, and a switch. The latter 

allows to choose between stabilizing the spirals/nodes (s = 0) and the saddles 

(s = 1). The IAs are the AD620 or similar type devices. The controller itself 

VC 

k(VC–VC1) 
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has an internal positive feedback loop (when s = 1), which makes a stable RC 

filter to behave as an unstable one. The output voltage v of the RC LPF is 

given by the first order differential equation 

)](2[ vVsvVv ininf  . 

Here f = (R0C0)1 is the cut-off frequency of the filter, Vin is the input signal 

of the controller, v is the output signal of the filter. In the case s = 0 the RC 

circuit is a simple stable filter 

)( vVv inf  , 

applicable for stabilizing spirals and nodes. Whereas, if s = 1, it becomes an 

unstable unit 

)( inf Vvv  , 

suitable to stabilize saddles. The output signal of the controller in both cases 

has the same form, Vcontr = 2(Vinv). 

We demonstrate the performance of the controller for two autonomous 

nonlinear dynamical systems, namely the damped DH oscillator and the 

chaotic Lorenz oscillator, having a priori unknown equilibrium states. 

DH oscillator. The oscillator and the controller with s=1 are described by 

).(

,)(

,

3

xvv

pxvkbyxxy

yx

f 











    (2.9) 

Here b is the damping parameter, k is the control gain (without an additional 

amplifier k = 2), p is an unknown external force, f is the dimensionless cut-off 

frequency of the RC filter. Uncontrolled DH system has three real equilibrium 

points: two stable spirals (x01,0), (x03,0) and one UEQ point (x02,0), which is a 

saddle. However, the xcoordinates are unknown because of the a priori 

unknown force p. When p = 0, the x01 = 1, x02 = 0, x03 = 1, as expected for the 

symmetric doublewell potential of the DH system [Moon et al., 1987]. For 

small p, the x02  p. When the control is applied (k > kth) the two SEQ points 

(the spirals) lose their stability, whereas the originally UEQ (the saddle) gains 

stability. We demonstrate that once the saddle point is stabilized, x x02 = f(p) 
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the adaptive controller independently on the value of the unknown force p 

and/or on the function f(p) quickly tracks the changes of x02 and keeps the 

saddle point stable with only minor applied feedback force k(vx). We note 

that p should not be too large: 38.0272 p . Otherwise the doublewell 

potential is bent so much that the saddle point does not longer exist. Numerical 

results are presented in Fig. 2.10a and Fig. 2.10b for fast and slow changes of 

the unknown force p, respectively. 

 

 

 

FIG. 2.10. Numerical integration of Eq. (2.9), b =1, f = 0.22, k = 2, p0 jumps 

from 0 to 0.3. (a) Fast change of p = p0. (b) Slow change of perturbation:

)( 0 ppp    with  = 0.25.  

 

 

Experiment. The experiment has been carried out with an electronic circuit, 

imitating the DH system (Appendix 1). The results are presented in Fig. 2.11. 
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FIG. 2.11. (a) Fast change of dc bias. (b) Slow change of dc bias, using an 

auxiliary integrating circuit R’C’ 0.38 ms (dimensionless parameter

4/  LCCR ). R0=9.1 k, C0=47 nF ( 22.0/ 00  CRLCf ), k = 2. 

Vp = V*/100 changes from 0 to 0.15 V (dimensionless force p = Vp /Vb 

changes from 0 to 0.3). New saddle coordinate Vx  Vp = +0.15 V. 

The Lorenz system. The second example is the famous Lorenz system, 

exhibiting chaotic oscillations [Lorenz, 1963; Moon et al., 1987]. The 

equations of the Lorenz system combined with the equation for the adaptive 

controller read 
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    (2.10) 

Here the , r and b are fixed parameters. The k and p are the same notations as 

in Eq. (2.9). In contrast to the previous example, we employ in the controller 
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the variable y instead of x. Though the controller also works with x, but it 

shows faster convergence to the equilibrium state, if y is used.  

 The uncontrolled (k = 0) and unforced (p = 0) Lorenz system at r >1 has 

three equilibrium states, a saddle at the origin and two stable symmetrical 

spirals:  

 0,0,0 ,   1,)1(,)1(  rrbrb .   (2.11) 

For r > rth, where 

1

3






b

b
rth




 ,     (2.12) 

the spirals become unstable giving rise to chaotic oscillations. For standard 

parameter values  =10 and b = 8/3 the rth  24.74. 

 The force p changes the position of the equilibrium points and the 

threshold value rth in the following way: 

 bp /,0,0 ,  bprprbprb /1,)1(,)1(  , (2.13) 

b
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b

b
rth 
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


1

3




 .     (2.14) 

Therefore, to sustain chaos either the p should not be too large or r should be 

increased (see caption to Fig. 2.12, where r = 38 instead of classical value 

r = 28). We checked stabilization of spirals and saddles for various values of p 

(positive and negative). Some of the results are shown in Fig. 2.12. Even 

though it may seem surprising that the control term k(vy) (Fig. 2.12c) is zero 

during the change of p and z (in contrast to the DH system), it can be easily 

explained. Such a behaviour is a special feature of the Lorenz system, in which 

independently on p the saddle equilibrium x0 and y0coordinates are zeros 

(formula 2.13) Therefore, once the saddle is stabilized for a specific p, e. g. for 

p = 0, the all values, y, v, and k(vy) remain zeros. 

In addition, the product xy in Eq. (2.10) in the equilibrium state is 

nullified and the reaction of zcoordinate to the changes of p is simply given 

by an isolated relaxation equation (2.15). 

(a) 
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FIG. 2.12. Numerical integration of Eq. (2.10),  = 10, r = 38, b = 8/3. 

(a) Chaotic solution, k = p = 0. (b) Tracking the spiral, s = 0, p changes from 0 

to 50. (c) Tracking the saddle, s = 1, p changes from 0 to +25. In (b) and (c) 

k = 60, f  = 2.6. 

 

bzpz  .      (2.15) 

The rate of convergence from z = 0 to z = p/b does not depend on the cut-off 

frequency of the filter f, but depends on b only. 
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 The controller has been also tested experimentally using a hardware 

electronic analogue of the Lorenz system. First of all, to meet the limited 

dynamical range of the opamps and the inamps (15 V) we apply linear 

transformations to the variables and parameter p: 

x = 10X,  y = 10Y,  z = 10Z,  p = 10P. 

Then the Lorenz equations read: 
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    (2.16) 

Note, that parameters , r, b, and k are still the same as in Eq. (2.10). 

 Furthermore, to avoid large values of the parameters inconvenient for 

electronic implementation, we divide all lines of Eq. (2.16) by a factor of 10, 

scaling the time tt 10  and introducing the new parameters: 

110/~  , 10/~ rr  , 10/
~

bb  , 

10/
~

kk  , 100/10/~ pPp  , 10/~
ff

  . 

Finally, we obtain a compact set of differential equations suitable for building 

its electronic analog (Appendix 2) 
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   (2.17) 

 

Experiment. The experimental results are shown in Fig. 2.13. They agree very 

well with the numerical results in Fig. 2.12. 
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FIG. 2.13. (a) Chaotic oscillation from the Lorenz system. (b) Controlling the 

spiral (s = 0), Vp= V* changes from 0 to 0.5 V. (c) Controlling the saddle, 

(s = 1), Vp = V* changes from 0 to +0.25 V. In (b) and (c) R0=9.1 k, C0=47 

nF (f  = RC/R0C0 = 0.26), k = 6. New saddle coordinate Vz = VpR2/R = +0.9 V. 
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CHAPTER 3 

SYNERGETIC FEEDBACK METHODS FOR STABILIZING  

SADDLE EQUILIBRIUM 

3.1. Stabilizing saddles of conservative and weakly damped systems by 

 means of unstable and stable filters coupled in parallel [4,19] 

The advanced method described in Chapter 2 is limited to dissipative 

dynamical systems only. It is not applicable to conservative systems. The 

situation is somewhat similar to the famous OttGrebogiYorke (OGY) 

method [Ott et al., 1990], in the sense that it does not work in the Hamiltonian 

systems [Lai et al., 1993]. The limitation of the Pyragas’ unstable filter method 

can be proved analytically using the well-known Hurwitz stability criterion. 

According to this criterion, the necessary condition for stabilizing saddle 

equilibrium is that the cut-off frequency of the unstable filter is lower than the 

damping coefficient of the system under control. In the conservative systems 

damping is zero under definition. Formally, to fulfil the stability criterion, the 

cut-off frequency could be set negative. However, this would mean that the 

unstable filter should become a stable one and, therefore, inappropriate to 

stabilize a saddle equilibrium. In this section, to break the vicious circle in the 

problem of stabilizing conservative saddles we suggest using synergetic 

technique that involves both, unstable filter control (UFC) and stable filter 

control (SFC). 

Lagrange point L2. To be specific, we consider dynamics of a body of mass  

along the SunEarth line (Fig. 3.1). Taking into account the centrifugal forces 

and forces of gravity the dynamics is given by 

.
)(

)(
22
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0

2 P
R

m

RR

M
RRRBR 





     (3.1) 

Here B is the coefficient of friction (B0),  is the gravitational constant; M 

and m are the masses of the Sun and the Earth, respectively, R0 is the distance 

of the Earth from the Sun, R is the distance of the L2 point from the Earth, P is 

an unknown external force, either constant or slowly varying in time. 



48 

 

 

 

 

 

 

FIG. 3.1. The Lagrange point L2 of the SunEarth system (the Sun diameter, 

the Earth diameter, the distances R0, and R are not in scale). 

 

 

Since L2 lies on the same line as the Sun and the Earth, the angular 

velocity Ω in the centrifugal force of the body at the L2 is just the same as that 

of the Earth: 
3
0

2 / RM . By introducing the dimensionless quantities 

0/ RRr  ,
6103/  Mm  and 

2
0/  RP   Eq. (3.1) can be presented as 
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    (3.2) 

The nonlinear function F(r,) is depicted in Fig. 3.2. The equilibrium state of 

the system r0 can be found from an algebraic equation F(r0,) = 0. The 

equilibrium point can be estimated from a simple formula: 
3/1

0 )3/(r , which 

is valid for 1),( 0 r .  

 

 
 

FIG. 3.2. Nonlinear function F(r) from Eq. (3.2) with 
6103   and  = 0. 

L2 
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Because of the unknown parameter  exact position of the equilibrium r0 

is not defined. We note that for further analysis it is not necessary to know 

exactly the nonlinear function F(r,). The only required knowledge is that its 

derivative with respect to r is positive, i.e. 0),(' 0 rF . The positive sign of 

the derivative is evident from Fig 3.2, independently on the vertical shift . In 

this case the equilibrium is a saddle UEQ. 

 

Purely conservative system. First of all we apply the UFC [Pyragas et al., 

2002; 2004] trying to stabilize the saddle UEQ: 
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      (3.3) 

Here, K1 is the feedback coefficient and Ω1 is the cut-off frequency of the 

unstable filter. It is evident that the equilibrium of the unstable filter u0 is the 

same as that of the main system, i.e., u0 = r0. To check the stability of the 

equilibrium with the controller we linearize the equations around the r0. If 

,1,1 1010  uuurrr  then 100 ),(),(),( rrFrFrF    and 
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     (3.4) 

The characteristic runaway time from L2, ,6/),(/ 0

11  EL YrF    

where YE is the orbital period of the Earth rotating around the Sun, i.e. the 

Earth year; thus, τL  19 days. After introducing dimensionless parameters 

, L  and 111
2

1 /,/  kK  the linearized equations read 
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      (3.5) 

The corresponding characteristic equation is 

0)1( 11
2

1
3   k .    (3.6) 

There is a considerable drop of the largest Re with k1; however, it remains 

positive indicating instability of the closed loop (Fig. 3.4a). 
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Although the SFC is not expected to stabilize saddle equilibrium, we 

consider it here for comparison: 

).(
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     (3.7) 

Here, K2 is the feedback coefficient and Ω2 is the cut-off frequency of the 

stable filter. Similarly to the previous case the equilibrium state of the stable 

filter v0 is the same as that of the main system, i.e., v0=r0. The linearized 

equations have the following form: 
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where k2 = K2/Ω2 and  /22 . From the characteristic equation 

0)1( 22
2

2
3   k     (3.10) 

one can make sure that the result for the SFC is practically the same (Fig. 3.4b) 

as for the UFC (Fig. 3.4a). The controller fails to stabilize the saddle. 

However, when the UFC and the SFC are applied in parallel (UFC||SFC), 

as shown in Fig. 3.3 and presented by Eq. (3.11) the two control techniques 

working in parallel give excellent synergetic result. 

 

 

 

 

 

 

 

 

 

FIG. 3.3. Block diagram of controlling unknown equilibrium of a dynamical 

system by means of the UFC||SFC. 
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  (3.11) 

It is evidenced in Fig. 3.4c, obtained from the linearized equations (3.12) and 

the corresponding characteristic equation (3.13). Indeed, the largest eigenvalue 

crosses zero at a certain value of the feedback coefficient k1  1.8 (Fig. 3.4c). 

 

  

FIG. 3.4. Dependence of the real part of the eigenvalues Re on the control 

gains ki. (a) UFC only with 1 = 0.1. (b) SFC only with 2 = 0.1. (c) UFC||SFC 

with 1 = 0.3, 2 = 7, and k2 = 15. 

k
2
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The linearized equations read 
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The corresponding characteristic equation is 
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(3.13) 

The stability can be also checked using the Hurwitz criterion. The 

Hurwitz matrix of Eq. (3.13) is 
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In the above H4 matrix the elements are the following: 
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The eigenvalues Re of Eq. (3.13) are all negative if the diagonal minors of the 

H4 matrix are all positive: 
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 (3.15) 

It follows from 1 that the necessary condition is 

,12          (3.16) 

i.e., the cut-off frequency of the stable filter should be higher than that of the 

unstable filter. In general, the explicit form of 2 is rather cumbersome. 

Assuming for simplicity 2 >>1, we can roughly estimate the gain k2 from 2: 

,212 k       (3.17) 

and the gain k1 from 3: 
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Finally, in Eq. (3.15) 4 > 0 if 3 > 0 since a4 > 0. Using the parameter values 

as in Fig. 3.4, ),(7,3.0 1221    ),1.2(15 2122  kk we find 

from inequality (3.18) that k1 > 1.8, which is in a good agreement with the 

threshold value of k1 from the numerical results presented in Fig. 3.4c. 

Weakly dissipative system. One can think that the UFC||SFC method works for 

the ideal conservative systems only and that even small dissipation can destroy 

the algorithm. Therefore, we introduce in Eq. (3.11) finite damping term B :r  
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The linearized equations read 
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Here, b = B/. Then the corresponding characteristic equation is 
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which for b = 0 coincides with Eq. (3.13), as expected. Evidently, the Hurwitz 

matrix for Eq. (3.21) has the same form as H4 for the conservative system: 
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with the modified elements ci: 
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In the limit case of .,0 ii acb   The diagonal minors of the 
*
4H  matrix are 

the following: 
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(3.23) 

The first inequality in (3.23) is satisfied if 

.112   b     (3.24) 

It means that the nonzero value of b is not a problem to set the first minor 

0*
1  . For 12    and b <<1, the second inequality in (3.23) is satisfied if 

.)( 21212   bk     (3.25) 

So, there is no problem to set the second minor 0*
2   for small b. Meanwhile, 

for stronger dissipation there is no need to use the UFC||SFC since the Pyragas’ 

method [Pyragas et al., 2002; 2004] works well. The gain k1 can be estimated 

from the third inequality in (3.23): 
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The threshold value of k1 is practically insensitive to the friction coefficient up 

to b = 0.2 and is about 1.8 for the given parameters ,7,3.0 21   and k1 = 15. 

Thus, the conclusion of this subsection is that weak dissipation does not 

destroy the control algorithm. Moreover, the required control parameters are 

nearly the same like in the conservative system. 

Analogue simulation. Analogue circuit, imitating dynamics of a system with a 

saddle UEQ is shown in Appendix 3, an electronic controller implementing the 

UFC||SFC is referred in Appendix 5. The experimental nonlinear function F(r) 

is presented in Fig. 3.5 and is very similar to that given in Fig. 3.2. The 

analogue simulation results, photos taken from the screen of a multichannel 

(Ch1…Ch4) oscilloscope are presented in Fig. 3.6.  
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FIG. 3.5. Nonlinear function F(r) from the analogue circuit. Horizontal scale: 

0.1 V/div.; vertical scale: 1 V/div (in the main photo). Horizontal scale: 

50 mV/div.; vertical scale: 200 mV/div. (in the insert). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 3.6. Stabilization of the saddle UEQ. Ch1: control status (high level 

control is on; low level control is off), Ch2: perturbation, Ch3: voltage across 

the capacitor C, Ch4: feedback signal. (a) Control is off for 3 ms, no external 

perturbation. (b) Control is off for 2 ms, chaotic perturbation. 

Horizontal scale: 2 ms, vertical scale: 100 mV (Ch1…Ch3), 500 mV (Ch4). 



56 

 

3.2. Stabilizing saddles under influence of inertia of control [18] 

 
Mathematical model and its analysis. Let us consider a dynamical system 

given by 

0)(  xFxbx       (3.27) 

or in a more convenient form 
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
     (3.28) 

Here b is the damping coefficient, F(x) is a nonlinear function (in general 

unknown). We assume that the system has at least one equilibrium point 

)0,(),( 000 xyx  . Here x0 is found from an algebraic equation F(x0) = 0. If 

0)( 0 xxF' , 

then the equilibrium point (x0,0) is a saddle. Let us apply the UFC, taking into 

account possible inertia in the feedback loop: 
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Here k is the control gain, ω1 is the cut-off frequency of the unstable filter. The 

fourth equation in Eq. (3.29) represents inertia with normalized time constant τ. 

To check the stability properties we linearize Eq. (3.29) around the equilibrium 

point: 
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    (3.30) 

and analyse its characteristic equation. If the inertia is neglected (τ = 0) the 

characteristic equation reads: 

0)1()( 11
2

1
3   bkb .   (3.31) 

In (3.30) and further we assume for simplicity 1)( 0 xxF'  to avoid 

cumbersome coefficients. For the Duffing–Holmes oscillator the nonlinear 
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function 3)( xxxF  , the central equilibrium point x0 = 0; the 1)( 0 xxF'  

is an exact value. 

For τ > 0 the characteristic equation becomes more complicated: 
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  (3.32) 

In order to find the threshold kth and the optimal kopt control gains we have 

solved Eq. (3.31) and Eq. (3.32) numerically (Fig. 3.7). General view of (a) 

and (b) plots looks very alike, however detailed inserts reveal quite different 

features. In plot (a) for k > kth ≈ 1.1 all the Reλ are negative indicating 

stabilization of the saddle point. The optimal feedback gain providing the 

fastest control is kopt ≈ 1.3. However, the convergence is very slow, given by 

Reλ ≈ −0.003. While in plot (b) the largest Reλ is positive. Thus, even small 

inertia of only τ = 0.007 << 1 destroys the stability. 

Now we apply the UFC||SFC technique: 
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Here v is the dynamical variable of the stable filter, ω2 is its cut-off frequency. 

Linearization about the initially UEQ point yields: 
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The corresponding characteristic equation with the same assumption of 

F′(x0) = −1 for τ = 0 reads 

(3.35)                                                                               .,
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FIG. 3.7. Real parts of the largest eigenvalues versus the control gain k1 for b = 

0.01. (a) from Eq. (3.31) with ω1 = 0.001, (b) from Eq. (3.32) with ω1 = 0.001, 

τ = 0.007, (c) from Eq. (3.36) with ω1 = 0.3, τ = 0.007, ω2 = 7, k2 = 17. The set 

of the control parameters, ω1, ω2, and k2 is somewhat arbitrary and empirical. 
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For  > 0 the characteristic equation becomes the 5th-power algebraic equation: 
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  (3.36) 

Numerical solution of Eq. (3.36) is presented in Fig. 3.7c. In contrast to 

the plots (a) and (b), the plot (c) clearly exhibits deep negative Reλ above 

threshold gain kth ≈ 1.8. The optimal gain value kopt ≈ 3.2 provides Reλ ≈ −0.4. 

We intentionally do not present here the result for zero inertia from Eq. (3.35), 

since the results coincide with the plot (c) within 0.5%. 

Experimental results. The UFC (Fig. 3.8a) fails to stabilize the UEQ. Instead, 

it gives rise to periodic oscillations as predicted by Reλ > 0. Whereas the 

UFC||SFC (Fig. 3.8b) demonstrates very good performance. 

 

FIG. 3.8. Experimental control of the DuffingHolmes oscillator. (a) UFC 

only; (b) UFC||SFC. Upper traces in both photos is the output of the oscillator, 

lower traces are the control signals. 

(a) 

(b) 
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We note, that double filter technique for stabilizing equilibrium states has 

been described in [Ahlborn et al., 2006], where the both filters are the 2nd order 

Wien-bridge circuits. Thus, the overall controller is a 4th order system. 

Moreover, the filters in [Ahlborn et al., 2006], are stable ones, therefore are not 

applicable to stabilize saddles. 

 

 

3.3. Stabilizing saddles by means of combined filter control (CFC) [8] 

 

Examples. We consider saddle equilibrium states of five different physical 

systems. The 1st example is a mechanical pendulum given by 

.0sin         (3.37) 

Here, φ is the angle between the downward vertical and the rod, and β is the 

damping parameter. Pendulum has two equilibrium states ( 00 ,  ): a stable 

spiral or a node (depending on β) at (0,0) and a saddle at (π,0). 

The 2nd example is the DuffingHolmes damped oscillator [Ott, 1993]: 

.03  xxxbx        (3.38) 

Here, b is the damping coefficient. The oscillator has three equilibrium states 

),( 0 xx  , two symmetrical stable spirals or nodes (depending on b) at (±1,0) and 

a saddle at (0,0). 

The 3rd example is a conservative system, namely a body at the Lagrange 

point L2 of the SunEarth system, considered in details in Section 3.1: 
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The system has a single equilibrium ]0,)3/[(],[ 3
1

0 rr  , which is a saddle. 

The 4th example is the chaotic Lorenz system [Lorenz, 1963] 
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    (3.40) 

Here σ, r, and b are fixed positive parameters. The Lorenz system at r > 1 has 

three equilibrium states, a saddle at the origin (0,0,0) and two stable spirals 
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).1,)1(,)1((  rrbrb  For ),1/()3(  bbrr th   the 

spirals become unstable giving rise to chaotic oscillations. For common 

parameter values σ = 10 and b = 8/3 the rth ≈ 24.7. 

Finally, the 5th example is the Lindberg oscillator [Lindberg et al., 2009; 

Tamaševičius et al., 2009a]: 
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    (3.41) 

In contrast to the DuffingHolmes damped oscillator, the Lindberg oscillator 

has a negative damping term xb , which makes it oscillating. In Eq. (3.41), 

the c ≈ 1 and ωc < 1 [Lindberg et al., 2009]. The Lindberg oscillator has three 

equilibrium states ),,( 000 zxx  : two symmetrical unstable spirals or nodes 

(depending on b) (±1,0,0) and a saddle at the origin (0,0,0). 

Common form. When linearized around the saddle equilibrium states, all the 

above systems have a simple common form: 

,

,

bPaQP
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




      (3.42) 

with the generalized variables Q, P and parameters a, b presented in Table 1. 

 

TABLE 1. Variables Q, P and parameters a, b of Eq. (3.42). 

System Q P a b 

Pendulum φ   1 0  

DuffingHolmes x x  1 b > 0 

Lagrange L2 r r  0)(' 0
2  rrF  0 

Lorenz x x + y 0/)1(  r   /)1(   

Lindberg x x  01  cc  b < 0 

 

Though the Lorenz system is a set of three equations, when linearized 

around the saddle (0,0,0) equations become partially decoupled: 
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      (3.43) 

i.e. the equation for z contains neither x nor y. Consequently, dynamics of the 

Lorenz system near the saddle point can be described by the 2nd order linear 

system. Note, that to obtain the common form of Eq. (3.42) the following 

linear transformations σt→t and P = (−x + y) have been applied to the 

linearized Lorenz equations. Therefore, the new variable P and parameters a, b 

in Table 1 for the Lorenz system are combinations of the original variables x, y 

and r, σ , respectively. 

Somewhat different situation is with the Lindberg oscillator at the origin 

(0,0,0). In this case, the equation for z remains coupled via the x  variable. 

However, because of ωc < 1 dynamics of the z variable is relatively slow and 

the second equation in Eq. (3.41) can be reduced to xz c
   and z ≈ ωcx. Then 

the dynamics of the Lindberg oscillator near the saddle point can be 

approximated by Eq. (3.42) with an effective parameter .1 cca   

Unstable filter control (UFC). In this subsection, we demonstrate the 

limitations of the UFC used to stabilize saddle equilibrium. Eq. (3.42) with the 

control term k(u−Q) and the additional equation of the unstable filter for 

variable u read 
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    (3.44) 

The corresponding characteristic equation is 

.0)()( 23   abakb    (3.45) 

The overall system is stable if the real parts of all three eigenvalues of 

Eq. (3.45) are negative. The necessary and sufficient conditions can be found 

from the Hurwitz matrix: 
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The eigenvalues Reλ1,2,3 are all negative if the diagonal minors of the H3 matrix 

are all positive: 

.0

,0))((

,0

23

2

1













a

bakb

b

 

These inequalities are satisfied if 
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For example, at a = 1, b = 0.1, and ω = 0.02 the kth = 1.252. On one hand, 

according to the first inequality, the ω could be only slightly less than b. On 

the other hand, ω should not be too close to b, because small value of the 

denominator (b−ω) in the second inequality would heavily increase the 

stabilization threshold kth. Numerical solution of the characteristic equation is 

plotted in Fig. 3.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 3.9. Real parts of the eigenvalues vs. the control gain k from Eq. (3.45) 

with a = 1, b = 0.1, ω = 0.02. (a) Full scale. (b) Vertically zoomed in scale. 
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The largest eigenvalues Reλ1 = Reλ2 cross zero axis at k ≈ 1.25 in a good 

agreement with the analytical result. We note very small absolute values of the 

largest Reλmax at k > kth. However, even at k = kopt = 1.7 the |Reλmax| = 0.025. 

Such a low value, related to small parameters b and ω, results in slow 

convergence (long transients) to the equilibrium. This is a serious shortcoming 

of the UFC, especially if applied to weakly damped (b < 0.1). 

Now we present numerical results (Fig. 3.10) of the control dynamics 

under the influence of an a priori unknown external constant force p, which 

changes the position of the saddle equilibrium state. To be specific, we 

consider the DH nonlinear system, Eq. (3.38) given in the following form: 
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     (3.47) 

At t < 50 the saddle equilibrium state (0, 0) is stabilized. The external force p = 

−0.3 applied at t  50 changes the coordinates of the equilibrium state from 

(0, 0) to (0.34, 0). After some transient process, the controller stabilizes the 

new equilibrium state. The transients are sufficiently short for large b 

(Fig. 3.10a). However, for smaller b they become extremely long (Fig. 3.10c). 

Moreover, before settling on the new equilibrium state (+0.34), the x variable, 

even for heavy damping (b = 1), exhibits undesirably deep negative drop 

(−0.3), for weak damping (b = 0.1) the drop is even deeper (−0.5). 

Combined filter control (CFC). We suggest the following modification of the 

UFC to improve its performance: 
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    (3.48) 

Here, the unstable filter (variable u) is combined with a stable one (variable v), 

whereas the feedback force in Eq. (3.48) consists of two terms, k1(u−Q) and 

k2(v−Q). The corresponding block diagram of the CFC is presented in 

Fig. 3.11. 
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FIG. 3.10. Controlling the saddle in the DH system from Eq. (3.47). k = 2. 

(a) b = 1, ω = 0.2. (b) b = 0.3, ω = 0.06. (c) b = 0.1, ω = 0.02. Upper traces, 

variable x; lower traces, inverted control term −k(u−x)/2 = (x−u). 

 

 

 

 

 

 

 

 

 

 

FIG. 3.11. Block diagram of controlling unknown equilibrium of a dynamical 

system by means of the CFC. 

 

The characteristic equation is 
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The Hurwitz matrix is 
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The diagonal minors of the H4 matrix are the following: 
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The first inequality in (3.51) is satisfied if 

b 12  .      (3.52) 

For small b, inequality Eq. (3.52) reads ω2 > ω1. It means that, in contrast to 

the simple UFC, the stability criterion of the CFC does not depend on the 

system parameters, but can be fully satisfied by the controller parameters. 

For ω2 >> ω1 and 0 < b << 1, the threshold gain k2th can be roughly 

estimated from the second inequality in (3.51): 

.
112
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21
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k
k th


      (3.53) 

For example, at k1 = 2, ω1 = 1, and ω2 = 5 the k2th ≈ 8.3. In (3.51), 04  , if 

03  , since a4 > 0. However, analysis of the third diagonal minor 3  is very 

complicated. Therefore, we solve Eq. (3.49) numerically. Results are presented 

in Fig. 3.12. Note deeply negative values of Re. 

Similarly to the previous subsection, describing the UFC, here we 

consider the CFC, using the example of the DH system with the external 

perturbation p: 
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FIG. 3.12. Real parts of the eigenvalues vs. the control gains k1 and k2 from 

Eq. (3.49) for the CFC. a = 1, b = 0.1, ω1 = 1, ω2 = 5. (a) k2 = 14. (b) k1 = 1.6. 

The eigenvalues Reλ4 < −1 are not plotted. 
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   (3.54) 

The numerical results are shown in Fig. 3.13. The external perturbation 

p = −0.3 (the same as in Fig. 3.10) is applied at t  50. There are two main 

differences of the CFC in comparison with the simple UFC (Fig. 3.10). Firstly, 

the transients in the case of the CFC are essentially shorter. Secondly, the 

negative drop of the x variable is only −0.04, which is more than 10 times 

smaller than in the case of the simple UFC. In addition, the CFC is capable of 

stabilizing saddle equilibrium states in conservative systems (b = 0) and active 

oscillators with negative damping (b < 0). 
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FIG. 3.13. Controlling the saddle in the DH system from Eq. (3.48). k1 = 2, 

k2 = 14, ω1 = 1, ω2 = 5. (a) b = 1. (b) b = 0.3. (c) b = 0.1. (d) b = 0. (e) b = −0.1. 

Upper traces: variable x; lower traces: inverted control term F(x,u,v) = 

−[k1(u−x) + k2(v−x)]/2. 
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Experimental results. Circuit diagram of the DH oscillator is shown in 

Appendix 1. Experimental results, presented in Fig. 3.14 and Fig. 3.15 coincide 

very well with the numerical simulations shown in Fig. 3.10 and Fig. 3.13, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 3.14. Controlling the saddle in the DH oscillator. External perturbation 

V*= 15 V. (a) R = 200 Ω (b = 1), C1 = 51 nF (ω = 0.2). (b) R = 60 Ω (b = 0.3), 

C1 = 175 nF (ω = 0.06). (c) R = 20 Ω (b = 0.1), C1 = 510 nF (ω = 0.02). Upper 

traces, output signal of the oscillator Vx; lower traces, control signal Vcontr / 2. 

 

 

To implement “zero” damping (b ≈ 0) in Fig. 3.15d we have removed the 

series resistor R in the circuit of the DH oscillator; the remaining resistance is 

r = 2 Ω only, where r is the internal resistance of the inductive coil L.  
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FIG. 3.15. Controlling saddle in the DH oscillator. External perturbation V*= 

15 V. (a) R = 200 Ω (b = 1). (b) R = 60 Ω (b = 0.3). (c) R = 20 Ω (b = 0.1). (d) 

r = 2 Ω (b = 0.01 ≈ 0). (e) Reff = −20 Ω (b = −0.1). Upper traces, output signal 

of the oscillator Vx; lower traces, control signal Vcontr / 2. 
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Negative damping in Fig. 3.15e is introduced in the system with moderate 

positive damping (R = 20 Ω, like in Fig. 3.15c) by means of additional 

coupling a negative resistance RN = −1 kΩ in parallel to the capacitor C. This is 

not a full circuit of the Lindberg oscillator [Lindberg et al., 2009], since it 

lacks the inertial sub-circuit. However, it reflects the properties of a saddle 

equilibrium in a system with a negative damping. 

 

3.4. Stabilizing saddles by means of unstable filter supported by 

derivative control [9] 

We suggest an efficient synergetic method, which combines the UFC and the 

derivative control (we abbreviate it as UFDC), for stabilizing saddle 

equilibrium and inspect the response of the overall system to the external a 

priori unknown force. 

We consider the DH autonomous damped oscillator as an example: 

03  xxxbx  .     (3.55) 

Here b is the damping coefficient. The oscillator has three equilibrium 

states ),( 00 xx  : two symmetrical stable spirals or nodes (depending on b) at 

(±1,0) and a saddle at (0,0). 

To stabilize the saddle we apply two methods for comparison, namely, 

the simple UFC method [Pyragas et al., 2002, 2004] and the synergetic UFDC 

method (Fig. 3.16). 

 

 

 

 

 

 

 

 

FIG. 3.16. Block diagram of stabilizing saddle state of a dynamical system by 

means of the UFDC. 
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The UFC and UFDC are described by Eq. (3.56) and Eq. (3.57), respectively 
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In Eq. (3.56) and Eq. (3.57) p is a perturbation. Note that set of equations 

similar to Eq. (3.57) can be obtained from Eq. (3.54) in the limit 2: 
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or in case k2/2=k: 
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which in comparison with Eq. (3.57) lacks term 𝑢̇. When linearized around the 

saddle equilibrium point Eq. (3.56) and Eq. (3.57) read 
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respectively, with ω*= (k−1)ω and k > 1. Here we assumed p = 0 for simplicity 

without loss of generality. The corresponding characteristic equations are 
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Numerical solutions of Eq. (3.60) for the UFC and the UFDC are presented in 

Fig. 3.17 and Fig. 3.18, respectively. 
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FIG. 3.17. Stabilizing the saddle by means of simple UFC, b = 0.1, ω = 0.06 

(ω < b). (a) Real parts of the eigenvalues Reλ1,2,3 versus the control gain k from 

Eq. (3.60). (b) Same as (a), but the vertical scale is zoomed by a factor of 10. 

(c) Imaginary parts of the eigenvalues Imλ1,2 versus the control gain k from 

Eq. (3.60).(d) Variable x from Eq. (3.56). (e) Control term k(u−x) from 

Eq. (3.56). In (d) and (e) k = 5, perturbation p = −0.3 is applied at t = 50. 
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FIG. 3.18. Stabilizing the saddle by means of the synergetic UFDC method, 

b = 0.1, ω = 0.6. (a) Real parts of the eigenvalues Reλ1,2,3 versus the control 

gain k from Eq. (3.60). (b) Imaginary parts of the eigenvalues Imλ1,2 versus the 

control gain k from Eq. (3.60). (c) Variable x from Eq. (3.57). (d) Control term 

from Eq. (3.57). In (c) and (d) k = 10, perturbation p = −0.3 is applied at t = 5. 

 

 

The overall system is stable, if the real parts of all three eigenvalues are 

negative. The necessary and sufficient conditions can be found analytically 

from the Hurwitz matrices 
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The eigenvalues Reλ1,2,3 are all negative if the diagonal minors of the H and H* 

matrices are all positive. For the matrix H the diagonal minors are 
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These inequalities are satisfied if 
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b

b
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For example, at b = 0.1 and ω = 0.06 the kth ≈ 2.5. On one hand, the ω could be 

only slightly less than b. On the other hand, it should not be too close to b, 

because small value of the denominator b−ω would heavily increase the 

stabilization threshold kth. 

The largest eigenvalues Reλ1=Reλ2 in Fig. 3.17 cross zero axis at k ≈ 2.5 

in a good agreement with the analytical result. We note very small absolute 

values of the largest Reλmax at k > kth. In the full scale (Fig. 3.17a) the curve 

lays almost on the abscissa. Only the zoomed in plot (Fig. 3.17b) reveals the 

negative values. However, even at k = kopt = 5 the |Reλmax| = 0.01. Such a low 

value, related to small parameters b and ω, results in slow convergence to the 

equilibrium. This is a serious shortcoming of the UFC method, especially if 

applied to weakly damped (b ≤ 0.1) and Hamiltonian dynamical systems. 

Numerical results of the control dynamics under the influence of an a priori 

unknown external constant force p, which changes the position of the saddle 

state, are shown in Fig. 3.17d and Fig. 3.17e. 

The diagonal minors of the matrix H* are 
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Inequalities (3.65) provide the following stability criterion: 
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For large k the required cut-off frequency of the unstable filter ω < 1 and in 

contrast to the UFC method does not depend on b. In (3.66) kth is derived for 

weak damping (b< 0.1); the value kth 1 is in good agreement with the 

numerical results (Fig.3.18a). 

 

Experimental results. The results for the both methods, the UFC and the 

UFDC, taken from the analogue circuits, are shown in Fig. 3.19. 

 

 

 

 

 

 

 

 

 

 

FIG. 3.19. Stabilizing the saddle in the DH oscillator. Perturbation V*= 15 V; 

p = −(R2/R4)(V*/Vb)= −0.3. (a, b) Simple UFC method, C0 = 175 nF 

)06.0)/(( 00  CRLC , k01 = 1, k02 = 2, k03 = 2.5, k = k02k03 = 5. (c, d) 

Synergetic UFDC method, C0 = 16 nF (ω = 0.6), Cd = 330 pF (RdCd ≈3.10−6 

<<√LC≈10−4s), k01 = 1, k02 = 10, k03 = 30, k04 = 1, k = k02k04 = 10, 

(RdCd/√LC)k03 ≈ 1. (a, c) Output signals Vx, (b, d) Control signals Vcontr. 
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Comparison between UFC, UFC||SFC, CFC, and UFDC. There are three 

main advantages of the UFDC method over the UFC technique. First, in the 

case of the UFC method at the optimal control gain k = kopt = 5 the 

Reλmax = −0.01 (Fig. 3.17b), while in the case of the UFDC method at 

k = kopt = 12.5 the Reλmax ≈ −2, which is about 200 times larger than for the 

UFC technique, resulting in extremely fast convergence to the equilibrium. 

Secondly, the |Imλ1,2| for the UFDC method is several times smaller than for 

the UFC method. Finally, in the case of the UFDC method there is no negative 

drop of the x(t) at the time moment when the perturbation is applied. 

To better understand the reasons for the enhanced performance of the 

UFDC method we replace in the 2nd equation of (3.59) x  with y and u  with 

ω*(u−x), respectively. Then the following explicit form is obtained: 
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    (3.67) 

One can see that Eq. (3.67) for the UFDC method has exactly the same form as 

Eq. (3.58) for the UFC method, but with the effective parameters: 

b*=b+k,   k*=(1+ω*)k,   ω*=(k−1)ω. 

The most important issue is, that the effective damping coefficient b* is 

increased considerably due to the sum of b and k. Therefore the cut-off 

frequency of the filter can be increased significantly. This is the main reason of 

the faster performance of the UFDC method. 

In conclusion, we have proposed a synergetic UFDC method for 

stabilizing a priori unknown saddle equilibrium states of dynamical systems. 

The controller is model independent and reference-free. It requires neither the 

mathematical model nor the coordinates of the equilibrium state, but 

automatically tracks and stabilizes the state. The numerical and the 

experimental results have been presented for the DH oscillator only. However, 

the general form of a saddle given by Eq. (3.59) indicates that the UFDC 

technique can be applied to many other dynamical systems as well. The 

suggested UFDC controller is essentially faster than the simple UFC version 
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[Pyragas et al., 2004]. Moreover, it is suitable to stabilize saddle equilibrium 

states also in dynamical system with zero (b = 0) and negative (b < 0) 

damping. In contrast to the simple UFC technique the cut-off frequency of the 

UFDC controller ω can be set relatively high and is independent of the 

damping of the dynamical system; the effective frequency is further increased 

by a factor of (k−1) in Eq. (3.57). The UFDC controller exhibits robust 

performance in the presence of external unknown forces, which change the 

coordinates of the equilibrium state in the phase space. 

In the CFC method, described in Section 3.3, for stabilizing saddle 

equilibrium states, the enhancement is noticeable. Though the transients in 

weakly damped systems become shorter (≈ 1 ms in the experiment), the main 

variables and the control signals still exhibit ringing effects. In contrast, the 

UFDC method ensures very short transient (≈ 0.2 ms), which is close to the 

intrinsic response time of the oscillator √𝐿𝐶 ≈ 0.1 ms, and practically no 

ringing is observed. From a mathematical point of view, an additional filter in 

the CFC increases dimension of the overall system from three to four, thus 

making analysis of the 4×4 Hurwitz matrix and its four diagonal minors 

extremely complicated. Whereas for the UFDC method in the case of weak 

damping the stability criterion (3.66) is easy to derive. It has a simple form: 
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 k
k

k
      (3.68) 

All control methods described in Chapter 3 are summarized in Table 2. 

 

TABLE 2. Real part of maximal eigenvalue max at optimal gain kopt for 

different control methods stabilizing saddles in conservative and weekly 

dissipative systems (0  b  0.1). 

 

Method Remax Figure (page) 

 

UFC 

+0.01 (b=0) 

0.003 (b=0.01) 

0.025 (b=0.1) 

3.4a (p.51) 

3.7a (p.58) 

3.9b (p.63) 

UFC||SFC 0.5 3.4c (p.51) 

CFC 1.0 3.12b (p.67) 

UFDC 2.0 3.18a (p.74) 
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CHAPTER 4 

STEPWISE FEEDBACK METHODS FOR STABILIZING EQUILIBRIUM 

4.1. Stabilizing saddles with partially unknown dynamics [7] 

Simple zeroth order stable proportional feedback technique can be used, which 

employs either artificially created or natural stable equilibrium (SEQ) to find 

unknown coordinates of the unstable equilibrium (UEQ). 

1st order linear system. To illustrate the idea, we start with the extremely 

simple mathematical example. A dynamical system given by 

caxx   

has a single UEQ x0=c/a, which can be easily stabilized by means of a simple 

proportional feedback: 

)( 0 xxkcaxx  , 

provided k>a. Note, that the control term k(x0x) vanishes, when the goal 

equilibrium x→x0 is achieved. However, when the system’s dynamics is not 

fully defined, e.g. is described by 

 axx           (4.1) 

with  as an unknown term, the corresponding UEQ, x0=/a is also unknown 

and therefore the simple proportional feedback cannot be applied directly. 

Nevertheless, we demonstrate that this unknown UEQ can be still stabilized by 

a two-step proportional feedback. In the first step we apply proportional 

feedback with an arbitrarily chosen reference point r1: 

),( 1 xrkaxx        (4.2) 

where r1 is any real, either positive or negative (zero value is also applicable) 

constant. For k>a the feedback creates an artificial SEQ: 

ak

kr
x






1
1 .      (4.3) 

Note, that the control term k(r1x) in Eq. (4.2), in general, does not vanish, 

because the r1 is not a natural UEQ of the original Eq. (4.1). An exception is a 

“resonant” value r1=x0. It means that we are lucky to guess the right reference 
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point x0 and the procedure is accomplished in one step. Otherwise the unknown 

term  should be derived from formula (4.3): 

).( 111 xrkax       (4.4) 

In the second step we simply replace r1 in Eq. (4.2) with the goal UEQ x0=/a, 

where  is already defined and is given by formula (4.4): 

)( xakaxx    

and readily stabilize the initially unknown UEQ x0=/a. 

1st order nonlinear system. If a dynamical system has two equilibrium states, 

specifically an UEQ and a SEQ, the latter can be employed to find the position 

of the first one. In this case stabilization can be achieved in one step only, 

without creating an artificial SEQ. The following nonlinear equation is an 

example: 

.2  xaxx       (4.5) 

For <a2/4 it has two real equilibrium states: 

.42 2
02,01  aax   

Here the x01 is an UEQ, whereas the x02 is a SEQ. Note an important feature 

(independent on ξ): .0201 axx   Thus, the natural SEQ, x02 (an observable) 

can be immediately used to find the UEQ: x01=a−x02 and inserted in the 

feedback term: 

),( 01
2 xxkxaxx    

where 2
0202 xax  , found from the steady-state solution of Eq. (4.5). 

Now we can generalize the above specific examples in the form: 

 )(xFx ,      (4.6) 

where F(x) is either linear or nonlinear function. Depending on F(x) Eq. (4.6) 

can have several equilibrium points, which satisfy the steady-state equation 

F(x0i)=ξ. The equilibrium states are either UEQ or SEQ depending on the 

derivative dF(x)/dxF'(x) at x=x0i. If F'(x)|x0i >0 the x0i is an UEQ. If F'(x)|x0i <0 

the x0i is a SEQ. We recall here that all the equilibrium points are unknown 
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because of the unknown term ξ. Let us consider an UEQ and apply the two-

step procedure. The first step is given by 

)()( 1 xrkxFx   .     (4.7) 

The first step yields an artificial SEQ x1. The unknown term ξ is found from 

equilibrium case of Eq. (4.7): 

)()( 111 xrkxF   

and then is inserted into Eq. (4.6) for the uncontrolled system. Its steady-state 

equation reads: 

0)()()( 1110  xrkxFxF .    (4.8) 

If the F(x) is well defined the Eq. (4.8) can be solved with respect to x0 and, 

finally, the second step is applied: 

).()( 0 xxkxFx    

Mechanical pendulum. The first physical example is a mechanical pendulum: 

.sin         (4.9) 

In Eq. (4.9)  is the angle between the downward vertical and the rod, β is the 

damping coefficient, and ξ is a constant, but generally unknown torque. For 

small torque ξ<1, the system has two equilibrium points )0,(),( 02,0102,0102,01    

with .arcsin,arcsin 0201    The 01 is a SEQ (lower position of the 

pendulum), the 02 is a saddle UEQ (upper position of the pendulum). 

Independently on ξ the sum of the two angles is a constant value: .0201    

Thus, we can apply a simplified one-step procedure, similarly to the first-order 

nonlinear mathematical example given by Eq. (4.5). Here we exploit the 

existing natural SEQ of the pendulum to determine the position of the UEQ, 

without creating any artificial SEQ. The coordinate of the unknown UEQ is 

readily obtained from the coordinate 01 of the known (observed) SEQ: 02= 

π−01. Then we apply the proportional feedback: 

),(sin 02   k     (4.10) 

where =sin01. 
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Linearization of Eq. (4.10) around 02 gives the characteristic equation: 

0)cos( 01

2   k . 

For small ξ the angle 01<<π, thus ).1(4/2/ 2

2,1  k  The threshold 

value of the feedback coefficient is kth=1, for which the largest eigenvalue λ1 

crosses zero from positive to negative values. The optimal value of the 

feedback coefficient kopt=1+β2/4; the eigenvalues are both negative and equal 

to each other, λ1=λ2=−β/2. Further increase of k makes the eigenvalues 

complex, but does not change their real parts. So, for higher feedback 

coefficients the convergence rate saturates with k and is fully determined by 

the damping coefficient β. Result of numerical integration of Eq. (4.10) is 

shown in Fig. 4.1. 

 

FIG. 4.1. One-step stabilization of the upper position, UEQ of mechanical 

pendulum given by Eq. (4.10). The control is switched on at t=100. The 

parameters are β=0.2, k=2. The SEQ angle observed before switching the 

control 01=0.5, the extracted unknown term ξ=sin01=0.47943, stabilized 

UEQ is 2.64. Angle calculated from the relationship 02=π−01=2.64. 

 

DuffingHolmes (DH) oscillator. The second physical example is the DH 

nonlinear damped oscillator, which, in contrast to the classical DH system [Ott, 

1993], lacks external periodic driving force, but includes an unknown term ξ: 

.3  xxxbx       (4.11) 
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Here b is the damping coefficient. For 27/2  Eq. (4.11) has three 

equilibrium points: )0,(),( 03,02,0103,02,0103,02,01 xxx  . The two side points are 

SEQ, while the middle one is a saddle UEQ. Their coordinates, in general, are 

rather cumbersome: 

,
3

cos
3

2
,

3
cos

3

2
,

3
cos

3

2
030201








 xxx   (4.12) 

where the formal parameter θ is given by 

.
2

27
arccos


       (4.13) 

For ξ=0 they become: x01=−1, x02=0, x03=1. There is a simple relationship 

between the three coordinates: 

,0
030201
 xxx  

which is valid for the non-zero ξ as well. Therefore one can think about the 

one-step algorithm (x02=−x01−x03), similarly to the case of the pendulum. From 

a practical point of view the procedure is not convenient, since one needs to 

find (to observe) two remote SEQ points, separated by an UEQ. So, if a system 

is located at one of the SEQ, say x01, we have to switch it to another SEQ (x03) 

by applying some rather strong external force. Formally, we can use only one 

SEQ, either x01 or x03. From the corresponding formulas (4.12), (4.13) we can 

extract ξ and use it for finding x02, again from the formulas (4.12), (4.13). 

However, this formal way requires rather long and complicated calculations. 

There is a shorter way. The SEQ x01 satisfies the steady-state equation: 

.001
3
01  xx  

From here the unknown term ξ is readily derived as 01
3
01 xx   and is used to 

calculate x02 from the appropriate formulas (4.12), (4.13). Finally, this 

coordinate is employed in the proportional feedback: 

).( 02
3 xxkxxxbx      (4.14) 

Linearization of Eq. (4.14) around x02 yields the characteristic equation: 

.031 2
02

2  xk  
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Its eigenvalues are given by .)31(4/2/ 2
02

2
2,1 xkbb   For small ξ 

the coordinate of the UEQ 1
02
x . Then stabilization parameters are the 

same as that for the pendulum: the threshold coefficient kth=1, the optimal 

value kopt=1+b2/4, and the best pair of the real negative eigenvalues λ1,2=−b/2. 

Numerical result for the DH oscillator is presented in Fig. 4.2. 

 

FIG. 4.2. One-step stabilization of the UEQ of the DH oscillator from Eq. 

(4.14). The control is switched on at t=100. b=0.5, k=1.1. SEQ observed before 

switching the control x01=−0.8, the extracted term 288.001
3
01  xx , 

stabilized UEQ is −0.321. UEQ calculated from (4.124.13) x02=−0.321. 

 

Van der Pol oscillator. The next physical example is the well-known van der 

Pol oscillator, but with an additionally applied unknown force ξ: 

.)1( 2   xxxx      (4.15) 

Eq. (4.15) can be presented in the form of two coupled the 1st order equations: 

.

),3( 3









xy

xxyx




 

The van der Pol oscillator for any µ>0 and |ξ|<1 has a single UEQ (x0,y0): 

),3(, 3
000 xyx       (4.16) 

which is either a spiral, if µ(1−ξ2)<2, or a node, if µ(1−ξ2)>2; however the both 

coordinates are unknown because of the unknown force ξ. In contrast to the 

two previous examples, there are no SEQ states. Therefore, we need to apply 

the two-step stabilization technique: 
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.

),()3( 11
3









xy

xrkxxyx




    (4.17) 

The proportional feedback with k1>µ(1−ξ2) creates an artificial SEQ (x1,y1): 

).()3(, 111
3

11 xrkxxyx    

The second coordinate y1 is not important in this specific case, since the 

unknown parameter ξ is found immediately from the first coordinate x1: ξ=x1. 

Then, in the second step we simply replace the auxiliary reference point r1 with 

the ξ, found in the first step: 

.

),()3( 2
3









xy

xkxxyx




   (4.18) 

and stabilize the natural UEQ (x0, y0), given by (4.16). Linearization around 

equilibrium point (x0,y0) yields the characteristic equation: 

01)]1([ 2
02

2   xk . 

For 12

0
x  the 14/)(2/)( 2

222,1   kk . Thus, the threshold 

coefficient k2th=µ (Re λ1 becomes negative). The optimal value is k2opt=µ+2, 

when the both eigenvalues are negative and equal to each other, λ1=λ2=−1. 

The two-step technique applied to the van der Pol oscillator to stabilize 

the unknown UEQ is illustrated by numerical results in Fig. 4.3. 

 

 

FIG. 4.3. Two-step stabilization of the UEQ of the van der Pol oscillator from 

Eq. (4.17) and Eq. (4.18). The first step is switched on at t=50, the second step 

is applied at t=100. µ=0.5, k1=k2=2.5, r1=0.5. The x-coordinate of the artificial 

SEQ is x1=0.3, the extracted unknown force is ξ=0.3, the stabilized UEQ 

(x0,y0)=(0.3, 0.1455). 
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Lorenz system. Finally we consider the famous Lorenz system [Lorenz, 1963], 

which for certain sets of the parameters exhibits chaotic behaviour. The system 

is given by three coupled differential equations: 

.

,

,

zxyz

xzyxy

yxx



















      (4.19) 

Two parameters are usually fixed at σ=10 and β=8/3, while the third parameter 

ρ is considered as a control parameter to observe various kinds of bifurcations. 

For ρ<1 the system has a single SEQ at the origin (x01,y01,z01)=(0,0,0). For ρ>1 

this SEQ loses its stability and two additional SEQ (x02,03,y02,03,z02,03) appear at 

).1,)1(,)1((    

Linearization of Eq. (4.19) around these equilibrium points leads to the 

following characteristic equation: 

0)1(2)()1( 23   .  (4.20) 

Using the Routh–Hurwitz criterion we find that this pair becomes unstable for 

74.24
1

3










 , 

yielding chaotic oscillations, e.g. at ρ=28, which is the most popular parameter 

value used in literature [Lorenz, 1963; Ott, 1993; Pyragas et al., 2004]. 

Now we assume that the value of the parameter ρ is unknown, i.e. ρ=ξ. 

Consequently, the coordinates of the equilibrium points are also unknown: 

).1,)1(,)1((       (4.21) 

Therefore, to stabilize the UEQ states we apply the two-step procedure: 

.

),(

,

11

zxyz

yrkxzyxy

yxx



















    (4.22) 

For simplicity we set r1=0. The feedback term −k1y creates a pair of artificial 

SEQ states (x12,13, y12,13, z12,13): 

).1,)1(,)1(( 111  kkk   

We can extract the unknown parameter ξ from any coordinate of the artificial 

SEQ, most conveniently from the z12: ξ=z12+k1+1. Then z02=z03=1=z12+k1. 
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Two other coordinates of the UEQ are: ),(),( 020203,0203,02 zzyx   . 

The y02,03 are inserted into Eq. (4.22) instead of the reference point r1: 

zxyz

yykxzyxy

yxx



















),(

,

03,022     (4.23) 

to stabilize the UEQ (x02,03, y02,03, z02,03). Linearizing Eq. (4.23) about the 

equilibrium we obtain the corresponding characteristic equation: 

,0)1(2)]()([)1( 22
2

2
3   kkk  

which for k2=0 and ξ=ρ coincides with Eq. (4.20), as expected. The Routh–

Hurwitz criterion provides the following necessary and sufficient condition of 

stability of the UEQ: 

.0112)3()1( 2
2

2

22 

































 kkk

   (4.24) 

Let us consider the 1st term only in the inequality (4.24), since it contains a 

negative component ‘−σ’. If  

,33.612  k      (4.25) 

then the equilibrium is stable for all ξ>0. This is a very rough estimation (upper 

limit) of the stabilization threshold. However, the threshold is conveniently 

independent on ξ. Taking into account the 2nd term in the inequality (4.24), we 

find that depending on ξ the stabilization can be achieved at essentially lower 

feedback coefficients 

73.0
3

12 






k  

at ξ=28. For very large ξ the threshold approaches the value given by condition 

(4.25). The 3rd term in the inequality (4.24) further diminishes the stabilization 

threshold, e.g. to k2≈0.22 at ξ=28. The 4th term, which is quadratic with respect 

to k, for small k makes only very small correction. 

The two-step stabilization of the UEQ (x02,y02,z02) in the Lorenz system is 

demonstrated in Fig. 4.4 for two slightly different initial conditions. Similar 

results are obtained for another UEQ (x03,y03,z03). 
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FIG. 4.4. Two-step stabilization of the spiral UEQ in the Lorenz system from 

Eq. (4.22) and Eq. (4.23) with ξ=30. The 1st step is switched on at t=40, the 

2nd step is applied at t=50. σ=10, β=8/3, k1=k2=10, r1=0. The z-coordinate of 

the artificial SEQ z12=z13=19, the extracted unknown parameter ξ=z12+k1+1=30. 

Stabilized UEQ is (8.79; 8.79; 29.0). Initial conditions are y(0) = z(0) = 0; 

(a) x(0)=0.10, (b) x(0)=0.11. 

 

The same two-step method can be used to stabilize the saddle UEQ at the 

origin (0,0,0). The coordinates of the UEQ are known (they do not depend on 

ξ) in this specific case. One may think that the proportional feedback method 

can be applied directly. However, the feedback coefficient k, required to 

stabilize the UEQ, essentially depends on the unknown parameter ξ. 

Linearizing Eq. (4.23) around the origin we obtain one negative eigenvalue 

immediately, λ3= −β, independent on k2. Two other eigenvalues are found from 

the quadratic characteristic equation 0)1()1( 22
2   kk : 

.)1(4/)1(2/)1( 2
2

222,1   kkk  

The both eigenvalues λ1,2 are negative if 

.12  k       (4.26) 

Here the parameter ξ is unknown. Therefore, it should be found from the first 

step, given by Eq. (4.22), and then used in condition (4.26) and in Eq. (4.23) 

with a modified control term: ‘k2y’ (since the reference point is 0) to stabilize 

the UEQ (x01,y01,z01)=(0,0,0). 

Numerical results of stabilizing the saddle UEQ are presented in Fig. 4.5, 

again for two slightly different initial conditions. 
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FIG. 4.5. Two-step stabilization of the saddle UEQ in the Lorenz system from 

Eq. (4.22) and Eq. (4.23) with ξ=50. The 1st step is switched on at t=40, the 

2nd step is applied at t=50. σ=10, β=8/3, k1=10, r1=0. The z-coordinate of the 

artificial SEQ z12=z13=39, the extracted unknown parameter ξ=z12+k1+1=50, 

k2=60. Stabilized UEQ is (0; 0; 0). Initial conditions are y(0) = z(0) = 0; 

(a) x(0)=0.10, (b) x(0)=0.11. 

 

4.2. Three-step technique for stabilizing saddles [20] 

In this section, a multistep feedback technique is suggested. In the 1st and the 

2nd steps two different artificial SEQ states are created and are exploited to 

find the unknown coordinates of the saddle UEQ. In the final 3rd step these 

coordinates are used to stabilize an a priori unknown UEQ. 

1st order system. To demonstrate the idea we start with an extremely simple 

one-dimensional example 

).,( xFx        (4.27) 

Here F(x,) is a nonlinear function of variable x, while  is a set of parameters. 

The equilibrium states x0 are found from an algebraic equation F(x0,)=0. If the 

derivative of 0),(' 0 xxF  , we deal with an UEQ. The UEQ can be stabilized 

by means of proportional feedback 

).(),( 0 xxkxFx       (4.28) 

If either the structure of the function F(x,) is unknown or it contains some 

unknown parameter, then x0 is also unknown. Therefore the proportional 

feedback cannot be applied directly. However, we demonstrate that this UEQ 

can be still stabilized by multistep proportional feedback. Stabilization is 

achieved in three steps. In the 1st and the 2nd steps we apply proportional 

feedback with an arbitrarily chosen reference points r1,2: 
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),(),( 2,1 xrkxFx       (4.29) 

where r1,2 are any real constants, either positive or negative (zero value is also 

applicable). For sufficiently large k the feedback creates artificial SEQ states, 

x1,2, which satisfy the steady-state equations F(x1,2,)+k(r1,2−x1)=0. Note, that 

the control terms k(r1,2−x1), in general, do not vanish, because r1,2 are not the 

natural UEQ states of the original Eq. (4.27). Assuming, that the chosen 

reference points r1,2 are not too far from x0, we formally linearize the nonlinear 

functions F(x1,2,) around x0: F(x1,2,) = F(x0,) + F(x,)|x0(x1,2 − x0). Here 

F(x0,)=0 by definition. Then the nonlinear steady-state equations read 

F(x,)(x1,2 − x0) + k(r1,2 − x1,2) = 0.   (4.30) 

These two linear equations have two unknowns, namely F′(x,) and x0. Any of 

them or both can be easily derived. Specifically for x0, Eq. (4.30) yields: 

.
)()( 2211

1221
0

xrxr

xrxr
x




     (4.31) 

Eventually, we use the derived value of x0 in the final 3rd step of stabilization, 

given by Eq. (4.28). 

As a specific mathematical example we consider Eq. (4.27) with 

F(x,)=ax−, where  is an a priori unknown parameter. It has a single UEQ: 

x0=/a. However, it is unknown because of . Two preparatory steps with r1 

and r2 give x1=(kr1−)/(k−a) and x2=(kr2−)/(k−a), respectively. Finally, the 

intrinsic UEQ x0 is obtained from formula (4.31). One can check, that x0 from 

(4.31) coincides with the expected value x0=/a. 

2nd order system. The technique is applicable to higher order systems as well, 

e.g. the 2nd order dynamical system 

).,(, yxFyyx        (4.32) 

The equilibrium has two coordinates. One of them is trivial: y0=0. The x0 is 

found from F(x0,0)=0. If either F′x(x,y)|x0,y0>0 or F′y(x,y)|x0,y0>0, or both 

derivatives are positive, the equilibrium is an UEQ. Depending on the structure 

of F(x,y) and the inherent parameters the UEQ might be either a node, a spiral 

or a saddle. Any of them can be stabilized using the proportional feedback: 
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.)(),(, 22,11 ykxrkyxFyyx      (4.33) 

Here, in the second control term with coefficient k2 we employed the fact that 

y0=0. Since the y-coordinates of the artificial equilibrium states y1,2=0, the x1,2 

are found from the steady-state equations: F(x1,2,0)+k1(r1,2−x1,2)=0. After 

linearization F(x1,2,0) = F(x0,0) + F′(x,y)|x0,y0(x1,2−x0) = F′(x,y)|x0,y0(x1,2−x0) we 

come to a set of two linear equations, similar to the one-dimensional example 

and finally to the expression for x0, exactly the same as formula (4.31). 

Mechanical pendulum. To be specific we consider the set of equations 

.sin

,





xbyy

yx




      (4.34) 

Here x is the angle between the downward vertical and the rod, y is the angular 

velocity, b is the damping coefficient, and  is a constant, but generally 

unknown torque. For small torque <1, the system has two equilibrium states 

(x01,02,y01,02)=(x01,02,0), where x01=arcsin, x02=π−arcsin. The x01 corresponds 

to the SEQ, while the x02 is the x-coordinate of the saddle UEQ. The controlled 

pendulum is described by 
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
   (4.35) 

The procedure of finding the coordinate x02 of the UEQ is the same as for the 

2nd order system described in the previous subsection. Linearization of 

Eq. (4.35) around x02 gives the characteristic equation 

λ2 + (b + k2)λ + k1 + cosx02 = 0. 

For small  the angle x02≈π, thus λ1,2= −(b+k2)/2±[(b+k2)2/4−k1+1)]1/2. The 

threshold value of the feedback coefficient is k1th=1, for which the largest 

eigenvalue λ1 crosses zero from positive to negative values. The optimal value 

of the feedback coefficient k1opt=1+(b+k2)2/4; the eigenvalues are both negative 

and equal to each other, λ1=λ2= −(b+k2)/2. Further increase of k1 makes the 

eigenvalues complex, but does not change their real parts. Therefore, for higher 

feedback coefficients the convergence rate saturates with k1 and is fully 

determined by (b+k2). In the case of weak damping (b≪1) a reasonable pair of 
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the feedback coefficients is k1=2 and k2=2, yielding Reλ1,2≈−1. Numerical 

results are shown in Fig. 4.6. 

 

 

FIG. 4.6. Stabilization of the UEQ of a mechanical pendulum from Eq. (4.35). 

b=0.1, =0.3, r1=2.7, r2=2.8, k1=k2=2. Initial conditions x(0)=y(0)=0. The 

control is switched on at t=0. The value stabilized in the 1st step x1=2.5867, the 

value stabilized in the 2nd step x2=2.7670, the reference point calculated from 

formula (4.31) x02=2.8411, the value stabilized in the 3rd step x3=2.8449, the 

remaining difference in the 3rd step δ=x02−x3=−0.0038, |δ|/x02≈0.1%, the 

analytical value of the UEQ calculated from formula x0=π−arcsin=2.8369. 

 

DuffingLindberg chaotic oscillator. The oscillator is described by a set of 

three differential equations [Lindberg et al. 2009; Tamaševičius et al. 2009a]: 
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     (4.36) 

For 27/2 the system has three equilibrium states (x0,y0,z0)=(x0,0,0). The 

x-coordinates are found from a cubic steady-state equation 00
3
0  xx . For 

=0 the solution is simple: x01=−1, x02=0, x03=1, the same as for the DH 

oscillator. For non-zero  the expressions are: 
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All the equilibrium states are unstable. The side states, x01 and x03 are either 

unstable nodes or unstable spirals. The most complicated is the middle one, x02 

in the sense that it is a saddle. Similarly to the previous examples we apply 

proportional feedback in the form of k1(x0−x)−k2y: 
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   (4.38) 

The coordinate x02 of the UEQ can be found from (4.31). We note, that in 

equation for variable y it is possible to use one more feedback term, namely 

−k3z. However, two terms are sufficient for stabilization. Linearization of Eq. 

(4.38) around x02 leads to a cubic characteristic equation λ3+a3λ2+a2λ+a1=0, 

where 
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     (4.39) 

When deriving expressions (4.39) we assumed for simplicity that 13 2
02 x . 

The 3rd-order system (4.38) is stable, if the eigenvalues Reλ1,2,3 of the 

characteristic equation are all negative. Reλ1,2,3<0, if the all following 

inequalities are fulfilled: 

.0,0,0 11233  aaaaa     (4.40) 

Inequalities (4.40) are derived using RuthHurwitz criterion similarly to 

inequalities (2.7) in Chapter 2. The a1>0, if k1>1. Once k1>1, the second 

inequality is easily fulfilled for the given parameters c and b (even for k2=0). 

Finally, a3>0 holds for the given parameters ω0 and b (even for k2=0). 

However, k2>0 makes the transients shorter. Numerical results are presented in 

Fig. 4.7. 

 



94 

 

 

FIG. 4.7. Stabilization of the UEQ of the DuffingLindberg oscillator from 

Eq. (4.38). b=0.35, c=1.6, ω0=0.5, =0.1, r1=0, r2=−0.05, k1=6, k2=2. Initial 

conditions x(0)=0.1, y(0)=z(0)=0. Control is switched on at t=100. The value 

stabilized in the 1st step x1=0.0200, the value stabilized in the 2nd step 

x2=−0.0400, the reference point calculated from formula (4.31) x02=−0.1, the 

value stabilized in the 3rd step x3=−0.0998, the remaining difference in the 3rd 

step δ=x02−x3=−0.0002, |δ|/|x02|≈0.2%, the analytical value of the UEQ 

calculated from formula (4.37) x02=−0.1010. 

 

4.3. Nonlinear controller for stabilizing saddles [12] 

In this Section, we describe an adaptive feedback technique, employing a 

nonlinear controller (the nonlinearity is a piecewise constant step function). To 

illustrate the idea, we start with a one-dimensional mathematical example 

.axx         (4.41) 

It has a single UEQ, x0=a. Fluctuations grow up exponentially with an 

exponent λ=1. The UEQ can be stabilized by means of proportional feedback 

),( 0 xxkaxx       (4.42) 

provided the feedback gain k>kth=1. Now the exponent λ=1−k is negative. Note 

that the control term k(x0−x) vanishes, when the goal equilibrium x→x0 is 

achieved. However, when the equation contains an unknown parameter, e.g., 

an unpredictable perturbation p 

pxx         (4.43) 

the equilibrium x0=p is also undefined, and therefore, the proportional feedback 

procedure cannot be applied directly. In this case, an adaptive technique, e.g., 



95 

 

an auxiliary unstable filter, should be used in the feedback loop. In contrast to 

the linear controllers, described in [Pyragas et al., 2002, 2004], here we 

introduce a nonlinear controller (see also Fig. 4.8): 

)./()sgn(

),(

kxrHxrvr

xrkpxx








    (4.44) 

Here r is a variable reference point, the sgn(u) is the sign function, i.e., 

sgn(u>0)=1, sgn(u<0)= −1, the H is the Heaviside function, i.e., H(u≤0)=0, 

H(u>0)=1, the 2ε is a pre-set small tolerance gap, and v is a constant 

“velocity”, to be discussed later. The nonlinear function H actually is a 

piecewise constant function. This feature essentially simplifies the analysis. 

 

 

 

 

 

 

 

 

 

 

FIG. 4.8. Block diagram of stabilizing saddle state by means of the nonlinear 

controller.  

Case 1: |r−x|≤ ε/k << 1. In this case, the 0r . Consequently r=const. It can be 

formally found from the upper limit |r−x0|=ε/k or r=x0±ε/k. Then Eq. (4.44) 

reads: 

)./( 0 xkxkpxx       (4.45) 

Eq. (4.45) has a stable equilibrium solution x0=p±ε or x0≈p (with a small error 

of ε), as expected. However, this solution is a very formal one, since it still 

contains unknown parameter p. Practically, we have to start with r=0 in the 

control term of Eq. (4.44): 
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.)1( pxkkxpxx      (4.46) 

Now we can consider analytically evolution of the variable x(t) also of the 

difference (r−x) under a step perturbation p, e.g., from zero value to its 

nominal value p. Using the method of variation of constants and assuming the 

initial condition x(0)=0, we obtain 

].)1exp(1[
1

)( tk
k

p
tx 


     (4.47) 

For a short time interval (t<<1), formula (4.47) reads: x(t)≈−pt. The 

formula gives somewhat puzzling result. Though the final value of x(t)=x0= 

p>0 from Eq. (4.43), the transient value x(t) exhibits negative sign: x(t)−p. 

However, this feature coincides very well with the negative drop of x(t), 

observed previously in Chapter 3 both numerically and experimentally. 

Since r=0, the difference (r−x)= −x is given by the same formula as 

(4.47), but with an opposite sign. Correspondingly, (r−x)≈pt. Formula (4.47) is 

valid until |r−x|=≤ε/k. Thus, the time moment t1, when the difference (r−x) 

reaches ε/k, is t1=ε/(pk).  

Case 2: |r−x| > ε/k. In this case, the )sgn( xrvr   and r = vtsgn(r−x)+r0. For 

(r−x)>0 (result from Case 1) and r0=0, the variable reference point r is simply 

r= +vt. Thus, Eq. (4.44) reads 

.)1( kvtpxkx       (4.48) 

Applying the method of variation of constants and using the initial condition 

x(t1)= −ε/k, we find at t≥t1 
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The formula for x(t) is very cumbersome. It becomes essentially simpler for 

t >>1: x(t)=(kvt−p)/(k−1). From this simplified expression, we can easily find 

the time moment t2, when the variable x(t) from its negative value (x−p) 

crosses zero and becomes positive: t2=p/(kv). The difference (r−x)=vt−x 

= (p−vt)/(k−1). The above formulas for x(t) and (r−x) are valid until (r−x) 
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reduces to ε/k. The corresponding time moment, when (r−x) reaches ε/k, is 

t3 ≈p/v. The value of variable x(t3)≈p, as expected. 

The analytical results are compared with the results of direct numerical 

integration of Eq. (4.44) in Fig. 4.9. The transient behaviour reflects all the 

analytical estimations, including the negative drop of x(t) at 0<t<t2. The time 

intervals t2 ≈ 33 and t3 ≈ 167 agree very well with the values, found from the 

corresponding formulas t2=p/(kv) and t3=p/v. The transient time ttr=t1+t3 is 

governed by its largest summand t3=p/v. The larger is the “velocity” v, the 

shorter is the transient. However, v cannot be set too large. The point is that the 

time duration of crossing the tolerance gap 2ε, estimated as tε ≈2ε/(kv), should 

not be shorter than the characteristic time constant of the controlled system 

t*≈(k−1)−1. Otherwise, autonomous periodic up- and down-crossings of the 

tolerance gap would arise. This intuitive requirement gives an estimate for the 

“velocity”: v<vmax=2ε(k−1)/k. The selection of the parameters in Fig. 4.9 is 

motivated by the following. The threshold gain kth=1. Therefore, the gain 

parameter is taken large enough (k=5) to ensure small value of t2, consequently 

small negative drop of the variable x(t). The value of ε is set small (ε=0.005) to 

obtain narrow tolerance gap (2ε =0.01), compared to the amplitude of the main 

variable, x(t>t3)=p=1. According to the formula for vmax, the permissible 

“velocity” vmax=0.008. The actual “velocity” is set somewhat lower: v=0.006. 

The plots (a) and (b) in Fig. 4.9, for the simplified analytical and “exact” 

numerical integration results, respectively, look nearly identical. However, we 

intentionally present both of them in order to demonstrate that the simplifying 

assumptions made in the analytical treatment (Case1 and Case 2) are valid. 

DuffingHolmes (DH) oscillator. Let us consider now two-dimensional 

physical example, namely the damped DH oscillator, given either by 

03  xxxbx       (4.49) 

or by 
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      (4.50) 
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FIG. 4.9. Evolution of variables x(t) and r(t). (a) Analytical results, here time 

is shifted by 300 units. (b) Numerical results from Eq. (4.44). p=1, k=5, 

ε=0.005, v=0.006, x(0)=0.01, r(0)=0, the p is switched on at t =300. 

 

In Eq. 4.49) and Eq. (4.50) b is the damping coefficient. The physical meaning 

of the variables are explained in [Moon, 1987; Ott, 1993]. The DH oscillator 

has three equilibrium states: two stable states (x0,y0)=(±1,0) and one unstable 

equilibrium (a saddle) at the origin (x0,y0)=(0,0). We shall stabilize the saddle 

by means of a nonlinear controller: 
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   (4.51) 

Here p is an a priori unknown perturbation. It changes the x-coordinates of all 

the equilibrium states. The positions of the perturbed equilibrium states are: 
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Here x01,03 correspond to the stable spirals, and x02 is a coordinate of the saddle. 

For small p, the 2/332/ p  and the x02≈p. In Eq. (4.51), along with the 

proportional term k1(r−x), there is an additional derivative term ‘ xk 
2

 ’. The 

latter term, itself, is not able to stabilize a saddle. However, it improves 

considerably the performance of the controller, especially for small damping 

coefficient b. 

We analyse the stability of the system (4.51), when the difference k|r−x| 

is within the tolerance gap, i.e., |r−x|<ε/k, the perturbation p is set to zero for 

simplicity (without the loss of generality), and the reference point r=x02=0. The 

linearized Eq. (4.51) read 
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The corresponding characteristic equation is a simple quadratic equation 

λ2
 + (b + k2)λ + (k1 − 1) = 0, 

which can be solved analytically: 
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The real parts of the eigenvalues Reλ1,2 are both negative (ensuring the stability 

of the system) if k1>kth=1. The optimal value of the feedback gain is 

k1=1+(b+k2)2/4, providing the best pair, i.e., the both values are negative and 

equal to each other, λ1,2= −(b+k2)/2. Further increase in k1 makes the 

eigenvalues complex, but does not change the Reλ1,2. 

Numerical results are shown in Fig. 4.10. The new stabilized saddle 

equilibrium x(t)→x02≈0.2 is in an agreement with the analytical prediction 

(x02≈p=0.2). In numerical simulation, the damping parameter b was 

intentionally chosen small (b=0.01) to illustrate the performance of the method 
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in the case of a weakly damped system. In Chapter 3, we demonstrated that 

stabilization of saddles in weakly damped systems required rather complicated 

controllers, e.g., containing both unstable and stable filters. The feedback gain 

was adjusted to k1=5 in order to reach the optimal negative eigenvalues λ1,2. 

 

FIG. 4.10. Stabilization of a saddle equilibrium in the damped DH system 

from Eq. (4.51). (a) Evolution of the variables x(t) and r(t). (b) Evolution of the 

difference r(t)x(t). b=0.01, p=0.2, k1=5, k2=2, ε=0.005, v=0.002, x(0)=10−4, 

r(0)=0, the perturbation p is switched on at t =300. 

 

 

Lorenz system. The second example is the Lorenz system [Lorenz, 1963]: 
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     (4.53) 

The physical meaning of the variables and the coefficients are discussed in 

[Moon, 1987; Ott, 1993]. For ρ>1, there are three equilibrium states, namely a 

saddle (x0,y0,z0) at the origin and two symmetrical spirals (x1,2,y1,2,z1,2): 
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If ρ>ρth=σ(σ+b+3)/(σ−b−1), both spirals become unstable, yielding chaotic 

oscillations. For conventional parameter values σ=10 and b=8/3, most often 

used for the Lorenz system, the ρth ≈24.74. 

 If an unknown perturbation p is applied to the system, say via variable z: 
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     (4.54) 

the coordinates of the equilibrium states and the threshold parameter ρth change 

in the following way: 
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We will focus on stabilizing the saddle (x0,y0,z0) by means of a nonlinear 

controller, discussed in the previous sections: 
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For simplicity, we analyze stabilization of the saddle equilibrium in the 

absence of the perturbation (p = 0) that at the origin (0,0,0), similarly as in the 

case of the Duffing system. We assume that the difference k|ry| is in the 

tolerance gap, so that the reference point r is constant and is set to zero. Eq. 

(4.55) linearized around the saddle equilibrium point, read: 
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There are three exponents related to the linearized equations. The first and the 

second exponents are found from a quadratic characteristic equation 
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The both eigenvalues λ1,2 <0, if k >ρ−1. The third exponent is always negative, 

λ3 = −b<0. The three negative eigenvalues ensure stabilization of the saddle. 

According to the formula for the saddle coordinates (x0,y0,z0)=(0,0,p/b), the 

perturbation p does not influence the x- and the y-coordinates. If the saddle is 

stabilized before the perturbation p is applied, the x0=y0=0. Thus the dynamics 

of the z-coordinate under the influence of perturbation is described by an 

uncoupled equation: 

,pbzz        (4.57) 

which has a simple relaxation solution z(t)=p/b[1−exp(−bt)]. The variables x 

and y remain zeros, the r and the (r−y) are nearly zeros as well, despite the fact 

that perturbation p changes many parameters of the Lorenz system, e.g. all the 

coordinates of the spirals and the threshold value ρth of the onset of chaos. The 

rate of convergence to the perturbed saddle state (0,0,p/b) depends neither on 

the feedback gain k nor on the “velocity” v of the controller, but on the 

damping coefficient of the Lorenz system b only. 

If a perturbation p is applied to the Lorenz system via the equation for 

variable y: 

,

,

,

bzxyz

pyxxzy

yxx

















     (4.58) 

the (x0,y0,z0), where y0=x0 and bxz /2
00  , have three different x0-coordinates: 
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Similarly to the DH oscillator, the x01,03 correspond to the spirals and x02 is a 

coordinate of the saddle. The only difference is that the spirals in the Lorenz 

system at ρ>ρth are unstable states. For small p, the α≈π/2+4bp/h3 and the 

x02≈p/(ρ−1). 

Let us consider stabilization of the saddle by means of the nonlinear 

controller (numerical results are shown in Fig. 4.11): 
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The equations are similar to Eq. (4.55), except the fact, that the system is 

perturbed via the equation for the y-variable, and the feedback contains and 

additional term k1(r−x). Since x02=y02, the both control terms k1(r−x) and 

k2(r−y) vanish, when the stabilization is achieved, x(t)→x02 and y(t)→y02. For 

small p the saddle coordinates are close to the origin (x02≈0, y02≈0, z02≈0). Then 

the linearized equations read 
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The last equation in Eq. (4.60) appears to be uncoupled. The corresponding 

characteristic equation and its solution are 

.0)1()1( 212
2   kkk  

.)1(4/)1(2/)1( 21
2

222.1   kkkk  

Two eigenvalues are negative, Reλ1,2<0, if k1+k2>ρ−1. The third eigenvalue can 

be found directly from 0: 3  bbzz  . 

An important result of this analysis is that the saddle equilibrium of the 

Lorenz system can be stabilized in three ways, i.e., with (1) k1=0, k2>ρ−1, (2) 

k1>ρ1, k2=0 and (3) k1+k2>ρ1. It means that the single control term, either 

k2(ry) or k1(rx), is sufficient. Whereas using both of them exhibits better 

performance in the sense, that the negative Reλ1,2 can have larger values. 

The value of the stabilized z-coordinate in Fig. 4.11b is in a good 

agreement with the result from the analytical solution, z0 =p/b≈9.4. The control 

term r−y in Fig. 4.11b remains zero even at t≥10, when the perturbation is 

switched on, as predicted analytically. The stabilized value of y0 in Fig. 4.11c 

well coincides with the analytical value y0=x0=p/(ρ1)=0.27. The control term 
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ry in Fig. 4.11d, in contrast to ry in Fig. 4.11b, exhibits narrow spike during 

the transient process (10< t <13) and vanishes at t >13, as expected. 

 

 

 

 

 

 
 
 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 4.11. (a) Chaotic oscillations from the uncontrolled and unperturbed 

Lorenz system from Eq. (4.53). (b) Stabilizing saddle from Eq. (4.55), p = 25, 

k = 50, ε = 0.05, v = 0.05. (c), (d) Stabilizing saddle from Eq. (4.59), p = 10, 

k1 = 70, k2 = 70, ε = 0.05, v = 0.08. In the all plots are σ = 10, ρ = 38, b = 8/3. 

The perturbation p is switched on at t = 10. 
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Analogue experiments. The DH damped oscillator and the Lorenz oscillator 

are sketched in Appendix 1 and Appendix 2, respectively. All signals have been 

recorded by means of a digital storage oscilloscope Tektronix TDS2014B. 

Experimental results are displayed in Fig. 4.12 and Fig. 4.13. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 4.12. (a) Oscillations from the uncontrolled and unperturbed Lorenz 

oscillator. (b) Stabilizing saddle, when p  is applied to the z-variable at t = 11.6 

ms, p  = 0.25, k =k0=5,  =0.0025, v =7.10−4. (c,d) Stabilizing saddle, when p  

is applied to the y-variable at t=10 ms, p =0.1, k =k0R/R2=15 (here R2=2.5 kΩ), 

 = 0.0025, v = 7.10−4. Parameters of the Lorenz oscillator  = 3.8, b = 0.27. 

 

 

 

 

 

 

 

 

FIG. 4.13. Stabilization of a saddle in the DH oscillator. (a) Vx(t) and Vr(t). (b) 

Difference Vr(t)−Vx(t). b = R/Z = 0.01, V* = 10 V (p = 0.2), k1 = k0 = 5, k2 = 1, 

ε = 0.005, v = 0.001, p is switched on at t = 49 ms. 
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CHAPTER 5 

CONTROLLING EQUILIBRIUM AND SYNCHRONY OF THE 

FITZHUGHNAGUMO OSCILLATORS 

5.1. Stabilizing equilibrium of a single FitzHughNagumo oscillator [3] 

In this section the FitzHughNagumo (FHN) type model, which will be further 

used as a building block for composing arrays of oscillators, is described. 

Mathematical model. We consider the following set of equations: 
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All the coefficients in (5.1) and (5.2) are positive and constant, except the 

parameter ξ, which, in general, is unknown and/or slowly varies with time. 

Though the coefficients d and g are somewhat arbitrary (the only requirement is 

d,g>a), we consider the case of strong asymmetry d g. The model can be 

treated as asymmetric FHN model, where the classical activation term x−x3 

[FitzHugh, 1961] is replaced with an asymmetric function ax−f(x). It has 

different slopes at negative (x<−1) and positive (x>1) values of x. For 

./1,1 abab         (5.3) 

Eq. (5.1) has a single UEQ 

,/),1/( 000 bxyabbx        (5.4) 

and no SEQ. Due to the second inequality in (5.3) the |x0|<1. For ξ > 0 the UEQ 

is in the negative quadrant (x0<0,y0<0). Linearization of Eq. (5.1) around (x0,y0) 

yields the characteristic equation 

,01)(2  abba       (5.5) 

which has two solutions that are independent on ξ: 

.14/)(2/)( 2

2.1  baba     (5.6) 
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For a > b, the real parts of λ1,2 are positive, confirming that the equilibrium is 

unstable (either a spiral or a node). When a > b and a+b >2 both eigenvalues are 

positive and real (no imaginary part). In this case, the UEQ is an unstable node. 

Now we add to Eq. (5.1) the third equation, describing a stable filter, and 

couple it to the FHN equations: 
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    (5.7) 

Here k is the coupling coefficient and ωf is the normalized threshold frequency 

of the filter. The system has the same equilibrium as the free-running system: 

,/),1/( 0000 bxyabbvx       (5.8) 

which implies that the filter does not influence the position of the equilibrium 

(x0,y0) of the FHN system, but can change its stability properties. 

The corresponding characteristic equation of the linearized system is 

,012
2

3
3  hhh       (5.9) 

.)1(,)(1, 123 fff abhbabkabhkbah    (5.10) 

The system (5.7) is stable if the real parts of all three eigenvalues Reλ1,2,3 are 

negative. The results of the numerical solution of Eq.  (5.9) are shown in Fig. 5.1. 

 

 

 

FIG. 5.1. Dependence of the Reλ on the coupling coefficient k from Eq. (5.9). 

a = 6, b = 0.1, ωf = 0.1. The insert is a zoomed view of the Reλ. 
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The largest eigenvalues Reλ cross zero and become negative at k = 5.9. The 

optimal values of the coupling coefficient k, providing the highest rate (λ=−0.1) 

of convergence to the SEQ, range from 6.5 to 10. 

The necessary and sufficient conditions for stabilization can be found using 

the Hurwitz matrix 
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According to the RouthHurwitz stability criterion the eigenvalues Reλ1,2,3 are 

all negative if the diagonal minors of the H matrix are all positive 

.0,0,0 213123231  hhhhh  (5.11) 

Since 2 should be positive according to the second inequality, the third 

inequality for Δ3 can be replaced simply with h1>0. This can be further 

simplified to (1−ab)>0 since ωf >0 by definition. We note that, due to the first 

inequality in (5.3), the h1>0 is always satisfied. Consequently, we should 

analyze 1 and 2. We estimate the threshold coupling coefficient kth by 

requiring that for k > kth the two minors Δ1,2 are positive. The result is kth=5.9 

(for the used parameter values). It is in a good agreement with the corresponding 

threshold from Reλ(k) in Fig. 5.1. 

Results of the numerical integration of Eq. (5.1) and Eq. (5.7) are shown in 

Fig. 5.2, Fig. 5.3, and Fig. 5.4. 

 

 

FIG. 5.2. Spikes x(t) from Eq. (5.1). a = 6, b = 0.1, ξ = 1.7, d = 60, g = 7. 
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The waveform in Fig. 5.2 generated by the FHN model more closely 

resembles the behaviour of the spiking neurons in the Hodgkin−Huxley model 

than that of the classical FHN model with symmetric activation function x−x3. 

When the control (k>kth) is turned on, the spikes are totally suppressed and 

the system is stabilized on non-zero equilibrium x0, whereas the control signal 

x−v vanishes.  

 

 

FIG. 5.3. Variable x(t) (top trace) and control term x−v (bottom trace). Control 

is switched on between two spikes. The control term display is lowered for the 

sake of clarity. a = 6, b = 0.1, ξ = 1.7, d = 60, g = 7, ωf = 0.1, k = 9. 

 

 
FIG. 5.4. Variable x(t) (top trace) and control term x−v (bottom trace). Control 

is switched on during a spike. Parameters the same as in Fig. 5.3. 
 

 

Analogue experiments. The electrical circuit imitating the dynamics of the FHN 

model is sketched Appendix 4. Experimental results are shown in Fig. 5.6, 

Fig. 5.7, and Fig. 5.8. The spike train (Fig. 5.7) and the controlled dynamics 

(Figs. 5.8, Fig. 5.9) all are in a good agreement with the numerical results, 

presented in the previous subsection. 

x 

xv 

x 

xv 
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FIG. 5.7. Typical train of spikes VC(t) from the analogue circuit without control. 

 

 

FIG. 5.8. Output voltage VC(t) (top trace) and control signal VR* (bottom trace) 

when control is switched on between two spikes. The control signal display is 

lowered for the sake of clarity. 

 

 

FIG. 5.9. Output voltage VC(t) (top trace) and control signal VR* (bottom trace) 

when control is switched on during a spike. The control signal display is lowered 

for the sake of clarity. 

 



112 

 

5.2. Synchrony in array of coupled FHN oscillators [5] 

Mathematical model. The array is described by a set of 2N linearly coupled 

ordinary nonlinear differential equations: 

.,...,2,1,
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  (5.12) 

Here k is the coupling coefficient, N is the number of cells, the f(xi), similarly to 

Section (5.1), is given by a piece-wise linear approximation: 
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In Eq. (5.12) xm is the mean value of the variables xi: 
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The constant bias ci in Eq. (5.12) is intentionally set different for every individual 

oscillator to make them non-identical units. 

Numerical simulation. Numerical results for N = 30, a = 3.4, b = 0.15, ci = 3–

0.05(i1), d = 60, g = 3.4 are presented in Fig. 5.10 and Fig. 5.11. 

 

 

 
 

FIG. 5.10. Nonsynchronized case (k = 0). (Left) phase portrait xi(t) vs. xj(t), ij. 

(Right) Poincaré section, xi(t) vs. xj(t) at xl(t) = 1, dxl(t)/dt<0, ijl. 
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FIG. 5.11. Synchronized case, k=0.7. (Ellipse) phase portrait xi(t) vs. xj(t), ij. 

(Dot) Poincaré section xi(t) vs. xj(t) at xl(t)=1, dxl(t)/dt<0, ijl. 

 

 

Analogue electrical circuit. An array of N (i =1,2,…, N) mean-field coupled 

(star configuration) FHN oscillators is sketched in Fig. 5.12. 

General view of the hardware analogue circuit is shown in Fig. 5.13. The 

construction contains four floors. The electronic oscillators are arranged on the 

three floors (10 oscillators on each floor), whereas the all coupling resistors R* 

are placed on one floor. Typical output waveform from an individual oscillator, 

incorporated in an array, is presented in Fig. 5.14. 

 

 

 

FIG. 5.12. Block diagram of FHN oscillators coupled via resistors R* to the 

coupling node CN. Coupling resistor R* is shown in the circuit diagram of a 

single oscillator in Appendix 4. 

 

 
 

FIG. 5.13. Hardware of the array of 30 FHN oscillators. Dimensions W×H×D= 

270 mm × 85 mm × 65 mm. 
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FIG. 5.14. Output waveform from an individual FHN oscillator in an array Vi(t). 

Spike amplitude 3 V, inter-spike interval 80 µs, frequency 12 kHz. 

Phase portraits and Poincaré sections. In the case of weak coupling (large R*), 

the oscillators are spiking independently at their individual frequencies. The 

intricate phase portrait and multi-dot Poincaré section (Fig. 5.15) do confirm this 

statement. In all analogue simulations the exposure time of the camera was fixed 

at 1/8 s. For the spiking frequency 12 kHz this yielded about 1500 snapped 

periods of the waveforms in the phase portraits and about 1500 snapped dots in 

the Poincaré sections. 

For strong coupling (small R*) oscillators become fully synchronized, i.e. 

phase-locked, as is evident from the phase portrait, displaying a simple ellipse 

and a single dot in the Poincaré section (Fig. 5.16). 

 

FIG. 5.15. Nonsynchronized case. (Left) phase portrait Vi(t) vs. Vj(t), i≠j. (Right) 

Poincaré section, Vi(t) vs. Vj(t) at Vl(t)=1 V, dVl(t)/dt<0, i≠j≠l. 

 

 

FIG. 5.16. Synchronized case. (Left) phase portrait Vi(t) vs. Vj(t), i≠j. 

(Right) Poincaré section, Vi(t) vs. Vj(t) at Vl(t)=1 V, dVl(t)/dt<0, i≠j≠l. 
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We note that in order to display analogue simulation results, presented in 

Fig. 5.15 and Fig.  5.16 from the hardware circuit in Fig. 5.13, one needs some 

special electronic equipment. Namely, an oscilloscope with an X input 

(horizontal channel) and an Y input (vertical channel) is required to take the 

phase portraits. An X/Y channelled oscilloscope with an additional feature of 

external beam modulation (“Z input”) is necessary (along with an external pulse 

generator) to plot the Poincaré sections. However, this equipment may not be 

available in a standard laboratory. 

Multi-channel method. The problem can be partially got around, using a 

standard at least 2-channel oscilloscope for displaying the waveforms Vi(t) and 

Vj(t) from the pairs of oscillators, i≠j, as shown in Fig. 5.17 and Fig. 5.18. The 

internal horizontal sweep saw-tooth generator of the oscilloscope should be 

synchronized with one of the waveform, either with Vi(t) or with Vj(t). The 

waveforms can be inspected visually on the screen of the oscilloscope and 

snapshots can be taken photographically or by means of a camera, if necessary. 

 

 

 

 

 

 

FIG. 5.17. Non-synchronized case: Vi(t) (top) and Vj(t) (bottom), i≠j. 

Oscilloscope is synchronized internally with Vi(t). 

 

 

 

 

 

 

FIG. 5.18. Synchronized case: Vi(t) (top) and Vj(t) (bottom), i≠j. Oscilloscope is 

synchronized internally with Vi(t). 
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However, this method (also the previously described phase portraits and 

the Poincaré sections techniques) requires checking the state of all different pairs 

of the oscillators, i≠j. It may be time consuming procedure, since there is a lot of 

different pairs in the network of N oscillators, given by the number of 

combinations: 
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In the case of N = 30 there are 435 pairs. 

Mean voltage method. Therefore we propose one more simple alternative 

technique for checking the network, whether it is in either nonsynchronized or 

synchronized state. One needs a simple single-channel oscilloscope only. 

Instead of checking all the 435 pairs, the method makes use of a single 

measurement only. Examples are shown in Fig. 5.19 and Fig. 5.20. In the non-

synchronized case the mean-field voltage Vm(t) taken from the node CN 

(Fig. 5.12) has relatively low amplitude (<1 V). Moreover, the oscilloscope 

cannot be synchronized with Vm(t) (Fig. 5.19). In contrast, the synchronized 

Vm(t) has relatively high amplitude (>10 V), exhibits simple spiking periodic 

waveform, similar to that of an individual oscillator (Fig. 5.14). Therefore Vm(t) 

is easily synchronized on the screen of the oscilloscope (Fig. 5.20). 

 

 

 

 

 

FIG. 5.19. Nonsynchronized case: mean voltage Vm(t). Oscilloscope is unable 

to synchronize with the non-periodic waveform. 

 

 

 

 

 

 

 

FIG. 5.20. Synchronized case: mean voltage Vm(t). Oscilloscope easily 

synchronizes with this simple periodic waveform. 
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5.3. Desynchronization of coupled FHN oscillators using mean field 

nullifying and repulsive coupling [6,11] 

In this Section two techniques are discussed, which can destroy synchrony in an 

array of coupled oscillators. To achieve the goal, the mean field is either 

artificially nullified or fed back into the array with a negative sign. 

To be specific, we investigate an array of the mean-field coupled FHN 

oscillators (Fig. 5.21), which imitate the dynamics of spiking neurons. The 

considered feedback methods require neither the knowledge of dynamics of the 

individual oscillators, nor the access to their individual variables xi and 

parameters.  

 

 

 

 

 

FIG. 5.21. Array of the mean-field coupled oscillators 1,2,…, N. NIC is the 

negative impedance converter. We assume, that the CN is not accessible directly 

from the outside, but via some passive resistance network, represented here for 

simplicity by an equivalent resistance Rg. DN is an accessible damping node. 

The feedback controller NIC is coupled to DN. 

 

An array of the mean-field coupled FHN (symmetric version) non-identical 

oscillators is given by 
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Variables xi and yi correspond to the membrane potential and the recovery 

variable [FitzHugh, 1961], respectively (in the original paper by FitzHugh the 

equations have slightly different form), k is the coupling coefficient. Note that 

the parameter ci is different for each individual oscillator, thus making them non-

identical units. In Eq. (5.16), the xm is the mean value 
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NIC 



118 

 

Therefore, the set of oscillators given by Eq. (5.16) is called mean-field coupled 

array. This type of coupling is widely known to give the synchronization effect. 

Following the paper by Tsimring et al. (2005), we call the non-identical 

oscillators synchronized or phase-locked, if they have fixed (not necessarily 

zero) phase differences. There are many other coupling possibilities, described 

in literature, yielding synchronous behaviour of periodic and chaotic oscillators, 

including the FHN systems. We just mention here synchronization of two 

weakly coupled chaotic FHN oscillators [Aqil et al. 2012] (chaotic oscillations 

can appear in the FHN system due to the periodic driving force), where 

synchrony is achieved by means of applying appropriate external input(s). 

Here we demonstrate that using the feedback control of the mean field it is 

possible either to destroy the synchronized state of the individual oscillators, 

and/or to diminish essentially their mean field. To achieve the goal, we replace 

in Eq. (5.16) the xm with the controlled mean 
*
mx , which is found from an 

algebraic equation which follows from the Kirchhoff’s law:  


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mmi xxxk
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** ,0)(     (5.18) 

where =R3/(Rg+RCtrl) is a parameter of the external control, R3 is the feedback 

resistor of FHN oscillator (see Fig. A7 in Appendix A4) RCtrl is the input 

resistance of the NIC (RCtrl <0). It follows from Eq. (5.18) that 

.*
mm x

kN

kN
x


      (5.19) 

Without the control (NIC is disconnected from DN; formally RCtrl, =0), the 

,*
mm xx   as expected. There are two special and important cases of control. 

Case 1, mean field nullifying: if RCtrl = Rg, then kN . Thus, the controlled 

mean ,0* mx  i.e., coupling is nullified. We note the difference between the 

uncoupled oscillators (k = 0) and the nullified coupling ( 0* mx ): the presence 

of terms –kxi in the latter case. However, for k < 1, these terms involve only 

small local damping and do not cause any synchronization of the array. 
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Case 2, repulsive coupling. If < –kN, then the controlled mean 
*
mx  becomes 

negative. Specifically, at = –2kN the mm xx *
. This special case of 

mm
xx *

is called the repulsive coupling. It has been considered analytically and 

numerically for the array of simple one-dimensional phase oscillators (the 

Kuramoto model) [Tsimring et al., 2005, Hong et al., 2011]. Below, we present 

the results, both numerical and experimental, for a more complicated model, 

namely, array of two-dimensional FHN oscillators. 

Numerical simulation. Results, obtained from the Eq. (5.16) with 
*
mm xx  , 

are shown in Fig. 5.22. The individual parameters ci range from –5.0 to –4.5 with 

the increment ci+1=ci +0.05, where c1= –5. 

 

FIG. 5.22. Array of coupled FHN oscillators, N = 30,  = 0.3, b = 0.1, k = 0.1. 

(a) and (b) phase portraits, x30 vs. x1. (c) and (d) waveforms xm(t). (a) and (c) 

uncontrolled array, = 0. (b) and (d) controlled array, = –2kN = –6. 



120 

 

Phase portrait (x1, x30) in Fig. 5.22a and all other phase portraits xi, xji (not 

plotted in Fig. 5.22) demonstrate synchronization effect of the all oscillators in 

the uncontrolled array (k  0, xm>0). The complicated phase portrait shown in 

Fig. 5.22b, evidences that the controlled oscillators (k0, mm xx *
) are not 

phase synchronized. The high amplitude of the mean-field variable xm 

(Fig. 5.22c), observed in the case of the synchronized oscillators (= 0), 

decreases drastically, by a factor of more than 10 (Fig. 5.22d), when control is 

applied (= 2kN). 

Qualitatively similar numerical results obtained using the ELECTRONICS 

WORKBENCH PROFESSIONAL software from the asymmetric FHN model 

introduced in Sec. 5.1 and Sec. 5.2. Moreover, qualitative results do not depend 

on the number of the oscillators coupled in the array (Fig. 5.23). 

 

 

 

 

FIG. 5.23. Typical waveforms obtained from the CN. (a) Synchronized 

oscillators (N = 3 and N = 30), amplitude about 1.5V. (b) Desynchronized 

oscillators (N = 3), amplitude about 3 mV. (c) Desynchronized oscillators 

(N = 30), amplitude about 3 mV. 

 

In addition, we investigated the dependence of voltage at the CN on the 

resistance RCtrl of the controller NIC (Fig. 5.24). Desynchronization can be 

achieved in a relatively large range of RN. 

(a) 

(b) 

(c) 
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FIG. 5.24. Voltage at the CN as a function of resistor RN  RCtrl of the controller 

(RCtrl < 0), N = 3. Vertical line at 0.875 divides the synchronized mode (on the 

left) and the desynchronized mode (on the right) of oscillations. The normalized 

mean voltage observed at the resonance value |RN|=Rg is about 0.002 in 

agreement with the amplitude 3 mV in Fig. 5.23b and Fig. 5.23c. 

 

Experimental results. Experiments with the hardware array (Fig. 5.25) of 

coupled oscillators confirm the main features demonstrated by means of 

numerical simulations. Single loop in the phase portrait (Fig. 5.25a) shows that 

the oscillators are synchronized in the uncontrolled array (= 0). The multi-loop 

phase portrait (Fig. 5.25b), in contrast, indicates that the oscillators are not in 

synchrony in the controlled array (= 6). Also, the high/low amplitudes of the 

mean-field voltage Vm are typical characteristics of the uncontrolled/controlled 

arrays, (Fig. 5.25c and Fig. 5.25d), respectively.  

Also, the high/low amplitudes of the mean-field voltage Vm are typical for 

the uncontrolled/controlled arrays (Fig. 5.25c and Fig. 5.25d, respectively). The 

control parameter = 6, introduced by the controller, corresponds to = –2kN 

and provides mm xx *
, i.e., implements experimentally the repulsive coupling 

technique, considered theoretically in [Tsimring et al., 2005]. 

The results for the case of the nullified mean ( 0, *  mxkN ), look the 

same as for = –6 (Fig. 5.25b and Fig. 5.25d). 

Spectral analysis. Using an analogue spectrum analyser, we have taken the 

power spectra of the mean-field voltage Vm at four different values of the control 

parameter  (Fig. 5.26). Depending on , several different situations are 

observed. 
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FIG. 5.25. Experimental results from the circuit in Fig. 5.21. (a), (b) phase 

portraits, V30 vs. V1. (c), (d) waveforms of the mean voltage Vm. (a), (c) 

uncontrolled array, = 0. (b), (d) controlled array, = –6. For the circuit element 

values, used in the experiment, the coupling coefficient k0.1; for N=30, kN=3. 

 

Situation 1: =0 (no control), all the cells are synchronized due to the 

positive (attractive) mean field Vm and oscillate, as expected, at the same 

frequency fm=12 kHz, which is indicated by a single discrete line in Fig. 5.26a. 

Here, the 2nd harmonic 2fm = 24 kHz and the higher harmonics of the fm are out 

of the spectral range 11 to 16 kHz.  

Situation 2:  >>kN (nullified mean field, 0* mV ), all the cells are 

desynchronized and oscillate at their natural frequencies, discretely distributed 

from 12.3 to 13.8 kHz in the narrow band of approximately 1.5 kHz. In Fig. 

5.26b, not all the 30 lines are distinguishable, because some cells oscillate at 

frequencies separated by only 1 or 2 Hz, i.e., less than the spectral resolution of 

the analyser (3 Hz). The mean-field voltage Vm is low, like in Fig. 5.25d. 
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FIG. 5.26. Experimental power spectra of the mean-field voltage Vm in the range 

of 11–16 kHz with spectral resolution of 3 Hz at different control parameters . 

(a) uncontrolled, = 0, fm = 12.0 kHz (since the mean-field Vm is high, the signal 

has been attenuated by 30 dB), (b)–(d) controlled array; (b) nullified mean-field 

voltage Vm
*,  , fm = 12.3… 13.8 kHz, (c) and (d) repulsive control; 

(c) = –6, (d) = –5, fm =13.3 kHz. 

Situation 3: kN , e.g., at 6 , the individual oscillators are also 

desynchronized, however, their frequencies are continuously spread in the 

“broadband” spectrum (Fig. 5.26c), typical to chaotic signals. The Vm is low (Fig. 

5.25d). 
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Situation 4: 35  , the cells become synchronized again as 

evidenced by a single spectral line in Fig. 5.26d. The spectral line is shifted 

towards slightly higher frequencies, compared with the case of the uncontrolled 

array (Fig. 5.26a). However, in contrast to the uncontrolled array, the mean-field 

voltage Vm remains low, like in Fig. 5.25d. This indicates that the oscillators are 

in antiphase states. More precisely, the phases are distributed on the interval 

between 0 and 2π. 

5.4. Inhibition of spikes in an array of FHN oscillators by means of external 

periodic forcing [14] 

External periodic forcing can inhibit spikes in an array of coupled oscillators. To 

be specific, an array of the mean-field coupled electronic FHN oscillators [Ratas 

& Pyragas, 2012; Ratas, 2015], also known in literature as the Bonhoeffer–van 

der Pol oscillators [Rabinovitch et al., 1994; 2015], is considered. The 

corresponding diagram is presented in Fig. 5.27, where CN is a coupling node. 

It is assumed, that the CN is not accessible directly from the outside, but via 

some passive resistance network, represented here for simplicity by an 

equivalent resistance Rg. DN is an accessible damping node. 

 

FIG. 5.27. Circuit diagrams: array of mean-field coupled oscillators. CN is a 

coupling node, DN is a damping node. 

 

Experimental results. In the experiments we employed a hardware array with 

N=30, described in details (without any external control) in Section 5.2. The 

external inhibitory AC current Iinh(t)=IAsin(2ft) was injected from an external 

sine wave generator via the damping node DN. For the best performance it is 

necessary to choose an appropriate drive amplitude IA and frequency f. The f 

should be much higher than the natural frequency f0 of the spiking oscillators 
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(f012 kHz). The experimental results are shown in Fig. 5.28 and Fig. 5.29, by 

the waveforms and the phase portraits (in classical electronics called the 

Lissajous figures). Here the <VC> is the mean-field voltage of the voltages VCi 

from the individual oscillators (i=1,2…, 30). The threshold amplitude of the 

inhibitory current is I*
A=50 mA, the optimal frequency is f 150 kHz, providing 

the lowest threshold. The time average of the high frequency non-spiking 

voltage <VC> (right hand side of the bottom plot), taken over the period (T=1/f) 

of the external current, is V18.0CU . It is non-zero value because of the DC 

bias V0= 15 V (Fig. A7). The CU  is noticeably different from the natural 

equilibrium <V0C>= 0.27 V, measured in a non-oscillatory mode (all coils L are 

short-circuited).  

 

 

FIG. 5.28. Experimental waveforms of the external periodic current Iinh and the 

mean-field voltage of the array <VC>. f =150 kHz. 

 

Evidently, the self-sustained low frequency (f012 kHz) spikes of about 

4 V height are totally suppressed, when the inhibitory current IAIA
*=50 mA is 

injected. However, we have a finite (10) higher frequency artefact. The 

voltage oscillates around the time average CU  with the amplitude of about 0.4 V 

at the external drive frequency f. 

Fine diagonals in Fig. 5.29, [VC30,<VC>] indicate, that the individual 

oscillator No.30 is strongly synchronized with the mean-field of the array. Other 

oscillators, No.1 to No.29 were also checked experimentally by means of the 

phase portraits [VCi,<VC>] and gave similar result. 
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FIG. 5.29. Phase portraits [VC30,<VC>]. (a) spiking oscillators (no control, IA=0), 

(b) non-spiking oscillators, IA=50 mA, f=150 kHz. Small cross in (b) marks the 

averages of the voltages ],[ 30 CC UU  taken over the period of the external 

inhibitory current Iinh(t). They are at about [0.18 V,0.18 V]. Note different 

position of the diagonal also different horizontal and vertical scales in (b), 

compared to (a). 

 

Moreover, the artefact voltage continues to change (Fig. 5.30), when the 

external drive amplitude IA is increased above the threshold value I*
A (the 

amplitude IA should be somewhat higher than the threshold to guarantee robust 

inhibition). For example, at a double drive amplitude, IA/IA
*=2 the average 

voltage changes its sign. Similar behaviour was observed, but not emphasized, 

earlier in the numerically simulated bifurcation diagram for the Hodgkin 

Huxley single neuron model [Pyragas et.al. 2013]. 

 

 

FIG. 5.30. Time average of the mean-field voltage CU , taken over the period 

(T=1/f) of the external inhibitory current Iinh, as a function of the normalized 

amplitude IA/IA
* of the external current. IA

*=50 mA. Extrapolation to zero control 

(IA=0) provides a value of CU  close to the natural equilibrium <V0C>=0.27 V 

(dashed line in the plot). 
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Mathematical model. We consider Eq. (5.12) with and additional external 

periodic drive: 
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Here xm is given by formula (5.17). The f(xi) in (5.20) is a nonlinear function, 

presented by a piecewise linear function, the same as Eq. (5.13): 
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Note, that due to d >>g the f(xi) is an essentially asymmetric function in contrast 

to the common FHN cubic parabola x3. The DC bias parameters ci are 

intentionally set different for each individual oscillator, thus making them non-

identical units. 

Numerical results. Integration of Eq. 5.20 has been performed using the 

Wolfram MATHEMATICA package. The numerical results are presented in 

Fig. 5.30. They are in a good agreement with the experimental plots in Fig. 5.28. 

The mean-field variable xm does not converge to a constant equilibrium, but 

oscillates around it at the drive frequency. Strictly speaking, the non-

autonomous (externally driven) dynamical systems, e.g. given by Eq. (5.20), do 

not possess equilibrium states at all.  

 

 
 

FIG. 5.31. Simulated waveforms of the inhibitory current Asin(t) and the 

mean-field voltage <x>xm from Eq. (5.20), N = 30. A = 5.1,  = 6.28, a = 3.4, 

b = 0.16, ci = 44/(24+i), i = 1,2,…, 30, d = 60, g = 3.4, k = 3.4. The external 

inhibitory term Asin(t) is activated at t = 100. 
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Only in the case of high frequency (f >>f0) drive we can introduce the 

average values, taken over the external period. These averages more or less are 

related to the equilibrium states. 

 

Mean-field approach. Linear analysis of Eq. (5.20) is essentially simplified, if 

we consider the mean-field variables only, obtained by direct averaging the xi, 

yi, f(xi), and ci in Eq. (5.20). The coupling term k<(xmxi)> = k(<xm><xi>) = 

k(xmxm) = 0 in Eq. (5.20) is nullified independently on the value of k. Thus, we 

obtain differential equations, which do not describe full dynamics of the mean 

field, but provide its equilibrium. The steady-state equations read: 
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We assume, that 1  x0i  1. According to (5.21) this leads to f(x0i) = 0 and 

<f(x0i)> = 0. In the absence of the external drive (A = 0) and for ab < 1, 

|ci|  1/ba) the equilibrium coordinates: 

.,)1( 000 bxyabcbx      (5.23) 

Stability analysis (similar to the case of a single oscillator in Sec. 5.1) 

shows, that for and a > b the equilibrium (5.23) is unstable (the real parts of the 

both eigenvalues are positive). If in addition to a > b the sum a+b > 2, then the 

eigenvalues are real (no imaginary parts). Thus, the equilibrium (5.23) is an 

unstable node. Whereas the external periodic forcing (A  0), similarly to the 

mechanical pendulum [Thomsen et al. 2003], can stabilize the originally 

unstable equilibrium. 

For the set of the parameter values, employed in numerical simulations: 

a = 3.4, b = 0.16, and ci = 44/(24+i), the equilibrium coordinates, given by 

(5.23), have the following values: <x0> = 0.41, <y0> = 2.57. Using the 

definitions of the dimensionless variables <x0> = <V0C>/V* and <y0>=  <I0L>/V*, 

where V* 0.6 V, we estimate the means of the FHN circuit dimensional 

variables: <V0C>  0.25 V, <I0L> 1 mA. The estimated equilibrium voltage 

<V0C> is close to its experimental value 0.27 V. 
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5.5. Stabilizing an array of coupled FHN oscillators using stable filter 

control technique [13,15,21,22] 

In this Section, an alternative method and its electronic implementation to damp 

the spiking FHN type oscillators, more specifically to stabilize their unstable 

equilibrium states, is described. 

The general set-up for damping oscillations in an array is sketched in 

Fig. 5.32, where CN is a coupling node, in general, not accessible from outside 

directly, but via effective resistance Rg. The individual oscillators are coupled to 

the CN via resistors R*, not shown in the diagram (for R* see Fig. A7). DN is an 

accessible damping node.  

 

 

 

 

FIG. 5.32. Block diagram of coupled oscillators with negative impedance 

converter (NIC) applied to the array. NIC is shown in Appendix 5. 

Equations and numerical results. An individual FHN type asymmetric 

oscillator is described by in Sec. 5.1. An array of N mean-field coupled FHN 

oscillators is discussed in Sec. 5.2: 
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Here xm is the mean value of the variables xi, the ki are the coupling coefficients, 

further for simplicity assumed to be all equal ki = k. 

 In the case the controller is applied to the array the equations read: 
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Here z is the dimensionless voltage across the capacitor C0 of the controller, f 

is the cut-off frequency of the filter, composed of R* and C0. In the case the 

controller is switched off (formally, C0 = 0), the f   and consequently z = xm, 

NIC 
C0 
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as expected. Numerical simulation results are presented in Fig. 5.33 and 

Fig. 5.34. 

 

 
FIG. 5.33. Stabilizing unstable equilibrium in the array of coupled FHN 

oscillators from Eq. (5.25). N = 3, a = 4, b = 0.1, c1 = 3.4, c2 = 3.2, c3 = 3.0, 

d = 70, g = 4, k = 5, f = 0.04. (a) Mean value xm. (b) Control term zxm. 

Controller is switched on at t = 100. 

 

 

 

 

 

 

 

 

FIG. 5.34. Stabilizing unstable equilibrium in the array of coupled FHN 

oscillators from Eq. (5.25). N = 24. a = 3.4, b = 0.16, ci = 43.5/(24+i), d = 60, 

g = 3.4, k = 3.4, f = 0.15. (a) Mean value xm. (b) Control term zxm. Controller 

is switched on at t = 100. 

 

In addition, the positions of equilibrium points x0i of individual oscillators 

were calculated (Fig. 5.35).  
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FIG. 5.35. Equilibrium point spectra x0i (i = 1, 2 ,… 24). (a) nonsynchronized 

(uncoupled) oscillators, (b) stabilized oscillators from numerical solution of 

(5.25) at t = 200. Parameters are the same as in the caption of Fig. 5.34. The 

higher and thicker lines in the spectra indicate the mean field fixed points x0m. 
 

Experimental results. Experiments have been performed using an array, 

composed of N mean-field coupled electronic FHN type asymmetric oscillators. 

The snapshots of the experimental signals are shown in Fig. 5.36.  

 

FIG. 5.36. (a) Outputs from the synchronized oscillators O1, O2, O3 (N = 3) and 

mean voltage <O> at the coupling node CN. Spike height  2 V, period  0.7 ms. 

 

The signals in Fig. 5.36 and the closed loops in the phase portraits 

(Fig. 5.37) indicate that the coupled oscillators are all phase-synchronized.  

 

 

 

 

 

FIG. 5.37. Phase portraits from the individual oscillators. N = 3. 

 

X0m 

X0m 
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The stabilization experiments, shown in Fig. 5.38 and Fig. 5.39, are in a 

very good agreement with the numerical simulation, presented in Fig. 5.33 and 

Fig. 5.34. 

 

 

FIG. 5.38. Stabilization of the array N = 3. Mean-field voltage <O> and control 

signal VDNVCN. Spike height 2 V, period  0.7 ms. R* = 470 , Rg = 1 k, 

R03 = 1 k (Rin2 = 1 k; Rg + Rin = 0). C0 = 2.2 F. 

 

 

 
 

FIG. 5.39. Stabilization of the array N = 30. Experimental waveforms, the 

mean-field voltage <VC> and the control current Ictrl. The arrow indicates the 

time moment, when the control is switched on. R* = 510 , Rg = 100 , 

R03 = 100  (Rin2 = 100 ; Rg + Rin = 0). C0 = 2.2 F. 

 

 

Remark. Concerning possible application of the developed feedback methods of 

the desynchronization and stabilization (Sec.5.3 and Sec.5.5) to real neuronal 

systems, separate electrodes for recording signals and feedback application 

could be used [Pyragas et al., 2007; Tukhlina et al., 2007]. An alternative 

solution is to use act-and-wait algorithm [Ratas & Pyragas, 2014]. 
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MAIN RESULTS AND CONCLUSIONS 

1. The efficiency of the Pyragas’ unstable filter control to switch the motion-

less dynamical systems from the stable equilibrium states, e.g. spirals or nodes, 

to unknown unstable equilibrium states, specifically the saddles, has been 

demonstrated.  

2. An adaptive control technique for tracking and stabilizing unknown and 

slowly varying saddle equilibrium has been developed. The technique employs 

an unstable high-pass filter. Using high-pass filter instead of common low-pass 

filter makes the controller technically simpler.  

3. An analogue electronic controller using the instrumentation amplifiers in-

stead of the operational amplifiers for stabilization of equilibrium states has 

been designed and built. It can be easily switched between a stable and an 

unstable modes of operation for stabilizing either unstable spirals/nodes or 

saddles, respectively.  

4. A synergetic control method, using unstable and stable filters operating in 

parallel, has been proved to stabilize unknown and slowly varying saddles of 

conservative and weakly damped dissipative dynamical systems. 

5. Stabilization of saddles under influence of inertia in the feedback loop by 

means of stable and unstable filters operating in parallel has been described.  

6. A synergetic method, robust to the influence of unknown external forces, for 

stabilizing unknown saddle equilibrium by means of linearly combined 

unstable and stable low-pass filter techniques, has been described.  

7. A synergetic technique for stabilizing unknown saddle equilibrium by means 

of unstable filter control, supported by the derivative control, has been 

suggested.  

8. Zeroth-order proportional feedback technique for stabilizing equilibrium of 

systems with uncertain dynamics has been proposed. The technique employs 

either artificially created stable equilibrium or natural stable equilibrium to find 

the coordinates of the unstable equilibrium.  

9. Three-step adaptive proportional feedback method for stabilizing unknown 

saddles has been proposed. The technique makes use of the artificially created 
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two stable equilibrium states to find the coordinates of the inherent unstable 

equilibrium state.  

10. An adaptive feedback method for stabilizing unknown saddle equilibrium, 

employing Heaviside nonlinear function has been described. The analogue 

electronic controller uses a comparator as a nonlinear unit.  

11. The FitzHughNagumo (FHN) type spiking neuron model, equipped with 

an asymmetric activation function has been investigated. The first-order stable 

filter, coupled to a system, has been demonstrated to inhibit spikes, more 

specifically to stabilize the unstable equilibrium.  

12. An electrical network, consisting of 30 FHN oscillators, has been designed, 

built and investigated. Synchrony in the array of the mean-field coupled 

oscillators has been demonstrated.  

13. An implementation of an analogue feedback controller, using negative 

impedance converter, for controlling synchrony of the mean-field coupled 

FHN oscillators has been described. If the mean field is artificially nullified, 

then synchrony is broken up. If the mean field is fed back with a negative sign 

(repulsive coupling), its value is essentially decreased.  

14. Inhibition of spikes in an array of 30 mean-field coupled FHN oscillators 

by external periodic forcing has been studied.  

15. The stable filter control technique has been developed for stabilizing 

unstable equilibrium in an array of mean-field coupled FHN oscillators. 
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PAGRINDINIAI REZULTATAI IR IŠVADOS 

1. Pademonstruotas Pyrago valdymo nestabiliuoju filtru metodo efektyvumas, 

perjungiant nejudančią dinaminę sistemą iš stabiliosios pusiausvyros, pvz., 

spiralės arba mazgo, į nežinomą nestabiliąją pusiausvyrą, pvz., balną. 

2. Sukurtas adaptyvusis valdiklis nežinomai ir lėtai kintančiai balno 

pusiausvyrai aptikti ir stabilizuoti. Valdiklis remiasi nestabiliuoju aukštųjų 

dažnių filtru. Naudojant aukštųjų dažnių filtrą vietoje įprasto žemųjų dažnių 

filtro valdiklis tampa techniškai paprastesnis. 

3. Panaudojant instrumentinius stiprintuvus vietoje įprastinių operacinių 

stiprintuvų sukurtas ir sumontuotas analoginis elektroninis valdiklis įvairioms 

pusiausvyros būsenoms stabilizuoti. Valdiklį lengva perjungti iš stabiliojo 

režimo, skirto nestabilioms spiralėms ir mazgams stabilizuoti, į nestabilųjį 

režimą, tinkantį balnams stabilizuoti. 

4. Aprašytas sinerginis valdymo metodas, naudojantis nestabilųjį ir stabilųjį 

filtrus, veikiančius lygiagrečiai. Valdiklis stabilizuoja nežinomus ir lėtai 

kintančius balnus konservatyviose ir silpnai slopstančiose disipatyviose 

dinaminėse sistemose. 

5. Stabilųjį ir nestabilųjį filtrus, veikiančius lygiagrečiai, pasiūlyta balnams 

stabilizuoti, esant signalo inercijai grįžtamojo ryšio grandinėje. 

6. Aprašytas sinerginis nežinomo balno pusiausvyros stabilizavimo metodas, 

atsparus išorinėms nežinomoms jėgoms, naudojantis tarpusavyje tiesiškai 

sujungtus stabilųjį ir nestabilųjį žemųjų dažnių filtrus. 

7. Pasiūlytas sinerginis metodas, skirtas nežinomo balno pusiausvyrai 

stabilizuoti, naudojantis valdymą nestabiliuoju filtru kartu su išvestinės 

grįžtamuoju ryšiu. 

8. Pasiūlytas nulinės eilės proporcinio grįžtamojo ryšio metodas, skirtas 

pusiausvyros būsenoms stabilizuoti sistemose su iš dalies žinoma dinamika. 

Nestabilios pusiausvyros koordinačių nustatymui naudojama arba dirbtinai 

sukurta stabilioji pusiausvyra, arba natūrali stabilioji pusiausvyra.  

9. Pasiūlytas trijų pakopų adaptyvusis proporcinis grįžtamojo ryšio metodas 

nežinomiems balnams stabilizuoti. Nestabiliosios pusiausvyros koordinatės 
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apskaičiuojamos, panaudojant dvi dirbtinai sukurtas stabiliosios pusiausvyros 

būsenas. 

10. Aprašytas adaptyvusis grįžtamojo ryšio metodas nežinomai balno pusiau-

svyrai stabilizuoti, naudojantis Heaviside laiptinę funkciją. Elektroniniame 

valdiklyje pritaikyti įtampos komparatoriai. 

11. Ištirtas FitzHughNagumo (FHN) neurono modelis su asimetrine 

aktyvacijos funkcija. Stabilusis pirmos eilės filtras, prijungtas prie sistemos, 

slopina impulsus, o būtent stabilizuoja nestabiliąją pusiausvyrą. 

12. Suprojektuotas, sumontuotas ir ištirtas masyvas, jungiantis 30 FHN 

osciliatorių. Pademonstruota vidutiniu lauku susietų osciliatorių sinchronija. 

13. Aprašytas analoginis grįžtamojo ryšio valdiklis, panaudojantis neigiamo 

impedanso keitiklį ir skirtas vidutiniu lauku susietųjų FHN osciliatorių 

sinchronijai valdyti. Jei vidutinis laukas dirbtinai panaikinamas (angl. nullified 

mean field), osciliatorių sinchronija išyra. Jei vidutinis laukas grąžinamas su 

neigiamu ženklu, t. y. įgyvendinamas atstumiantysis sujungimas (angl. 

repulsive coupling), vidutinio lauko dydis žymiai sumažėja. 

14. Ištirtas impulsų slopinimas išorine periodine jėga 30-ies vidutiniu lauku 

susietų FHN osciliatorių masyve. 

15. Valdymo stabiliuoju filtru metodas pritaikytas nestabiliosios pusiausvyros 

būsenoms stabilizuoti susietųjų FHN osciliatorių masyve. 
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APPENDIXES 

ELECTRONIC ANALOGS OF THE DYNAMICAL SYSTEMS AND 

ELECTRONIC CONTROLLERS 

Introduction 

Appendixes (A1 to A5) include the circuit diagrams and descriptions of the 

electronic analogues of the investigated dynamical systems: the Duffing–

Holmes (DH) oscillator (A1), the Lorenz system (A2), the Lagrange point L2 

of the Sun–Earth system (A3), the FitzHugh–Nagumo (FHN) oscillator (A4). 

The electronic controllers are presented in A5. 

There are many examples in science and engineering where analogue 

electrical circuits have been used to model temporal evolution of dynamical 

systems. This modelling method has been applied to diverse disciplines and 

areas. Mackey and Glass (MG) [1977] proposed a delay differential equation to 

describe heamatological disorders. The MG model has a simple electronic 

analogue [Namajūnas et al., 1995a]. An electrical circuit has been suggested to 

imitate the chaotic behaviour of a periodically forced mechanical system [Lai 

et al., 2005], described by the DH ordinary differential equations. Several 

electrical circuits have been proposed to model the dynamics of neurons, e.g. 

[Binczak et al., 2003]. A very interesting solution has been suggested to model 

mammalian cochlea using high order electrical circuit [Martignoli et al., 2007]. 

It should be emphasized that design of such electrical circuits is not for its 

own purpose. The analogue circuits mentioned above have been employed for 

testing various methods developed to control dynamics of the systems, 

specifically to stabilize equilibrium states [Namajūnas et al., 1995a; 1997] and 

periodic orbits in chaotic systems [Tamaševičius et al., 2007a,b]. In addition, 

experiments with electronic analogues can help to better understand the 

mechanisms behind the behaviours of complex systems, e.g. the pitch in 

human perception of the sound [Martignoli et al., 2010]. Moreover, the 

electronic cochlea provides an efficient design of an artificial hearing sensor 

[Stoop et al., 2007]. 
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One can argue that there is no difference between an analogue electrical 

circuit, imitating a dynamical system, and an analogue computer, solving 

corresponding differential equations. We note that any analogue computer is a 

standard collection of the following main blocks: inverting RC integrators, 

inverting adders, invertors, inverting and noninverting amplifiers, multipliers, 

and piecewise linear nonlinear units. Programming the differential equations 

on an analogue computer in the essence is simple wiring these units according 

to strictly predetermined rules. Differences between the “intrinsically” 

analogue electrical circuits, imitating behaviour of dynamical systems, and the 

conventional analogue computers were discussed by Matsumoto, Chua and 

Komuro more than 30 years ago [Matsumoto et al., 1985]. In this regard, it 

makes sense to present here an excerpt from their paper: “… the circuit … is 

not an analogue computer in the sense that its building blocks are not 

integrators. They are ordinary circuit elements; namely, resistors, inductors and 

capacitors. Both current and voltage of each circuit element play a crucial role 

in the dynamics of the circuit. On the contrary, the variables in a typical 

analogue computer are merely node voltages of the capacitor-integrator 

building-block modules, where the circuit current is completely irrelevant in 

the circuit’s dynamic operation. Hence it would be misleading to confuse our 

circuit as an analogue computer … ” 

 

A1. Electronic analog of the DuffingHolmes (DH) system [1] 

In this Appendix, we describe an extremely simple analogue electrical circuit 

dedicated for simulation the DH equation. There are three different approaches 

developed to process the DH equation and its solutions electrically. The first 

technique is a hybrid one making use of simulation the DH equation on a 

digital computer and digital-to-analogue conversion of the digital output for 

further analogue processing [Namajūnas et al., 1994]. The second method 

employs purely analogue means based on analogue computer design. For 

example, analogue computer has been used to simulate the DH equation and to 

investigate scrambling effects of chaotic signals in linear feedback shift 
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registers [Namajūnas et al., 2000a,b]. Later analogue computer, simulating the 

DH equation and displaying the electrical output voltages on the screen of an 

oscilloscope, has been suggested for chaos demonstration in the undergraduate 

student laboratories [Jones & Trefan, 2001]. Evidently, the first and the second 

techniques are rather general and can be applied to other differential equations 

as well. In contrast, the third approach is based on building some specific 

analogue electrical circuit for a given differential equation. Despite the 

limitation to specific equations, electrical circuits have an attractive advantage 

due to their simplicity and cheapness. Such circuits comprise only small 

number of discrete electrical components: resistors, capacitors, inductors, 

semiconductor diodes, also may include a single (sometimes several) 

operational amplifier. 

 The circuit diagram of the DH oscillator is shown in Fig. A1. It is an 

externally driven damped RLC oscillator with all elements linear. The 

nonlinearity is involved by the positive feedback loop consisting of the resistor 

R3 and two diodes D1-D2. The operational amplifier OA plays the role of 

both, the buffer for the external sinusoidal force and the amplifying stage for 

the positive nonlinear feedback. The electrical circuit resembles the Young–

Silva oscillator [Lai et al., 2005], but is essentially simpler. It includes a single 

operational amplifier, two diodes, and four resistors only, in contrast to the 

Young–Silva circuit containing four operational amplifiers, four diodes, and 

nine resistors. 

 

 

 

FIG. A1. Circuit diagram of the DH oscillator. In the case of a non-

autonomous oscillator A(t)=Asin(t). In the case of an autonomous damped 

oscillator A(t) = 0 (the corresponding node is simply grounded). 
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 Typical chaotic output of the DH oscillator is illustrated in Fig. A2 with a 

waveform, a phase portrait, and a stroboscopic map (the Poincaré section). 

 

 

 

FIG. A2. Chaotic waveform VC(t) (top), phase portrait [IL vs. VC] (bottom left), 

stroboscopic map (Poincaré section) [IL vs. VC; tn=2n] (bottom right). 

A = 200 mV, f = /2 = 1.5 kHz. 

 

Using the Kirchhof’s laws for the circuit in Fig. A1 and introducing the 

dimensionless variables and parameters, we obtain dimensionless equations 

(which can be compared with the conventional DH equations [Ott, 1993]): 
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The corresponding potential is given by the piecewise parabolic function 
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Eq. (A1) has the same structure as the conventional DH equation [Ott, 1993]: 
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However, the nonlinear function F(x) = x  x3 and the nonparabolic potential 

 
42

)()(
42 xx

dxxFxW     (A4) 

are somewhat different from FE and WE. The potentials WE and W are sketched 

in Fig. A3 for comparison. 

 

                 

 

FIG. A3. Piecewise parabolic potential WE(x) from formula (A2) (left) and 

nonparabolic potential W(x) from formula (A4) (right). 

 

 

Despite some difference in the form of the potentials the electronic 

analogue exhibits very similar behaviour (Fig. A2) as the conventional DH 

oscillator illustrated in Fig. A4. 

 

 

 

 

 

 

 

FIG. A4. Numerical results from Eq. (A3). a = 0.3, b = 0.1,  = 1.3. 

 

0 100 200 300 
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More details, numerical results, experimental results, and discussion can 

be found in [1]. We have designed and investigated an electrical circuit, which 

can be treated as an electrical analogue of the DH mathematical oscillator. The 

circuit is extremely simple, easy to build and operate. Nevertheless, it exhibits 

typical behaviour of chaotic systems, including period-doubling route to chaos, 

narrow odd-period windows in chaotic regime, etc. We have shown that many 

basic qualitative characteristics, such as the waveforms, the phase portraits, 

and the stroboscopic maps (the Poincaré sections) can been easily taken in 

experiment. These characteristics coincide very well with the numerically 

obtained characteristics from the DH equation. This allows us to conclude that 

dynamical behaviour of the DH type systems is not very sensitive to the details 

of the nonparabolic potential. The main point is the existence of the two-well 

form of the potential. 

 

A2. Electronic analog of the Lorenz system [10] 

The electronic circuit of the Lorenz system has been built according to Eqs. 

(2.17) in Chapter 2. In contrast to the DH oscillator the structure of the Lorenz 

circuit is a typical example of an analogue computer, based on inverting 

integrators and multipliers. Similar circuits have been described in [Cuomo & 

Oppenheim, 1993; Cuomo et al., 1993]. 

 

 

 

 

 

 

 

 

FIG. A5. Electronic analogue of the Lorenz system. C = 15 nF, R = 7.5 k, R1 

= 2 k, R2 = 2.4 k, R3 = 27 k, opamps are the LM741, multipliers are the 

AD633 integrated circuits. The perturbation (if required) is applied to the node 

V*, the signals from the controller are applied to the node Vcontr. 
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A3. Electronic analog of a body at the Lagrange point L2 of the  

 SunEarth system [4] 

An analogue circuit, imitating dynamics of a system with a conservative saddle 

equilibrium, is shown in Fig. A6. 

 

 

 

 

 

 

 

 

FIG. A6. Circuit diagram of a conservative saddle imitator. R1=R2=R4=10 k, 

R3=1 M, R5=100 , R6=5 k, R7=150  (adjustable), R8=11 k, R9 =200 , 

L=210 mH, C=4.7 F. OA1–OA3 are LM741 integrated circuits; D1 and D2 

are BAS21 type diodes. Signal is taken from the node Vx, control signal is 

applied to the node Ctrl. 

 

 It should be emphasized that the imitator is an essentially nonlinear 

circuit described by Eq. (3.2) in Chapter 3. The experimental nonlinear 

function F(r), taken from the circuit in Fig. A6, is presented in Fig. 3.5 

(Chapter 3). The system imitator is the OA1- and OA2-based circuit. The 

positive feedback introduced by the resistor R6 makes the circuit unstable (the 

positive feedback coefficient k+=R1/R6=2). The role of the additional resistor 

R7, coupled in series with the capacitor C, is to compensate the losses in the 

load resistor R5 and in the inherent ‘ohmic’ resistance RL of the inductance coil 

L, also the losses in the LC tank introduced by the resistor R6. The value of the 

adjustable resistor R7 should be tuned to R7=(R5+RL+2/R6)/(k+−1) in order to 

make the system “conservative” (here 𝜌 = √𝐿/𝐶 ). The nonlinear function 

F(r) is implemented by means of the diodes D1 and D2 with the resistors R9 

and R8 coupled in series to the diodes. The OA3 stage is a buffer. 

Vx 

Ctrl 
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A4. Electronic analog of the FitzHughNagumo oscillator 

[3,5,6,11,13,14,15] 

The circuit diagram of the FitzHughNagumo (FHN) asymmetric oscillator is 

sketched in Fig. A7. 

 

 

 

 

 

 

FIG. A7. FHN asymmetric (R4<<R5) oscillator. A7 OA is a general-purpose 

operational amplifier, e.g. NE5534 type device, D1 and D2 are the BAV99 

type Schottky diodes, L =10 mH, C =3.3 nF, R1 = R2 = 1 k, R3 = 510 , R4 = 

30 , R5 = 510 , R6 = 275  (an external resistor R’6 = 220  in series with 

the coil resistance R’’6 = 55 ), R7 = 24 k, R* = 510 , V0 = 15 V. The 

circuit element values may vary in different experiments [3, 5, 6, 11, 1315]. 

   

 

 The FHN oscillator in Fig. A7 is a circuit with a strongly asymmetric 

nonlinearity (R4<<R5). It essentially differs from the earlier asymmetric version 

of the FHN type oscillator, suggested in [Binczak et al., 2003; Jacquir, 2006]. 

The output, VC(t) is illustrated in Fig. A8. 

 

 

 

 

 

 

FIG. A8. Typical spiking waveform from an individual FHN type oscillator. 

Spike amplitude VC(t) is about 3 V (across the capacitor C) and is about 10 V 

from the output node of the OA. Inter-spike interval 80 µs (f012 kHz). The 

spike characteristics are given for the specific circuit element values given in 

the caption to Fig. A7. 
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A5. Electronic controllers [2-4,6,813,1519,22] 

A variety of electronic controllers and their modifications have been described 

and used in the author‘s publications on the topic of the dissertation. Moreover, 

the circuit element values for the same type of controller differ in specific 

papers, depending on the controlled dynamical system. Therefore, we do not 

present the all circuit diagrams in the dissertation and this appendix A5. One of 

the circuit diagrams is shown in Fig. 2.9 in Chapter 2. One more, specifically 

the negative impedance converter (NIC), is presented in Fig. A9. Other 

electronic controllers are summarized in Table A1 with references to filter 

type, filter order, active devices, and equilibrium type.  

 

Table A1. Electronic controllers for stabilizing equilibrium and controlling 

synchrony in dynamical systems. 
 

Method Filter type; 

filter order 

Active 

devices 

Equilibrium type Reference 

UFC LPF or HPF; 

1st order 

OA, IA saddles [2,10,17] 

UFC||SFC HPF; 

2nd order 

OA conservative or weakly 

damped saddles; inertia 

[4,18] 

CFC LPF; 

2nd order 

IA conservative or weakly 

damped saddles 

[8] 

UFDC LPF; 

1st order 

IA conservative or weakly 

damped saddles 

[9] 

SFC LPF; 

1st order 

IA, OA spirals/nodes; 

spirals/nodes in an array 

of oscillators 

[3,10,13,22] 

NC LPF; 

1st order 

IA, OA, 

COMP 

saddles [12] 

MFN zero order OA desynchronized array of 

oscillators 

[6,11] 

RS zero order OA desynchronized array of 

oscillators 

[6] 

 

Abbreviations: UFC  unstable filter control, UFC||SFC  unstable filter 

control and stable filter control operating in parallel, CFC  combined filter 

control, UFDC  unstable filter control combined with derivative control, SFC 

 stable filter control, NC  nonlinear control, MFN  mean field nullifying, 

RS  repulsive synchronization, LPF  low-pass filter, HPF  high-pass filter, 

OA  operational amplifier, IA  instrumentation amplifier, COMP  

comparator. 



146 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. A8. Circuit diagram of the negative impedance converter NIC. OA is an 

operational amplifier, e.g. NE5534 type device. In case R01=R02, input 

resistance at node 2, Rin2 = R03. 
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